Sketchpose: Learning to Segment Cells with Partial Annotations

Clément Cazorla1,2Orcid, Nathanaël Munier1, Renaud Morin2, Pierre Weiss1
1: Institut de Recherche en Informatique de Toulouse (IRIT), Institut de Mathématiques de Toulouse (IMT), Centre de Biologie Intégrative (CBI), Laboratoire de Biologie Moléculaire, Cellulaire et du Développement (MCD), Université de Toulouse, CNRS, Université Toulouse III – Paul Sabatier, Toulouse, France, 2: Imactiv-3D, Centre Pierre Potier, 1 place Pierre Potier, 31100 Toulouse, France
Publication date: 2025/08/22
https://doi.org/10.59275/j.melba.2025-f7b3
PDF · Code · Documentation

Abstract

The most popular networks used for cell segmentation (e.g. Cellpose, Stardist, HoverNet,...) rely on a prediction of a distance map. It yields unprecedented accuracy but hinges on fully annotated datasets. This is a serious limitation to generate training sets and perform transfer learning. In this paper, we propose a method that still relies on the distance map and handles partially annotated objects. We evaluate the performance of the proposed approach in the contexts of frugal learning, transfer learning and regular learning on regular databases. Our experiments show that it can lead to substantial savings in time and resources without sacrificing segmentation quality. The proposed algorithm is embedded in a user-friendly Napari plugin.

Keywords

Cellpose · Deep learning · Distance Map · Frugal learning · Napari · Segmentation

Bibtex @article{melba:2025:016:cazorla, title = "Sketchpose: Learning to Segment Cells with Partial Annotations", author = "Cazorla, Clément and Munier, Nathanaël and Morin, Renaud and Weiss, Pierre", journal = "Machine Learning for Biomedical Imaging", volume = "3", issue = "August 2025 issue", year = "2025", pages = "367--381", issn = "2766-905X", doi = "https://doi.org/10.59275/j.melba.2025-f7b3", url = "https://melba-journal.org/2025:016" }
RISTY - JOUR AU - Cazorla, Clément AU - Munier, Nathanaël AU - Morin, Renaud AU - Weiss, Pierre PY - 2025 TI - Sketchpose: Learning to Segment Cells with Partial Annotations T2 - Machine Learning for Biomedical Imaging VL - 3 IS - August 2025 issue SP - 367 EP - 381 SN - 2766-905X DO - https://doi.org/10.59275/j.melba.2025-f7b3 UR - https://melba-journal.org/2025:016 ER -

2025:016 cover