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Abstract

Organ segmentation in CT volumes is an important pre-processing step in many computer
assisted intervention and diagnosis methods. In recent years, convolutional neural networks
have dominated the state of the art in this task. However, since this problem presents a
challenging environment due to high variability in the organ’s shape and similarity between
tissues, the generation of false negative and false positive regions in the output segmentation
is a common issue. Recent works have shown that the uncertainty analysis of the model
can provide us with useful information about potential errors in the segmentation. In this
context, we proposed a segmentation refinement method based on uncertainty analysis
and graph convolutional networks. We employ the uncertainty levels of the convolutional
network in a particular input volume to formulate a semi-supervised graph learning problem
that is solved by training a graph convolutional network. To test our method we refine the
initial output of a 2D U-Net. We validate our framework with the NIH pancreas dataset
and the spleen dataset of the medical segmentation decathlon. We show that our method
outperforms the state-of-the-art CRF refinement method by improving the dice score by
1% for the pancreas and 2% for spleen, with respect to the original U-Net’s prediction.
Finally, we perform a sensitivity analysis on the parameters of our proposal and discuss
the applicability to other CNN architectures, the results, and current limitations of the
model for future work in this research direction. For reproducibility purposes, we make our
code publicly available at https://github.com/rodsom22/gcn_refinement.

Keywords: Organ segmentation refinement, Uncertainty Quantification, Graph Convo-
lutional Networks, Semi-Supervised Learning

1. Introduction

In recent years, deep convolutional neural networks (CNN) have become the standard in
different learning problems in computer vision, like classification, localization, and segmen-
tation. Inspired by this development, researchers have proposed CNN architectures for the
processing of medical images, in different modalities. Image segmentation is a common task
addressed by both the computer vision and the medical image processing communities. Seg-
mentation of medical structures is an initial step in many computer-aided procedures, like
computer-assisted navigation and detection. However, the necessity of experts for training-
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Figure 1: A graphical overview of our GCN refinement strategy. Our proposal employs the
input’s intensities, and CNN’s prediction, expectation, and entropy (uncertainty)
to formulate the refinement problem as a semi-supervised graph learning problem.

example annotation, the similarity in tissues, and the inter-patient variation of anatomical
structures add additional challenges compared with real-world images, leading to potential
errors in the CNN predictions.

Organ segmentation in CT has been a topic of research. Recent CNN architectures
employ single or multiple aggregations of CNN models, using two-dimensional (Zhou et al.,
2017a) or three-dimensional networks (Zhu et al., 2018; Roth et al., 2018). Works that
include shape and geometric priors have also been proposed (Zhou et al., 2019; Yao et al.,
2019; Degel et al., 2018). A common practice to improve the segmentation of a model is the
inclusion of a post-processing refinement step, included after the inference process of the
CNN. Methods based on conditional random fields (CRF) (Krähenbühl and Koltun, 2011)
are examples of a refinement strategy. Even though refinement methods can be the final
step of the segmentation process, it can also serve as an intermediate step for improving
model performance. For example, Wang et al. (2018) use a CRF-based method to generate
a set of scribbles. In combination with user-defined scribbles, the results are used to perform
an image specific fine-tune of a CNN. Similarly, semi-supervised learning methods can use
refined predictions as pseudo-labels to allow including unlabeled data in CNN’s training
process (Bai et al., 2017). The work in (Li and Ping, 2018) addresses the problem of loss
in spatial correlation in the task of metastasis detection in Whole-slide images, due to the
subdivision of the image in independent patches. The authors propose an architecture
composed of a CNN that processes a group of input patches with a CRF on top. This
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CRF is employed to consider neighborhood information in the classification task, bringing
consistency in the model’s prediction.

CRF employs CNN prediction together with spatial and intensity similarity between
the pixels in CT slices to refine the segmentation. In this sense, additional information
regarding the correctness of the prediction could bring useful information to the process.
Related to this idea, Gal (Kendall and Gal, 2017) shows that a stochastic Gaussian process
can be approximated through the dropout layers of regular CNNs, in a process known as
Monte Carlo dropout (MCDO). This brings the possibility to estimate the uncertainty of
recent CNN segmentation models. CNN uncertainty has proved to be useful as an atten-
tion mechanism in semi-supervised learning (Xia et al., 2018). Recent works in computer
vision have started to explore its capabilities for finding potential misclassified regions for
segmentation refinement purposes (Dias and Medeiros, 2019). In the medical context, the
ability of uncertainty to reflect incorrect predictions has been recently studied (Nair et al.,
2018). Similarly, a recent work presented by Yu et al. (2019), uses the uncertainty of a
teacher model to select the pseudo-labels to train a student model.

Since uncertainty can bring insights regarding the potential errors in the segmentation,
we still need a way to incorporate this knowledge into a refinement pipeline. In this work, we
propose a method to formulate the segmentation refinement problem of CT data as a semi-
supervised graph learning problem, that is solved using graph convolutional neural networks
(GCN). Graph representations of three-dimensional data have been applied for refinement
(Kamnitsas et al., 2017), similarly, recent works have started to explore the application
of graph convolutional networks (GCN) for the segmentation of tubular structures, like
airways (Selvan et al., 2018; Juarez et al., 2019) and vessels (Shin et al., 2019). In this
work, we explore the use of recent GCNs with sparse graphs-representations of 3-D data for
the organ segmentation refinement task.

For a given CNN, we first apply MCDO to obtain the model’s expectation and uncer-
tainty, this last expressed by the model’s entropy. This is used to divide the CNN output
into high confidence points (background or foreground) and low confidence points. With
this information, we define a semi-labeled graph that is used to train a GCN in a semi-
supervised way using the high confidence predictions. The refined segmentation is obtained
by re-evaluating the full graph in the trained GCN (see Fig. 1). To our best knowledge, this
is the first time a semi-supervised GCN learning strategy is employed in the medical image
segmentation task, specifically, for single organ segmentation. Also, this work presents one
of the first cases of using GCN and uncertainty analysis for organ segmentation refinement.
We perform experiments for refining the segmentation of a U-Net on CT data for the pan-
creas and spleen segmentation problems. We compare our results with the popular CRF
refinement method showing a better improvement over the initial CNN prediction and CRF
refinement.

This work presents an extension of our initial results presented in Soberanis-Mukul
et al. (2020). We have extend our initial analysis into a sensitivity analysis presented in
section 3.4. We compare with an additional connectivity scheme in section 3.4.3. We also
perform a thorough study on the components of our edge weighting function in sections
3.4.4 to 3.4.8. Finally, we evaluate the performance of the refinement strategy on a second
CNN architecture, namely QuickNat (Roy et al., 2019b,a), in section 3.7, and discuss some
insights on 2D vs. 3D CNN architectures in section 3.8.
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2. Methods

Overview : Consider an input CT volume V with V (x) the intensity value at the voxel po-
sition x ∈ R3; consider also, a trained CNN g(V (x); θ) with parameters θ; and a segmented
volume Y (x) = g(V (x); θ) with Y (x) ∈ {0, 1}. Our objective, is to refine the segmentation
Y using a GCN trained on a graph representation of the input data. Our framework op-
erates as a post-processing step (one volume at a time) and assumes that no information
about the real segmentation (ground truth) is available.

We first look for a binary volume Ub used to highlight the potential false positives and
false negatives elements of Y . The second step uses Ub, together with information coming
from Y , g, and V , to refine the segmentation Y . We use uncertainty analysis to define Ub.
For the second step, we solve the refinement problem using a semi-supervised GCN trained
on a graph representation of our input volume.

2.1 Uncertainty Analysis: Finding Incorrect Elements

Incorrect elements are estimated considering the uncertainty of g. We employ MCDO ap-
proximation (Kendall and Gal, 2017; Gal and Ghahramani, 2016) to evaluate the uncertainty
of the CNN. This strategy can be applied to any model trained with dropout layers, with-
out modifying or retraining the model. This attribute makes it ideal for a post-processing
refinement algorithm. Gal and Ghahramani (2016) showed that a neural network trained
with dropout layers before the convolutional layers is equivalent to approximate the proba-
bilistic deep Gaussian Process. Following MCDO, we use the dropout layers of the network
in inference time, and perform T stochastic passes on the network to get the expectation of
the model’s prediction:

E(x) ≈ 1

T

T∑
t=1

g(V (x), θt), (1)

with θt the model parameters after applying dropout in the pass t. The model uncertainty
U is given by the entropy, computed as

U(x) = H(x) = −
M∑
c=1

P (x)c logP (x)c, (2)

with P (x)c being the true probability of the voxel x to belong to class c, andM is the number
of classes (M = 2 in our binary segmentation scenario). To approximate this probability, we
use the expectation of the model’s prediction E. Finally, we define the potential incorrect
elements by applying a binary threshold on the entropy volume:

Ub(x) = U(x) > τ, (3)

where the uncertainty threshold τ controls the entropy necessary to consider a voxel x ∈ Y
as uncertain.

2.2 Graph Learning for Segmentation Refinement

At this point, we have a binary mask Ub indicating voxels with high uncertainty. The
uncertainty analysis only tells us that the model is not confident about its predictions.
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Figure 2: a) The GCN refinement strategy. We construct a semi-labeled graph representa-
tion based on the uncertainty analysis of the CNN. Then, a GCN is trained to
refine the segmentation. b) Connectivity. The black square is connected to six
perpendicular neighbors and with k = 16 random voxels

Some of the elements indicated by Ub could be indeed correct and its value should not be
changed. However, we can use a learning model that trains on high confidence voxels to
reclassify (refine) the output of the CNN g. Using the information from the uncertainty
analysis, we can define a partially-labeled graph, where the voxels are mapped to nodes,
and neighborhood relationship to edges. In this way, we formulate the refinement problem
as a semi-supervised graph learning problem. We address this mapped problem by training
a GCN on the high confidence voxels using the methods presented in Kipf and Welling
(2017). The rest of this section describes the formulation of our partially-labeled graph.

2.2.1 Partially-Labeled Nodes

Given a graph G representing our 3D volumetric data, at the inference time, we aim to
obtain a refined segmentation Y ∗ as the results of our GCN model Γ,

Y ∗ = Γ(G(S);φ), (4)

where the graph G is constructed from the set of volumes S = {E,U, V, Y } (see section 2.1
and Fig. 2) and φ represents the GCN’s parameters.

Since most of the voxels in the volume are irrelevant for the refinement process and
given that graphs are not restricted to the rectangular structured representation of data,
we define an ROI tailored to our target anatomy. We define our working region as ROI(x) =
dilation(Ub(x)) ∪ Eb(x) with Eb the expectation binarized by a threshold of 0.5. Since the
entropy is usually high in boundary regions, including the dilated Ub ensures that the
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ROI is bigger enough to contain the organ. Also, this allows us to include high confidence
background predictions (Y = 0) for training the GCN. Including the expectation in the ROI
give us high confidence foreground predictions for training the model. This ROI reduces the
number of nodes of the graph and, in consequence, the memory requirements. The voxels
x ∈ ROI define the nodes for G. Each node is represented by a feature vector containing
intensity V (x), expectation E(x), and entropy U(x). Finally, we labeled each node in the
graph according to its uncertainty level using the next rule:

l(x) =

{
Y (x) if Ub(x) = 0

unlabeled if Ub(x) = 1
(5)

2.2.2 Edges and Weighting

The most straightforward connectivity option is to consider the connectivity with adjacent
voxels (n6 or n26 adjacent voxel neighborhood). However, this simple nearest neighborhood
scheme may not be adequate for our problem for two reasons; First, with this scheme,
every single voxel is connected with its local neighborhood but lacks global information.
Considering the original volumetric representation of the data, this means that the main
source of information is coming only from adjacent voxels, while information from the global
context (not-adjacent voxels) is mainly ignored.

Second, voxels with high uncertainty tend to shape contiguous clusters. Because of this,
a voxel with high uncertainty will be most probably surrounded by other high uncertainty
points, reducing the connection with the low uncertainty points. Hence, a simple n6 or
n26 connectivity might limit the propagation of information from the confidence to the
uncertain regions.

A fully-connected graph can take advantage of the relationships between local and long-
range connections, and propagate information from both certain and uncertain regions
during training and inference time. The main disadvantage of a fully-connected graph for
a GCN model is the prohibitive memory requirements.

In our work, we evaluate an intermediate solution. For a particular node (or voxel) x, we
create connections with its six perpendicular immediate neighbors in the volume coordinate
system (N6) to consider local information. Additionally, we randomly select k additional
nodes in the graph and create a connection between these random elements and x. This
defines a sparse representation that considers local and long-range connections between high
and low uncertainty elements. The k random nodes can be taken from any part inside the
ROI used to define the nodes of the graph. We empirically found that k = 16 offers a
balance in performance and graph size, and kept this value during our experiments.

To define the weights for the edges, we use a function based on Gaussian kernels con-
sidering the intensity V (x) and the 3-D position x ∈ R3 associated with the node:

w1(xi, xj) = λdiv(xi, xj) + β[exp(−||V (x)− V (xj)||2

2σ1
) + exp(−||xi − xj ||

2

2σ2
)] (6)

where λ and β are balancing factors, div(·) is given by the diversity between the nodes

(Zhou et al., 2017b), defined as div(xi, xj) =
∑M

c=1(P c(xi)−P c(xj)) log P c(xi)
P c(xj) with M = 2,

P 1(xi) = E(xi) and P 2(xi) = 1−E(xi) for our binary case. We opt for an additive weighting,
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instead of a multiplicative one, because the GCN can take advantage of connections with
both similar and dissimilar nodes (in intensity and space) in the learning process, and using
a multiplicative weighting could completely cut these connections. We found out that the
diversity can indirectly bring information about the similarity of two nodes, in terms of
class probability.

Since the diversity does not have an upper bound, it is possible to apply a non-linear
transformation in order to normalize its value to the range (0, 1], leading to the following
version of the diversity:

norm div(xi, xj) = 1− 2−div(xi,xj). (7)

We can integrate this into eq.(6) replacing the regular diversity:

w2(xi, xj) = λnorm div(xi, xj) + β[exp(−||V (x)− V (xj)||2

2σ1
) + exp(−||xi − xj ||

2

2σ2
)]. (8)

Similarly, if we only take the exponential part of eq.(7), we get a similarity metric
between the expectation of the nodes xi and xj . We use this version of the diversity as a
third variation of our weighting function, leading to the following expression:

w3(xi, xj) = λinv div(xi, xj) + β[exp(−||V (x)− V (xj)||2

2σ1
) + exp(−||xi − xj ||

2

2σ2
)], (9)

where the function inv div(xi, xj) is given by

inv div(xi, xj) = 2−div(xi,xj). (10)

It is worth mentioning that if we set λ = 0 and keep the same value of β all the weighting
functions become the same.

In addition to the uncertainty threshold analysis presented in Soberanis-Mukul et al.
(2020), we extend this analysis to the different variations of the weighting functions in-
troduced, exploring their effects in the refinement scheme. The corresponding analysis is
presented in section 3.4.4.

2.2.3 Semi-Supervised GCN Learning

At this point, we have reformulated the refinement task as a semi-supervised graph learning
tasks. As mentioned previously, we use the proposal from Kipf and Welling (2017) to train
the GCN in a semi-supervised way. A convolutional H layer is defined as:

H = ÂXW, with Â = D̃−
1
2 ÃD̃−

1
2 (11)

The variable X ∈ RN×K represents the input feature matrix of the layer with N the
number of nodes and K the number of input features per node. W ∈ RK×K′

is the weight
matrix of the current layer with K ′ the number of output features per node. Â follows the
renormalization proposed by Kipf and Welling (2017) with Ã = A + IN , A the adjacency
matrix of G, and the diagonal matrix D̃ = ΣcolsÃ that sums across the columns of Ã. In
general, we keep the same GCN architecture, but employing a sigmoid activation function
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at the output layer, for binary classification. Representing our graph G by its adjacency
matrix A and feature matrix X, this leads to the following GCN model:

Y ∗ = Γ(X,A;W 0,W 1) = sigmoid(Â ReLU(ÂXW 0)W 1) (12)

Finally, it is worth to mention that, even if we validated our proposal using this GCN
learning architecture, given the modular nature of our method, it is possible to employ a
different semi-supervised graph learning strategy.

3. Experiments and Results

We validate our method refining the output of a 2D CNN in the tasks of pancreas and
spleen segmentation. We compare this approach with the refinement obtained from a con-
ditional random field method (Krähenbühl and Koltun, 2011). Then, we evaluate the effects
of variations in the graph-definition parameters, performing a sensitivity analysis. All the
processes run on an NVidia Titan Xp. We make our code publicly available for reproducibil-
ity purposes1.

3.1 Datasets

We tested our framework using two CT datasets for pancreas, and spleen segmentation. For
the pancreas segmentation problem, we used the NIH pancreas dataset2 (Roth et al., 2016,
2015; Clark et al., 2013). We randomly selected 45 volumes of the NIH dataset for training
the CNN model and reserved 20 volumes for testing the uncertainty-based GCN refinement.
For spleen, we employed the spleen segmentation task of the medical segmentation decathlon
(Simpson et al., 2019) (MSD-spleen3). For this problem, we trained the CNN on 26 volumes
and reserved nine volumes to test our framework. The MSD-spleen dataset contains more
than one foreground label in the segmentation mask. We unified the non-background labels
of the MSD-spleen dataset into a single foreground class since we evaluate our method for
refining a binary segmentation model.

3.2 Implementation Details

3.2.1 CNN Baseline Model

We chose a 2D U-Net to be our CNN model (Ronneberger et al., 2015). We included
dropout layers at the end of every convolutional block of the U-Net, as indicated by the
MCDO method. The U-Net was trained considering a binary segmentation problem. Since
we are employing a 2D model, we trained the models using axial slices. The model was
trained with the dice loss function, using the Adam optimizer. We train the model for
around 200 epochs keeping the overall best performing model during the entire training
procedure. At inference time, we predicted every slice separately and then we stacked all
the predictions together to obtain a volumetric segmentation (a similar strategy was used
to perform the uncertainty analysis). As a post-processing step, we compute the largest

1. https://github.com/rodsom22/gcn refinement
2. https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
3. http://medicaldecathlon.com/
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connected component in the prediction, to reduce the number of false positives. At this
point, it is worth mentioning that the U-Net was used only for testing purposes and different
architectures can be used instead. This is mainly because our refinement method uses the
model-independent MCDO analysis.

3.2.2 Uncertainty Analysis and GCN Implementation Details

We utilized MCDO to compute the expectation and entropy using a dropout rate of 0.3 and
a total of T = 20 stochastic passes. To obtain volumetric uncertainty from a 2D model, we
performed the uncertainty analysis on every individual slice of the input volume and then
we stacked all the results together to obtain the volumetric expectation and entropy. We
tested different values for the uncertainty threshold τ (see section 3.4.2).

The GCN model is a two-layered network with 32 feature maps in the hidden layer and
a single output neuron for binary node-classification. The graphical network is trained for
200 epochs with a learning rate of 1e−2, binary entropy loss, and the Adam optimizer. We
kept these same settings for the refinement of both segmentation tasks. After the refinement
process, we can replace only the uncertain voxels with the GCN prediction, or we can replace
the entire CNN prediction with the GCN output. We use the second approach since we
found it producing better results.

3.2.3 Statistical Significance Test

Given that with small sets, the statistical significance tests can fail (Szucs and Ioannidis,
2017; Biau et al., 2008), we generate the dice score in slice-wise to increase the sample size
(up with 278-1700 slices for the spleen, and pancreas respectively). Then we have run the
non-parametric statistical significance test, namely Kolmogorov–Smirnov test. We perform
a statistical significance analysis between the results of the GCN refinement and the initial
results of the CNN. A single start (*) indicates a p-value < 0.05, while a double-start (**)
indicates a p-value < 0.01 with respect to the original CNN prediction.

3.3 Comparison with State of the Art and Baseline CNN

We applied our refinement method independently on every individual sample from the 20
NIH and 9 MSD-spleen testing volumes. The edge weighting function for our refinement
method is given by eq. 6 with λ = 0.5 and β = 1. Since CRF is a common refinement strat-
egy, we use the publicly available implementation of the method presented in Krähenbühl
and Koltun (2011) to refine the CNN prediction. This CRF method assumes dense con-
nectivity. Similar to Krähenbühl and Koltun (2011), we set one unary and two pairwise
potentials. We use the prediction of the CNN as the unary potential. The first pairwise
potential is composed of the position of the voxel in the 3D volume. The second pairwise
potential is a combination of intensity and position of the voxels. For the CRF refinement,
we considered the same ROI used by the GCN.

Results are presented in Table 1. The GCN-based refinement outperforms the base
CNN model and the CRF refinement by around 1% and 0.6% respectively in the pancreas
segmentation task. For spleen segmentation, our GCN refinement presented an increase
in the dice score of 2% with respect to the base CNN, and 1.7% with respect to the CRF
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Figure 3: Comparison of the CNN prediction and its corresponding GCN refinement for
pancreas segmentation. Green colors indicate true positives (TP), red indicates
false positives (FP), and white false negative (FN) regions. From left to right:
the first column shows an FP region removed and an FN region recovered after
the refinement. The second and third columns show FP regions removed. The
fourth column shows an FN region recovered but also a new FP region generated.

Table 1: Average dice score performance (%) of the GCN refinement compared with the
CNN prediction and a CRF-based refinement of the CNN prediction. Results for
pancreas and spleen are presented. Statistical significance is indicated by (*) for a
p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN CRF GCN
2D U-Net refinement Refinement (ours)

Pancreas 76.89± 6.6 77.20± 6.5 77.81± 6.3*

Spleen 93.17± 2.5 93.40± 2.6 95.07± 1.3**

refinement. Figs. 3 and 4 show visual examples of the GCN refinement compared with the
base CNN prediction.

3.4 Sensitivity Analysis

We performed an analysis of the performance of our proposal under different variations of
their main components and hyper-parameters. Our analysis evaluate the scenario when
the base CNN was trained with limited data (sec. 3.4.1). We also explore how the choice
of the uncertainty threshold can affect the performance (sec. 3.4.2). A node connectivity
considering the 26 surrounding neighborhood is compared with the n6 plus 16 long-range
random connection we employed (sec. 3.4.3). Finally, a deep analysis on different variations
of the weighting function is presented in sections 3.4.4, 3.4.5, 3.4.6, 3.4.7, and 3.4.8.
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Figure 4: Comparison of the CNN prediction and its corresponding GCN refinement for
spleen segmentation. Green colors indicate true positives (TP), red indicates
false positives (FP), and white false negative (FN) regions. From left to right:
the first, second, and third columns show FN regions recovered. The fourth
column shows an FN region recovered but also a new FP region generated.

3.4.1 Influence of the Number of Training Samples

We evaluate the performance of the GCN refinement when the base CNN is trained with a
small number of samples. For this, we randomly selected 10 out of the 45 training samples
of the NIH dataset. For spleen, we selected nine. Results are presented in Table 2.

Table 2: Average dice score performance (%) of the GCN refinement compared with the
CNN prediction. The CNN model was trained with 10 samples for the pancreas
and 9 for the spleen. Statistical significance is indicated by (*) for a p-value < 0.05,
and (**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN CRF GCN
2D U-Net refinement Refinement (ours)

Pancreas-10 52.14± 22.6 52.20± 22.6 54.55± 22.2*

Spleen-9 78.89± 28.4 78.80± 28.4 81.15± 28.9**

Note the increment in the standard deviation of all the models. A reason for this can be
that the CNN does not generalize adequately to the testing set, due to the small number of
training examples. Similar to the previous results, the increment in the dice score for the
GCN refinement is about 2.4% with respect to the CNN base model for the pancreas, and
improvement of 2.3% for spleen, compared with the base CNN.

3.4.2 Influence of Uncertainty Threshold

In our experiments, we evaluate the influence of different values for τ . We tested the
method with values of τ ∈ {0.001, 0.3, 0.5, 0.8, 0.999}. In this way, we covered a wide range
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Table 3: Average dice score performance (%) of the GCN refinement at different uncertainty
thresholds τ . Pancreas-10 and Spleen-9 indicate the models trained with 10 and
nine samples, respectively.

Task GCN GCN GCN GCN GCN
τ = 1e− 3 τ = 0.3 τ = 0.5 τ = 0.8 τ = 0.999

Pancreas 77.71± 6.3 77.79± 6.4 77.77± 6.3 77.81± 6.3 77.79± 6.3

Pancreas-10 54.55± 22.1 54.32± 22.1 54.15± 22.2 53.91± 22.4 53.14± 22.9

Spleen 95.01± 1.5 94.92± 1.4 94.98± 1.4 94.97± 1.4 95.07± 1.3

Spleen-9 80.91± 28.8 80.94± 28.9 80.94± 28.8 80.98± 28.9 81.15± 28.9

of conditions that define a voxel as “uncertain”. After training the GCN, we replaced all the
CNN predictions with the GCN output. Table 3 compares the CNN output with the GCN
refinement at different values of τ for the tasks of the pancreas and spleen segmentation.

The parameter τ controls the minimum requirement to consider a voxel as uncertain.
Lower values lead to a higher number of uncertain elements. This has a direct relationship
with the number of high certainty nodes in the graph representation, and hence, in the
number of training examples for the GCN. This also influences the quality of the training
voxels for the GCN, since a high threshold relaxes the amount of uncertainty necessary to
rely on the prediction of the CNN.

However, from the results of Table 3, except for pancreas-10 and spleen-9, there is no
significant impact on the choice of this parameter. One reason can be that there is a
clear separation between high and low uncertainty points. Therefore, changing τ may add
(remove) a few number of nodes that are insignificant for the learning process of the GCN.

For the pancreas-10 model, we notice a progressive decrease in the dice score. Since this
model uses fewer training examples, it is expected to have low confidence in their predictions
(in contrast with the model trained with 45 volumes). In this scenario, a higher uncertainty
threshold increases the chance to include high-uncertainty nodes as ground truth for training
the GCN. A lower τ includes fewer points but with higher confidence. This appears to be
beneficial in the pancreas segmentation model trained with fewer examples.

The opposite occurs with spleen-9, where higher τ are beneficial. This might indicate
a dependency on the characteristics of the anatomies since the pancreas presents more
inter-patient and inter-slice variability (see Fig. 5).

In general, our results suggest that τ parameter should be selected based on the target
anatomy. Further, τ appears to have more influence in conditions of high uncertainty, e.g.
when the model is trained with fewer examples. In the cases where τ has no significant
impact, intermediate values are preferred, since they lead to a lower number of nodes, and
in consequence to lower memory requirements.

3.4.3 Node Connectivity

We compare the refinement performance of our method when a classical n26 neighborhood is
employed. We repeated the experiments for different uncertainty thresholds, and the CNN
model trained with different numbers of examples on the pancreas and spleen datasets.
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Figure 5: An example of the 3D view of the pancreas and spleen. The shape of the pan-
creas brings more inter-patient and inter-slice variability. The shape of the spleen
presents better consistency between patients and slices, leading to better perfor-
mance for the CNNs. Views obtained with ITK-SNAP (Yushkevich et al., 2006).

Results are presented in Tables 4 and 5 for each organ, respectively. In all tables, the
weighting employed is eq. 6 with λ = 0.5 and β = 1.

Table 4: Average dice score performance (%) of the GCN refinement at different uncertainty
thresholds τ for the pancreas segmentation problem. The table compares the
results for the 6-surrounding + 16 random connectivity (ours) vs. a 26 surrounding
connectivity (n26). cnn10 indicates results obtained with a CNN trained on ten
samples.

Connectivity GCN GCN GCN GCN GCN
τ = 1e− 3 τ = 0.3 τ = 0.5 τ = 0.8 τ = 0.999

Ours 77.71± 6.3 77.79± 6.4 77.77± 6.3 77.81± 6.3 77.79± 6.3

n26 76.93± 6.1 77.16± 5.8 77.18± 5.8 77.18± 5.8 77.4± 5.9

Ours-cnn10 54.55± 22.1 54.32± 22.1 54.15± 22.2 53.91± 22.4 53.14± 22.9

n26-cnn10 52.50± 22.1 52.66± 22.4 52.56± 22.4 52.53± 22.5 52.43± 22.9

The results show a better refinement when including the random long-range connections,
especially when working with the CNN trained with limited data, for both tasks. It is worth
to mention that when comparing with the original CNN output presented in Tables 1 and
2, our refinement method using the n26 connectivity still having a slight improvement over
the original CNN prediction.
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Table 5: Average dice score performance (%) of the GCN refinement at different uncertainty
thresholds τ for the spleen segmentation problem. The table compares the results
for the 6-surrounding + 16 random connectivity (ours) vs. a 26 surrounding
connectivity (n26). cnn9 indicates results obtained with a CNN trained on nine
samples.

Connectivity GCN GCN GCN GCN GCN
τ = 1e− 3 τ = 0.3 τ = 0.5 τ = 0.8 τ = 0.999

Ours 95.01± 1.5 94.92± 1.4 94.98± 1.4 94.97± 1.4 95.07± 1.3

n26 94.26± 1.6 94.11± 1.8 95.09± 1.9 94.14± 1.8 94.43± 1.8

Ours-cnn9 80.91± 28.8 80.94± 28.9 80.94± 28.8 80.98± 28.9 81.15± 28.9

n26-cnn9 79.63± 28.6 79.65± 28.5 79.68± 28.5 79.90± 28.5 80.38± 28.7

3.4.4 Edge Weighting

Finally, we analyze the influence of different variations of the components of our weight-
ing function. We perform our refinement strategy using the weighting functions given by
equations 6, 8, and 9, presented in section 2.2.2. In all the experiments of this section, we
keep a fixed value of τ = 0.5. We will use the notation wi,(λ,β), i ∈ {1, 2, 3} to indicate
the parameters employed by the corresponding function, for example, the notation w1,(0.5,1)

holds for weighting function w1 with λ = 0.5 and β = 1. We explore the situations when:
a) either only diversity or only the Gaussian kernels are employed (sec. 3.4.5); b) using a
diversity normalized to the range [0, 1] (sec. 3.4.6); c) using similarity in expectation given
by the inverse of the diversity (sec. 3.4.7); and d) we discuss deep insights regarding the
three different variations of the diversity employed in the previous sections (sec. 3.4.8).

3.4.5 Weighting: Diversity and Gaussian Similarity Kernels

We can divide the weighting function into two metrics, diversity and Gaussian similarity
kernels (in intensity and position). In this experiment, we keep one of these components at
a time. This is done by setting the values of λ and β to zero, accordingly. The results are
presented in Table 6. Note that w1,(0.5,1) corresponds to the weighting function used so far.

Different weighting functions and variations still outperform the initial CNN prediction.
Now, we will focus on the small differences between these results. As we mentioned, our
weighting scheme considers diversity together with intensity and position similarity. The
two later Gaussian components are commonly used in the literature and follow the intuition
that two components that are similar in intensity and close to each other are likely to belong
to the same class. The diversity is an additional component that allows us to include the
results from the MCDO analysis in the edge weighting. The diversity has a lower bound of
zero but in contrast with the Gaussian kernels, in an ideal form, it does not have an upper
bound. When two nodes have a similar expectation, the diversity between those elements
will be small, and the weighting function will only rely on the Gaussian similarities. When
the nodes have important differences in expectation (e.g 0 vs. 1), the unbounded nature of
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Table 6: Average dice score performance (%) of the GCN refinement at τ = 0.5. The table
compares w1 with different combinations of λ, β parameters (w1,(λ,β)). Statistical
significance is indicated by (*) for a p-value < 0.05, and (**) for a p-value < 0.01
with respect to the CNN prediction.

Task CNN GCN GCN GCN
2D U-Net w1,(0.5,1) w1,(0.5,0) w1,(0,1)

Pancreas 76.89± 6.6 77.77± 6.3* 77.85± 6.3* 77.90± 6.2*

Pancreas-10 52.14± 22.6 54.15± 22.2 54.28± 22.2 53.03± 23.0

Spleen 93.17± 2.5 94.98± 1.4** 95.20± 1.4** 94.74± 1.8**

Spleen-9 78.89± 28.4 80.94± 28.8** 80.96± 28.9** 81.17± 28.9*

the diversity will ignore the much smaller contribution of the Gaussian kernels (the diversity
can reach values of 30, while each Gaussian kernel has a maximum at 1.0), and bias the
weight to the value of the diversity.

Pancreas models. In a high-training-data scenario, a Gaussian-kernel-only (λ = 0)
scheme appears to be good enough for the refinement strategy. In the low data-regime,
the GCN appears to take more advantage of diversity. Our features employ intensity, ex-
pectation, and entropy (or uncertainty). Note that the uncertainty threshold affects the
labeled nodes but does not affect the connectivity. A node can be connected to any cer-
tain or uncertain neighbor, and a Gaussian-kernel-only weighting is not aware of possible
inconsistencies in the node features.

Spleen models. The spleen segmentation problem shows different behavior. The lower
inter-patient variability of the spleen could be a reason (see Figs. 5). In a high-training-
data regime, it can bring a more stable and well-separated expectation between organ and
background, making the diversity a more favorable weighting. In a low data regime, the
Gaussian-kernel-only version appears to perform better. However, from Table 3, a larger
τ appears to benefit the low-data spleen problem. In fact, at τ = 0.999, the dice-score for
w1,(0.5,0) and w1,(0,1) are 81.09, and 81.15, respectively, showing no significant difference.
Note that w1,(0,1) = w2,(0,1) = w3,(0,1).

3.4.6 Normalizing the Diversity

One of the questions, we had, during this work whether the normalization of the diversity
would have a positive/negative impact on the behavior of the GCN. In fact, w2 presents
a negative impact on the learning process. As we mentioned, the unbounded nature of
the diversity makes w1 to prefer connections with opposed expectations (and ignore the
Gaussian similarity in those cases). On the other hand, the Gaussian similarity is only
considered when the expectation of both nodes is basically the same, and even in those
cases, the weight is small compared with the values of the diversity. In this sense, the GCN
can learn mostly from examples that are different in expectation or (with a considerably
lower contribution ) from examples similar in intensity and position.
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Using w2, which normalizes the diversity into a value between 0 and 1, makes the
contribution of the Gaussian kernels more representative. The normalized diversity of w2

will no longer ignore the Gaussian similarity, and it will assign the highest weights to
connections between nodes that are similar in intensity and position, but at the same
time different in expectation, which is counter-intuitive. Table 7 shows the drop in the
performance using w2 as weighting function. Given that the diversity is in range between 0
and 1, we use λ = 1 for w2.

Table 7: Average dice score performance (%) of the GCN refinement at τ = 0.5. The table
shows the drop in the performance of w2 compared with the U-Net prediction and
w1. Statistical significance is indicated by (*) for a p-value < 0.05, and (**) for a
p-value < 0.01 with respect to the CNN prediction.

Task CNN GCN GCN
2D U-Net w1,(0.5,1) w2,(1,1)

Pancreas 76.89± 6.6 77.77± 6.3* 63.27± 9.9**

Pancreas-10 52.14± 22.6 54.15± 22.2 43.05± 22.1**

Spleen 93.17± 2.5 94.98± 1.4** 87.15± 3.1**

Spleen-9 78.89± 28.4 80.94± 28.8** 75.47± 26.8**

3.4.7 All-Similarity Weighting

If we take only the exponential part of eq. 7, we will obtain values in the range [0,1] that
gives high weights to similar expectations, presenting a better agreement with the Gaussian
kernels. This weighting scheme is given by w3. The results, compared with the U-Net and
the initial w1,(0.5,1) weighting function are presented in Table 8. Results, again show an
improvement for the GCN refinement, supporting our discussion about w2.

Pancreas models. Again, we can first focus on the results of the pancreas. The inverse
of the diversity in combination with the Gaussian kernels appears to perform well with the
pancreas model trained with a high number of examples. This can be because of the number
of examples is enough to derive a good estimation of the expectation, in contrast with the
low-data pancreas U-Net.

Spleen models. For the spleen problem, the differences appear to be not significant. In
general, the results suggest that w3 is beneficial for the full-data pancreas problem, and does
work well with both spleen models. But might be sub-optimal for the low-data pancreas
refinement task. A possible explanation is that w3 will assign high weights to nodes with
similar values, no matter if both have expectations of 1, 0, or 0.5. This last expectation value
(0.5) represents a high uncertainty point, and it is expected to find this kind of point on an
irregular organ, and with a model trained with a low number of examples, like Pancreas-10.
In this sense, the inverse of the diversity in w3 might also assign a high weight to connections
between uncertainty nodes.
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Table 8: Average dice score performance (%) of the GCN refinement at τ = 0.5. The table
compares the performance of w3 with the U-Net prediction and w1. Statistical
significance is indicated by (*) for a p-value < 0.05, and (**) for a p-value < 0.01
with respect to the CNN prediction.

Task CNN GCN GCN
2D U-Net w1,(0.5,1) w3,(1,1)

Pancreas 76.89± 6.6 77.77± 6.3* 78.19± 6.1*

Pancreas-10 52.14± 22.6 54.15± 22.20 52.90± 23.1

Spleen 93.17± 2.5 94.98± 1.4** 94.81± 1.9**

Spleen-9 78.89± 28.4 80.94± 28.8** 81.08± 28.9**

3.4.8 Diversity-Only Weighting

In this section, as final analysis for the weighting function, we compare w1, w2, and w3 when
β = 0. The results are presented in Table 9. Two points are worth mentioning. Comparing
the results of w2,(1,0) in Table 9 with the results of w2,(1,1) in Table 7, it is clear that the
only-diversity version of w2 has better performance, supporting the idea of the inconsistent
connections of w2,(1,1).

Table 9: Average dice score performance (%) of the GCN refinement at τ = 0.5. The table
compares the performance of the three variations of the diversity (β = 0 for all
functions). Statistical significance is indicated by (*) for a p-value < 0.05, and
(**) for a p-value < 0.01 with respect to the CNN prediction.

Task CNN GCN GCN GCN
2D U-Net w1,(0.5,0) w2,(1,0) w3,(1,0)

Pancreas 76.89± 6.6 77.85± 6.3* 75.45± 7.1** 77.70± 6.2*

Pancreas-10 52.14± 22.6 54.28± 22.2 50.72± 23.5* 52.09± 23.0

Spleen 93.17± 2.5 95.20± 1.4** 94.25± 2.1** 94.59± 2.0**

Spleen-9 78.89± 28.4 80.96± 28.9** 79.84± 28.5 80.81± 28.7*

The second interesting fact comes when comparing the diversity of w1 with the nor-
malized diversity of w2, both in Table 9. Even though these two functions are expected to
behave similarly, we notice a difference in their performance. To understand the possible
causes of these differences, we take a closer look at the assigned weights of these functions
to a subset of nodes. Let’s consider a central node with expectation close to zero, and four
neighbors nodes with expectations of approximately 0.0, 1.0, 0.999, and 0.368, respectively
(see Fig. 6). As expected, w1,(0.5,0) will assign high values to opposed expectations (36.2
and 19.9 in Figure 6.a), while the weight will be low for similar expectations, and close to
zero to identical expectations (weights of 3.7 and 0 in Fig. 6.a). However, for the same
node structure, w2,(1,0) will weight with a high value (close to 1) almost all the connec-
tions, except for the neighbors with the same expectation (see Fig, 6.b). Even though
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Figure 6: A graphical view of the weights assigned by each variation of the diversity func-
tion (vanilla, normalized, and inverse). The three figures show the same node
structures, but weighted by: a) w1,(0.5,0), b) w2,(1,0), and c) w3,(1,0). The value
inside the node represents the expectation for that node.

the difference between the expectations values of 1 and 0.368 is not high enough, w2,(1,0)

will give an importance that is similar to the nodes with completely opposed expectations,
leading to an inconsistent weighting scheme. In contrast, w3,(1,0) (which acts as a kind of
similarity in expectation) assigns weights close to zero to all the nodes that do not have
the same expectation, even to the pair (0, 0.368), see Fig. 6.c. This can suggest a better
consistency for the inverse diversity, compared with diversity normalized to [0, 1]. We can
also see these conclusions if we plot the values for these three variations of the diversity
as a function of the difference between p1 = 0 and p2 ∈ [0, 1] (see Fig. 7). We can see
how the diversity grows exponentially when the difference between p1 and p2 is close to 1
(Fig. 7 Diversity). In a similar way, the inverse diversity assigns a weight of 1 to differences
close to zero and decreases exponentially at the moment this difference starts to increment
(Fig. 7 Inv. Diversity). Finally, the normalized diversity starts assigning a weight of zero
to equal expectations, however, the curve grows exponentially until reaching a weight of 1
when the difference in expectations still close to 0.2 (Fig. 7 Norm. Diversity), leading to
the inconsistencies mentioned before.

In general, a weighting function like w2 appears to be not recommendable for the re-
finement with GCNs. The inverse diversity of w3 can be a better option, however, it is also
possible that under certain conditions, this weighting could introduce noisy connections.
For example, when the expectation has values close to 0.5 for both nodes, the function
will assign high weights, however, this might not heavily contribute to the GCN given the
fact that these nodes might have high uncertainty as well. This suggests that, under high
uncertainty environments, it is better to weigh based on dissimilarity in expectation. On
the other hand, the inverse of diversity can take advantage of well-separated expectations.
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Figure 7: Comparison of the weights assigned by the three variations of the diversity
(vanilla, normalized, and inverse), represented as a function of the difference
of the expectation p1 = 0 and p2 ∈ [0, 1].

3.5 Hyper-parameters Search

We performed an exhaustive search across the different weighting functions, and uncertainty
thresholds, leading to the results presented in Table 10.

As noted, the improvements are not significantly different from the initial weighting
function w1,(0.5,1) presented in our initial work (Soberanis-Mukul et al., 2020), which sug-
gests that this weighting function is good enough for the presented tasks. Nevertheless, a
hyper-parameter search, e.g. choice of the weighting function, and τ , might lead to bet-
ter performance. This mainly depends on the structure of interest and its characteristics,
though.

Table 10: Average dice score performance (%) of the GCN refinement for the pancreas and
spleen segmentation refinement. The initial results from Soberanis-Mukul et al.
(2020) are compared with the best scores obtained after a τ , wi,(λ,β) search. The
values for τ and wi,(λ,β) are indicated. Statistical significance is indicated by (*)
for a p-value < 0.05, and (**) for a p-value < 0.01 with respect to the CNN
prediction.

Task CNN GCN (Soberanis-Mukul et al., 2020) GCN
2D U-Net w1,(0.5,1) updated scores

Pancreas 76.89± 6.6 77.81± 6.3* (τ = 0.8) 78.20± 6.1* (τ = 0.8, w2,(1,1))

Pancreas-10 52.14± 22.6 54.55± 22.1* (τ = 1e− 3) 55.14± 21.6* (τ = 1e− 3, w1,(0.5,0))

Spleen 93.17± 2.5 95.07± 1.3** (τ = 0.999) 95.20± 1.4** (τ = 0.5, w1,(0.5,0))

Spleen-9 78.89± 28.4 81.15± 28.9** (τ = 0.999) 81.72± 29.0* (τ = 1e− 3, w1,(0,1))
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Figure 8: Elements used in the graph definition. In the CNN and GCN outputs: Green
colors indicate true positives, red false positives, and white false negative regions.
For the expectation and entropy: brighter intensities indicate higher values.

3.6 Deep Insights on Prediction, Expectation, and Entropy

We employed three elements from the uncertainty analysis in the definition of our graph:
the CNN’s prediction, the CNN’s expectation, and the CNN’s entropy. Fig. 8 shows an
example of these components.

The labels of the graph are given by the CNN’s high-confidence prediction. However,
from Fig. 8 we can see that the refinement is similar to the expectation. The expectation
is one of the features of the nodes. Also is the main component for the diversity in the
edge’s weighting function (see section 2.2.2). The GCN can learn how to use the CNN’s
expectation, together with intensity and spatial information, to reclassify the nodes of the
graph. However, it can also generate false positives if the expectation contains artifacts.
Fig. 8 shows an example of this case, where we can see a region in the expectation that
does not agree with the ground truth. It can be also noticed that the GCN reduced this
region. This can be a result of the random long-range connections included in the graph
definition.

In our last experiment, we evaluate the relationship between the expectation and the
GCN refinement. For this, we compute the relative improvement between the GCN and
the expectation. First, the expectation was thresholded by 0.5. Then we computed its dice
score with the ground truth. The relative improvement is computed as:

rel imp =
gcndsc − expectationdsc

expectationdsc
× 100. (13)

We compute rel imp for every input volume. Fig. 9 shows the results for the pancreas seg-
mentation task, and compares the metric when the expectation was obtained from a model
trained with 45 (Fig.9a) and 10 samples (Fig.9b), respectively, for pancreas segmentation.

Fig. 9a shows that most of DICE coefficients (17/20) of the GCN refinement are either
below or close to the ones of the expectation. However, three volumes show an improvement
in the DICE compared to the expectation. This is different in Fig. 9b. Here, (13/20)
volumes show either better or similar DICE for the GCN compared to the expectation. A
possible explanation is that models trained with an adequate number of examples (volumes),
their expectation is good enough. In contrast, models trained with a few examples (volumes)
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Figure 9: Relative improvement (%) per input volume of different GCN configurations with
respect to the expectation of a pancreas segmentation model. The red line indi-
cates the same dsc as the expectation. a) CNN trained with 45 volumes, τ = 0.8.
b) CNN trained with 10 volumes, τ = 0.001.

have higher uncertainties yielding unreliable expectations. Our results suggest that our
GCN refinement strategy is favorable over the expectation or uncertainty analysis in such
scenarios.

3.7 Applicability to other network architectures

As a refinement strategy, our proposed method is orthogonal to any segmentation pipeline
and can be applied to different CNNs architectures equipped with the MDCO approxi-
mation. To verify this, we apply the uncertainty-GCN refinement to the predictions of
QuickNat (Roy et al., 2019b,a), trained on the same two segmentation tasks. The network
is trained using the same 45 volumes for the pancreas, and 26 for the spleen, under similar
settings as the U-Net. The testing set is the same we used to evaluate the GCN refinement
from U-Net. We employed the weighting function w2,(1,1) with τ = 0.8 and τ = 0.5 for
the pancreas and spleen models, respectively. Table 11 presents the results for the initial
QuickNat prediction and the GCN refinement.

Table 11: Average dice score performance (%) of the GCN refinement compared with the
initial CNN predictions. Statistical significance is indicated by (*) for a p-value
< 0.05, and (**) for a p-value < 0.01 with respect to the 2D-CNNs predictions.

Task 3D U-Net 2D U-Net Ours 2D QuickNat Ours
Initial GCN-Refinement Initial GCN-Refinement

Pancreas 60.14± 10.07 76.89± 6.6 78.20± 6.1* 61.31± 13.1 61.57± 13.0

Spleen 82.37± 16.8 93.17± 2.5 95.20± 1.4** 91.83± 6.0 92.97± 2.3

Reported results show an improvement over the initial CNN model but on a different
level compared to the results obtained with the U-Net. While the spleen problem shows an
improvement of 1% over the initial prediction, the pancreas model shows subtle changes.
Such differences among different CNNs can be attributed to the epistemic uncertainty in-
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herent to their respective models. In other words, different behaviors of the uncertainty
across models can lead to different behaviors in the GCN refinement strategy. However,
a deeper analysis of inter-model uncertainty and their relationship with the Graph-based
refinement is necessary.

3.8 2D vs. 3D Architectures

In our experiments, we employed a 2D architecture since it provides us with all the necessary
components to test our method. Nevertheless, our refinement strategy is orthogonal to
other segmentation approaches and can be applied to any CNN that produces uncertainty
measures with MCDO. This also includes 3D models. However, to our best knowledge,
MCDO is most commonly employed with 2D models and its translation to 3D might require
additional methodological efforts derived from working with 3D architectures together with
additional requirements for data-handling due to memory constraints (LaBonte et al., 2019).
Further, 3D model might not necessarily provide a better initial segmentation compared
to a 2D CNN as reported by Zhou et al. (2019); Wang et al. (2019). In this regard, we
trained a standard 3D U-Net (Oktay et al., 2018) subdividing the input volume into blocks
of 64×64×32, with a minimum feature size of 16 for the U-Net convolutions. This allows us
to use batches of 8 during training on a NVidia Titan Xp of 12 GB. This lead to a dice-score
of 60.14% for the pancreas segmentation problem, and 82.37% for the spleen segmentation,
using the same training, and testing set as the 2D U-Nets (see Table 11). As can be seen,
under similar conditions, the 3D model presents a lower performance compared with their 2D
counterparts. This can be due to the loss of the global context derived from the subdivision
of the volume. Fit the entire volume can contribute to the performance. However, this
can be limited by the current GPU memory capabilities. Similarly, using a volume-level
input will reduce the number of available samples, which can lead to overfitting problems.
Even though we are aware of U-Net, V-Net inspired 3D architectures defined for pancreas
segmentation that can reach around 80% of dice score, with the use of data augmentation
and auxiliary losses for deep supervision (Zhu et al., 2018), or fine-tuning with the addition
of attention gates (Oktay et al., 2018), we consider that the 2D U-Net gives us good-
enough results on both segmentation problems with an appropriate simplicity to evaluate
our framework. Nevertheless, investigating our approach using 3D models equipped with
MCDO might be an interesting direction.

4. Discussion and Conclusion

In this work, we have presented a method to construct a sparse semi-labeled graph rep-
resentation of volumetric medical data, based on the output and uncertainty analysis of
a CNN model. We have also shown that graph semi-supervised learning can be used to
obtain a refined segmentation. We also provided a deep analysis of the weighting function
employed to construct the graph. We have shown that diversity is an adequate choice for
expectation-based edge weighting. In a similar way, the inverse diversity can also be a good
option under certain circumstances. The dependence of the graph to the expectation and
the uncertainty analysis method employed could explain the differences in the performance
when refining the prediction of two different CNNs. In this regard, alternatives to the un-
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certainty estimation method, and the use of calibrated uncertainties can be an interesting
direction when working with different CNNs models.

Computational Time: Regarding computational time, our method requires to define a
graph and then train a GCN model. This can require more computational requirements
compared with the most efficient versions of CRF. In our experiments, the time required for
training and testing the GCN in the constructed graph is around twice the time required
for CRF in the fully connected version of our uncertainty graph. This is a time of around
30 sec ∼ 1 min for the GCN vs. 13 sec ∼ 30 sec for CRF. These numbers do not consider
the time for uncertainty analysis and graph construction.

Early Stopping Criteria for the CNN: Our method is intended for refining a CNN
model training with a standard procedure. It is not trained in an end-to-end fashion (jointly
with the CNN). Applying an early stopping criterion could have as a consequence an increase
in the uncertainty area, generating a bigger ROI, increasing the number of nodes and, hence,
increasing the memory requirements for the GCN.

Uncertainty Quantification: In this work, we have employed MCDO (Kendall and Gal,
2017) for the model uncertainty analysis, and found out the expectation could be a good
choice for well-trained models, while our GCN refinement shows superior performance, com-
pared to the expectation, in low-data regime. Nonetheless, recently proposed uncertainty
measures (Tomczack et al., 2019), which disentangle the model’s uncertainty from the one
associated with the inter/intra-observer variability, might be desirable.

Graph Representation: We have investigated different connectivity and weighting mech-
anisms in defining our graph and extracted a couple of features to represent our nodes.
However, prior knowledge, e.g. geometry, could be used to constrain the ROI and provide
plausible configurations (Degel et al., 2018; Oktay et al., 2017).

Large Organs and Multi-class Segmentation: We have shown that the model can
be applied to different organ segmentation problems and CNN architectures. Similarly, our
results suggest that the performance can depend on the characteristics of the anatomy stud-
ied. In this sense, large and stable organs like the liver can derive in performance similar
to the spleen. However, further experiments are necessary to verify this. Similarly, large
organs can represent a challenge for a graph-based method, since a graph constructed over
voxels can lead to high memory requirements. A change on the node representation of the
CT data can help in this problem, however, we leave this as future work. In this work, we
addressed a binary classification problem. For a multi-class problem, it should be possible
to obtain a vectorial expectation representing each class, and the entropy can be computed
considering multiple classes. Even though this brings all the elements to formulate the
partially labeled graph, given the complexity in the different structures that share intensity
similarities between tissues, a different weighting, connectivity, and node features might be
necessary to include meaningful information about the anatomies. Similarly, the inclusion
of a larger number of structures will lead to a larger number of nodes, making the efficient
node representation of multi-class data an interesting future direction.
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