Choice of training label matters: how to best use deep learning for quantitative MRI parameter estimation

Sean C. Epstein1,20000-0002-8071-1114, Timothy J. P. Bray30000-0001-8886-5356, Margaret Hall-Craggs30000-0001-8734-4065, Hui Zhang1,20000-0002-5426-2140
1: Department of Computer Science, University College London, 2: Centre for Medical Image Computing, University College London, 3: Centre for Medical Imaging, University College London
Publication date: 2024/01/23
https://doi.org/10.59275/j.melba.2024-geb5
PDF · Code · arXiv

Abstract

Deep learning (DL) is gaining popularity as a parameter estimation method for quantitative MRI. A range of competing implementations have been proposed, relying on either supervised or self-supervised learning. Self-supervised approaches, sometimes referred to as unsupervised, have been loosely based on auto-encoders, whereas supervised methods have, to date, been trained on groundtruth labels. These two learning paradigms have been shown to have distinct strengths. Notably, self-supervised approaches offer lower-bias parameter estimates than their supervised alternatives. This result is counterintuitive – incorporating prior knowledge with supervised labels should, in theory, lead to improved accuracy. In this work, we show that this apparent limitation of supervised approaches stems from the naïve choice of groundtruth training labels. By training on labels which are deliberately not groundtruth, we show that the low-bias parameter estimation previously associated with self-supervised methods can be replicated – and improved on – within a supervised learning framework. This approach sets the stage for a single, unifying, deep learning parameter estimation framework, based on supervised learning, where trade-offs between bias and variance are made by careful adjustment of training label.

Keywords

quantitative mri · diffusion mri · deep learning

Bibtex @article{melba:2024:002:epstein, title = "Choice of training label matters: how to best use deep learning for quantitative MRI parameter estimation", author = "Epstein, Sean C. and Bray, Timothy J. P. and Hall-Craggs, Margaret and Zhang, Hui", journal = "Machine Learning for Biomedical Imaging", volume = "2", issue = "January 2024 issue", year = "2024", pages = "586--610", issn = "2766-905X", doi = "https://doi.org/10.59275/j.melba.2024-geb5", url = "https://melba-journal.org/2024:002" }
RISTY - JOUR AU - Epstein, Sean C. AU - Bray, Timothy J. P. AU - Hall-Craggs, Margaret AU - Zhang, Hui PY - 2024 TI - Choice of training label matters: how to best use deep learning for quantitative MRI parameter estimation T2 - Machine Learning for Biomedical Imaging VL - 2 IS - January 2024 issue SP - 586 EP - 610 SN - 2766-905X DO - https://doi.org/10.59275/j.melba.2024-geb5 UR - https://melba-journal.org/2024:002 ER -

2024:002 cover