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Abstract

The scarcity of labeled data often impedes the application of deep learning to the seg-
mentation of medical images. Semi-supervised learning seeks to overcome this limitation
by exploiting unlabeled examples in the learning process. In this paper, we present a novel
semi-supervised segmentation method that leverages mutual information (MI) on categor-
ical distributions to achieve both global representation invariance and local smoothness.
In this method, we maximize the MI for intermediate feature embeddings that are taken
from both the encoder and decoder of a segmentation network. We first propose a global
MI loss constraining the encoder to learn an image representation that is invariant to ge-
ometric transformations. Instead of resorting to computationally-expensive techniques for
estimating the MI on continuous feature embeddings, we use projection heads to map them
to a discrete cluster assignment where MI can be computed efficiently. Our method also
includes a local MI loss to promote spatial consistency in the feature maps of the decoder
and provide a smoother segmentation. Since mutual information does not require a strict
ordering of clusters in two different assignments, we incorporate a final consistency regu-
larization loss on the output which helps align the cluster labels throughout the network.
We evaluate the method on four challenging publicly-available datasets for medical image
segmentation. Experimental results show our method to outperform recently-proposed ap-
proaches for semi-supervised segmentation and provide an accuracy near to full supervision
while training with very few annotated images

Keywords: Semantic segmentation, Semi-supervised learning, Deep clustering, Mutual
information, Convolutional neural network

1. Introduction

Supervised learning approaches based on deep convolutional neural networks (CNNs) have
achieved outstanding performance in a wide range of segmentation tasks. However, such
approaches typically require a large amount of labeled images for training. In medical
imaging applications, obtaining this labeled data is often expensive since annotations must
be made by trained clinicians, typically in 3D volumes, and regions to segment can have
very low contrast. Semi-supervised learning is a paradigm which reduces the need for
fully-annotated data by exploiting the abundance of unlabeled data, i.e. data without
expert-annotated ground truth. In contrast to standard approaches that learn exclusively
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from labeled data, semi-supervised methods also leverage intrinsic properties of unlabeled
data (or priors ) to guide the learning process.

Among the main approaches for semi-supervised segmentation, those employing consis-
tency-based regularization and unsupervised representation learning have shown a great
potential at exploiting unlabeled data (Perone and Cohen-Adad, 2018; Perone et al., 2019;
Bortsova et al., 2019; Li et al., 2018; Chaitanya et al., 2020). The former approach, which
leverages the principle of transformation equivariance, i.e.,f (T(x)) = T(f (x)) for a geo-
metrical transformation T, enforces the segmentation network to predict similar outputs
for di�erent transformed versions of the same unlabeled image (Perone and Cohen-Adad,
2018; Bortsova et al., 2019; Li et al., 2018). Typical geometrical transformations include
small translations, rotations or scaling operations on the image. A common limitation for
consistency-based methods, however, is that they ignore the dense and structured nature of
image segmentation, and impose consistency on di�erent pixels independently. On the other
hand, representation learning (Bengio et al., 2013) uses unlabeled data in a pre-training step
to �nd an internal representation of images (i.e., convolutional feature maps) which is useful
to the downstream analysis task. A recent technique based on this paradigm is contrastive
learning (Oord et al., 2018; Tian et al., 2019). In this technique, a network is trained
with a set of paired samples from the same joint distribution (positive pair) or di�erent
distributions (negative pair). A contrastive loss is employed to make the representation of
positive-pair images similar to each other, and the representation of negative-pair images
to be di�erent. Despite showing encouraging results for segmentation (Chaitanya et al.,
2020), contrastive learning methods typically su�er from major drawbacks. In particular,
they require a large number of negative pairs and a large batch size to work properly (Chen
et al., 2020), which makes training computationally expensive for medical image segmenta-
tion. These drawbacks are primarily due to the use of a continuous-variable representation
that makes the estimation of the joint distribution of samples or their mutual information
more di�cult (Poole et al., 2019; Ji et al., 2018).

An alternative approach to unsupervised representation learning, based on a discrete
representation, is clustering (Ji et al., 2018; Caron et al., 2018; Peng et al., 2019a). In
deep clustering, a network is trained with unlabeled data to map examples with similar
semantic meaning to the same cluster label. The challenge of this unsupervised task is
twofold. Firstly, using traditional pairwise similarity losses like KL divergence or L 2 leads
to the trivial solution where all examples are mapped to the same cluster (Bridle et al.,
1992; Krause et al., 2010; Hu et al., 2017; Ji et al., 2018). Also, unlike for supervised
classi�cation, the labels in clustering are arbitrary and any permutation of these labels
gives an equivalent solution. To address these challenges, Ji et al. (2018) recently proposed
an Information Invariant Clustering (IIC) algorithm based on mutual information (MI).
The MI between two variables X and Y corresponds to the KL divergence between their
joint distribution and the product of their marginal distributions:

I (X ; Y ) = DKL
�
p(X; Y ) jj p(X ) p(Y )

�
: (1)

Alternatively, MI can also be de�ned as the di�erence between the entropy of Y and its
entropy conditioned on X :

I (X ; Y ) = H (Y ) � H (Y jX )

= EY
�

logEX [ p(Y jX ) ]
�

� EX;Y [ logp(Y jX ) ]:
(2)
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The IIC algorithm seeks network parameters which maximize the MI between the cluster
labels of di�erent transformed versions of an image. As can be seen from Eq. (2), ifX
is a random variable corresponding to an image andY is another variable representing a
cluster label, this approach avoids the trivial assignment of all images the same cluster since
the �rst term (entropy) is maximized for uniformly distributed clusters Y (Hu et al., 2017;
Zhao et al., 2019b).

Recently, Peng et al. (2020) adapted the IIC algorithm to semi-supervised segmenta-
tion. In their work, a network is trained with both labeled and unlabeled data such that
its prediction for labeled images is similar to the ground-truth mask, and output labels for
neighbor patches in di�erent transformed versions of the same unlabeled image (after re-
versing the transform) have a high MI. This MI-based approach has two positive e�ects on
segmentation. First, it makes the network more robust to image variability corresponding
to the chosen transformations. Second, it increases the local smoothness of the segmen-
tation and avoids collapse to a single class. Since MI is invariant to the permutation of
cluster labels, another loss based on KL is also added to align these labels across di�erent
image patches during training. Although leading to improved performance for the various
segmentation tasks, this recent method has the following two limitations: 1) it only regu-
larizes the output of the network, not its internal representation; 2) the regularization is
only applied locally in the image, and not globally.

Contributions In this paper, we propose a novel semi-supervised segmentation method
which uses the MI between representations computed at di�erent hierarchical levels of the
network to regularize its prediction both globally and locally. The proposed method em-
ploys auxiliary projection heads on layers of both the encoder and the decoder to group
together feature vectors that are semantically related. Two separate strategies are used to
achieve global and local regularization. In the global regularization strategy, we consider
the entire feature map at a given layer as a representation of the input image and learn a
mapping from this representation to a set of cluster labels. By maximizing the MI between
the cluster assignments of two transformed versions of the same image, we thus promote
invariance (equivariance) of the network with respect to the considered transformations.
On the other hand, the local regularization strategy learns clusters for each spatial location
of feature maps in the decoder, and maximizes the MI between cluster assignments of two
neighbor feature vectors in transformed images. This enhances the spatial consistency of
the segmentation output.

The detailed contributions are as follows:

� We propose the �rst semi-supervised segmentation method using MI maximization on
categorical labels to achieve both global representation invariance and local smooth-
ness. Our method is orthogonal to state-of-the-art consistency-based approaches like
Mean Teacher which impose consistency only on the output space. By clustering
feature embeddings from di�erent hierarchical levels and scales, our method can ef-
fectively achieve a higher performance with very few labeled images.

� This paper represents a major extension of our previous work in (Peng et al., 2020)
where clustering-based MI regularization was only applied locally on the network
output. In contrast, the method proposed in this paper maximizes MI between both
local and global feature embeddings from di�erent layers of the network encoder and
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decoder. In a comprehensive set of experiments, we show that feature representations
from separate hierarchical levels capture complementary information and contribute
di�erently to performance. Moreover, we visually demonstrate the clustering e�ect of
the proposed loss that maximizes MI between categorical labels.

The rest of this paper is as follows. In the next section, we give a summary of related
work on semi-supervised segmentation and unsupervised representation learning. In Sec-
tion 3, we then present the proposed semi-supervised segmentation method and explain
how MI between cluster assignment labels is leveraged to achieve both local and global
segmentation consistency. Our comprehensive experimental setup, involving four challeng-
ing segmentation datasets and comparing against strong baselines, is detailed in Section
4. Results, reported in Section 5, show our method to signi�cantly outperform compared
approaches and yield performance near to full supervision when trained with only 5% of
labeled examples.

2. Related works

Semi-supervised segmentation Although initially developed for classi�cation (Oliver
et al., 2018), a wide range of semi-supervised methods have also been proposed for semantic
segmentation. These methods are based on various learning techniques, including self-
training (Bai et al., 2017), distillation (Radosavovic et al., 2018), attention learning (Min
and Chen, 2018), adversarial learning (Souly et al., 2017; Zhang et al., 2017), entropy min-
imization (Vu et al., 2019), co-training (Peng et al., 2019b; Zhou et al., 2019), temporal
ensembling (Perone and Cohen-Adad, 2018), manifold learning (Baur et al., 2017), and
data augmentation (Chaitanya et al., 2019; Zhao et al., 2019a). Among recently proposed
methods, consistency-based regularization has emerged as an e�ective way to improve per-
formance by enforcing the network to output similar predictions for unlabeled images under
di�erent transformations (Bortsova et al., 2019). Following this line of research, the � model
perturbs an input image with stochastic transformations or Gaussian noise and improves
the generalization of a network by minimizing the discrepancy of its output for perturbed
images. Virtual adversarial training (VAT) replaces the random perturbation with an ad-
versarial one targeted at fooling the trained model. By doing so, the network e�ciently
learns a local smoothness prior and becomes more resilient to various noises. Consistency
has also been a key component in temporal ensembling techniques like Mean Teacher (Per-
one and Cohen-Adad, 2018), where the output of a student network at di�erent training
iterations is made similar to that of a teacher network whose parameters are an exponential
weighted temporal average of the student's. This method has shown great success for vari-
ous semi-supervised tasks such as brain lesion segmentation (Cui et al., 2019), spinal cord
gray matter segmentation (Perone and Cohen-Adad, 2018) and left atrium segmentation
(Yu et al., 2019).

Despite improving performance in semi-supervised settings, a common limitation of the
above methods is that they consider the prediction for di�erent pixels as independent and
apply a pixel-wise distance loss such as KL divergence orL 2 loss. This ignores the dense
structure nature of the segmentation. Moreover, those approaches only regularize the output
of the network for perturbed inputs, ignoring the hierarchical and multi-scale information
found in di�erent layers of the network.
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Unsupervised representation learning Important e�orts have also been invested
towards learning robust representations from unlabeled data. In self-supervised learn-
ing (Noroozi and Favaro, 2016; Kim et al., 2018; Noroozi et al., 2018), unlabeled data are
typically exploited in a �rst step to learn a given pretext task. This pretext task helps the
network capture meaningful representations that can improve learning downstream tasks
like classi�cation or segmentation with few labeled data. Taleb et al. (2019) trained a con-
volutional network to solve jigsaw puzzles and used the learned representation to boost
performance for multi-modal medical segmentation. Other pretext jobs include predicting
the transformation applied to an input image (Zhang et al., 2019; Wang et al., 2019) and
converting a grey-scale image to RGB (Zhang et al., 2016).

Recently, contrastive learning was shown to be an e�ective strategy for semi-supervised
learning. In this approach, one trains a network with a set of paired examples, together with
a critic function to tell whether a pair of examples comes from their joint distribution or not.
In their Contrastive Predicted Coding (CPC) approach, Oord et al. (2018) use a contrastive
loss to learn a representation which can be predicted with an autoregressive model. Tian
et al. (2019) proposed a Contrastive Multiview Coding (CMC) method where the network
must produce similar features for images of di�erent modalities if they correspond to the
same object. Chen et al. (2020) instead learn to predict whether a pair of images comes from
a same image under di�erent data augmentations. So far, only a single work has investigated
contrastive learning for medical image segmentation (Chaitanya et al., 2020). In this work, a
network is trained to distinguish whether a pair of 2D images comes from the same physical
position of their corresponding 3D volumes or not. Although contrastive learning has been
shown to be related to MI (Tian et al., 2019), the approach of Chaitanya et al. (2020) di�ers
signi�cantly from our method. First, their approach uses a standard contrastive loss between
continuous vectors that requires sampling a large number of negative pairs and is expensive
for image segmentation. In contrast our method exploits the MI between categorical labels,
which can be computed e�ciently. Moreover, whereas they impose consistency between
corresponding positions in two di�erent feature maps, our method also enforces it between
neighbor positions and for di�erent image transformations. This adds local smoothness
to the feature representations and helps generate a more plausible segmentation. Last,
whereas their approach only leverages unlabeled data in a pre-training step, we optimize
the segmentation network with both labeled and unlabeled images in a single step.

Deep clustering has also been explored to learn robust representation of image data.
Since it favors balanced clusters, thus avoiding the collapse of the solution to a single cluster,
and does not make any assumption about the data distribution, MI has been at the core
of several deep clustering methods. One of them, Information Maximizing Self-Augmented
Training (IMSAT) (Hu et al., 2017), maximizes the MI between input data X and the
cluster assignment Y . The output is regularized through the use of virtual adversarial
samples (Miyato et al., 2019), imposing that the original sample and the adversarial one
should have a similar cluster assignment probability distribution. A related approach, called
Invariant Information Clustering (IIC) (Ji et al., 2018), instead maximizes the MI between
cluster assignments of a sample and its transformed versions. Recently, Peng et al. (2020)
proposed an semi-supervised segmentation method inspired by IIC which encourages nearby
patches in the network's output map, for two transformed versions of the same unlabeled
image, to have a high MI. As mentioned above, this avoid the trivial assignment of all
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pixels to a single class and also promotes spatial smoothness in the segmentation. However,
a common limitation of deep clustering methods for image classi�cation and segmentation
is that they only consider the network output, and ignore the rich semantic information of
features inside the network.

Estimating MI Capturing MI between two random variables is a di�cult task, especially
when these variables are continuous and/or high-dimensional. Traditional density- or kNN-
based methods (Suzuki et al., 2008; Vejmelka and Hlav�a�ckov�a-Schindler, 2007) do not scale
well to complex data such as raw images. Recently, variational approaches have become
popular for estimating MI between latent representations and observations (Hjelm et al.,
2018; Oord et al., 2018) or between two related latent representations (Tian et al., 2019;
Chaitanya et al., 2020). These approaches instead maximize a variational lower bound to
MI, thus making the problem tractable. Related to our work, Belghazi et al. (2018) leveraged
the dual representation of KL divergence to develop a variational neural MI estimator
(MINE) for image classi�cation. In their Deep InfoMax method, Hjelm et al. (2018) used
MINE to measure and maximize the MI between global and local representations. Various
improvements have later been proposed to mitigate the high estimation variance of MINE
(McAllester and Stratos, 2020), such as usingf -divergence representation (Nowozin et al.,
2016), Jensen{Shannon (JS) divergence based optimization (Hjelm et al., 2018; Zhao et al.,
2020), and clipping output with a pre�xed range (Song and Ermon, 2019). Contrastive-
based methods have been shown to underestimate MI (Hjelm et al., 2018; McAllester and
Stratos, 2020) and require a large number of negative examples (Tian et al., 2019). As
alternative to MINE, discriminator-based MI estimation (Liao et al., 2020; Mukherjee et al.,
2020) trains a binary classi�cation network to directly emulate the density ratio between
the joint distribution and the product of marginal.

Our method di�ers signi�cantly from the above-mentioned approaches. First, these
approaches usually de�ne astatistic network (Belghazi et al., 2018) or a discriminator (Liao
et al., 2020; Mukherjee et al., 2020) to project high dimension data to a scalar, which often
consists of convolution and MLP layers (Hjelm et al., 2018; Liao et al., 2020). On the
contrary, our method employs a simple classi�er to �nd proper categorical distributions
and then maximize the estimated MI. This helps optimize the mutual information between
dense representations e�ciently. Compared to contrastive-based methods (Tian et al.,
2019; Chaitanya et al., 2020), as we will show in Sec. 5.5, we can improve performance
by simply increasing the number of clustersK instead of the batch size. The latter is
not easily achieved in a memory- and computation-expensive task like segmentation. Last
but not least, above-mentioned approaches rely on samplingboth positive and negative
pairs and seek to identify abinary decision boundary separating the joint distribution from
the product of marginals. In contrast, we do not require negative pairs, similar to the
recently proposed BYOL method (Grill et al., 2020), but instead learn a �ne-grain multi-
classmapping. We leave as future work the comparison of di�erent MI estimation strategies
for semi-supervised segmentation.
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Figure 1: Training pipeline of our semi-supervised segmentation method . Given
an unlabeled imagex and its transformation x0, we seek to maximize the mutual
information of their intermediate feature representation with the help of auxil-
iary projectors. We maximize the global MI (L global

MI loss) for embeddings taken
from the encoder to learn transformation-invariant representation. Meanwhile,
local MI is maximized (L local

MI loss) for embeddings taken from the decoder, en-
couraging the network to group schematically-related regions while taking into
consideration the spatial smoothness.L cons further enforces the consistency on
prediction distributions through di�erent transformation and ensures the align-
ment of cluster label throughout the network.

3. Proposed method

We start by de�ning the problem of semi-supervised segmentation considered in this work
and give and overview of the proposed method. We then explain each component of our
method in greater details.

3.1 Semi-supervised segmentation model

We consider a semi-supervised segmentation task where we have a labeled datasetD l of
image-label pairs (x; y ), with image x 2 R
 and ground-truth labels y 2 f 1; : : : ; Cg
 ,
and a larger unlabeled datasetDu consisting of images without their annotations. Here,

 = f 1; : : : ; Wg � f 1; : : : ; H g represents the image space (i.e., set of pixels) andC is the
number of segmentation classes. We seek to learn a neural networkf parametrized by � to
predict the segmentation label of each pixel of the input image.
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Fig. 1 illustrates the proposed network architecture and training pipeline. We use an
encoder-decoder architecture for the segmentation network, where encoder� enc extracts
the information of an input image x by passing it through multiple convolutional blocks
with down-sampling, and squeezes it into a compact embedding� enc(x). This embedding
usually summarizes the global context of the image. The decoder� dec then gradually up-
samples this embedding, possibly using some side information, and outputs the prediction
y = � dec(� enc(x)). While our method is agnostic to the choice of segmentation network,
we consider in this work the well-known U-Net architecture (Ronneberger et al., 2015)
which achieved good performance on various bio-medical segmentation tasks. Compared to
traditional encoder-decoder architectures, U-Net adds skip connections from the encoder
to the decoder to reuse feature maps of same resolution in the decoder, thus helping to
preserve �ne details in the segmentation.

Following the main stream of semi-supervised segmentation approaches, our method
exploits both labeled and unlabeled data during training. The parameters� of the network
are learned by optimizing the following loss function:

L (� ; D l ; Du) = L spv(� ; D l ) + � 1L global
MI (� ; Du) + � 2L local

MI (� ; Du) + � 3L cons(� ; Du): (3)

This loss is comprised of four separate terms, which relate to di�erent aspects of the seg-
mentation and whose relative importance is controlled by hyper-parameters� 1; � 2; � 3 � 0.
As in standard supervised methods,L spv uses labeled dataD l and imposes the pixel-wise
prediction of the network for an annotated image to be similar to the ground truth labels.
While other segmentation losses like the Dice loss could also be considered, our method
uses the well-known cross-entropy loss:

L spv(� ; D l ) = �
1

jD l j j 
 j

X

(x ;y )2D l

X

(i;j )2 


yij log f ij (x ; � ): (4)

Since we have no annotations for images inDu , we instead use this unlabeled data to
regularize the learning and guide the optimization process toward good solutions. This
is achieved via three loss terms: L global

MI , L local
MI , and L cons. The �rst two are based on

maximizing the MI between the feature embeddings of an image under di�erent data aug-
mentation, where embeddings can come from di�erent hierarchical levels of both the encoder
and the decoder. Speci�cally, we want to capture the information dependency between the
semantically-related feature maps, while avoiding the complex computation of this depen-
dency in continuous feature space. To obtain an accurate and e�cient estimation of MI, we
resort to a set of auxiliary projectors that convert features into categorical distributions.

We exploit this idea in two complementary regularization losses, focusing on global MI
and local MI. The global MI loss L global

MI considers the embedding� enc(x) produced by
the encoder as a global representation of an imagex, and enforces this representation to
preserve its information content under a given set of image transformations. On the other
hand, the local MI lossL local

MI is based on the principle that information within a small region
of the image should be locally invariant. That is, the MI between a vector in a feature map
and its neighbor vectors should be high, if they correspond to the same semantic region of
the image. By maximizing the MI between neighbor vectors, we can thus obtain feature
representations and a segmentation output which are spatially consistent.
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The last term in (3), L cons, is a standard transformation consistency regularizer that
is included for two main reasons. First, as in regular consistency-based methods, it forces
the network to produce the same pixel-wise output for di�erent transformations of a given
image, after reversing the transformations. Therefore, it directly promotes equivariance in
the network. The second reason stems from the fact that MI is permutation-invariant and,
thus, any permutation of labels in two cluster assignments does not change their MI. Hence,
L cons helps align those labels across the network. We note several di�erences betweenL cons

and L local
MI . While L cons is only employed at the network output, L local

MI may also be used
at di�erent layers of the decoder. Moreover, because it imposes strict equality,L cons can
only be used between corresponding pixels in two images. In contrast,L local

MI also considers
information similarity between feature map or output locations that are not in perfect
correspondence. In the following subsections, we present each of the three regularization
loss terms individually.

3.2 Global mutual information loss

Let x be an image sampled fromDu and T an image transformation drawn from a trans-
formation pool T . Transformation T is typically a random crop, horizontal 
ip, small
rotation, or a combination of these operations. After applying T on x, the transformed
image x0 = T(x) should share similar contextual information as x. Consequently, we ex-
pect a high MI between random variables corresponding to original and transformed images.
Based on this idea, we want the encoder� enc to learn latent representations for these images
which maximizes their mutual information:

max
� enc

I
�
� enc(X ); � enc(X 0)

�
(5)

where � enc are the enconder's learnable parameters. However, optimizing directly Eq. (5)
is notoriously di�cult as the two variables are in continuous space. For instance, one has
to learn a critic function and maximize a variational lower bound of I , which may result in
heavy computation and high variance (Liao et al., 2020; Song and Ermon, 2019).

To overcome this problem, we adapt the method proposed for unsupervised clustering
and project the embeddings into categorical distributions p(Z j x) = g(� enc(x))) 2 [0; 1]K

with an auxiliary projector g consisting of a linear layer followed by a softmax activation.
Using this approach, embeddings� enc(x) and � enc(x0) are converted to cluster probability
distributions p(Z j x) and p(Z j x0) with a prede�ned cluster number K . This projection
introduces a bottleneck e�ect on (5) since

I
�
g(� enc(X )); g(� enc(X 0))

�
� I

�
� enc(X ); � enc(X 0)

�
(6)

The information bottleneck theory states that a capacity-limited network g can lead to
information loss which results in a reduced MI between the two variables (Tishby et al.,
2000; Alemi et al., 2016; Ji et al., 2018). The equality holds wheng is an invertible mapping
between embedding space toK categories, which is not the case for a linear projectiong.

The conditional joint distribution of cluster labels

p(Z; Z 0j x ; x0) = g
�
� enc(x)

�
� g

�
� enc(T(x))

� > (7)
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