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Abstract

The consideration of predictive uncertainty in medical imaging with deep learning is of
utmost importance. We apply estimation of both aleatoric and epistemic uncertainty by
variational Bayesian inference with Monte Carlo dropout to regression tasks and show that
predictive uncertainty is systematically underestimated. We apply σ scaling with a single
scalar value; a simple, yet effective calibration method for both types of uncertainty. The
performance of our approach is evaluated on a variety of common medical regression data
sets using different state-of-the-art convolutional network architectures. In our experiments,
σ scaling is able to reliably recalibrate predictive uncertainty. It is easy to implement and
maintains the accuracy. Well-calibrated uncertainty in regression allows robust rejection
of unreliable predictions or detection of out-of-distribution samples. Our source code is
available at: github.com/mlaves/well-calibrated-regression-uncertainty

Keywords: Bayesian approximation, variational inference

1. Introduction

Predictive uncertainty should be considered in any medical imaging task that is approached
with deep learning. Well-calibrated uncertainty is of great importance for decision-making
and is anticipated to increase patient safety. It allows to robustly reject unreliable predic-
tions or out-of-distribution samples. In this paper, we address the problem of miscalibration
of regression uncertainty with application to medical image analysis.

For the task of regression, we aim to estimate a continuous target value y ∈ Rd given
an input image x. Regression in medical imaging with deep learning has been applied to
forensic age estimation from hand CT/MRI (Halabi et al., 2019; Štern et al., 2016), natural
landmark localization (Payer et al., 2019), cell detection in histology (Xie et al., 2018), or
instrument pose estimation (Gessert et al., 2018). By predicting the coordinates of object
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Figure 1: Calibration plots and uncertainty calibration error (UCE) for EfficientNet-B4 on
BreastPathQ test set. Uncalibrated uncertainty is underestimated and does not
correspond well with the model error (left). Uncertainty can be calibrated most
effectively with σ scaling (right). Solid lines show the mean and shaded areas show
standard deviation from 5 repeated runs. Dashed lines denote perfect calibration.

boundaries, segmentation can also be performed as a regression task. This has been done
for segmentation of pulmonary nodules in CT (Messay et al., 2015), kidneys in ultrasound
(Yin et al., 2020), or left ventricles in MRI (Tan et al., 2017). In registration of medical
images, a continuous displacement field is predicted for each coordinate of x, which has also
recently been addressed by CNNs for regression (Dalca et al., 2019).

In medical imaging, it is crucial to consider the predictive uncertainty of deep learning
models. Bayesian neural networks (BNN) and their approximation provide mathematical
tools for reasoning the uncertainty (Bishop, 2006; Kingma and Welling, 2014). In general,
predictive uncertainty can be split into two types: aleatoric and epistemic uncertainty
(Tanno et al., 2017; Kendall and Gal, 2017). This distinction was first made in the context
of risk management (Hora, 1996). Aleatoric uncertainty arises from the data directly;
e. g. sensor noise or motion artifacts. Epistemic uncertainty is caused by uncertainty in the
model parameters due to a limited amount of training data (Bishop, 2006). A well-accepted
approach to quantify epistemic uncertainty is variational inference with Monte Carlo (MC)
dropout, where dropout is used at test time to sample from the approximate posterior (Gal
and Ghahramani, 2016).

Uncertainty quantification in regression problems in medical imaging has been addressed
by prior work. Medical image enhancement with image quality transfer (IQT) has been
extended to a Bayesian approach to obtain pixel-wise uncertainty (Tanno et al., 2016).
Additionally, CNN-based IQT was used to estimate both aleatoric and epistemic uncertainty
in MRI super-resolution (Tanno et al., 2017). Dalca et al. (2019) estimated uncertainty for
a deformation field in medical image registration using a probabilistic CNN. Registration
uncertainty has also been addressed outside the deep learning community (Luo et al., 2019).
Schlemper et al. (2018) used sub-network ensembles to obtain uncertainty estimates in
cardiac MRI reconstruction. Aleatoric and epistemic uncertainty was also used in multitask
learning for MRI-based radiotherapy planning (Bragman et al., 2018).
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Uncertainty obtained by deep BNNs tends to be miscalibrated, i. e. it does not correlate
well with the model error (Laves et al., 2019). Fig. 1 shows calibration plots (observed
uncertainty vs. expected uncertainty) for uncalibrated and calibrated uncertainty estimates.
The predicted uncertainty (taking into account both epistemic and aleatoric uncertainty) is
underestimated and does not allow robust detection of uncertain predictions at test time.

Calibration of uncertainty in regression has been addressed in prior work outside medical
imaging. In (Kuleshov et al., 2018), inaccurate uncertainties from Bayesian models for
regression are recalibrated using a technique inspired by Platt scaling. Given a pre-trained,
miscalibrated model H, an auxiliary model R : [0, 1]d → [0, 1]d is trained, that yields a
calibrated regressor R ◦H. In (Phan et al., 2018), this method was applied to bounding
box regression. However, an auxiliary model with enough capacity will always be able
to recalibrate, even if the predicted uncertainty is completely uncorrelated with the real
uncertainty. Furthermore, Kuleshov et al. (2018) state that calibration via R is possible if
enough independent and identically distributed (i.i.d.) data is available. In medical imaging,
large data sets are usually hard to obtain, which can cause R to overfit the calibration set.
This downside was addressed in (Levi et al., 2019), which is most related to our work.
They proposed to scale the standard deviation of a Gaussian model to recalibrate aleatoric
uncertainty. In contrast to our work, they do not take into account epistemic uncertainty,
which is an important source of uncertainty, especially when dealing with small data sets
in medical imaging.

This paper extends a preliminary version of this work presented at the Medical Imaging
with Deep Learning (MIDL) 2020 conference (Laves et al., 2020). We continue this work by
providing a new derivation of our definition of perfect calibrtaion, new experimental results,
analysis and discussion. Additionally, prediction intervals are computed to further assess
the quality of the estimated uncertainty. We find that prediction intervals are estimated
too narrow and that recalibration can mitigate this problem.

To the best of our knowledge, calibration of predictive uncertainty for regression tasks
in medical imaging has not been addressed. Our main contributions are: (1) We suggest
to use σ scaling in a separate calibration phase to tackle underestimation of aleatoric and
epistemic uncertainty, (2) we propose to use the uncertainty calibration error and prediction
intervals to assess the quality of the estimated uncertainty, and (3) we perform extensive
experiments on four different data sets to show the effectiveness of the proposed method.

2. Methods

In this section, we discuss estimation of aleatoric and epistemic uncertainty for regression
and show why uncertainty is systematically miscalibrated. We propose to use σ scaling to
jointly calibrate aleatoric and epistemic uncertainty.

2.1 Conditional Log-Likelihood for Regression

We revisit regression under the maximum posterior (MAP) framework to derive direct
estimation of heteroscedastic aleatoric uncertainty. That is, the aleatoric uncertainty varies
with the input and is not assumed to be constant. The goal of our regression model is
to predict a target value y given some new input x and a training set D of m inputs
X = {x1, . . . ,xm} and their corresponding (observed) target values Y = {y1, . . . ,ym}. We
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assume that y has a Gaussian distribution N
(
y; ŷ(x), σ̂2(x)

)
with mean equal to ŷ(x) and

variance σ̂2(x). A neural network with parameters θ

fθ (x) =
[
ŷ(x), σ̂2(x)

]
, ŷ ∈ Rd, σ̂2 ∈ R, σ̂2 ≥ 0 (1)

outputs these values for a given input (Nix and Weigend, 1994). By assuming a Gaus-
sian prior over the parameters θ ∼ N (θ;0, λ−1I), MAP estimation becomes maximum-
likelihood estimation with added weight decay (Bishop, 2006). With m i.i.d. random sam-
ples, the conditional log-likelihood log p(Y |X,θ) is given by

log p(Y |X,θ) =

m∑
i=1

log

(
1

√
2πσ̂

(i)
θ

exp

{
−
∥∥y(i) − ŷ(i)

θ

∥∥2

2
(
σ̂

(i)
θ

)2
})

(2)

=− m

2
log (2π)−

m∑
i=1

log
(
σ̂

(i)
θ

)
+

1

2
(
σ̂

(i)
θ

)2∥∥y(i) − ŷ(i)
θ

∥∥2
. (3)

The dependence on x has been omitted to simplify the notation. Maximizing the log-
likelihood in Eq. (3) w.r.t. θ is equivalent to minimizing the negative log-likelihood (NLL),
which leads to the following optimization criterion (with weight decay)

LG(θ) =
m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
+ log

(
(σ̂

(i)
θ )2

)
. (4)

Here, ŷθ and σ̂θ are estimated jointly by finding θ that minimizes Eq. (4). This can be
achieved using gradient descent in a standard training procedure. In this case, σ̂θ captures
the uncertainty that is inherent in the data (aleatoric uncertainty). To avoid numerical
instability due to potential division by zero, we directly estimate log σ̂2(x) and implement
Eq. (4) in similar practice to Kendall and Gal (2017).

2.2 Biased estimation of σ

Ignoring their dependence through θ, the solution to Eq. (4) decouples estimation of ŷ and
σ̂. In case of a Gaussian likelihood, minimizing Eq. (4) w.r.t. ŷ(i) yields

ŷ(i) = arg min
ŷ(i)

LG = y(i) ∀ i . (5)

Minimizing (4) w.r.t. (σ̂(i))2 yields(
σ̂(i)
)2

= arg min
(σ̂(i))2

LG = ‖y(i) − ŷ(i)‖2 ∀ i . (6)

That is, estimation of σ2 should perfectly reflect the squared error. However, in Eq. (6) σ2

is estimated relative to the estimated mean ŷ and therefore biased. In fact, the maximum
likelihood solution systematically underestimates σ2, which is a phenomenon of overfitting
the training set (Bishop, 2006). The squared error ‖y − ŷ‖2 will be lower on the training
set and σ̂2 on new samples will be systematically too low (see Fig. 2). This is a problem
especially in deep learning, where large models have millions of parameters and tend to
overfit. To solve this issue, we introduce a simple learnable scalar parameter s to rescale
the biased estimation of σ2.
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Figure 2: Biased estimation of aleatoric uncertainty σ2. The deep model overfits estimation
of y on the training set. On unseen test data, the MSE of predictive mean is higher
and σ2 is underestimated. Early stopping (e.g. at epoch 50) would result in an
unbiased estimator, but this would not be optimal in terms of test MSE.

2.3 σ Scaling for Aleatoric Uncertainty

We first derive σ scaling for aleatoric uncertainty. Using a Gaussian model, we scale the
standard deviation σ with a scalar value s to recalibrate the probability density function

p
(
y|x; ŷ(x), σ̂2(x)

)
= N

(
y; ŷ(x), (s · σ̂(x))2

)
. (7)

This results in the following minimization objective:

LG(s) = m log(s) + 1
2s
−2

m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
. (8)

Eq. (8) is optimized w.r.t. s with fixed θ using gradient descent in a separate calibration
phase after training to calibrate aleatoric uncertainty measured by σ̂2

θ. In case of a single
scalar, the solution to Eq. (8) can also be written in closed form as

s = ±

√√√√ 1

m

m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
. (9)

We apply σ scaling to jointly calibrate aleatoric and epistemic uncertainty in the next
section.

2.4 Well-Calibrated Estimation of Predictive Uncertainty

So far we have assumed a MAP point estimate for θ which does not consider uncertainty
in the parameters. To quantify both aleatoric and epistemic uncertainty, we extend fθ
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into a fully Bayesian model under the variational inference framework with Monte Carlo
dropout (Gal and Ghahramani, 2016). In MC dropout, the model fθ̃ is trained with dropout
(Srivastava et al., 2014) and dropout is applied at test time by performing N stochastic
forward passes to sample from the approximate Bayesian posterior θ̃ ∼ q(θ). Following
(Kendall and Gal, 2017), we use MC integration to approximate the predictive variance

Σ̂2 =
1

N

N∑
n=1

(
ŷn −

1

N

N∑
n=1

ŷn

)2

︸ ︷︷ ︸
epistemic

+
1

N

N∑
n=1

σ̂2
n︸ ︷︷ ︸

aleatoric

(10)

and use Σ̂2 as a measure of predictive uncertainty. If the neural network has multiple
outputs (d > 1), the predictive variance is calculated per output and the mean across d
forms the final uncertainty value. Eq. (10) is an unbiased estimator of the approximate
predictive variance (see proof in Appendix C). From Eq. (33) of our proof follows, that Σ̂2

is expected to equal the true variance Σ = E[(ŷ − y)2]. Thus, we define perfect calibration
of regression uncertainty as

Ex,y
[
E[(ŷ − y)2]

∣∣ Σ̂2 = α2
]

= α2 ∀
{
α2 ∈ R |α2 ≥ 0

}
, (11)

which extends the definition of (Levi et al., 2019) to both aleatoric and epistemic uncer-
tainty. We expect that additionally accounting for epistemic uncertainty is particularly
beneficial for smaller data sets. However, even in deep learning with Bayesian principles,
the approximate posterior predictive distribution can overfit on small data sets. In practice,
this leads to underestimation of the predictive uncertainty.

One could regularize overfitting by early stopping that prevents large differences be-
tween training and test loss, which would circumvent underestimation of σ2. However,
our experiments show that early stopping is not optimal with regard to accuracy, i.e. the
squared error of ŷ on both training and testing data (see Fig. 2). In contrast, the model with
lowest mean error on the validation set underestimates predictive uncertainty considerably.
Therefore, we apply σ scaling to recalibrate the predictive uncertainty Σ̂2. This allows a
lower squared error while reducing underestimation of uncertainty as shown experimentally
in the following section.

2.5 Expected Uncertainty Calibration Error for Regression

We extend the definition of miscalibrated uncertainty for classification (Laves et al., 2019)
to quantify miscalibration of uncertainty in regression

EΣ̂2

[∣∣(E[(ŷ − y)2]
∣∣ Σ̂2 = α2

)
− α2

∣∣] ∀
{
α2 ∈ R |α2 ≥ 0

}
, (12)

using the second moment of the error. On finite data sets, this can be approximated with the
expected uncertainty calibration error (UCE) for regression. Following (Guo et al., 2017),
the uncertainty output Σ̂2 of a deep model is partitioned into K bins with equal width. A
weighted average of the difference between the variance and predictive uncertainty is used:

UCE :=
K∑
k=1

|Bk|
m

∣∣var(Bk)− uncert(Bk)
∣∣ , (13)
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with number of inputs m and set of indices Bk of inputs, for which the uncertainty falls
into the bin k. The variance per bin is defined as

var(Bk) :=
1

|Bk|
∑
i∈Bm

1

N

N∑
n=1

(ŷi,n − yi)2 , (14)

with N stochastic forward passes, and the uncertainty per bin is defined as

uncert(Bk) :=
1

|Bk|
∑
i∈Bk

Σ̂2
i . (15)

Note that computing the second moment from Eq. (12) also incorporates MC samples, which
can introduce some bias in the evaluation. The UCE considers both aleatoric and epistemic
uncertainty and is given in % throughout this work. Additionally, we plot var(Bk) vs.
uncert(Bk) to create calibration diagrams.

3. Experiments

We use four data sets and three common deep network architectures to evaluate recalibration
with σ scaling. The data sets were selected to represent various regression tasks in medical
imaging with different dimension d of target value y ∈ Rd:

(1) Estimation of tumor cellularity in histology whole slides of cancerous breast tis-
sue from the BreastPathQ SPIE challenge data set (d = 1) (Martel et al., 2019). The
public data set consists of 2579 images, from which 1379/600/600 are used for train-
ing/validation/testing. The ground truth label is a single scalar y ∈ [0, 1] denoting the
ratio of tumor cells to non-tumor cells.

(2) Hand CT age regression from the RSNA pediatric bone age data set (d = 1) (Halabi
et al., 2019). The task is to infer a person’s age in months from CT scans of the hand.
This data set is the largest used in this paper and has 12,811 images, from which we use
6811/2000/4000 images for training/validation/testing.

(3) Surgical instrument tracking on endoscopic images from the EndoVis endoscopic
vision challenge 20151 data set (d = 2). This data set contains 8,984 video frames from 6
different robot-assisted laparoscopic interventions showing surgical instruments with ground
truth pixel coordinates of the instrument’s center point y ∈ R2. We use 4483/2248/2253
frames for training/validation/testing. As the public data set is only sparsely annotated,
we created our own ground truth labels, which can be found in our code repository.

(4) 6DoF needle pose estimation on optical coherence tomography (OCT) scans from our
own data set2. This data set contains 5,000 3D-OCT scans with the accompanying needle
pose y ∈ R6, from which we use 3300/850/850 for training/validation/testing. Additional
details on this data set can be found in Appendix E.

All outputs are normalized such that y ∈ [0, 1]d. The employed network architectures
are ResNet-101, DenseNet-201 and EfficientNet-B4 (He et al., 2016; Huang et al., 2017;
Tan and Le, 2019). The last linear layer of all networks is replaced by two linear layers

1. endovissub-instrument.grand-challenge.org
2. Our OCT pose estimation data set is publicly available at github.com/mlaves/3doct-pose-dataset
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Figure 3: Calibration plots for ResNet-101 on BreastPathQ (top row) and EfficientNet-B4
on EndoVis (bottom row). Aux scaling tends to overfit the calibration set, which
results in higher UCE compared to simple σ scaling. Dashed lines denote perfect
calibration.

predicting ŷ and σ̂2 as described in § 2.1. For MC dropout, we use dropout before the
last linear layers. Dropout is further added after each of the four layers of stacked residual
blocks in ResNet. In DenseNet and EfficientNet, we use the default configuration of dropout
during training and testing. The networks are trained until no further decrease in mean
squared error (MSE) on the validation set can be observed. More details on the training
procedure can be found in Appendix D.

Calibration is performed after training in a separate calibration phase using the vali-
dation data set. We plug the predictive uncertainty Σ̂2 into Eq. (8) and minimize w.r.t.
s. Additionally, we compare σ scaling to a more powerful auxiliary recalibration model R
consisting of a two-layer fully-connected network with 16 hidden units and ReLU activations
(inspired by (Kuleshov et al., 2018), see § 1).

4. Results

To quantify miscalibration, we use the proposed expected uncertainty calibration error for
regression. We visualize (mis-)calibration in Fig. 1 and Fig. 3 using calibration diagrams,
which show expected uncertainty vs. observed uncertainty. The discrepancy to the identity
function reveals miscalibration. The calibration diagrams clearly show the underestima-
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tion of uncertainty for the uncalibrated models. After calibration with both aux and σ
scaling, the estimated uncertainty better reflects the actual uncertainty. Figures for all
configurations are listed in Appendix G.

Tab. 1 reports UCE values of all data set/model combinations on the respective test
sets. The negative log-likelihood also measures miscalibration; the values on the test set
can be found in Tab. 2 in the appendix. In general, recalibration considerably reduces mis-
calibration. On the data sets BoneAge, EndoVis and OCT, both scaling methods perform
similarly well. However, on the BreastPathQ data set, σ scaling clearly outperforms aux
scaling in terms of UCE. BreastPathQ is the smallest data set and thus has the smallest
calibration set size. We hypothesize that the more powerful auxiliary model R overfits the
calibration set (see BreastPathQ/DenseNet-201 in Tab. 1), which leads to an increase of
UCE on the test set. An ablation study on BreastPathQ for the auxiliary model can be
found in Appendix F.

We also compare our approach to Levi et al. (2019) in Tab. 1, which only considers
aleatoric uncertainty. The aleatoric uncertainty is well-calibrated if it reflects the bias
(E [ŷn]− y)2, which is given by the squared error between the expectation of the stochastic
predictions ŷn and the ground truth. Therefore, the UCE for aleatoric-only is computed
by UCE =

∑K
k=1

|Bk|
m

∣∣err(Bk) − uncert(Bk)
∣∣ , where err(·) is the mean squared error and

uncert(·) is the mean aleatoric uncertainty per bin. Consideration of epistemic uncertainty is
especially beneficial on smaller data sets (BreastPathQ), where our approach outperforms
Levi et al. (2019). On larger data sets, the benefit diminishes and both approaches are
equally calibrated.

Additionally, we report UCE values from a DenseNet ensemble for comparison. In con-
trast to what is reported by Lakshminarayanan et al. (2017), the deep ensemble tends to be
calibrated worse. Only on BoneAge, the ensemble is better calibrated prior to recalibration
of the other methods. After recalibration, both approaches outperform the deep ensemble.

Fig. 4 shows the result of intra-training calibration of aleatoric uncertainty. It indicates
that the gap between training and test loss is successfully closed.

4.1 Posterior Prediction Intervals

In addition to the calibration diagrams, we compute prediction intervals from the uncali-
brated and calibrated posterior predictive distribution. Well-calibrated prediction intervals
provide a reliable measure of precision of the estimated target value. In Bayesian inference,
prediction intervals define an interval within which the true target value y∗ of a new, un-
observed input x∗ is expected to fall with a specific probability (Heskes, 1997; Held and
Sabanés Bové, 2014). This is also referred to as the credible interval of the posterior pre-
dictive distribution. For γ ∈ (0, 1), a γ · 100 % prediction interval is defined through zl and
zu such that ∫ zu

zl

p(y∗ |x∗,D) dy∗ = γ , (16)

with posterior predictive distribution p(y∗ |x∗,D). We compute the 50 %, 90 %, 95 %, and
99 % prediction interval using the root of the predictive variance from Eq. (10); that is,
the ŷ ± zΣ̂ intervals with z ∈ {Φ(0.5),Φ(0.9),Φ(0.95),Φ(0.99)} (estimated interval), with
probit function Φ(p) =

√
2erf−1(p) and erf(p) is the Gaussian error function. This assumes
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Figure 4: (Left) Intra-training calibration of aleatoric uncertainty with σ scaling. The deep
model no longer underestimates σ̂2 on unseen test data. (Right) The MSE of
predictive mean is higher and σ2 is underestimated. Note: Calibration is only
applied at test time.
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Figure 5: Example result from EndoVis test set. The task is to predict pixel coordinates
of the forceps shaft center. Before calibration, the uncertainty is underestimated
and the true instrument position y does not fall into the prediction region ŷ± Σ̂.
After calibration with σ scaling, the uncertainty better reflects the predictive
error.
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Table 1: Uncertainty calibration error test set results for different datasets and model ar-
chitectures (averaged over 5 runs). High UCE values indicate miscalibration. In
addition, the resulting s for σ scaling is given. We also report UCE values for an
ensemble of DenseNets. Bold font indicates lowest values in each experiment.

Levi et al. ours

Data Set Model MSE none aux σ s none aux σ s ensemble

ResNet-101 6.4e-3 0.51 0.35 0.28 2.91 0.49 0.31 0.20 2.37
BreastPathQ DenseNet-201 7.0e-3 0.21 0.38 0.15 1.62 0.11 0.36 0.15 1.33 0.51

EfficientNet-B4 6.4e-3 0.49 0.65 0.10 2.30 0.46 0.47 0.17 1.77

ResNet-101 5.3e-3 0.28 0.07 0.06 1.46 0.28 0.02 0.06 1.40
BoneAge DenseNet-201 3.5e-3 0.31 0.05 0.05 2.98 0.31 0.05 0.05 2.54 0.09

EfficientNet-B4 3.5e-3 0.30 0.05 0.10 4.83 0.30 0.03 0.12 3.98

ResNet-101 4.0e-4 0.04 0.10 0.09 6.07 0.04 0.04 0.04 3.50
EndoVis DenseNet-201 1.1e-3 0.09 0.05 0.05 3.24 0.04 0.04 0.04 2.57 0.08

EfficientNet-B4 8.9e-4 0.06 0.05 0.06 2.25 0.06 0.04 0.04 1.79

ResNet-101 2.0e-3 0.17 0.02 0.02 2.74 0.17 0.01 0.02 2.14
OCT DenseNet-201 1.3e-3 0.08 0.01 0.02 1.60 0.04 0.03 0.02 1.26 0.67

EfficientNet-B4 1.4e-3 0.12 0.01 0.01 2.65 0.12 0.01 0.01 1.94

that the posterior predictive distribution is Gaussian, which is not generally the case. To
assess the calibration of the posterior prediction interval, we compute the percentage of how
many of the ground truth values of the test set actually fall within the respective intervals
(observed interval). In Fig. 6, selected plots of observed vs. estimated prediction intervals
are shown. A complete list of prediction intervals can be found in Appendix G.1.

In general, the uncalibrated prediction intervals are estimated to be too narrow, which
is a direct consequence of the underestimated predictive variance. For example, the uncali-
brated 90 % interval on DenseNet-201/BoneAge actually only contains approx. 50 % of the
ground truth values. On this data set, the prediction intervals are considerably improved
after recalibration (Fig. 6 left). If a network is already well-calibrated, recalibration can
lead to overestimation of the lower prediction intervals (Fig. 6 right). However, in all cases,
the 99 % prediction interval contains approx. 99 % of the ground truth test set values after
recalibration. This is not the case without the proposed calibration methods. Fig. 5 shows
a practical example of the ŷ± Σ̂ prediction region from the EndoVis test set. Even though
the posterior predictive distribution is not necessarily Gaussian, the calibrated results fit
the prediction intervals well. This is especially the case for BoneAge, which is the largest
data set used in this paper.

4.2 Detection of Out-of-Distribution Data and Unreliable Predictions

Deep neural networks only yield reliable predictions for data which follow the same distri-
bution as the training data. A shift in distribution could occur when a model trained on CT
data from a specific CT device is applied to data from another manufacturer’s CT device,
for example. This could potentially lead to wrong predictions with low uncertainty, which
we tackle with recalibration. To create a moderate distribution shift, we preprocess im-
ages from the BoneAge data set using Contrast Limited Adapative Histogram Equalization
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(CLAHE) (Pizer et al., 1987) with a clip-limit of 0.03 and report histograms of the uncer-
tainties (see Fig. 7). Additionally, a severe distribution shift is created by presenting images
from the BreastPathQ data set to the models trained on BoneAge. Lakshminarayanan
et al. (2017) state that deep ensembles provide better-calibrated uncertainty than Bayesian
neural networks with MC dropout variational inference. We therefore train an ensemble of
5 randomly initialized DenseNet-201 and compare Bayesian uncertainty with σ scaling to
ensemble uncertainty under distribution shift. The results with σ scaling are comparable
to those from a deep ensemble for a moderate shift, but without the need to train multiple
models on the same data set. A severe shift leads to only slightly increased uncertainties
from the calibrated MC dropout model, while the deep ensemble is more sensitive.

Additionally, we apply the well-calibrated models to detect and reject uncertain predic-
tions, as crucial decisions in medical practice should only be made on the basis of reliable
predictions. An uncertainty threshold Σ2

max is defined and all predictions from the test set
are rejected where Σ̂2 > Σ2

max (see Fig. 8). From this, a decrease in overall MSE is expected.
We additionally compare rejection on the basis of σ scaled uncertainty to uncertainty from
the aforementioned ensemble. In case of σ scaling, the test set MSE decreases monoton-
ically as a function of the uncertainty threshold, whereas the ensemble initially shows an
increasing MSE (see Fig. 8).

5. Discussion & Conclusion

In this paper, well-calibrated predictive uncertainty in medical imaging obtained by varia-
tional inference with deep Bayesian models is discussed. Both aux and σ scaling calibration
methods considerably reduce miscalibration of predictive uncertainty in terms of UCE. If
the deep model is already well-calibrated, σ scaling does not negatively affect the calibra-
tion, which results in s→ 1. More complex calibration methods such as aux scaling have to
be used with caution, as they can overfit the data set used for calibration. If the calibration
set is sufficiently large, they can outperform simple scaling. However, models trained on
large data sets are generally better calibrated and the benefit diminishes. Compared to the
work of Levi et al. (2019), accounting for epistemic uncertainty is particularly beneficial for
smaller data sets, which is helpful in medical practice where access to large labeled data
sets is less common and is associated with great costs.

Posterior prediction intervals provide another insight into the calibration of deep models.
After recalibration, the 99 % posterior prediction intervals correctly contain approx. 99 %
of the ground truth test set values. In some cases, lower prediction intervals are estimated
to be too wide after calibration. This is especially the case for smaller data sets and we
conjecture that small calibration sets may not contain enough i.i.d. data for calibrating
lower prediction intervals and that the assumption of a Gaussian predictive distribution is
too strong in this case. On the smallest data set BreastPathQ, aux scaling seems to perform
better in terms of prediction intervals, but not in terms of UCE.

Well-calibrated uncertainties from MC dropout are able to detect a moderate shift in
the data distribution. However, deep ensembles perform better under a severe distribution
shift. BNNs with calibrated uncertainty by σ scaling outperform ensemble uncertainty in
the rejection task, which we attribute to the generally poorer calibration of ensembles on
in-distribution data.
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Figure 6: Observed vs. estimated posterior prediction intervals on the test sets. (Left &
center) The uncalibrated prediction interval is too narrow due to underestimation
of uncertainty. (Right) Calibration can lead to overestimation of predictive inter-
vals, if the network is already well-calibrated. Dashed lines denote 1:1 mapping.
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Figure 7: Histograms of the uncertainties for out-of-distribution detection with DenseNet-
201 on BoneAge test set. (Left) Uncertainties from a non-Bayesian ensemble of
five DenseNets and (right) Bayesian uncertainties calibrated with σ scaling. The
distribution shifts have been created with pre-processing by CLAHE (moderate)
and images from a different domain (severe).
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max. The shaded area width visualizes the percentage of rejected samples.
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σ scaling is simple to implement, does not change the predictive mean ŷ, and therefore
guarantees to conserve the model’s accuracy. It is preferable to regularization (e. g. early
stopping) or more complex recalibration methods in calibrated uncertainty estimation with
Bayesian deep learning. The disconnection between training and test NLL can successfully
be closed, which creates highly accurate models with reliable uncertainty estimates. How-
ever, there are many factors (e. g. network capacity, weight decay, dropout configuration)
influencing the uncertainty that have not been discussed here and will be addressed in future
work.
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Appendix A. Laplacian Model

Using Laplace(ŷ(x), σ̂(x)) as model, the conditional log-likelihood is given by

log p(Y |X,θ) =

m∑
i=1

log

(
1

2σ̂
(i)
θ

exp

{
−
∣∣y(i) − ŷ(i)

θ

∣∣
σ̂

(i)
θ

})
, (17)

which results in the following minimization criterion:

LL(θ) =

m∑
i=1

1

σ̂
(i)
θ

∣∣y(i) − ŷ(i)
θ

∣∣+ log
(
σ̂

(i)
θ

)
. (18)

Using LL(θ) instead of LG(θ) results in applying an L1 metric on the predictive mean. In
some cases, this led to better results. However, we have not conducted extensive experiments
with it and leave it to future work.

Appendix B. Derivation of σ Scaling

See § 2.3. Using a Gaussian model, we scale the standard deviation σ with a scalar value s
to calibrate the probability density function

p
(
y|x; ŷ(x), σ̂2(x)

)
= N

(
y; ŷ(x), (s · σ̂(x))2

)
. (19)

The conditional log-likelihood is given by

log p(Y |X,θ) =
m∑
i=1

log

 1
√

2πsσ̂
(i)
θ

exp

∥∥y(i) − ŷ(i)
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∥∥2

2
(
sσ̂

(i)
θ

)2


 (20)

= −m
2

log (2π)−
m∑
i=1

log
(
sσ̂

(i)
θ

)
+

1

2

(
sσ̂

(i)
θ

)−2
·
∥∥y(i) − ŷ(i)

θ

∥∥2
(21)

This results in the following optimization objective (ignoring constants):

LG(s) = m log(s) + 1
2s
−2

m∑
i=1

(σ̂
(i)
θ )−2

∥∥y(i) − ŷ(i)
θ

∥∥2
. (22)

Using a Laplacian model, the optimization criterion follows as

LL(s) = m log(s) + s−1
m∑
i=1

1

σ̂
(i)
θ

∣∣∣y(i) − ŷ(i)
θ

∣∣∣ . (23)

Eq. (22) and (23) are optimized w.r.t. s with fixed θ using gradient descent in a separate
calibration phase after training. The solution to Eq. (22) can also be written in closed form
as

sG = ±

√√√√ 1

m

m∑
i=1

(
σ̂

(i)
θ

)−2∥∥y(i) − ŷ(i)
θ

∥∥2
(24)
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and the solution to Eq. (23) follows as

sL =
1

m

m∑
i=1

1

σ̂
(i)
θ

∣∣∣y(i) − ŷ(i)
θ

∣∣∣ , (25)

respectively. We apply σ scaling to jointly calibrate aleatoric and epistemic uncertainty as
described in § 2.4.

Appendix C. Unbiased Estimator of the Approximate Predictive
Variance

We show that the expectation of the predictive sample variance from MC dropout, as given
in (Kendall and Gal, 2017), equals the true variance of the approximate posterior predictive
distribution.

Proposition 1 Given N MC dropout samples fθn = [ŷn, σ̂
2
n] from our approximate predic-

tive distribution p(y∗|x∗,D) = N (y∗;y,Σ2), the predictive sample variance

Σ̂2 =
1

N

N∑
n=1

(
ŷn −

1

N

N∑
n=1

ŷn

)2

+
1

N

N∑
n=1

σ̂2
n (26)

is an unbiased estimator of the approximate predictive variance.

Proof
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Note that the predicted heteroscedastic aleatoric uncertainty σ̂2 equals the bias E[(ȳ−y)2]
in Eq. (33) when the aleatoric uncertainty is perfectly calibrated, thus E[(ȳ − y)2] = σ̂2.

Appendix D. Training Procedure

The model implementations from PyTorch 1.3 (Paszke et al., 2019) are used and trained
with the following settings:

• training for 500 epochs with batch size of 16

• Adam optimizer with initial learn rate of 3 · 10−4 and weight decay with λ = 10−7

• reduce-on-plateau learn rate scheduler (patience of 20 epochs) with factor of 0.1

• in MC dropout, N = 25 forward passes were performed with dropout with p = 0.5
used for ResNet (as described in (Gal and Ghahramani, 2016)). In DenseNet (p = 0.2)
and EfficientNet (p = 0.4) standard dropout p of the architecture is used.

• Additional validation and test sets are used if provided by the data sets; otherwise, a
train/validation/test split of approx. 50% / 25% / 25% is used

• Source code for all experiments is available at github.com/mlaves/well-calibrated-
regression-uncertainty

Appendix E. 3D OCT Needle Pose Data Set
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Figure 9: Example image from OCT data set showing arg max projections of a surgical
needle tip acquired by optical coherence tomography.

Our data set was created by attaching a surgical needle to a high-precision six-axis hexapod
robot (H-826, Physik Instrumente GmbH & Co. KG, Germany) and observing the needle
tip with 3D optical coherence tomography (OCS1300SS, Thorlabs Inc., USA). The data set
consists of 5,000 OCT acquisitions with (64×64×512) voxels, covering a volume of approx.
(3 × 3 × 3) mm3. Each acquisition is taken at a different robot configuration and labeled
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with the corresponding 6DoF pose y ∈ R6. To process the volumetric data with CNNs
for planar images, we calculate 3 planar projections along the spatial dimensions using
the arg max operator, scale them to equal size and stack them together as three-channel
image (see Fig. 9). A similar approach was presented in (Laves et al., 2017) and (Gessert
et al., 2018). The data are characterized by a high amount of speckle noise, which is a
typical phenomenon in optical coherence tomography. The data set is publicly available at
github.com/mlaves/3doct-pose-dataset.

Appendix F. Ablation Study on Auxiliary Model Scaling
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Figure 10: Calibration diagrams for aux scaling with different number of hidden layer units
h on BreastPathQ/DenseNet-201.

Here, we investigate the overfitting behavior of aux scaling by reducing the number of
hidden layer units h of the two-layer auxiliary model with ReLU activations. Aux scaling
is more powerful than σ scaling, which can lead to overfitting the calibration set. Fig. 10
shows calibration diagrams for the auxiliary model ablations. Reducing h leads to a minor
calibration improvement, but at h = 2, the model outputs a constant uncertainty, which
is close to the overall mean of the observed uncertainty. A single-layer single-unit model
without bias would be equivalent to σ scaling.

Appendix G. Additional Results and Calibration Diagrams

All test set runs have been repeated 5 times. Solid lines denote mean and shaded areas
denote standard deviation calculated from the repeated runs.
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Table 2: Negative log-likelihood test set results for different datasets and model architec-
tures (averaged over 5 runs). High NLL values indicate miscalibration. We also
report NLL values for an ensemble of DenseNets. Bold font indicates lowest values
in each experiment.

Levi et al. ours

Data Set Model MSE none aux σ none aux σ ensemble

ResNet-101 6.4e-3 -0.78 -5.06 -5.06 -2.89 -5.17 -5.16
BreastPathQ DenseNet-201 7.0e-3 -5.16 -5.84 -5.70 -5.67 -6.03 -5.78 0.11

EfficientNet-B4 6.4e-3 -3.11 -5.99 -5.53 -4.73 -6.16 -5.62

ResNet-101 5.3e-3 -3.90 -4.34 -4.34 -3.99 -4.34 -4.34
BoneAge DenseNet-201 3.5e-3 1.74 -4.70 -4.69 -0.75 -4.70 -4.69 0.07

EfficientNet-B4 3.5e-3 13.61 -4.74 -4.67 6.40 -4.75 -4.64

ResNet-101 4.0e-4 -0.53 -6.32 -6.33 -3.85 -6.76 -6.72
EndoVis DenseNet-201 1.1e-3 -0.72 -6.10 -5.99 -4.94 -6.05 -6.04 0.04

EfficientNet-B4 8.9e-4 -5.10 -6.06 -6.07 -5.94 -6.17 -6.17

ResNet-101 2.0e-3 -1.08 -5.24 -5.24 -3.38 -5.24 -5.24
OCT DenseNet-201 1.3e-3 -5.05 -5.61 -5.61 -5.51 -5.62 -5.61 0.10

EfficientNet-B4 1.4e-3 -1.72 -5.58 -5.57 -4.25 -5.58 -5.57
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G.1 Additional Prediction Intervals
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Figure 11: Observed vs. estimated posterior prediction intervals for all networks/data sets.
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