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Abstract

We develop a new Bayesian model for non-rigid registration of three-dimensional medi-
cal images, with a focus on uncertainty quantification. Probabilistic registration of large
images with calibrated uncertainty estimates is difficult for both computational and mod-
elling reasons. To address the computational issues, we explore connections between the
Markov chain Monte Carlo by backpropagation and the variational inference by backprop-
agation frameworks, in order to efficiently draw samples from the posterior distribution
of transformation parameters. To address the modelling issues, we formulate a Bayesian
model for image registration that overcomes the existing barriers when using a dense, high-
dimensional, and diffeomorphic transformation parametrisation. This results in improved
calibration of uncertainty estimates. We compare the model in terms of both image reg-
istration accuracy and uncertainty quantification to VoxelMorph, a state-of-the-art image
registration model based on deep learning.

Keywords: deformable image registration, uncertainty quantification, SG-MCMC, SGLD

1. Introduction

Image registration is the problem of aligning images into a common coordinate system
such that the discrete pixel locations have the same semantic information. It is a common
pre-processing step for many applications, e.g. the statistical analysis of imaging data and
computer-aided diagnosis through comparison with an atlas. Image registration methods
based on deep learning tend to incorporate task-specific knowledge from large datasets,
whereas traditional methods are more general purpose. Many established models are based
on the iterative optimisation of an energy function consisting of task-specific similarity and
regularisation terms, which has to be done independently for every pair of images in order
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to calculate the deformation field (Schnabel et al., 2001; Klein et al., 2009; Avants et al.,
2014).

DLIR (de Vos et al., 2019) and VoxelMorph (Balakrishnan et al., 2018, 2019; Dalca
et al., 2018, 2019) changed this paradigm by learning a function that maps a pair of input
images to a deformation field. This gives a speed-up of several orders of magnitude at
inference time and maintains an accuracy comparable to traditional methods. An overview
of state-of-the-art models for image registration based on deep learning can be found in Lee
et al. (2019).

Due to the perceived conceptual difficulty and computational overhead, Bayesian meth-
ods tend to be shunned when designing medical image analysis algorithms. However, in
order to fully explore the parameter space and lessen the impact of ad-hoc hyperparame-
ter choices, it is desirable to use Bayesian models. In addition, with help of open-source
libraries with automatic differentiation like PyTorch, the implementation of even complex
Bayesian models for image registration is very similar to that of non-probabilistic models.

In this paper, we make use of the stochastic gradient Markov chain Monte Carlo (SG-
MCMC) algorithm to design an efficient posterior sampling algorithm for 3D non-rigid image
registration. SG-MCMC is based on the idea of stochastic gradient descent interpreted as
a stochastic process with a stationary distribution centred on the optimum and whose
covariance can be used to approximate the posterior distribution (Chen et al., 2016; Mandt
et al., 2017). SG-MCMC methods have been useful for training generative models on very
large datasets ubiquitous in computer vision, e.g. Du and Mordatch (2019); Nijkamp et al.
(2019); Zhang et al. (2020). We show that they are also applicable to image registration.

This work is an extended version of Grzech et al. (2020), where we first proposed use
of the SG-MCMC algorithm for non-rigid image registration. The code to reproduce the
results is available in a public repository: https://github.com/dgrzech/ir-sgmcmc. The
following is a summary of the main contributions of the previous work:

1. We proposed a computationally efficient SG-MCMC algorithm for three-dimensional
diffeomorphic non-rigid image registration;

2. We introduced a new regularisation loss, which allows to carry out inference of the reg-
ularisation strength when using a transformation parametrisation with a large number
of degrees of freedom;

3. We evaluated the model both qualitatively and quantitatively by analysing the out-
put transformations, image registration accuracy, and uncertainty estimates on inter-
subject brain magnetic resonance imaging (MRI) data from the UK Biobank dataset.

In this version, we extend the previous work:

– We provide more details on the Bayesian formulation, including a comprehensive
analysis of the learnable regularisation loss, as well as a more in-depth analysis of the
model hyperparameters and hyperpriors;

– We conduct additional experiments in order to compare the uncertainty estimates
output by variational inference (VI), SG-MCMC, and VoxelMorph qualitatively, as
well as quantitatively by analysing the Pearson correlation coefficient between the
displacement and label uncertainties;
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{ We analyse the di�erences between uncertainty estimates when the SG-MCMC algo-
rithm is initialised to di�erent transformations and when using di�erent parametrisa-
tions of the transformation, including non-parametric stationary velocity �elds (SVFs)
and SVFs based on B-splines; and

{ We include a detailed evaluation of the computational speed and of the output trans-
formation smoothness.

2. Related work

The problem of uncertainty quanti�cation in non-rigid image registration is controversial
because of ambiguity regarding the de�nition of uncertainty as well as the accuracy of
uncertainty estimates (Luo et al., 2019). Uncertainty quanti�cation in probabilistic im-
age registration relies either on variational Bayesian methods (Simpson et al., 2012, 2013;
Wassermann et al., 2014), which are fast and approximate, and popular within models based
on deep learning (Dalca et al., 2018; Liu et al., 2019; Schultz et al., 2019), or Markov chain
Monte Carlo (MCMC) methods, which are slower but enable asymptotically exact sampling
from the posterior distribution of the transformation parameters. The latter include e.g.
Metropolis-Hastings used for intra-subject registration of brain MRI scans (Risholm et al.,
2010, 2013) and estimating delivery dose in radiotherapy (Risholm et al., 2011), reversible-
jump MCMC used for cardiac MRI (Le Folgoc et al., 2017), and Hamiltonian Monte Carlo
used for atlas building (Zhang et al., 2013).

Uncertainty quanti�cation for image registration has also been done via kernel regression
(Z•ollei et al., 2007; Janoos et al., 2012) and deep learning (Dalca et al., 2018; Krebs et al.,
2019; Heinrich, 2019; Sedghi et al., 2019). More generally, Bayesian frameworks have been
used e.g. to characterize image intensities (Hachama et al., 2012) and anatomic variability
(Zhang and Fletcher, 2014).

One of the main obstacles to a more widespread use of MCMC methods for uncertainty
quanti�cation is the computational cost. This was recently tackled by embedding MCMC
in a multilevel framework (Schultz et al., 2018). SG-MCMC was previously used forrigid
image registration (Karabulut et al., 2017). It has also been employed in the context
of unsupervised non-rigid image registration based on deep learning, where it allowed to
sample from the posterior distribution of the network weights, rather than directly the
transformation parameters (Khawaled and Freiman, 2020).

Previous work on data-driven regularisation focuses on transformation parametrisations
with a relatively low number of degrees of freedom, e.g. B-splines (Simpson et al., 2012) and
a sparse parametrisation based on Gaussian radial basis functions (RBFs) (Le Folgoc et al.,
2017). Limited work exists also on spatially-varying regularisation, again with B-splines
(Simpson et al., 2015). Deep learning has been used for spatially-varying regularisation
learnt using more than one image pair (Niethammer et al., 2019). Shen et al. (2019)
introduced a related model which could be used for learning regularisation strength based
on a single image pair but su�ered from non-di�eomorphic output transformations and slow
speed.
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3. Registration model

We denote an image pair byD � p F; M q, where F : 
 F Ñ R and M : 
 M Ñ R are a �xed
and a moving image respectively. The goal of image registration is to align the underlying
domains 
 F and 
 M with a transformation ' pwq: 
 F Ñ 
 M , i.e. to calculate parameters
w such that F � M pwq :� M � ' � 1pwq. The transformation is often expected to possess
desirable properties, e.g. di�eomorphic transformations are smooth and invertible, with a
smooth inverse.

We parametrise the transformation using the SVF formulation (Arsigny et al., 2006;
Ashburner, 2007), which we briey review below. The ordinary di�erential equation (ODE)
that de�nes the evolution of the transformation is given by:

B' ptq

Bt
� w

�
' ptq

	
(1)

where ' p0q is the identity transformation and t P r0; 1s. If the velocity �eld w is spatially
smooth, then the solution to Equation (1) is a di�eomorphic transformation. Numerical
integration is done by scaling and squaring, which uses the following recurrence relation
with 2T steps (Arsigny et al., 2006):

' p1{2t � 1q � ' p1{2t q � ' p1{2t q (2)

The Bayesian image registration framework that we present is not limited to SVFs.
Moreover, there is a very limited amount of research on the impact of the transformation
parametrisation on uncertainty quanti�cation. Previous work on uncertainty quanti�cation
in image registration characterised uncertainty using a single transformation parametrisa-
tion, e.g. a small deformation model using B-splines in Simpson et al. (2012), the �nite
element (FE) method in Risholm et al. (2013), and multi-scale Gaussian RBFs in Le Folgoc
et al. (2017), or a large deformation di�eomorphic metric mapping (LDDMM) in Wasser-
mann et al. (2014).

To help understand the potential impact of the transformation parametrisation on un-
certainty quanti�cation, we also implement SVFs based on cubic B-splines (Modat et al.,
2012). In this case, the SVF consists of a grid of B-spline control points, with regular spac-
ing � ¥ 1 voxel. The dense SVF at each point is a weighted combination of cubic B-spline
basis functions (Rueckert et al., 1999). To calculate the transformation based on the dense
velocity �eld, we again use the scaling and squaring algorithm in Equation (2).

3.1 Likelihood model

The likelihood p
�
D | w

�
speci�es the relationship between the data and the transformation

parameters by means of a similarity metric. In probabilistic image registration, it usually
takes the form of a Boltzmann distribution (Ashburner, 2007):

logp
�
D | w; H

�
_ � Edata pD; w; Hq (3)

where Edata is the similarity metric and H an optional set of hyperparameters.
Local cross-correlation (LCC), which is invariant to linear intensity scaling, is a popular

similarity metric but not meaningful in a probabilistic context. For this reason, instead of
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the sum of the voxel-wise product of intensities, like in standard LCC, we opt for the sum
of voxel-wise squared di�erences of images standardised to zero mean and unit variance
inside a local neighbourhood of �ve voxels. This way, we can bene�t from robustness
under linear intensity transformations, as well as desirable properties of a Gaussian mixture
model (GMM) of intensity residuals, i.e. robustness to outlier values caused by acquisition
artefacts and misalignment over the course of registration (Le Folgoc et al., 2017).

Let F and M pwqbe respectively the �xed and the warped moving image with intensities
standardised to zero mean and unit variance inside a neighbourhood of �ve voxels. For
each voxel, the intensity residual r i � F � M pwq, i P t1; : : : ; N 3u, is assigned to thel-th
component of the mixture, 1 ¤ l ¤ L , if the categorical variable ci P t1; : : : ; Lu is equal to

l , in which case it follows a normal distribution N
�

0; � � 1
l

	
1. The component assignment

ci follows a categorical distribution and takes value l with probability %l . We use the
same GMM of intensity residuals on a global basis rather than per neighbourhood. In all
experiments it hasL � 4 components, which we determine to be su�cient for a good model
�t.

We also use the scalar virtual decimation factor� to account for the fact that voxel-wise
residuals are not independent. This prevents over-emphasis on the data term and allows to
better calibrate uncertainty estimates (Groves et al., 2011; Simpson et al., 2012). The full
expression of the image similarity term is given by:

Edata pD; w; �; %q � � � �
N 3¸

i � 1

log
L¸

l � 1

%l

c
� l

2�
exp

�
�

� l

2
r 2

i



(4)

3.2 Transformation priors

In Bayesian models, the transformation parameters are typically regularised with use of a
multivariate normal prior that ensures smoothness:

logp
�
w; � reg

�
_ �

1
2

� reg pLwq| Lw (5)

where � reg is a scalar parameter that controls the regularisation strength, and L is the
matrix of a di�erential operator. Here we assume that L represents the gradient operator,
which penalises the magnitude of the 1st derivative of a velocity �eld. Note that pLwq| Lw �
}Lw}2 :� � 2.

The regularisation weight � reg can either be �xed or estimated from data. The latter
has been done successfully only for transformation parametrisations with a relatively low
number of degrees of freedom, e.g. B-splines (Simpson et al., 2012) and a sparse parametri-
sation (Le Folgoc et al., 2017). In case of an SVF, where the number of degrees of freedom
is orders of magnitude higher, the problem is more di�cult. However, a reliable method to
adjust regularisation strength based on data is crucial, as both the output transformation
and registration uncertainty are highly sensitive to regularisation. In order to infer the
regularisation strength, we specify a log-normal prior on the scalar regularisation energy

1. In order to reduce the notation clutter we omitted the voxel index for the �xed and moving images.
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� 2 � Lognormal
�

� � 2 ; � 2
� 2

	
, and derive a prior on the underlying SVF:

logp
�

� 2
	

_ � log � 2 � log � � 2 �

�
log � 2 � � � 2

	 2

2� 2
� 2

(6)

logppwq_ �
�

�
2

� 1



log � 2 � logp
�

� 2
	

(7)

where � � 3N 3 is the number of degrees of freedom, i.e. the count of transformation
parameters in all three directions. Given (semi-)informative hyperpriors on � � 2 and � 2

� 2 ,
which we discuss in the next section, we can adjust the regularisation strength to the input
images. The full expression of the regularisation term is given by:

Ereg pwq �
�
2

log � 2 � log � � 2 �

�
log � 2 � � � 2

	 2

2� 2
� 2

(8)

It is worth noting that the traditional L 2 regularisation with a �xed regularisation weight
in Equation (5) actually belongs to this family of regularisation losses. If we specify a gamma
prior instead of a log-normal prior on the scalar regularisation energy� 2 � �

�
� {2; � reg {2

�
, we

get:

logp
�

� 2
	

_
�

�
2

� 1



log � 2 �
1
2

� reg � � 2 (9)

logppwq_
�

�
2

� 1



log � 2 �
�

�
2

� 1



log � 2 �
1
2

� reg � � 2 (10)

_ �
1
2

� regpLwq| Lw (11)

3.3 Hyperpriors

We set the likelihood GMM hyperpriors similarly to Le Folgoc et al. (2017), with the
mixture precision parameters� � p � 1; : : : ; � L qassigned independent log-normal priors� l �

Lognormal
�

� � l ; � 2
� l

	
and the mixture proportions %� p %1; : : : ; %L q with an uninformative

Dirichlet prior %� Dir p� q, where � � p � 1; : : : ; � L q.
Regularisation parameters require informative priors due to the di�culty of learning

the regularisation strength based on a single image pair. Because of a gamma prior on the
regularisation energy exp

�
� � 2

	
� �

�
� {2; � init {2

�
, we can rely on the familiar regularisation

weight � init to initialise the logarithm of the regularisation energy � � 2 to the expected value

of the logarithm of the gamma distribution, i.e. E
�
� � 2

�
�  

�
� {2

�
� log

�
� init {2

�
, where  

is the digamma function. The value of this expression is sharply peaked if the number of
degrees of freedom� is large, which yields a very informative prior on � � 2 . More details on
how to calculate the expected value of the logarithm of a gamma distribution can be found
in Appendix A.

The choice of a hyperprior on the scale parameter� � 2 , which controls the amount of
deviation of log � 2 from the location parameter � � 2 , is more intuitive. Here we use a log-
normal prior � 2

� 2 � Lognormal
�
�; &2

�
.
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4. Variational inference

Image registration methods often rely on VI for uncertainty quanti�cation. We only use VI
to initialise the SG-MCMC algorithm, which also lets us compare the uncertainty estimates
output by approximate and asymptotically exact methods for sampling from the posterior
distribution of transformation parameters.

We assume that the posterior distribution p
�
w | D

�
is a multivariate normal distribution

qpwq � N p� w ; � wq. To �nd parameters � w and � w , we maximise the evidence lower bound
(ELBO) (Jordan et al., 1999):

Lpqq � Eq
�
logppD | wq

�
� DKL pq || pq � �

@
Edata � Ereg

D
q � H pqq (12)

where DKL pq || pq is the Kullback-Leibler divergence (KL-divergence) between the approxi-
mate posterior q and the prior p. Like in traditional image registration, the energy function
consists of the sum of similarity and regularisation terms, with an additional term for the
entropy of the posterior distribution H pqq. We show how to calculate this term in Ap-
pendix B.

It is not possible to calculate every element of the covariance matrix �w due to high
dimensionality of the problem. Instead, we approximate the covariance matrix as a sum
of diagonal and low-rank parts, i.e. � w � diag

�
� 2

w

�
� uwu|

w , with � w P R3N 3 � 1 and uw P
R3N 3 � R , whereR is a hyperparameter which determines the parametrisation rank. Using a
multivariate normal distribution as the approximate posterior distribution of transformation
parameters is common in probabilistic image registration. The key di�erence in our work
is the diagonal + low-rank parametrisation of the covariance matrix. Most recent image
registration models with an SVF transformation parametrisation are based on deep learning
and make the assumption of a diagonal covariance matrix (Dalca et al., 2018; Krebs et al.,
2019).

We use the reparametrisation trick with two samples per update to backpropagate with
respect to the variational posterior parameters:

w � � w �
�
diagp� wq� � � uw � x

�
(13)

� � N p0; I 3N 3 q; x � N p0; I Rq

In order to make the optimisation less susceptible to undesired local maxima of the
ELBO, we take advantage of Sobolev gradients (Neuberger et al., 1997). Samples from the
posterior are convolved with a Sobolev kernel. We approximate the 3D kernel by three
separable 1D kernels to lower the computational overhead. Using the notation in Slavcheva
et al. (2018), we set the kernel width tosH 1 � 7 and the smoothing parameter to� H 1 � 0:5.

The GMM and regularisation hyperparameters are �t using the stochastic approximation
expectation maximisation (SAEM) algorithm (Richard et al., 2009; Zhang et al., 2013).
The mixture precision hyperparameters � and proportion hyperparameters %are updated
by solving the optimisation problem:

� pkq; %pkq � arg max
�;%

Eq

�
logppD; w; �; %q | � pk� 1q; %pk� 1q

�
� logpp� q � logpp%q (14)

This is done at each step of the iterative optimisation algorithm. We update the reg-
ularisation hyperparameters in an analogous way. Even though the hybrid VI and SAEM
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approach is computationally e�cient and requires minimal implementation e�ort, it disre-
gards the uncertainty caused by hyperparameter variability.

5. Stochastic gradient Markov chain Monte Carlo

Image registration algorithms based on VI restrict parametrisation of the posterior dis-
tribution to a speci�c family of probability distributions, which may not include the true
posterior. To avoid this problem and sample the transformation parameters in an e�cient
way, we use stochastic gradient Langevin dynamics (SGLD) (Besag, 1993; Welling and Teh,
2011). The update equation is given by:

wk� 1 Ð wk � �A r log � pwkq�
?

2�A� k (15)

where� is the step size,A is an optional preconditioning matrix, r log � pwkqis the gradient
of the logarithm of the posterior probability density function (PDF), and � k � N p0; I 3N 3 q.
SGLD does not require a particular initialisation, so we study several di�erent possibilities,
including a sample w0 � N p� w ; � wq from the approximate variational posterior, in which
case we setA � diag

�
� 2

w

�
. The preconditioning helps with the MCMC mixing time in case

the target distribution is strongly anisotropic.
It is worth noting that, except for the preconditioning matrix A and the noise term� k ,

Equation (15) is equivalent to a gradient descent update when minimising the maximum
a posteriori (MAP) objective function � logp

�
w | D

�
� � logp

�
D | w

�
� logppwq. When

drawing samples from SGLD, we continue to update the GMM as well as regularisation
hyperparameters like in Equation (14), except that the expected value is calculated with
respect to the new posterior� pwq.

In the limit as k Ñ 8 and � Ñ 0, SGLD can be used to draw exact samples from the
posterior of the transformation parameters without Metropolis-Hastings accept-reject tests,
which are computationally expensive. Indeed, these costs prevent the use of other MCMC
algorithms for the registration of large 3D images. In practice, the step size needs to be
adjusted to avoid high autocorrelation between samples yet remain smaller than the width
of the most constrained direction in the local energy landscape (Neal, 2011). The step size
can also be used to control the trade-o� between accuracy and computation time. We can
quantify uncertainty either quickly in a coarse manner or slowly, with more detail.

Despite the fact that the term r log � pwq allows to traverse the energy landscape in
an e�cient way, SGLD su�ers from high autocorrelation and slow mixing between modes
(Hill, 2020). However, simplicity of the formulation makes it better suited than other
MCMC methods for high-dimensional problems like three-dimensional image registration.

6. Experiments

6.1 Setup

The model is implemented in PyTorch. For all experiments we use three-dimensional T2-
FLAIR MRI brain scans and subcortical structure segmentations from the UK Biobank
dataset (Sudlow et al., 2015). Input images are pre-registered with the a�ne component of
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drop2 (Glocker et al., 2008)2 and resampled toN � 128 isotropic voxels of length 1:82 mm
along every dimension.

We use 212 steps to integrate SVFs. In order to start optimisation with small displace-
ments, � w is initialised to zero, which corresponds to an identity transformation, � w to half
a voxel length in each direction anduw to a tenth of a voxel length in each direction. We
are mainly interested in the approximate variational posterior in order to initialise the SG-
MCMC algorithm, so the rank parameter is set to R � 1. We use the Adam optimiser with
a step size of 1� 10� 2 for the approximate variational posterior parameters � w , log � 2

w , and
uw . Training is run until the ELBO value stops to increase, which requires approximately
1,024 iterations.

In the likelihood model, we use� � 0:5 for an uninformative Je�reys prior on the mix-
ture proportions, while the mixture precision hyperparameters are set to� � l � 0:0 and
� � l � 2:3. The model is much less sensitive to the value of the likelihood hyperparameters
than the regularisation hyperparameters, which are calibrated to guarantee di�eomorphic
transformations sampled from the approximate variational posterior qpwq � N p� w ; � wq.
The local transformation is di�eomorphic only in locations where the Jacobian determinant
is positive (Ashburner, 2007), so we aim to keep the number of voxels where the Jacobian
determinant is non-positive | det J ' � 1 | ¤ 0 close to zero. We calibrate the location hyper-
parameter � init in every experiment, while the scale hyperparameters are set to� � 2:8 and
&� 5:0.

SAEM convergence is known to be conditional on decreasing step sizes (Delyon et al.,
1999). For this reason, we use a small step size decay of 1� 10� 3 and the Adam optimiser
with a step size of 2� 10� 1 for the GMM hyperparameters log� � 0:5 and log%, and 1� 10� 2

for the regularisation hyperparameters� � 2 and log� � 2 . In case of parameters whose value
is constrained to be positive, we state the step size used on the logarithms. In practice, we
did not observe the result to be dependent on these step sizes.

6.2 Regularisation strength

First we evaluate the proposed regularisation. We compare it to a gamma prior on� ,
i.e. � � � ps; rq, where s and r are the shape and the rate parameters respectively, set to
uninformative values s � r � � {2 (Simpson et al., 2012).

We compare the output of VI when using �xed regularisation weights � reg P t0:1; 1:2u,
the baseline method for learnable regularisation strength, and our regularisation loss. The
result on a sample pair of input images is shown in Figure 1. For the baseline method, the
learnt regularisation strength is too high, which e�ectively prevents the alignment of images.
This indicates that previous schemes for inference of regularisation strength from data are
inadequate when the transformation parametrisation involves a very large number of degrees
of freedom. In case of� reg � 0:1, the resulting transformation is not di�eomorphic. The
output when using our regularisation loss with � init � 1:2 strikes a balance between the
baseline and� reg � 0:1, where there is an overemphasis on the data term.

In Figure 2, we show the output of VI for two pairs of images which require di�erent
regularisation strengths for accurate alignment. We choose a �xed image and two moving
imagesM 1 and M 2, with one visibly di�erent and the other similar to the �xed image. We

2. https://github.com/biomedia-mira/drop2
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Fixed image F and mean
displacement

Warped moving image
M p� w q

(a) � reg � 0:1 (b) � reg � 1:2 (c) Baseline (d) Proposed

Figure 1: Output when using two �xed regularisation weights � reg P t0:1; 1:2u, the baseline
method for learnable regularisation strength, and the proposed learnable regularisation loss
with � init � 1:2. For �xed regularisation weight � reg � 0:1, the sampled transformations
are not di�eomorphic. In case of the baseline method, the learnt regularisation strength
is too high, which e�ectively prevents the alignment of images. When using the proposed
learnable regularisation loss, we strike a balance between the baseline method and �xed
regularisation weight � reg � 0:1, where the regularisation strength is too low. The �gure
shows the middle axial slice of 3D images.

also analyse the result when using �xed regularisation weights� reg � 0:2, which leads to
non-di�eomorphic transformations, and � reg � 2:0, which produces smooth transformations
but, in case ofM 1, at the expense of accuracy. The proposed regularisation, initialised with
� init � 2:0, helps to prevent oversmoothing.

6.3 Uncertainty quanti�cation

We run a number of experiments to evaluate the uncertainty estimates and better under-
stand the di�erences between uncertainty output by various non-rigid registration methods
in practice:

1. We compare the uncertainty estimates output by VI, SG-MCMC, and VoxelMorph
on inter-subject brain MRI data from UK Biobank qualitatively and quantitatively,
by calculating the Pearson correlation coe�cient between the displacement and label
uncertainties;

2. We compare the uncertainty estimates when the SG-MCMC algorithm is initialised
to di�erent transformations;

3. We compare the result when using non-parametric SVFs and SVFs based on B-splines
to parametrise the transformation.

In order to make sampling from SG-MCMC e�cient, we determine the largest step
size that guarantees di�eomorphic transformations as de�ned in Section 6.1 and set it to
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