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Abstract

The evaluation of lymph node metastases plays a crucial role in achieving precise cancer
staging, which in turn influences subsequent decisions regarding treatment options. The
detection of lymph nodes poses challenges due to the presence of unclear boundaries and
the diverse range of sizes and morphological characteristics, making it a resource-intensive
process. As part of the LNQ 2023 MICCAI challenge, we propose the use of anatomical
priors as a tool to address the challenges that persist in automatic mediastinal lymph
node segmentation in combination with the partial annotation of the challenge training
data. The model ensemble using all suggested modifications yields a Dice score of 0.6033
and segments 57% of the ground truth lymph nodes, compared to 27% when training on
CT only. Segmentation accuracy is improved significantly by incorporating a probabilistic
lymph node atlas in loss weighting and post-processing. The largest performance gains
are achieved by oversampling fully annotated data to account for the partial annotation of
the challenge training data, as well as adding additional data augmentation to address the
high heterogeneity of the CT images and lymph node appearance. Our code is available
at https://github.com/MICAI-IMI-UzL/LNQ2023.

Keywords: Mediastinal Lymph Node Segmentation, Anatomical Priors, Probabilistic
Atlas, nnU-Net

1. Introduction

In cancer staging, the N-staging component of the Classification of Malignant Tumors
(TNM) classification system provides insights into the presence of metastases in regional
lymph nodes. Accurate identification of metastatic lymph nodes poses a challenge for diag-
nosis through CT imaging alone due to minimal contrast differences with surrounding tissue
and strong variations in size, shape, number, and location of lymph nodes. PET/CT scans
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serve as a gold standard to assess functional parameters, that is metabolic activity and,
consequently, lymph node malignancy. When PET scans are unavailable due to high exam-
ination costs and radioactive exposure to the patient, only CT images are used. In CT, in
contrast to PET, only morphological factors such as the lymph node size can be evaluated.
The Response Evaluation Criteria in Solid Tumors (RECIST) introduced by Eisenhauer
et al. (2009) is commonly used in this context. It defines a lymph node to be pathological if
its short-axis diameter exceeds 10mm in axial plane. With the above-mentioned challenges
of distinguishing lymph nodes from surrounding soft tissue and its highly resource-intensive
manual assessment, there arises a need for robust and performant algorithms to tackle the
task of detection/segmentation of cancerous lymph node for lymph node staging without
human interaction. Automated segmentation of pathological lymph nodes facilitates tumor
staging based on both PET/CT or CT only, and subsequently supports decision-making
regarding the necessity of surgery and further treatment.

The LNQ 2023 challenge hosted at MICCAI 2023 aims to provide a large annotated
dataset as well as an organized platform to compare algorithmic methods in the use case of
the segmentation of enlarged lymph nodes in the mediastinum. This is specifically relevant
for lung cancer patients, but can certainly serve as a benchmark for the extension to other
lymph nodes in the human body. The mediastinum contains ten or more lymph nodes, the
positioning of which is defined in El-Sherief et al. (2014).

The problem setting for this challenge consists of three main hurdles that need to be
addressed by the participant’s approaches: First, the provided data in combination with
other publicly available datasets is highly heterogeneous regarding the retrieval process and
image characteristics such as variances in image resolution and field of view. In addition,
the provided challenge data shows images of patients with pathologies (e.g. a collapsed
lung, tumors) in the highly individual anatomy of the mediastinum, which makes automatic
segmentation and registration particularly difficult. Second, finding lymph nodes is a classic
“looking for a needle in a haystack” problem, as lymph nodes are small. Therefore, the
amount of foreground pixels is also small compared to the number of background pixels,
which leads to a severe class imbalance. Third, the training dataset for the challenge is
weakly annotated, providing segmentation masks of only one or more clinically relevant
lymph nodes. The overall results of the challenge show that not accounting for the problem
of undersegmentation will result in a significant performance drop on validation and test
set.

This study centers around the use of multiple spatial anatomical priors integrated as
supplemental inputs into deep learning methodologies as a tool to address challenges men-
tioned above. The priors consist of distance maps normalized to the atlas’ coordinate system
and probability maps indicating the likelihood of lymph node occurrence. To generate the
priors, we developed an upstream atlas-to-patient registration approach. The extensive
use of additional image augmentation improves generalizability, bridges the domain gap
between different datasets, and, in this way, tackles the high data heterogeneity. To ad-
dress the problem of a high false negative rate due to the strong class imbalance and partial
annotation, we use the probabilistic lymph node atlas in loss weighting and post-processing.
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2. Related Works

The field of automatic lymph node classification, detection, and segmentation has a rich
history in medical research. Feuerstein et al. (2012) advanced the generation of an atlas,
originally designed for brain imaging, for lymph nodes in the mediastinum to then detect
and label the lymph node stations. Similarly, Feulner et al. (2013) developed a probabilistic
atlas derived from lymph node segmentation masks, employing it as a spatial prior in a
multistep approach based on conventional methods. To refine the prior, the authors smooth
the resulting average lymph node segmentations and exclude selected organs, i.e. lungs, the
trachea, the esophagus, and the heart.

The landscape shifted with Roth et al. (2014), who contributed a dataset of 3D CT
volumes from 90 patients with 388 segmented lymph nodes, propelling the rise of learning-
based methods in this domain. Roth et al. (2014) trained a convolutional neural network
using a 2.5D resampling strategy. As input, the authors use three randomly scaled, rotated
and translated orthogonal 2D slices centered on a volume of interest’s centroid coordinates.
Subsequent researchers, such as Iuga et al. (2021) and Nayan et al. (2022), expanded on this
work by experimenting with diverse network architectures. Iuga et al. (2021) introduced
a 3D fully convolutional foveal neural network capable of extracting features at various
resolutions, while Nayan et al. (2022) explored a modified upsampling strategy for U-Net++.
Oda et al. (2018) trained a 3D U-Net to segment lymph nodes as well as other anatomical
structures to prevent oversegmentation.

A promising integration of spatial prior information and learning-based approaches was
proposed by Bouget et al. (2021). The authors incorporated segmentation masks of anatom-
ical structures, such as the esophagus and the azygos vein, as additional channel input to
a 3D U-Net. This strategic inclusion aims to prevent the network from generating false
positives in these specific areas. In this way, the authors synthesize the strengths of both
worlds – deep learning methods and anatomical priors.

3. Methods

Our approach consists of a pre-processing step, the network training and a post-processing
of the predicted results. In the pre-processing, automatic segmentation of anatomical struc-
tures is followed by atlas-to-patient registration to generate strong anatomical priors, which
are used as additional network input, in loss weighting, and in the post-processing step. A
U-Net architecture was trained as a segmentation model. The overall framework is shown
in Fig. 1.

3.1 Pre-Processing and Generation of Anatomical Priors

Anatomical prior information was introduced to account for the low contrast of lymph
nodes in CT images, strong class imbalance and incomplete labelling of the training data.
The proposed prior information consists of anatomical labelling, a distance map (DM)
calculated with respect to a specified anatomical landmark (bifurcation of the trachea)
defining a kind of anatomical coordinate system, and a probability map for the occurrence
of malignant lymph nodes in the training set, referred to as probabilistic lymph node atlas
(PA). Visualizations for both priors for example patients are shown on Fig. 2 and Fig. 3.
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Figure 1: Visualization of the training pipeline.

To generate the probabilistic lymph node atlas, all training images were registered to
a chest CT lymph node atlas (Lynch et al., 2013) and their ground truth annotations
were used to compute occurrence probabilities. The registration pipeline consisted of a
sequence of a rigid registration, followed by an affine registration, and finally a deformable
registration using a GPU-based implementation of ITK’s VariationalRegistration1 module
(Werner et al., 2014). The strong heterogeneity of the CT data, as mentioned in Sec. 1,
would compromise the robustness of pure intensity-based registration. Therefore, rigid and
affine registration were based on segmentation masks (SM) of selected anatomical structures
segmented by the TotalSegmentator2 algorithm (Wasserthal et al., 2023). The selected
structures (i.e. bones, heart, esophagus, trachea, and aorta) include anatomies that are
less likely to contain pathologies, which could distort registration results. The resulting
occurrence probabilities were smoothed with a Gaussian filter (σ = 5) and then scaled to
a range between zero and one. The distance map was also defined in the atlas space with
respect to the selected reference point and normalized to a range between zero and one.

1. https://itk.org/Doxygen/html/group__VariationalRegistration.html
2. https://github.com/wasserth/totalsegmentator
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For training and inference, the chest CT atlas was registered to the input images using
the registration pipeline described above, and the resulting deformation was used to transfer
the probabilistic lymph node atlas and distance map to the subject’s coordinate system.
Further, the image data was cropped to the bounding box of the lung segmentation masks
to reduce computational costs and intensity normalization was performed using nnU-Net’s
default CT normalization method, which involved taking the 0.5 and 99.5 percentiles of
intensity values within the foreground class. This yields values resembling the soft tissue
intensity window.

(a) Patient 1.

(b) Patient 2.

Figure 2: Distance maps overlaid over CT for example patients in axial, sagittal, and
coronal view. Here, the contrasts of the distance map are set in a way that the contour
of the same distance value for both patients is visualized in red. The reference point from
which distances are measured is marked with a red cross. The distances are measured in
the coordinate system of the atlas patient, thus, the contours show a deformed circle.

3.2 Model Architecture and Loss Calculation

As a basis for our segmentation network, we used nnU-Net by Isensee et al. (2021). Inspired
by Isensee et al. (2023), we included additional residual connections in the encoder of the
U-Net. The loss function was a combination of Dice loss, Cross-Entropy (CE) loss and
Tversky loss (Salehi et al., 2017):

L(y, ŷ) = λ1LCE(yijk, ŷijk) + λ2

∑
(i,j,k)∈Ω

wijkLDice(yijk, ŷijk) + λ3LTversky(yijk, ŷijk;α, β),

(1)

821



Engelson and Ehrhardt

(a) Patient 1.

(b) Patient 2.

Figure 3: Probabilistic lymph node atlases overlaid over CT for example patients in axial,
sagittal, and coronal view.

where Ω is the image space, and y and ŷ the ground truth and predicted label maps. The loss
weights were chosen to be λ1 = 0.25, λ2 = 0.25, and λ3 = 0.5. The Tversky loss addresses
the class imbalance of fore- and background. By adjusting its two hyperparameters, that
is, setting α = 0.25 and β = 0.75, we allow a higher false positive rate.

Additionally, we introduced a loss weighting according to the probabilistic lymph node
atlas to further account for the partial annotation of the training data. Due to the partial
annotation, false positive predictions can actually be true positives, which are missing in
the ground truth annotation. This approach uses a reduced Dice loss weight in areas with
high lymph node occurrence. The weight map W = (wijk) at pixel index (i, j, k) ∈ Ω was
calculated as follows:

wijk =


1 gijk = 1

1− pijk gijk = 0, pijk ≤ 0.25

0.75 gijk = 0, pijk > 0.25,

(2)

where G = (gijk), (i, j, k) ∈ Ω is the dilated ground truth segmentation with a kernel radius
of 2 and P = (pijk) is the probabilistic lymph node atlas. The ground truth segmentations
were dilated to ensure that the lymph node borders are correctly classified. The resulting
weight map was multiplied with the pixel-wise Dice loss. This was carried out for mul-
tiple resolutions, as loss calculation of the nnU-Net is embedded into a deep supervision
framework.
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3.3 Augmentation

nnU-Net uses standard augmentations such as random cropping, rotating, and flipping
per default. To further enable training with different CT data sets, we adapted the single-
source domain generalization technique from Ouyang et al. (2021). This allows bridging the
domain gap caused by different acquisition processes and scanners. During each training
iteration, two random intensity or texture transformations were sampled from a shallow
convolutional network to generate a global intensity non-linear augmentation (GIN) for
each input image. Both GIN augmentations were then merged using interventional pseudo-
correlation augmentation (IPA). More precisely, a bias-field-like pseudo-correlation map was
used to perform the blending. See the work of Ouyang et al. (2021) for more details. The
impact of the GIN and IPA augmentation was controlled by a blending parameter whose
weighting follows a Gaussian ramp-up curve (Laine and Aila, 2017) for the first 1,000 epochs
of training to gradually introduce domain generalization to the nnU-Net.

3.4 Post-processing

The aim of the proposed post-processing steps is to, on the one hand, ensure that only
enlarged lymph nodes are segmented and, on the other hand, account for the partial anno-
tations and strong class imbalance. Consequently, the post-processing consisted of removing
connected components that have a diameter smaller than 3, 5 or 7mm or skipping this post-
processing step. Additionally, we set the threshold for binarization for pixel ijk according
to:

mijk = t× (1− 0.5× pijk), (3)

where mijk is the threshold depending on the probabilistic lymph node atlas at pixel ijk, t
is the constant threshold, and pijk is a pixel at index i, j, k of the probabilistic lymph node
atlas P . Similarly to Bouget et al. (2021), the threshold t was kept at 0.5 or reduced to
0.3 or 0.2. This allows for more uncertainty in areas where lymph nodes are more likely to
occur and results in enlarged segmentation masks. In addition, it was necessary to revert
the cropping to the lung segmentation mask by padding the predicted masks to the original
input size and removing segmented pixels outside the convex hull of the lung.

Furthermore, we utilized random variations in network training by ensembling the pre-
dictions of five models to account for partial annotation and class imbalance.

3.5 Semi-Supervised Learning

The presented approach was trained in a purely supervised manner. However, there is
potential to improve generalization by using unsupervised learning techniques. To examine
this, we tested several modifications of the semi-supervised learning approach introduced
by Wang et al. (2022). The approach comes from the field of computer vision, and the
transferability to the medical image domain has not been researched before. The main idea
of the original approach can be summarized as follows: Given two networks with identical
network architectures – a student and a teacher, the student is trained given labeled data
as well as unlabeled data with pseudo-labels generated by the teacher. The teacher weights
are updated by computing an exponential moving average of the weights of the student.
The teacher’s task is to differentiate between reliable and unreliable segmented pixels by
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computing the entropy H(pijk) = −
∑C−1

c=0 pijk(c) log pijk(c) of the softmax probabilities
pijk of class c (Wang et al., 2022). A pixel is reliable, if argmaxc pijk exceeds a dynamically
increasing threshold, which is computed based on the histogram of entropies. In this way,
the teacher generates pseudo-labels for unlabeled data to diversify the training data for the
student’s learning process.

The first modification we implemented is a strong augmentation for the student, includ-
ing GIN and IPA, as well as additional random contrast adjustment and random Gaussian
noise. The unlabeled data that was fed to the teacher was not augmented, besides the
standard augmentations of nnU-Net. This should ensure the best possible pseudo-label
generation by the teacher and a robust segmentation performance through learning on di-
verse training data by the student.

The downside of the original approach in combination with partially annotated data and
the strong class imbalance is that the foreground pixels at the borders of the lymph nodes
are often considered to be unreliable. The reason is that the network is more uncertain in
detecting lymph nodes than in detecting background. This leads to smaller pseudo-labels,
which in turn result in degrading performance. Hence, we developed a second variant that
accounts for the problem of undersegmentation. We removed the differentiation between re-
liable and unreliable pixels and instead use our proposed post-processing approach described
in Sec. 3.4 for pseudo-label generation. This strategy artificially enlarges the segmentation
masks predicted by the teacher, which in the process of training should lead to the predicted
lymph node segmentations to become bigger instead of smaller.

4. Results

The chosen nnU-Net configuration was to train on patches of size 128×112×160 with a
batch size of two. The learning rate was set to linearly decrease from 0.01 to 2 × 10−5

until epoch 1,000 and from 2 × 10−5 to 4 × 10−8 until epoch 2,000. This scheduling leads
to a more rapid decrease of the learning rate in the first training half than in the second
training half. To increase computational efficiency, we implemented a smart cache strategy.
More precisely, the items used for training are stored in cache and partially replaced in each
iteration.

The results for supervised training are described in the following sections. For the
training of the semi-supervised learning task, we resumed training from the best checkpoint
of one of the pre-trained folds. Even though the implementation of the semi-supervised
approaches was particularly time-consuming, all proposed implementations led to a degra-
dation of the validation accuracy during training. Typical learning curves can be seen in
Fig. 4.

4.1 Data

We used three different datasets for network training: First, 393 partially annotated CT
images from the Mass General Brigham Hospital in Boston are provided as the challenge
training dataset (Khajavibajestani et al., 2023). Second, a total of 89 patients are part of a
dataset collected by the National Institutes of Health in Maryland (Roth et al., 2014). Even
though, this dataset contains annotations, they have been refined by Bouget et al. (2021).
The annotations of Bouget et al. (2021) for this dataset as well as another 30 patients

824



Lymph Node Segmentation with a Probabilistic Atlas

from St. Olavs hospital in Trondheim (third dataset) contain lymph nodes of different
sizes as well as information about the node’s station. For a non-expert, it is difficult to
distinguish the segmentation of stations opposed to the segmentation of single lymph nodes
with identifiable borders. The inability to properly detect instances and separate collocated
lymph nodes as a limitation was addressed and analyzed in Bouget et al. (2021). The image
resolution of the training data varies between 0.58 and 0.97mm3 in-plane and 0.5 to 5.0mm3

between slices. The field of view can either be limited to the patient’s thorax, but can also
extend to the whole body. If not marked otherwise, the trained models were tested on the
test dataset of the LNQ 2023 challenge. The test set contains 100 patients and a total of 861
segmented lymph nodes in the ground truth annotations. Some additional characteristics
of the described datasets can be reviewed in Tab. 1. The lymph node size is the minimum
diameter of an ellipse fit to a fully connected component, that is, the segmentation mask of
a single lymph node. The minimum ellipsoid diameter can differ slightly from the in-plane
diameter as defined in RECIST.

Dataset # Patients Total # LN AVG # LN AVG LN size

Roth et al. (2014) 89 1351 15.18 8.5482
Bouget et al. (2021) 30 526 17.53 6.6453
LNQ train 393 556 1.41 16.5481
LNQ val 20 105 5.25 9.2483
LNQ test 100 861 8.61 8.1831

Table 1: Characteristics of the used datasets.

4.2 Metrics

The evaluation metrics, Dice and Average Symmetric Surface Distance (ASSD), were chosen
by the challenge organizers. Tab. 2 shows the results of our final submission for the LNQ
2023 challenge for validation and test set. Here, we used an ensemble of five models, three
of which were trained with the PA-weighted Dice loss and two were trained without. The
threshold for binarization was set to 0.3 and the minimum diameter of the detected lymph
nodes was 5mm.

Additionally, we report Precision and Recall, as well as the percentage of lymph nodes
that were correctly found. The metric LN found shows the fraction of predicted lymph nodes
overlapping with the segmented ground truth lymph nodes, i.e. true positives

true positives+false negatives .
The calculation of this metric was based on the implementation introduced by the organizers
of the BRATS 2023 challenge, initially used for the evaluation of lesion segmentation in brain
images.3 To assess the overlap of the predicted and the ground truth masks, a connected
component analysis is carried out based on dilated masks. The dilation factor was set to
two.

3. https://github.com/rachitsaluja/BraTS-2023-Metrics

825

https://github.com/rachitsaluja/BraTS-2023-Metrics


Engelson and Ehrhardt

Figure 4: Learning curves for a semi-supervised ap-
proach. The blue and red curve show the train and the
validation loss respectively. The green line is a moving
average of the Dice metric. At 2,000 epochs, that is
half training time, semi-supervised training starts.

Dataset Dice ASSD

LNQ val 0.5600 6.7905
LNQ test 0.5690 6.8976

Table 2: Final results of a
5-model ensemble with post-
processing on validation and
test dataset.

4.3 Ablation Study

In the following, we present an ablation study to quantify the effects of the proposed mod-
ifications to the baseline model, which is using the standard nnU-Net trainer with minor
modifications to the learning rate and the epoch number on the provided CT data. Models
were trained and averaged over five model runs. Training data, network architecture, and
training strategy were kept the same for each process.

The results with and without post-processing are presented in Tab. 3 and Tab. 4 re-
spectively. The hyperparameters for post-processing were set via grid search. Lowering the
threshold for binarization to 0.2 without any restriction of the minimum lymph node diam-
eter consistently improves the Dice score and Recall. For significance testing, a one-sided
t-test (alternative hypothesis: the mean of the distribution underlying the first sample is
greater/lower than the mean of the distribution underlying the second sample) has been car-
ried out. The two prior options, that is the additional segmentation masks or the distance
map in combination with the probabilistic lymph node atlas, were tested against using only
CT as input for training. All other models were compared to the preceding model.

The use of both prior options leads to an improved Dice score. However, only using SM
as a prior yields a p-value smaller than 0.05 in the one-sided t-test while using DM & PA as
priors is not significant. Surprisingly, a study based on solely fully annotated data showed
the opposite effect for using SM as a prior. In this study, the Dice score is approximately
three percentage points lower than training on CT only (Engelson et al., 2024). All other
suggested configurations improve segmentation performance significantly. A large effect
is achieved by accounting for the partial annotation by oversampling the fully annotated
datasets, as well as using the Tversky loss to reduce the false negative rate. Tackling the
high data heterogeneity by using GIN and IPA as an additional augmentation technique
strongly improves performance. The last suggested configuration is using the PA-weighted
Dice loss calculation, which, as expected, reduces the amount of false negatives. Generally,

826



Lymph Node Segmentation with a Probabilistic Atlas

the suggested training modifications and post-processing lead to a decreasing false negative
rate at the price of an increasing false positives rate. In other words, the Recall improves
continuously while maintaining a stable or small decrease in Precision. When training on
CT only, around 27% of the ground truth lymph nodes are found by the model. The
combination of all suggested approaches enables the algorithm to find 57% of the ground
truth lymph nodes.

Table 3: Results averaged over five model runs with different configurations for model
training without post-processing. Results significantly different (p < 0.05) are marked in
italic. Here, the training with SM and with DM & PA is compared with training on CT
only. The other models are compared with the predecessor model.

DM PA SM
Overs.

& Tver. Loss
GIN &
IPA

PA-weigh.
loss

Dice ASSD Precision Recall LN found

0.3531 ± 0.0077 14.6567 ± 0.9442 0.8194 0.2563 0.2652
X 0.3818 ± 0.0127 12.8515 ± 0 5,995 0.8107 0.2770 0.2732

X X 0.3611 ± 0.0138 14.1947 ± 0.8583 0.8363 0.2684 0.2656
X X X 0.4297 ± 0.0034 11.7228 ± 0.5704 0.8382 0.3062 0.3104
X X X X 0.5269 ± 0.0428 7.6773 ± 1.7314 0.8061 0.4283 0.4448
X X X X X 0.5509 ± 0.0053 6.9804 ± 0 3109 0.7968 0.4590 0.4763

ensemble 0.5554 6.8249 0.8148 0.4598 0.4586

Table 4: Results averaged over five model runs with different configurations for model
training with post-processing.

DM PA SM
Overs.

& Tver. Loss
GIN &
IPA

PA-weigh.
loss

Dice ASSD Precision Recall LN found

0.3758 ± 0.0071 14.3196 ± 0.9879 0.7983 0.2815 0.2749
X 0.4024 ± 0.0122 13.0008 ± 1.0790 0.7881 0.3020 0.2807

X X 0.3825 ± 0.0128 14.4255 ± 1.0931 0.8151 0.2941 0.2754
X X X 0.4524 ± 0.0029 11.0104 ±.0.6128 0.8228 0.3344 0.3299
X X X X 0.5491 ± 0.0423 7.1048 ± 1.6649 0.7853 0.4643 0.4896
X X X X X 0.5703 ± 0.006 6.4780 ± 0.3397 0.7738 0.4943 0.5153

ensemble 0.6033 5.7483 0.7606 0.5483 0.5654

With a Dice score of 0.5690 the submitted model (Tab. 2) has a lower performance
than the best model with a Dice score of 0.6033 displayed in Tab. 4. This portrays the
following two problems when developing algorithms embedded in a challenge setting: First,
the hyperparameter search was not performed systematically, as participants had no access
to the fully annotated challenge datasets. Each submission required effort and the number
of submissions was limited. And second, hyperparameters for post-processing optimized on
the small validation set did not generalize to the test set. As can be reviewed in Tab. 1, the
characteristics such as average lymph nodes size differ in train, validation, and test set.

5. Discussion

For the task of mediastinal lymph node segmentation, we propose a modified nn-UNet
with the use of anatomical priors as additional model input, in loss weighting, and post-
processing. The priors are generated with an atlas-to-patient registration approach and
serve as orientation reference (distance map) as well as feature guidance (probabilistic lymph
node atlas). The ablation study in Sec. 4.3 shows that using anatomical priors provided
as additional input alone does not lead to a significant performance gain. However, the
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Figure 5: Probabilities for lymph node occurrence created from (a) the train, (b) the
validation, and (c) the test dataset. The probabilities range from 0 to 0.85, the according
color map is displayed on the right.

(a) Probabilities for lymph
node occurrence in the LNQ
2023 train dataset overlaid
on CT of the atlas patient
in coronal view.

(b) Probabilities for lymph
node occurrence in the
LNQ 2023 validation
dataset overlaid on CT of
the atlas patient in coronal
view.

(c) Probabilities for lymph
node occurrence in the LNQ
2023 test dataset overlaid
on CT of the atlas patient
in coronal view.

probabilistic lymph node atlas enhances loss calculation and post-processing, as well as
successfully addresses the challenge of partial annotation and class imbalance. The use of
additional (fully annotated) training data and augmentation techniques show the largest
effects on the segmentation accuracy. However, using the probabilistic lymph node atlas for
post-processing and loss weighting reduces the number of false negatives, which is oftentimes
relevant for medical tasks and when only weakly annotated training data is available.

In the following section, we discuss possible reasons for why the use of the publicly
available fully annotated data turned out to be crucially important to yield decent segmen-
tation accuracy. This could also serve as justification for the failed semi-supervised learning
approach for the application of mediastinal lymph node segmentation.

Figure 5 shows the probabilistic lymph node atlases in coronal view generated with the
segmentation masks of the LNQ 2023 train dataset in 5a, the validation dataset in 5b, and
the test dataset in 5c. According to these images, we find the following differences between
train, validation and test dataset:

• The test set includes lymph node stations that are not included in the train set, e.g.
between the bottom right lung and the aorta.

• Not all stations occur equally often in train, validation and test, e.g. station 7 (beneath
the bifurcation of the trachea) and 4L (between aorta and trachea) is segmented more
often in val/test than in train.

• The size of the segmented masks differs quite heavily, e.g. the segmentation masks in
the train set are larger on average. This is confirmed and analyzed in more detail by
a co-participant (Fischer et al., 2024).
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It can be concluded that the data distribution of the partially annotated train set differs
from the fully annotated validation and test set because the choice of which lymph nodes
to partially annotate has not been made randomly. On the one hand, it can be expected
that medical experts are more likely to annotate strongly enlarged lymph nodes instead of
lymph nodes that are pathological, but smaller. On the other hand, some stations are easier
to find in the mediastinum than others and, therefore, are examined more often, e.g. the
location of station 7 is distinct for most patients and pathologies. Self-enhancing methods,
such as the proposed semi-supervised learning approach, reproduce results learned the by
the model trained in a supervised manner on the data distribution of the training data. If
the data or annotations of the training dataset carry biases, they get enforced with further
unsupervised training. More extensive hyperparameter tuning could have possibly improved
results by tackling the problem of a high false negative rate, or in other words ”the problem
of not segmenting enough”. However, this, most probably, would have not mitigated the
consequences of the biased partial annotation, i.e. ”the problem of not segmenting the right
thing”.

The incorporation of anatomical priors, or in some way encoded prior knowledge, into
the learning process of deep learning methods does seem intuitive when dealing with tasks
of high complexity and label uncertainty, such as in the task presented in the LNQ 2023
challenge. It is necessary to point out that the anatomical priors were only provided as ad-
ditional inputs to the algorithm, without controlling whether the algorithm learns features
from them. Possibly, CT already contains all necessary information to segment pathological
lymph nodes. Simultaneously, the segmentation performance does have potential for im-
provement – the best performing model still misses to segment over 40% of the pathological
lymph nodes. In medical image applications, oftentimes, training datasets are small, but
the task complexity is high. Therefore, algorithms are particularly at risk of showing the
”Clever Hans” behavior, that is predictors making correct predictions for the wrong reasons
(Lapuschkin et al., 2019). Examples of this are shown in DeGrave et al. (2021), Badgeley
et al. (2019), and Zech et al. (2018). Also, in the application of mediastinal lymph node
segmentation, it is difficult to say, whether the features encoded in the U-Net encoder are
semantically meaningful. The symbiosis of prior knowledge with the learning process has
the potential to ensure that the learned features actually are responsible for class changes.
Therefore, it is necessary to explore other options of incorporating prior knowledge in the
network learning process in further research. To further improve segmentation accuracy for
the underlying use case, it might be interesting to use the fully annotated validation and
test data for training.
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Appendix A. Generation of the Probabilistic Lymph Node Atlas

Figure 6: The probabilistic lymph node atlas originates from the registration of annotated,
publicly available CT images of 512 patients to an atlas image (Roth et al., 2014; Bouget
et al., 2021; Khajavibajestani et al., 2023). The CT of patient two from the data provided
by Lynch et al. (2013) serves as an atlas. The resulting displacement fields are used to warp
the segmentation masks of the training data to the atlas. The registered, segmented lymph
nodes are averaged to create a probability map. As a last step, the probabilistic lymph
node atlas is registered back to the training data.
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