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Abstract

Accurate prediction of progression in subjects at risk of Alzheimer’s disease is crucial for en-
rolling the right subjects in clinical trials. However, a prospective comparison of state-of-the-art
algorithms for predicting disease onset and progression is currently lacking. We present the find-
ings of The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge,
which compared the performance of 92 algorithms from 33 international teams at predicting
the future trajectory of 219 individuals at risk of Alzheimer’s disease. Challenge participants
were required to make a prediction, for each month of a 5-year future time period, of three
key outcomes: clinical diagnosis, Alzheimer’s Disease Assessment Scale Cognitive Subdomain
(ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants
included multivariate linear regression, machine learning methods such as support vector ma-
chines and deep neural networks, as well as disease progression models. No single submission was
best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the
best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-
Cog13 no single submitted prediction method was significantly better than random guesswork.
Two ensemble methods based on taking the mean and median over all predictions, obtained top
scores on almost all tasks. Better than average performance at diagnosis prediction was generally
associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and
diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume pre-
diction was associated with inclusion of summary statistics, such as the slope or maxima/minima
of patient-specific biomarkers. On a limited, cross-sectional subset of the data emulating clin-
ical trials, performance of the best algorithms at predicting clinical diagnosis decreased only
slightly (2 percentage points) compared to the full longitudinal dataset. The submission sys-
tem remains open via the website https://tadpole.grand-challenge.org, while TADPOLE
SHARE (https://tadpole-share.github.io/) collates code for submissions. TADPOLE’s
unique results suggest that current prediction algorithms provide sufficient accuracy to exploit
biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical
trials for Alzheimer’s disease. However, results call into question the usage of cognitive test
scores for patient selection and as a primary endpoint in clinical trials.

Keywords: Alzheimer’s disease prediction, Benchmark, Machine Learning, Statistical Mod-
elling

1. Introduction

Accurate prediction of the onset of Alzheimer’s disease (AD) and its longitudinal progression is
important for care planning and for patient selection in clinical trials. Current opinion holds that
early detection will be critical for the successful administration of disease modifying treatments
during presymptomatic phases of the disease prior to widespread brain damage, e.g. when
pathological amyloid and tau start to accumulate (Mehta et al. (2017)). Moreover, accurate
prediction of the progression of at-risk subjects will help select homogenous patient groups for
clinical trials, thus reducing variability in outcome measures that can obscure positive effects
on patients at the right stage to benefit.

A variety of mathematical and computational methods have been developed to predict the
onset and progression of AD. Traditional approaches leverage statistical regression to model
relationships between target variables (e.g. clinical diagnosis or cognitive/imaging markers)
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with other known markers (Scahill et al. (2002); Sabuncu et al. (2011)) or measures derived
from these markers such as the rate of cognitive decline (Doody et al. (2010)). More recent
approaches involve supervised machine learning techniques such as support vector machines
(Klöppel et al. (2008); Salas-Gonzalez et al. (2010); Morra et al. (2009); Alvarez et al. (2009)),
random forests (Sarica et al. (2017); Ramı́rez et al. (2018); Lebedev et al. (2014); Huang et al.
(2016); Gray et al. (2013)) and artificial neural networks (Jo et al. (2019); Lee et al. (2019); Lin
et al. (2018); Spasov et al. (2019); Li et al. (2019); Duc et al. (2020); Cui et al. (2019)). These
approaches have been used to discriminate AD patients from cognitively normal individuals
(Klöppel et al. (2008); Zhang et al. (2011)), and for discriminating at-risk individuals who
convert to AD in a certain time frame from those who do not (Young et al. (2013); Mattila et al.
(2011)). The emerging approach of disease progression modelling aims to reconstruct biomarker
trajectories or other disease signatures across the disease progression timeline, without relying
on clinical diagnoses or estimates of time to symptom onset. Examples include models built on
a set of scalar biomarkers to produce discrete (Fonteijn et al. (2012); Young et al. (2014)) or
continuous (Jedynak et al. (2012); Donohue et al. (2014); Lorenzi et al. (2017); Oxtoby et al.
(2018); Schiratti et al. (2017); Wang et al. (2014); Villemagne et al. (2013); Lorenzi et al. (2019))
biomarker trajectories; spatio-temporal models that focus on evolving image structure (Bilgel
et al. (2016); Marinescu et al. (2019); Abi Nader et al. (2020); Bône et al. (2018)), potentially
conditioned by non-imaging variables (Koval et al. (2018)); and models that emulate putative
disease mechanisms to estimate trajectories of change (Raj et al. (2012); Iturria-Medina et al.
(2016); Zhou et al. (2012); Garbarino et al. (2019)). All these models show promise for predicting
AD biomarker progression at group and individual levels. However, previous evaluations within
individual publications provide limited information because: (1) they use different data sets or
subsets of the same dataset, different processing pipelines, and different evaluation metrics and
(2) over-training can occur due to heavy use of popular training datasets. Currently, the field
lacks a comprehensive comparison of the capabilities of these methods on standardised tasks
relevant to real-world applications.

Community challenges have consistently proved effective in moving forward the state of the
art in technology to address specific data-analysis problems by providing platforms for unbiased
comparative evaluation and incentives to maximise performance on key tasks (Maier-Hein et al.
(2018)). In medical image analysis, for example, such challenges have provided important
benchmarks in tasks such as registration (Murphy et al. (2011)) and segmentation (Menze et al.
(2014)), and revealed fundamental insights about the problem studied, for example in structural
brain-connectivity mapping (Maier-Hein et al. (2017)). Previous challenges in AD include the
CADDementia challenge (Bron et al. (2015)), which aimed to identify clinical diagnosis from
MRI scans. A similar challenge, the International challenge for automated prediction of MCI
from MRI data (Castiglioni et al. (2018)), asked participants to predict diagnosis and conversion
status from extracted MRI features of subjects from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study (Weiner et al. (2017)). Yet another challenge, The Alzheimer’s Disease
Big Data DREAM Challenge (Allen et al. (2016)), asked participants to predict cognitive decline
from genetic and MRI data. These challenges have however several limitations: (i) they did not
evaluate the ability of algorithms to predict biomarkers at future timepoints (with the exception
of one sub-task of DREAM), which is important for patient stratification in clinical trials; (ii)
the test data was available to organisers when the competitions were launched, leaving room for
potential biases in the design of the challenges; (iii) the training data was drawn from a limited
set of modalities.

The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge
(https://tadpole.grand-challenge.org) aims to identify the data, features and approaches
that are the most predictive of future progression of subjects at risk of AD. In contrast to
previous challenges, our challenge is designed to inform clinical trials through identification of
patients most likely to benefit from an effective treatment, i.e., those at early stages of disease
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who are likely to progress over the short-to-medium term (1-5 years). The challenge focuses
on forecasting the trajectories of three key features: clinical status, cognitive decline, and neu-
rodegeneration (brain atrophy), over a five-year timescale. It uses “rollover” subjects from the
ADNI study (Weiner et al. (2017)) for whom a history of measurements (imaging, psychology,
demographics, genetics) is available, and who are expected to continue in the study, provid-
ing future measurements for testing. TADPOLE participants were required to predict future
measurements from these individuals and submit their predictions before a given submission
deadline. Since the test data did not exist at the time of forecast submissions, the challenge
provides a performance comparison substantially less susceptible to many forms of potential
bias than previous studies and challenges. The design choices were published (Marinescu et al.
(2018)) before the test set was acquired and analysed. TADPOLE also goes beyond previ-
ous challenges by drawing on a vast set of multimodal measurements from ADNI which might
support prediction of AD progression.

This article presents the results of the TADPOLE Challenge and documents its key findings.
We summarise the challenge design and present the results of the 92 prediction algorithms
contributed by 33 participating teams worldwide, evaluated after an 18-month follow-up period.
We discuss the results obtained by TADPOLE participants, which represent the current state-of-
the-art in Alzheimer’s disease prediction. We also report results on which input data features
were most informative, and which feature selection strategies, data imputation methods and
classes of algorithms were most effective.

2. Methods

2.1 Predictions

TADPOLE Challenge asked participants to forecast three key biomarkers: (1) clinical diagnosis,
which can be either cognitively normal (CN), mild cognitive impairment (MCI), or probable
AD; (2) Alzheimer’s Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13) score; and
(3) ventricle volume (divided by intra-cranial volume) from MRI. Ventricle volume increase has
been shown to be a good predictor of Alzheimer’s disease diagnosis and progression Nestor et al.
(2008), notably because portions of the lateral ventricles lie close to the medial temporal lobe,
which atrophy during early stages (Ferrarini et al. (2006); Giesel et al. (2006)), and because it
is correlated with increases in senile plaques and neurofibrillary tangles (Silbert et al. (2003)).

The exact time of future data acquisitions for any given individual was unknown at forecast
time, so participants submitted month-by-month predictions for every individual. Predictions
of clinical status comprise relative likelihoods of each option (CN, MCI, and AD) for each
individual at each month. Predictions of ADAS-Cog13 and ventricle volume comprise a best-
guess estimate as well as a 50% confidence interval for each individual at each month. Full
details on challenge design are given in the TADPOLE white paper (Marinescu et al. (2018)).

2.2 Data

The challenge uses data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner
et al. (2017)). Specifically, the TADPOLE Challenge made four key data sets available to the
challenge participants:

• D1: The TADPOLE standard training set draws on longitudinal data from the entire
ADNI history. The data set contains measurements for every individual that has provided
data to ADNI in at least two separate visits (different dates) across three phases of the
study: ADNI1, ADNI GO, and ADNI2.

• D2: The TADPOLE longitudinal prediction set contains as much available data as we
could gather from the ADNI rollover individuals for whom challenge participants are
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asked to provide predictions. D2 includes data from all available time-points for these
individuals. It defines the set of individuals for which participants are required to provide
forecasts.

• D3: The TADPOLE cross-sectional prediction set contains a single (most recent) time
point and a limited set of variables from each rollover individual in D2. Although we expect
worse predictions from this data set than D2, D3 represents the information typically
available when selecting a cohort for a clinical trial.

• D4: The TADPOLE test set contains visits from ADNI rollover subjects that occurred
after 1 Jan 2018 and contain at least one of the three outcome measures: diagnostic status,
ADAS-Cog13 score, or ventricle volume.

While participants were free to use any training datasets they wished, we provided the D1-
D3 datasets in order to remove the need for participants to pre-process the data themselves, and
also to be able to evaluate the performance of different algorithms on the same standardised
datasets. Participants that used custom training data sets were asked also to submit results
using the standard training data sets to enable direct performance comparison. We also included
the D3 cross-sectional prediction set in order to simulate a clinical trial scenario. For information
on how we created the D1-D4 datasets, see section A. The software code used to generate the
standard datasets is openly available on Github: https://github.com/noxtoby/TADPOLE.

Table 1 shows the demographic breakdown of each TADPOLE data set as well as the
proportion of biomarker data available in each dataset. Many entries are missing data, especially
for certain biomarkers derived from exams performed on only subsets of subjects, such as tau
imaging (AV1451). D1 and D2 also included demographic data typically available in ADNI (e.g.
education, marital status) as well as standard genetic markers (e.g. Alipoprotein E – APOE
epsilon 4 status).

2.3 Forecast Evaluation

For evaluation of clinical status predictions, we used similar metrics to those that proved ef-
fective in the CADDementia challenge (Bron et al. (2015)): (i) the multiclass area under the
receiver operating characteristic curve (MAUC) and (ii) the overall balanced classification accu-
racy (BCA). For ADAS-Cog13 and ventricle volume, we used three metrics: (i) mean absolute
error (MAE), weighted error score (WES) and coverage probability accuracy (CPA). BCA and
MAE focus purely on prediction accuracy ignoring confidence, MAUC and WES account for
accuracy and confidence, while CPA assesses the confidence interval only. The formulas for each
performance metric are summarised in Table 2. See the TADPOLE white paper (Marinescu
et al. (2018)) for further rationale for choosing these performance metrics. In order to charac-
terise the distribution of these metric scores, we compute scores based on 50 bootstraps with
replacement on the test dataset.

2.4 Statistical Analysis of Method Attributes with Performance

To identify which features and types of algorithms enable good predictions, we annotated
each TADPOLE submission with a set of 21 attributes related to (i) feature selection (man-
ual/automatic and large vs. small number of features), (ii) feature types (e.g. “uses Amyloid
PET”), (iii) strategy for data imputation (e.g. “patient-wise forward-fill”) and (iv) prediction
method (e.g. “neural network”) for clinical diagnosis and ADAS/Ventricles separately. To un-
derstand which of these annotations were associated with increased performance, we applied a
general linear model (Kiebel and Holmes (2007)), Y = Xβ+ε, where Y is the performance met-
ric (e.g. diagnosis MAUC), X is the nr submissions x 21 design matrix of binary annotations,
and β show the contributions of each of the 21 attributes towards achieving the performance
measure Y .
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Demographics

D1 D2 D3 D4

Overall number of subjects 1667 896 896 219

Controls†

Number (% all subjects) 508 (30.5%) 369 (41.2%) 299 (33.4%) 94 (42.9%)
Visits per subject 8.3 ± 4.5 8.5 ± 4.9 1.0 ± 0.0 1.0 ± 0.2

Age 74.3 ± 5.8 73.6 ± 5.7 72.3 ± 6.2 78.4 ± 7.0
Gender (% male) 48.6% 47.2% 43.5% 47.9%

MMSE 29.1 ± 1.1 29.0 ± 1.2 28.9 ± 1.4 29.1 ± 1.1
Converters* 18 9 - -

MCI†

Number (% all subjects) 841 (50.4%) 458 (51.1%) 269 (30.0%) 90 (41.1%)
Visits per subject 8.2 ± 3.7 9.1 ± 3.6 1.0 ± 0.0 1.1 ± 0.3

Age 73.0 ± 7.5 71.6 ± 7.2 71.9 ± 7.1 79.4 ± 7.0
Gender (% male) 59.3% 56.3% 58.0% 64.4%

MMSE 27.6 ± 1.8 28.0 ± 1.7 27.6 ± 2.2 28.1 ± 2.1
Converters* 117 37 - 9

AD†

Number (% all subjects) 318 (19.1%) 69 (7.7%) 136 (15.2%) 29 (13.2%)
Visits per subject 4.9 ± 1.6 5.2 ± 2.6 1.0 ± 0.0 1.1 ± 0.3

Age 74.8 ± 7.7 75.1 ± 8.4 72.8 ± 7.1 82.2 ± 7.6
Gender (% male) 55.3% 68.1% 55.9% 51.7%

MMSE 23.3 ± 2.0 23.1 ± 2.0 20.5 ± 5.9 19.4 ± 7.2
Converters* - - - 9

Number of clinical visits for all subjects with data available (% of total visits)

D1 D2 D3 D4

Cognitive 8862 (69.9%) 5218 (68.1%) 753 (84.0%) 223 (95.3%)
MRI 7884 (62.2%) 4497 (58.7%) 224 (25.0%) 150 (64.1%)

FDG-PET 2119 (16.7%) 1544 (20.2%) - -
AV45 2098 (16.6%) 1758 (23.0%) - -

AV1451 89 (0.7%) 89 (1.2%) - -
DTI 779 (6.1%) 636 (8.3%) - -
CSF 2347 (18.5%) 1458 (19.0%) - -

Table 1: Summary of TADPOLE datasets D1-D4. (†) Diagnosis at first visit with available
data. For D3 and D4, 192 and 6 subjects respectively did not have a diagnosis at any clinical
visit, so numbers don’t add up to 100%. (*) For D4, converters are ADNI3 subjects who are
MCI, but were previously CN, or who are AD, but were previously CN or MCI in their last
visit in ADNI2. For D1, D2 and D3, converters are CN or MCI at their earliest available visit,
who progress to a later classification of MCI/AD within 1.4 years (same duration as D4)

.
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Formula Definitions

MAUC =
1

L(L−1)
∑L

i=2

∑i
j=1 Â(ci|cj) + Â(cj |ci)

where Â(ci|cj) = Si−ni(ni+1)/2
ninj

ni, nj – number of points from class i and j. Sij
– the sum of the ranks of the class i test points,
after ranking all the class i and j data points in
increasing likelihood of belonging to class i. L –

number of classes. ci – class i.

BCA =
1
2L

∑L
i=1

[
TPi

TPi+FNi
+ TNi

TNi+FPi

] TPi, FPi, TNi, FNi – the number of true
positives, false positives, true negatives and false

negatives for class i. L – number of classes

MAE = 1
N

∑N
i=1

∣∣∣M̃i −Mi

∣∣∣ Mi is the actual value in individual i in future
data. M̃i is the participant’s best guess at Mi

and N is the number of data points

WES =
∑N

i=1 C̃i|M̃i−Mi|∑N
i=1 C̃i

Mi, M̃i and N defined as above.
C̃i = (C+ − C−)−1, where [C−, C+] is the 50%

confidence interval

CPA = |ACP − 0.5|
actual coverage probability (ACP) - the

proportion of measurements that fall within the
50% confidence interval.

Table 2: TADPOLE performance metric formulas and definitions for the terms.

2.5 Algorithms

A total of 33 participating teams submitted a total of 58 predictions from the longitudinal
prediction set (D2), 34 predictions from the cross-sectional prediction set (D3), and 6 predictions
from custom prediction sets (see section 2.2 for description of D2/D3 datasets). A total of 8
D2/D3 submissions from 6 teams did not have predictions for all three target variables, so
we computed the performance metrics for only the submitted target variables. Another 3
submissions lacked confidence intervals for either ADAS-Cog13 or ventricle volume, which we
imputed using default low-width confidence ranges of 2 for ADAS-Cog13 and 0.002 for Ventricles
normalised by intracranial volume (ICV).

Submission
Feature
selection

Number
of

features

Missing
data im-
putation

Diagnosis
prediction

model

ADAS/Vent.
prediction

model

Training
time

Prediction
time (one
subject)

AlgosForGood manual 16+5*
forward-

filling
Aalen model

linear
regression

1 min. 1 sec.

Apocalypse manual 16
population

average
SVM

linear
regression

40 min. 3 min.

ARAMIS-Pascal manual 20
population

average
Aalen model - 16 sec. 0.02 sec.

ATRI-Biostat-JMM automatic 15
random
forest

random forest
linear mixed
effects model

2 days 1 sec.

ATRI-Biostat-LTJMM automatic 15
random
forest

random forest DPM 2 days 1 sec.

ATRI-Biostat-MA automatic 15
random
forest

random forest
DPM + linear
mixed effects

model
2 days 1 sec.

BGU-LSTM automatic 67 none
feed-forward

NN
LSTM 1 day millisec.

BGU-RF/ BGU-RFFIX automatic
≈

67+1340*
none

semi-temporal
RF

semi-temporal
RF

a few min. millisec.

BIGS2 automatic all

Iterative
Thresh-
olded
SVD

RF
linear

regression
2.2 sec. 0.001 sec.

Billabong (all) manual 15-16
linear

regression
linear scale

non-
parametric

SM
7 hours 0.13 sec.

BORREGOSTECMTY automatic
≈100 +

400*
nearest-

neighbour
regression
ensemble

ensemble of
regression +

hazard models
18 hours 0.001 sec.

BravoLab automatic 25 hot deck LSTM LSTM 1 hour a few sec.
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CBIL manual 21
linear inter-

polation
LSTM LSTM 1 hour one min.

Chen-MCW manual 9 none
linear

regression
DPM 4 hours < 1 hour

CN2L-NeuralNetwork automatic all
forward-

filling
RNN RNN 24 hours a few sec.

CN2L-RandomForest manual >200
forward-

filling
RF RF 15 min. < 1 min.

CN2L-Average automatic all
forward-

filling
RNN/RF RNN/RF 24 hours < 1 min.

CyberBrains manual 5
population

average
linear

regression
linear

regression
20 sec. 20 sec.

DIKU (all)
semi-

automatic
18 none

Bayesian
classifier/LDA

+ DPM
DPM 290 sec. 0.025 sec.

DIVE manual 13 none KDE+DPM DPM 20 min. 0.06 sec.

EMC1 automatic 250
nearest

neighbour
DPM + 2D

spline + SVM
DPM + 2D

spline
80 min. a few sec.

EMC-EB automatic 200-338
nearest-

neighbour
SVM classifier SVM regressor 20 sec. a few sec.

FortuneTellerFish-Control manual 19
nearest

neighbour
multiclass

ECOC SVM
linear mixed
effects model

1 min. < 1 sec.

FortuneTellerFish-SuStaIn manual 19
nearest

neighbour

multiclass
ECOC SVM

+ DPM

linear mixed
effects model

+ DPM
5 hours < 1 sec.

Frog automatic
≈

70+420*
none

gradient
boosting

gradient
boosting

1 hour -

GlassFrog-LCMEM-HDR
semi-

automatic
all

forward-
fill/nearest-

neigh.

multi-state
model

DPM +
regression

15 min. 2 min.

GlassFrog-SM manual 7
linear
model

multi-state
model

parametric
SM

93 sec. 0.1 sec.

GlassFrog-Average
semi-

automatic
all

forward-
fill/linear

multi-state
model

DPM + SM +
regression

15 min. 2 min.

IBM-OZ-Res manual Oct-15
filled with

zero

stochastic
gradient
boosting

stochastic
gradient
boosting

20 min. 0.1 sec.

ITESMCEM manual 48
mean of
previous
values

RF
LASSO +

Bayesian ridge
regression

20 min. 0.3 sec.

lmaUCL (all) manual 5 regression
multi-task
learning

multi-task
learning

2 hours millisec.

Mayo-BAI-ASU manual 15
population

average
linear mixed
effects model

linear mixed
effects model

20 min. 1.3 sec.

Orange manual 17 none
clinician’s

decision tree
clinician’s

decision tree
none 0.2 sec.

Rocket manual 6
median of
diagnostic

group

linear mixed
effects model

DPM 5 min. 0.3 sec.

SBIA manual 30-70

dropped
visits with

missing
data

SVM +
density

estimator

linear mixed
effects model

1 min. a few sec.

SPMC-Plymouth (all) automatic 20 none unknown - unknown 1 min.

SmallHeads-NeuralNetwork
automatic 376

nearest
neighbour

deep fully
-connected

NN

deep fully
-connected

NN
40 min. 0.06 sec.

SmallHeads-LinMixedEffects
automatic unknown

nearest
neighbour

-
linear mixed
effects model

25 min. 0.13 sec.

Sunshine (all)
semi-

automatic
6

population
average

SVM linear model 30 min. < 1 min.

Threedays manual 16 none RF - 1 min. 3 sec.

Tohka-Ciszek-SMNSR manual ≈ 32
nearest

neighbour
- SMNSR

several
hours

a few sec.

Tohka-Ciszek-
RandomForestLin manual 32

mean
patient
value

RF linear model a few min. a few sec.

VikingAI (all) manual 10 none
DPM +

ordered logit
model

DPM 10 hours 8 sec.

BenchmaskLastVisit None 3 none
constant
model

constant
model

7 sec. millisec.

BenchmarkMixedEffects None 3 none
Gaussian

model
linear mixed
effects model

30 sec. 0.003 sec.

BenchmarkMixedEffects-
APOE None 4 none

Gaussian
model

linear mixed
effects model

30 sec. 0.003 sec.

BenchmarkSVM manual 6
mean of
previous
values

SVM
support vector

regressor
(SVR)

20 sec. 0.001 sec.
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Table 3: Summary of prediction methods used in the TADPOLE submissions. Keywords: SVM
– Support Vector Machine, RF – random forest, LSTM – long short-term memory network, NN –
neural network, RNN – recurrent neural network, SMNSR – Sparse Multimodal Neighbourhood
Search Regression, DPM – disease progression model, KDE – kernel density estimation, LDA
– linear discriminant analysis, SM – slope model, ECOC – error-correcting output codes, SVD
– singular value decomposition (*) Augmented features, or summary statistics, such as trends,
slope, min/max, moments, generally derived patient-wise using longitudinal data. Color tags
denote prediction method category: regression/proportional hazards model, random forest,

neural networks, disease progression model, machine learning (other), benchmark,
other. The left-side box denotes the category for diagnosis prediction method, while the

right-side box denotes the category for ADAS/Ventricle prediction method.

Table 3 summarises the methods used in the submissions in terms of feature selection, han-
dling of missing data, predictive models for clinical diagnosis and ADAS/Ventricles biomarkers,
as well as training and prediction times. A detailed description of each method is in section 6.
In particular, some entries constructed augmented features (i.e. summary statistics), which are
extra features such as slope, min/max or moments that are derived from existing features.

In addition to the forecasts submitted by participants, we also evaluated four benchmark
methods, which were made available to participants during the submission phase of the chal-
lenge: (i) BenchmaskLastVisit uses the measurement of each target from the last available
clinical visit as the forecast, (ii) BenchmarkMixedEffects uses a mixed effects model with age
as predictor variable for ADAS and Ventricle predictions, and Gaussian likelihood model for
diagnosis prediction, (iii) BenchmarkMixedEffectsAPOE is as (ii) but adds APOE status as
a covariate and (iv) BenchmarkSVM uses an out-of-the-box support vector machine (SVM)
classifier and regressor (SVR) to provide forecasts. More details on these methods can be
found in section 6. We also evaluated two ensemble methods based on taking the mean (Con-
sensusMean) and median (ConsensusMedian) of the forecasted variables over all submissions.
We further evaluated 100 random predictions by adding Gaussian noise to the forecasts of the
simplest benchmark model (BenchmarkLastVisit), to control for potentially spurious strong per-
formance arising from multiple comparisons. In the subsequent results tables we will show, for
each performance metric, only the best score obtained by any of these 100 random predictions
(RandomisedBest) – See end of section 6 for more information on RandomisedBest.

3. Results

3.1 Forecasts from the longitudinal prediction set (D2)

Table 4 compiles all metrics for all TADPOLE submitted forecasts, as well as benchmarks and
ensemble forecasts, from the longitudinal D2 prediction set. For details on datasets D2 and D3,
see section 2.2, while for details on performance metrics see section 2.3. Box-plots showing the
distribution of scores, computed on 50 bootstraps of the test set, are shown in Supplementary
Fig. 2, while the distribution of ranks is shown in Supplementary Figs. 9 – 11. Among the
benchmark methods, BenchmarkMixedEffectsAPOE had the best overall rank of 18, obtaining
rank 35 on clinical diagnosis prediction, rank 2 on ADAS-Cog13 and rank 23 on Ventricle
volume prediction. Removing the APOE status as covariate proved to significantly increase the
predictive performance (BenchmarkMixedEffects), although we do not show ranks for this entry
as it was found during the evaluation phase. Among participant methods, the submission with
the best overall rank was Frog, obtaining rank 1 for prediction of clinical diagnosis, rank 4 for
ADAS-Cog13 and rank 10 for Ventricle volume prediction.

For clinical diagnosis, the best submitted forecasts (team Frog) scored better than all bench-
mark methods, reducing the error of the best benchmark methods by 0.085 (8.5 percentage
points) for the multiclass area under the receiver operating characteristic curve (MAUC) and
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Overall Diagnosis ADAS-Cog13 Ventricles (% ICV)
Submission Rank Rank MAUC BCA Rank MAE WES CPA Rank MAE WES CPA

ConsensusMedian - - 0.925 0.857 - 5.12 5.01 0.28 - 0.38 0.33 0.09
Frog 1 1 0.931 0.849 4 4.85 4.74 0.44 10 0.45 0.33 0.47

ConsensusMean - - 0.920 0.835 - 3.75 3.54 0.00 - 0.48 0.45 0.13
EMC1-Std 2 8 0.898 0.811 23-24 6.05 5.40 0.45 1-2 0.41 0.29 0.43

VikingAI-Sigmoid 3 16 0.875 0.760 7 5.20 5.11 0.02 11-12 0.45 0.35 0.20
EMC1-Custom 4 11 0.892 0.798 23-24 6.05 5.40 0.45 1-2 0.41 0.29 0.43

CBIL 5 9 0.897 0.803 15 5.66 5.65 0.37 13 0.46 0.46 0.09
Apocalypse 6 7 0.902 0.827 14 5.57 5.57 0.50 20 0.52 0.52 0.50

GlassFrog-Average 7 4-6 0.902 0.825 8 5.26 5.27 0.26 29 0.68 0.60 0.33
GlassFrog-SM 8 4-6 0.902 0.825 17 5.77 5.92 0.20 21 0.52 0.33 0.20

BORREGOTECMTY 9 19 0.866 0.808 20 5.90 5.82 0.39 5 0.43 0.37 0.40
BenchmarkMixedEffects - - 0.846 0.706 - 4.19 4.19 0.31 - 0.56 0.56 0.50

EMC-EB 10 3 0.907 0.805 39 6.75 6.66 0.50 9 0.45 0.40 0.48
lmaUCL-Covariates 11-12 22 0.852 0.760 27 6.28 6.29 0.28 3 0.42 0.41 0.11

CN2L-Average 11-12 27 0.843 0.792 9 5.31 5.31 0.35 16 0.49 0.49 0.33
VikingAI-Logistic 13 20 0.865 0.754 21 6.02 5.91 0.26 11-12 0.45 0.35 0.20

lmaUCL-Std 14 21 0.859 0.781 28 6.30 6.33 0.26 4 0.42 0.41 0.09
RandomisedBest - - 0.800 0.803 - 4.52 4.52 0.27 - 0.46 0.45 0.33

CN2L-RandomForest 15-16 10 0.896 0.792 16 5.73 5.73 0.42 31 0.71 0.71 0.41
FortuneTellerFish-SuStaIn 15-16 40 0.806 0.685 3 4.81 4.81 0.21 14 0.49 0.49 0.18

CN2L-NeuralNetwork 17 41 0.783 0.717 10 5.36 5.36 0.34 7 0.44 0.44 0.27
BenchmarkMixedEffectsAPOE 18 35 0.822 0.749 2 4.75 4.75 0.36 23 0.57 0.57 0.40

Tohka-Ciszek-RandomForestLin 19 17 0.875 0.796 22 6.03 6.03 0.15 22 0.56 0.56 0.37
BGU-LSTM 20 12 0.883 0.779 25 6.09 6.12 0.39 25 0.60 0.60 0.23

DIKU-GeneralisedLog-Custom 21 13 0.878 0.790 11-12 5.40 5.40 0.26 38-39 1.05 1.05 0.05
DIKU-GeneralisedLog-Std 22 14 0.877 0.790 11-12 5.40 5.40 0.26 38-39 1.05 1.05 0.05

CyberBrains 23 34 0.823 0.747 6 5.16 5.16 0.24 26 0.62 0.62 0.12
AlgosForGood 24 24 0.847 0.810 13 5.46 5.11 0.13 30 0.69 3.31 0.19

lmaUCL-halfD1 25 26 0.845 0.753 38 6.53 6.51 0.31 6 0.44 0.42 0.13
BGU-RF 26 28 0.838 0.673 29-30 6.33 6.10 0.35 17-18 0.50 0.38 0.26

Mayo-BAI-ASU 27 52 0.691 0.624 5 4.98 4.98 0.32 19 0.52 0.52 0.40
BGU-RFFIX 28 32 0.831 0.673 29-30 6.33 6.10 0.35 17-18 0.50 0.38 0.26

FortuneTellerFish-Control 29 31 0.834 0.692 1 4.70 4.70 0.22 50 1.38 1.38 0.50
GlassFrog-LCMEM-HDR 30 4-6 0.902 0.825 31 6.34 6.21 0.47 51 1.66 1.59 0.41

SBIA 31 43 0.776 0.721 43 7.10 7.38 0.40 8 0.44 0.31 0.13
Chen-MCW-Stratify 32 23 0.848 0.783 36-37 6.48 6.24 0.23 36-37 1.01 1.00 0.11

Rocket 33 54 0.680 0.519 18 5.81 5.71 0.34 28 0.64 0.64 0.29
BenchmarkSVM 34-35 30 0.836 0.764 40 6.82 6.82 0.42 32 0.86 0.84 0.50
Chen-MCW-Std 34-35 29 0.836 0.778 36-37 6.48 6.24 0.23 36-37 1.01 1.00 0.11

DIKU-ModifiedMri-Custom 36 36-37 0.807 0.670 32-35 6.44 6.44 0.27 34-35 0.92 0.92 0.01
DIKU-ModifiedMri-Std 37 38-39 0.806 0.670 32-35 6.44 6.44 0.27 34-35 0.92 0.92 0.01

DIVE 38 51 0.708 0.568 42 7.10 7.10 0.34 15 0.49 0.49 0.13
ITESMCEM 39 53 0.680 0.657 26 6.26 6.26 0.35 33 0.92 0.92 0.43

BenchmarkLastVisit 40 44-45 0.774 0.792 41 7.05 7.05 0.45 27 0.63 0.61 0.47
Sunshine-Conservative 41 25 0.845 0.816 44-45 7.90 7.90 0.50 43-44 1.12 1.12 0.50

BravoLab 42 46 0.771 0.682 47 8.22 8.22 0.49 24 0.58 0.58 0.41
DIKU-ModifiedLog-Custom 43 36-37 0.807 0.670 32-35 6.44 6.44 0.27 47-48 1.17 1.17 0.06

DIKU-ModifiedLog-Std 44 38-39 0.806 0.670 32-35 6.44 6.44 0.27 47-48 1.17 1.17 0.06
Sunshine-Std 45 33 0.825 0.771 44-45 7.90 7.90 0.50 43-44 1.12 1.12 0.50

Billabong-UniAV45 46 49 0.720 0.616 48-49 9.22 8.82 0.29 41-42 1.09 0.99 0.45
Billabong-Uni 47 50 0.718 0.622 48-49 9.22 8.82 0.29 41-42 1.09 0.99 0.45

ATRI-Biostat-JMM 48 42 0.779 0.710 51 12.88 69.62 0.35 54 1.95 5.12 0.33
Billabong-Multi 49 56 0.541 0.556 55 27.01 19.90 0.46 40 1.07 1.07 0.45

ATRI-Biostat-MA 50 47 0.741 0.671 52 12.88 11.32 0.19 53 1.84 5.27 0.23
BIGS2 51 58 0.455 0.488 50 11.62 14.65 0.50 49 1.20 1.12 0.07

Billabong-MultiAV45 52 57 0.527 0.530 56 28.45 21.22 0.47 45 1.13 1.07 0.47
ATRI-Biostat-LTJMM 53 55 0.636 0.563 54 16.07 74.65 0.33 52 1.80 5.01 0.26

Threedays - 2 0.921 0.823 - - - - - - - -
ARAMIS-Pascal - 15 0.876 0.850 - - - - - - - -

IBM-OZ-Res - 18 0.868 0.766 - - - - 46 1.15 1.15 0.50
Orange - 44-45 0.774 0.792 - - - - - - - -

SMALLHEADS-NeuralNet - 48 0.737 0.605 53 13.87 13.87 0.41 - - - -
SMALLHEADS-LinMixedEffects - - - - 46 8.09 7.94 0.04 - - - -

Tohka-Ciszek-SMNSR - - - - 19 5.87 5.87 0.14 - - - -

Table 4: Ranked scores for all TADPOLE submissions and benchmarks using the longitu-
dinal prediction data set (D2). Best scores in each category are bolded. Missing numerical
entries indicate that submissions did not include forecasts for the corresponding target variable.
The “Diagnosis” ranking uses multiclass area under the receiver operating characteristic curve
(MAUC), those of ADAS-Cog13 and Ventricles use mean absolute error (MAE). The overall
ranking on the left uses the sum of the ranks from the three target variables. The table also lists
the secondary metrics: BCA – balanced classification accuracy, WES – weighted error score,
CPA – coverage probability accuracy.
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by 0.058 (5.8 p.p.) for balanced classification accuracy (BCA). Here, the best benchmarks ob-
tained a MAUC of 0.846 (BenchmarkMixedEffects) and a BCA of 0.792 (BenchmarkLastVisit).
Among participant methods, Frog had the best MAUC score of 0.931, significantly better than
all entries other than Threedays according to the bootstrap test (p-value = 0.24, see section
B.1 for details on significance testing). Supplementary Figure 9 further shows the variability
in performance ranking over bootstrap samples and highlights that the top two entries consis-
tently remain at the top of the ranking. In terms of BCA, ARAMIS-Pascal had the best score
of 0.850. Moreover, ensemble methods (ConsensusMedian) achieved the second best MAUC
score of 0.925 and the best BCA score of 0.857. In contrast, the best randomised prediction
(RandomisedBest) achieved a much lower MAUC of 0.800 and a BCA of 0.803, suggesting en-
tries below these scores did not perform significantly better than random guessing according
to the bootstrap test (p-value = 0.01). MAUC and BCA performance metrics had a relatively
high correlation across all submissions (r = 0.88, Supplementary Fig. 4).

For Ventricle volume, the best submitted forecasts among participants (team EMC1 ) ob-
tained substantially lower error scores than all benchmark methods, scoring 73% of the lowest
benchmark MAE (BenchmarkMixedEffects MAE=0.56) and 52% of the lowest benchmark WES
(BenchmarkMixedEffects WES=0.56). Among participant submissions, EMC1-Std/-Custom
had the best MAE of 0.41 (% ICV), significantly lower than all entries other than lmaUCL-
Covariates/-Std/-half-D1, BORREGOTECMTY and SBIA according to the Wilcoxon signed-
rank test (see section B.2) – this is also confirmed in Supplementary Fig. 11 by the variability in
performance ranking over bootstrap samples. Team EMC1 also had the best Ventricle WES of
0.29, while DIKU-ModifiedMri-Custom/-Std had the best Ventricle coverage probability accu-
racy (CPA) of 0.01. Ensemble methods (ConsensusMean) achieved the best Ventricle MAE of
0.38. In contrast, the best randomised prediction (RandomisedBest) achieved a higher MAE of
0.46, WES of 0.45 and CPA of 0.33. MAE and WES scores showed high correlation (r = 0.99,
Supplementary Fig. 4) and were often of equal value for many submissions (n = 24), as teams
set equal weights for all subjects analysed. CPA did not correlate (r ≈ −0.01, Supplementary
Fig. 4) with either MAE or WES.

For ADAS-Cog13, the best submitted forecasts did not score significantly better than the
simple benchmarks. Here, the simple BenchmarkMixedEffects model obtained the second-best
MAE of 4.19, which was significantly lower than all other submitted entries according to the
Wilcoxon signed-rank test. BenchmarkMixedEffects also had the best ADAS-Cog13 WES of
4.19, while VikingAI-Sigmoid had the best ADAS-Cog13 CPA of 0.02. Among participants’
submissions, FortuneTellerFish-Control ranked first in ADAS-Cog13 prediction with a MAE of
4.70 (112% of the lowest benchmark score). Moreover, all participants’ forecasts scored worse
than the best randomised prediction (RandomisedBest), which here achieved a MAE of 4.52
and WES of 4.52. Nevertheless, the ensemble method ConsensusMean obtained the best ADAS
scores for MAE (3.75), WES (3.54) and CPA (0.0), which along with BenchmarkMixedEffects
were the only entries that performed significantly better than random guesswork (p-value =
0.01). The MAE and WES scores for ADAS-Cog13 had relatively high correlation (r = 0.97,
Supplementary Fig. 4) and were often of equal value for many submissions (n = 25). CPA had
a weak but significant correlation with MAE (r = 0.37, p-value < 0.02) and WES (r = 0.35,
p-value < 0.02).

3.2 Forecasts from the cross-sectional prediction set (D3) and custom prediction
sets

Table 5 shows the ranking of the forecasts from the cross-sectional D3 prediction set. Box-plots
showing the distribution of scores, computed on 50 bootstraps of the test set, are shown in
Supplementary Fig 3, while the distribution of ranks is shown in Supplementary Figs. 12 – 14.
Due to the lack of longitudinal data, most submissions had lower performance compared to their
equivalents from the D2 longitudinal prediction set. Among submitted forecasts, GlassFrog-
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Overall Diagnosis ADAS-Cog13 Ventricles (% ICV)
Submission Rank Rank MAUC BCA Rank MAE WES CPA Rank MAE WES CPA

ConsensusMean - - 0.917 0.821 - 4.58 4.34 0.12 - 0.73 0.72 0.09
ConsensusMedian - - 0.905 0.817 - 5.44 5.37 0.19 - 0.71 0.65 0.10

GlassFrog-Average 1 2-4 0.897 0.826 5 5.86 5.57 0.25 3 0.68 0.55 0.24
GlassFrog-LCMEM-HDR 2 2-4 0.897 0.826 9 6.57 6.56 0.34 1 0.48 0.38 0.24

GlassFrog-SM 3 2-4 0.897 0.826 4 5.77 5.77 0.19 9 0.82 0.55 0.07
Tohka-Ciszek-RandomForestLin 4 11 0.865 0.786 2 4.92 4.92 0.10 10 0.83 0.83 0.35

RandomisedBest - - 0.811 0.783 - 4.54 4.50 0.26 - 0.92 0.50 0.00
lmaUCL-Std 5-9 12-14 0.854 0.698 16-18 6.95 6.93 0.05 5-7 0.81 0.81 0.22

lmaUCL-Covariates 5-9 12-14 0.854 0.698 16-18 6.95 6.93 0.05 5-7 0.81 0.81 0.22
lmaUCL-halfD1 5-9 12-14 0.854 0.698 16-18 6.95 6.93 0.05 5-7 0.81 0.81 0.22

Rocket 5-9 10 0.865 0.771 3 5.27 5.14 0.39 23 1.06 1.06 0.27
VikingAI-Logistic 5-9 8 0.876 0.768 6 5.94 5.91 0.22 22 1.04 1.01 0.18

EMC1-Std 10 30 0.705 0.567 7 6.29 6.19 0.47 4 0.80 0.62 0.48
BenchmarkMixedEffects - - 0.839 0.728 - 4.23 4.23 0.34 - 1.13 1.13 0.50

SBIA 11 28 0.779 0.782 10 6.63 6.43 0.40 8 0.82 0.75 0.18
BGU-LSTM 12-14 5-7 0.877 0.776 13-15 6.75 6.17 0.39 26-28 1.11 0.79 0.17

BGU-RFFIX 12-14 5-7 0.877 0.776 13-15 6.75 6.17 0.39 26-28 1.11 0.79 0.17
BGU-RF 12-14 5-7 0.877 0.776 13-15 6.75 6.17 0.39 26-28 1.11 0.79 0.17

BravoLab 15 18 0.813 0.730 28 8.02 8.02 0.47 2 0.64 0.64 0.42
BORREGOTECMTY 16-17 15 0.852 0.748 8 6.44 5.86 0.46 30 1.14 1.02 0.49

CyberBrains 16-17 17 0.830 0.755 1 4.72 4.72 0.21 35 1.54 1.54 0.50
ATRI-Biostat-MA 18 19 0.799 0.772 26 7.39 6.63 0.04 11 0.93 0.97 0.10

DIKU-GeneralisedLog-Std 19-20 20 0.798 0.684 20-21 6.99 6.99 0.17 16-17 0.95 0.95 0.05
EMC-EB 19-20 9 0.869 0.765 27 7.71 7.91 0.50 21 1.03 1.07 0.49

DIKU-GeneralisedLog-Custom 21 21 0.798 0.681 20-21 6.99 6.99 0.17 16-17 0.95 0.95 0.05
DIKU-ModifiedLog-Std 22-23 22-23 0.798 0.688 22-25 7.10 7.10 0.17 12-15 0.95 0.95 0.05
DIKU-ModifiedMri-Std 22-23 22-23 0.798 0.688 22-25 7.10 7.10 0.17 12-15 0.95 0.95 0.05

DIKU-ModifiedMri-Custom 24-25 24-25 0.798 0.691 22-25 7.10 7.10 0.17 12-15 0.95 0.95 0.05
DIKU-ModifiedLog-Custom 24-25 24-25 0.798 0.691 22-25 7.10 7.10 0.17 12-15 0.95 0.95 0.05

Billabong-Uni 26 31 0.704 0.626 11-12 6.69 6.69 0.38 19-20 0.98 0.98 0.48
Billabong-UniAV45 27 32 0.703 0.620 11-12 6.69 6.69 0.38 19-20 0.98 0.98 0.48
ATRI-Biostat-JMM 28 26 0.794 0.781 29 8.45 8.12 0.34 18 0.97 1.45 0.37

CBIL 29 16 0.847 0.780 33 10.99 11.65 0.49 29 1.12 1.12 0.39
BenchmarkLastVisit 30 27 0.785 0.771 19 6.97 7.07 0.42 33 1.17 0.64 0.11

Billabong-MultiAV45 31 33 0.682 0.603 30-31 9.30 9.30 0.43 24-25 1.09 1.09 0.49
Billabong-Multi 32 34 0.681 0.605 30-31 9.30 9.30 0.43 24-25 1.09 1.09 0.49

ATRI-Biostat-LTJMM 33 29 0.732 0.675 34 12.74 63.98 0.37 32 1.17 1.07 0.40
BenchmarkSVM 34 36 0.494 0.490 32 10.01 10.01 0.42 31 1.15 1.18 0.50

DIVE 35 35 0.512 0.498 35 16.66 16.74 0.41 34 1.42 1.42 0.34
IBM-OZ-Res - 1 0.905 0.830 - - - - 36 1.77 1.77 0.50

Table 5: Ranked prediction scores for all TADPOLE submissions that used the cross-sectional
prediction data set (D3). Best scores in each category are bolded. Missing numerical entries
indicate that submissions did not include predictions for the corresponding target variable.
The “Diagnosis” ranking uses multiclass area under the receiver operating characteristic curve
(MAUC), those of ADAS-Cog13 and Ventricles use mean absolute error (MAE). The overall
ranking on the left uses the sum of the ranks from the three target variables. The table also lists
the secondary metrics: BCA – balanced classification accuracy, WES – weighted error score,
CPA – coverage probability accuracy. See section 2.3 for details on performance metrics.
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Average had the best overall rank, as well as rank 2-4 on diagnosis prediction, rank 5 on
ADAS-Cog13 prediction and rank 3 on ventricle prediction.

For clinical diagnosis prediction on D3, the best prediction among TADPOLE partici-
pants (team IBM-OZ-Res) scored better than all benchmarks, improving over the best bench-
mark MAUC (BenchmarkMixedEffects, MAUC=0.839) by 6.6 percentage points and the
best benchmark BCA (BenchmarkLastVisit, BCA=0.771) by 5.9 percentage points. Among
participant methods, IBM-OZ-Res had the best MAUC score of 0.905, significantly bet-
ter than all entries other than GlassFrog-SM/-Average/-LCMEM-HDR, BGU-RF/-RFFIX/-
LSTM, VikingAI-Logistic, EMC-EB, Rocket and Tohka-Ciszek-RandomForestLin according to
the bootstrap hypothesis test (same methodology as in D2). This is further confirmed in Sup-
plementary Fig. 12 by the variability of ranks under boostrap samples of the dataset, as these
teams often remain at the top of the ranking. IBM-OZ-Res also had the best BCA score of 0.830
among participants. Among ensemble methods, ConsensusMean obtained the best Diagnosis
MAUC of 0.917. In contrast, the best randomised prediction (RandomisedBest) obtained an
MAUC of 0.811 and a BCA of 0.783. MAUC and BCA performance metrics had a relatively
high correlation across all submissions (r = 0.9, Supplementary Fig. 5).

For Ventricle volume prediction on D3, the best prediction (GlassFrog-LCMEM-HDR) ob-
tained substantially lower error scores than all benchmark methods, scoring 42% of the lowest
benchmark MAE (BenchmarkMixedEffects MAE=1.13) and 59% of the lowest benchmark WES
(BenchmarkLastVisit WES=0.64), and achieving error rates comparable to the best predictions
of D2. Among participant submissions, GlassFrog-LCMEM-HDR had the best MAE of 0.48,
significantly lower than all other submitted entries according to the Wilcoxon signed-rank test
– this is also confirmed in Supplementary Fig. 14 by the rank distribution under dataset boos-
traps. GlassFrog-LCMEM-HDR also had the best Ventricle WES of 0.38, while submissions by
team DIKU had the best Ventricle CPA of 0.05. Among ensemble methods, ConsensusMedian
obtained a Ventricle MAE of 0.71 (4th best) and WES of 0.65 (7th best). In contrast, the
best randomised prediction (RandomisedBest) obtained a Ventricle MAE of 0.92, WES of 0.50
and CPA of 0. As in D2, MAE and WES scores in D3 for Ventricles had very high correlation
(r = 0.99, Supplementary Fig. 5), while CPA showed weak correlation with MAE (r = 0.24,
p-value = 0.17) and WES (r = 0.37, p-value < 0.032).

For ADAS-Cog13 on D3, the predictions submitted by participants again did not perform
better than the best benchmark methods. BenchmarkMixedEffects had the best MAE of 4.23,
which was significantly lower than all entries by other challenge participants. Moreover, the
MAE of 4.23 was only marginally worse than the equivalent MAE (4.19) by the same model on
D2. BenchmarkMixedEffects also had the best ADAS-Cog13 WES of 4.23, while ATRI-Biostat-
MA had the best ADAS-Cog13 CPA of 0.04. Among participants’ submissions, CyberBrains
ranked first in ADAS-Cog13 prediction with MAE/WES scores of 4.72 (111% of the lowest
benchmark score). Among ensemble methods, ConsensusMean obtained an ADAS-Cog13 MAE
of 4.58, WES of 4.34, better than all participants’ entries. As in D2, the best randomised
predictions (RandomisedBest) obtained an ADAS-Cog13 MAE of 4.54 (2nd best) and WES of
4.50 (3rd best). As in D2, MAE and WES scores for ADAS-Cog13 had high correlation (r =
0.97, Supplementary Fig. 5), while CPA showed weak, non-significant correlation with MAE (r
= 0.34, p-value ≈ 0.052) or WES (r = 0.33, p-value ≈ 0.057).

Results on the custom prediction sets are presented in Supplementary Table 6.

3.3 Algorithm characteristics associated with increased performance

To understand what characteristics of algorithms could have yielded higher performance, we
show in Figure 1 associations from a general linear model between predictive performance
and feature selection methods, different types of features, methods for data imputation, and
methods for forecasting of target variables. For each type of feature/method and each target
variable (clinical diagnosis, ADAS-Cog13 and Ventricles), we show the distribution of estimated
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Figure 1: Associations between the prediction of clinical diagnosis, ADAS-Cog13 and Ventri-
cle volume and different strategies of (top) feature selection, (upper-middle) types of features,
(lower-middle) data imputation strategies and (bottom) prediction methods for the target vari-
ables. For each type of feature/method (rows) and each target variable (columns), we show the
distribution of estimated coefficients from a general linear model. Positive coefficients, where
distributions lie to the right of the dashed vertical line, indicate better performance than base-
line (vertical dashed line). For ADAS-Cog13 and Ventricle prediction, we flipped the sign of
the coefficients, to consistently show better performance to the right of the vertical line.

coefficients from a general linear model, derived from the approximated inverse Hessian matrix
at the maximum likelihood estimator (see section 2.4). From this analysis we removed outliers,
defined as submissions with ADAS MAE higher than 10 and Ventricle MAE higher than 1.15
(%ICV). For all plots, distributions to the right of the gray dashed vertical line denote increased
performance compared to baseline (i.e. when those characteristics are not used).

For feature selection, Figure 1 shows that methods with manual selection of features tend
to be associated with better predictive performance in ADAS-Cog13 and Ventricles. In terms
of feature types, CSF and DTI features were generally associated with an increase in predictive
performance for clinical diagnosis, while augmented features were associated with performance
improvements for ventricle prediction. In terms of data imputation methods, while some dif-
ferences can be observed, no clear conclusions can be drawn. In terms of prediction models,
the only positive association that indicates increased performance is in the neural networks for
ventricle prediction. However, given the small number of methods tested (just under 50) and
the large number of degrees of freedom (= 21), these results should be interpreted with care.
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3.4 External Validation

To verify the performance trends such as ensemble models outperforming individual entries and
benchmarks, we performed, in section D, external validation experiments on data from two
separate studies: the Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing
(AIBL) (Ellis et al. (2009)), and the DHA clinical trial (Quinn et al. (2010)).

4. Discussion

The results of the TADPOLE Challenge provide unique and important insights into how well
state-of-the-art algorithms can predict progression of AD diagnoses and markers of disease pro-
gression both from rich longitudinal data sets and, comparatively, from sparser cross-sectional
data sets typical of a clinical trial scenario. The challenge further highlights the algorithms,
features and data-handling strategies that tend to lead to improved forecasts. In the following
sections we discuss the key conclusions that we draw from our study and highlight important
limitations.

4.1 TADPOLE pushed forward the performance on AD clinical diagnosis
prediction

In comparison to previous state-of-the-art results in the literature, the best TADPOLE meth-
ods show similar or higher performance in AD diagnostic classification while also tackling a
harder problem than most previous studies of predicting future, rather than estimating current,
classification. A comparison of 15 studies presented by (Moradi et al. (2015)) reported lower
performance (maximum AUC of 0.902 vs 0.931 obtained by the best TADPOLE method) for
the simpler two-class classification problem of separating MCI-stable from MCI-converters in
ADNI. A more recent method by (Long et al. (2017)) reported a maximum AUC of 0.932 and
accuracy of 0.88 at the same MCI-stable vs -converter classification task. However, a) TAD-
POLE’s discrimination of CN-converters from CN-stable subjects is harder as disease signal
is weaker at such early stages, and b) the predictive performance drops in three-class prob-
lems like TADPOLE compared to two-class. Furthermore, the best out of 19 algorithms in the
CADDementia Challenge (Bron et al. (2015)) obtained an MAUC of 0.78.

We are unaware of previous studies forecasting future ventricle volume or ADAS-Cog13, so
TADPOLE sets a new benchmark state-of-the-art performance on these important prediction
tasks.

4.2 No one-size-fits-all prediction algorithm

The results on the longitudinal D2 prediction set suggest no clear winner on predicting all target
variables – no single method performed best on all tasks. While Frog had the best overall
submission with the lowest sum of ranks, for each performance metric individually different
winners emerge: Frog (clinical diagnosis MAUC of 0.931), ARAMIS-Pascal (clinical diagnosis
BCA of 0.850), BenchmarkMixedEffects (ADAS-Cog13 MAE and WES of 4.19), VikingAI-
Sigmoid (ADAS-Cog13 CPA of 0.02), EMC1-Std/EMC1-Custom (ventricle MAE of 0.41 and
WES or 0.29), and DIKU-ModifiedMri-Std/-Custom (ventricle CPA of 0.01). Moreover, on
the cross-sectional D3 prediction set, the methods by Glass-Frog had the best performance.
Associations of method-type with increased performance in Fig. 1 confirm no clear increase
in performance for any types of prediction methods (with the exception of neural networks for
ventricle volume prediction). This suggests performance depends more on data quality and
feature choice. Substantially larger data sets may reveal differences arising from algorithmic
choices, but the results we present here are representative of realistic clinical-trial scenarios.
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4.3 Characteristics of top-5 algorithms

The top-5 algorithms had several common characteristics. In the clinical diagnosis prediction
category (top 5: Frog, Threedays, EMC-EB, GlassFrog and Apocalypse), 4/5 used Machine
Learning methods, 4/5 used APOE status as an input feature and 4/5 predicted the clinical
diagnosis directly from the input at each future timestep, whereas 1/5 first predicted the ADAS-
Cog/Ventricle measures at each future timestep, then predicted the clinical diagnosis from the
ADAS-Cog/Ventricle measures. In the ADAS-Cog13 prediction category (top 5: Benchmark-
MixedEffects, FortuneTellerFish, Frog, Mayo-BAI-ASU and CyberBrains), we find that 4/5
used manual feature selection and 4/5 used linear regression methods. One potential reason
why linear regression models performed the best out of all models here is due to their implicit
regularization, although we note that none of them performed significantly better than random
guessing (with the exception of BenchmarkMixedEffects – see section 4.5). In the Ventricle
prediction category (top 5: EMC1, lmaUCL, BORREGOTECMTY, CN2L, SBIA), 4/5 used
APOE status as an input feature, 3/5 used an automatic feature selection mechanism (which se-
lected >250 features), 3/5 generated augmented features, and 3/5 used (parametric) regression
(while 1/5 used a neural network and 1/5 a disease progression model).

4.4 Ensemble methods perform strongly

Consistently strong results from ensemble methods (ConsensusMean/ConsensusMedian outper-
formed all others on most tasks) might suggest that the varying assumptions in different methods
cause different biases: some consistently over-estimate, some consistently under-estimate, and
thus averaging aligns more closely with the truth. This is confirmed by plots of the differ-
ence between true and estimated measures (Supplementary Figures 6–8), where most meth-
ods systematically under- or over-estimate in all subjects. The consistent over-estimation and
under-estimation of individual methods is likely due to the effect of their inductive biases on
the predictions, in the presence of domain shifts from the D1-D2 training sets to the D4 test set
(e.g. older individuals in D4 compared to D1-D3). However, even if methods were completely
unbiased, averaging over all methods could also help predictions by reducing the variance in the
estimated target variables.

4.5 Predictability of ADAS-Cog13 scores

ADAS-Cog13 scores were more difficult to forecast than clinical diagnosis or ventricle volume.
The only single method able to forecast ADAS-Cog13 better than informed random guessing
(RandomisedBest) was the BenchmarkMixedEffects, a simple mixed effects model with no co-
variates and age as a regressor. One possible explanation is the complex multi-effect relationship
between the acquired data (imaging, protein markers, etc.) and the composite cognitive test
score. However, that relationship is no less complex for clinical diagnosis where prediction
appears much more feasible. Alternatively, the difficulty may arise from variability in adminis-
tering the cognitive tests, or practice effects. Treatment trials often use a change of 4 or more in
ADAS-Cog13 as a threshold to identify responders/non-responders (Grochowalski et al. (2016)),
so error scores of 4 or less provide a sensible target performance level. With the exception of
the ensemble method, all submitted forecasts failed to produce mean error below 4, highlighting
the substantial challenge of estimating change in ADAS-Cog13 over the 1.4 year interval. The
difficulty in forecasting ADAS-Cog13 calls into question the usage of cognitive test scores in
patient selection and as primary endpoint.
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4.6 Prediction errors from limited cross-sectional dataset mimicking clinical trials
are similar to those from longitudinal dataset

For clinical diagnosis, the best performance on the limited, cross-sectional D3 prediction set
was similar to the best performance on the D2 longitudinal prediction set: 0.917 vs 0.931 for
MAUC (p-value = 0.14), representing 2 p.p. decrease for D3 compared to D2. Slightly larger
and significant differences were observed for ADAS MAE (3.75 vs 4.23, p-value < 0.01) and
Ventricle MAE (0.38 vs 0.48, p-value < 0.01). It should be noted that Ventricle predictions for
D3 were extremely difficult, given that only 25% of subjects to be forecasted had MRI data
in D3. This suggests that, for clinical diagnosis, current forecast algorithms are reasonably
robust to lack of longitudinal data and missing inputs, while for ADAS and Ventricle volume
prediction, some degree of performance is lost. Future work is also required to determine the
optimal balance of input data quality and quantity versus cost of acquisition.

4.7 DTI and CSF features appear informative for clinical diagnosis prediction,
augmented features appear informative for ventricle prediction

DTI and CSF features are most associated with increases in clinical diagnosis forecast perfor-
mance. CSF, in particular, is well established as an early marker of AD (Jack Jr et al. (2010))
and likely to help predictions for early-stage subjects, while DTI, measuring microstructure
damage, may be informative for middle-stage subjects. On the other hand, for prediction of
ventricle volume, augmented features had the highest association with increases in prediction
performance. Future work is required to confirm the added value of these features and others
in a more systematic way.

4.8 Challenge design and limitations

TADPOLE Challenge has several limitations that future editions of the challenge may consider
addressing. One limitation is the reliability of the three target variables: clinical diagnosis,
ADAS-Cog13 and Ventricle volume. First of all, clinical diagnosis has only moderate agree-
ment with gold-standard neuropathological post-mortem diagnosis. In particular, one study
(Beach et al. (2012)) has shown that a clinical diagnosis of probable AD has sensitivity between
70.9% and 87.3% and specificity between 44.3% and 70.8%. With the advent of post-mortem
confirmation in ADNI, future challenges might address this by evaluating the algorithms on
subjects with pathological confirmation. Similarly, ADAS-Cog13 is known to suffer from low
reliability across consecutive visits (Grochowalski et al. (2016)), and TADPOLE algorithms fail
to forecast it reliably. However, this might be related to the short time-window (1.4 years),
and more accurate predictions might be possible over longer time-windows, when there is more
significant cognitive decline. Ventricle volume measurements depend on MRI scanner factors
such as field strength, manufacturer and pulse sequences (Han et al. (2006)), although these
effects have been removed to some extent by ADNI through data preprocessing and protocol
harmonization. TADPOLE Challenge also assumes all subjects either remain stable or con-
vert to Alzheimer’s disease, whereas in practice some of them might develop other types of
neurodegenerative diseases.

For performance evaluation, we elected to use very simple yet reliable metrics as the primary
performance scores: the multiclass area under the curve (mAUC) for the clinical categorical
variable and the mean absolute error (MAE) for the two numerical variables. While the mAUC
accounts for decision confidence, the MAE does not, which means that the confidence intervals
submitted by participants do not contribute to the rankings computed in Tables 4 and 5. While
the weighted error score (WES) takes confidence intervals into account, we consider it susceptible
to “hacking”, e.g. participants might assign high confidence to only one or two data points and
thereby skew the score to ignore most of the predictions – in practice, we did not observe this
behaviour in any submission. For clinical relevance, we believe that confidence intervals are an
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extremely important part of such predictions and urge future studies to consider performance
metrics that require and take account of participant-calculated confidence measures.

TADPOLE has some limitations related to the algorithms’ comparability and generalisabil-
ity. We could only compare full methods submissions and not different types of features, and
strategies for data imputation and prediction used within the full method. While we tried to
evaluate the effect of these characteristics in Figure 1, in practice the numbers were small and
hence most effects did not reach statistical significance. The analysis in Figure 1 also assumes a
linear correspondence between method characteristics and performance, which was necessitated
due to the small number of methods tested (just under 50) and the large number of degrees of
freedom (= 21). Moreover, the challenge format does not provide an exhaustive comparison of
all combinations of data processing, predictive model, features, etc., so does not lead to firm
conclusions on the best combinations but rather provides hypotheses for future testing. In fu-
ture work, we plan to test inclusion of features and strategies for data imputation and prediction
independently, by changing one such characteristic at a time. Future challenges might also con-
sider how to provide stronger external validation of findings, e.g. by evaluating all submissions
directly on prescribed independent data sets. However, this presents substantial difficulties, as
comprehensive external data consistent with the internal, especially for which follow-up occurs
on the same timescale, is difficult to find, and extra demands on participants present barriers
to entry so the trade-off with engagement must be considered carefully.

Another limitation is that the number of controls and MCI converters in the D4 test set is
low (9 MCI converters and 9 control converters). However, these numbers will increase over
time as ADNI acquires more data, and we plan to re-run the evaluation at a later stage with
the additional data acquired after April 2019. A subsequent evaluation will also enable us to
evaluate the TADPOLE methods on longer time-horizons, over which the effects of putative
drugs would be higher.

5. Conclusion

In this work we presented the results of the TADPOLE Challenge. The results of the challenge
provide important insights into the current state of the art in AD forecasting, such as perfor-
mance levels achievable with current data and technology as well as specific algorithms, features
and data-handling strategies that support the best forecasts. The developments and outcomes
of TADPOLE Challenge can aid refinement of cohorts and endpoint assessment for clinical tri-
als, and can support accurate prognostic information in clinical settings. The challenge website
(https://tadpole.grand-challenge.org) will stay open for submissions, which can be added
to our current ranking. The open test set remains available on the ADNI LONI website and
also allows individual participants to evaluate future submissions. Through TADPOLE-SHARE
https://tadpole-share.github.io/, we further plan to implement many TADPOLE meth-
ods in a common framework, to be made publicly available. TADPOLE provides a standard
benchmark for evaluation of future AD prediction algorithms.

6. Prediction Algorithms

Team: AlgosForGood (Members: Tina Toni, Marcin Salaterski, Veronika Lunina, Institu-
tion: N/A)
Overall Ranking: 24
Feature selection: Manual + Automatic: Manual selection of uncorrelated variables from
correlation matrix and automatic selection of variables that have highest cumulative hazard
rates in survival regression from MCI to AD.
Selected features: Demographics (age, education, gender, race, marital status), cognitive
tests (ADAS-Cog13, RAVLT immediate, RAVLT forgetting, CDRSOB, ADAS11, FDG), Ven-
tricles, AV45, ICV, APOE4.
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Missing data: Fill-in using last available value from corresponding patient
Confounder correction: none
Method category: Statistical Regression / Proportional hazards model
Prediction method:

• Diagnosis: Aalen additive regression constructing a cumulative hazard rate for progressing
to AD.

• ADAS-Cog13: regression using change in ventricles/ICV as predictive variable, stratified
by last known diagnosis.

• Ventricles: regression over month, with several pre-processing steps: 1. Enforced
monotonicity by accumulating maximum value, 2. For APOE positive patients used only
last three visits due to non-linearity 3. Stratified by diagnosis

Team: Apocalypse (Members: Manon Ansart, Stanley Durrleman, Institution: Institut
du Cerveau et de la Moelle épinière, ICM, Paris, France)
Overall Ranking: 6
Feature selection: Manual – important features were identified by looking at the correlations
with the diagnosis. Personal knowledge of the disease was also used to complement those
results and select relevant features. Different feature sets were compared using cross-validation.
Selected features: Cognitive features (ADAS-Cog13, MMSE, RAVLT immediate, FAQ,
CDRSOB), MRI features (WholeBrain, Entorhinal, Fusiform, MidTemp, Ventricles, Entorhi-
nal, Hippocampus), APOE4, education, age, clinical diagnosis
Missing data: Filled in using the mean feature value
Confounder correction: none
Method category: Machine learning / Regression
Prediction method: Linear regression is used to first predict the future of a set of features
(MMSE, ADAS-Cog13, CDRSOB, RAVLT, Ventricles) at the prediction dates. Afterwards, an
SVM is used to predict the current diagnosis for each prediction date, based on the forecasted
features as well as other features which are constant for the subject (APOE4, education, age
at last known visit).

Team: ARAMIS-Pascal (Members: Pascal Lu, Institution: Institut du Cerveau et
de la Moelle épinière, ICM, Paris, France)
Clinical Diagnosis Ranking: 15
Feature selection: Manual, based on known biomarkers from the literature.
Selected features: APOE4, cognitive tests (CDRSB, ADAS11, ADAS-Cog13, MMSE,
RAVLT immediate, FAQ), volumetric MRI (hippocampus, ventricles, whole brain, entorhinal,
fusiform, middle temporal, ICV), whole brain FDG, CSF biomarkers (amyloid-beta, tau,
phosphorylated tau), education and age.
Missing data: Imputed using the average biomarker values across the population.
Confounder correction: none
Method category: Statistical Regression / Proportional hazards model
Prediction method: For diagnosis prediction, the Aalen model for survival analysis was used
to predict the conversion from MCI to AD, which returns the probability of a subject remaining
MCI as a function of time. The method assumes cognitively normal and dementia subjects
will not convert and thus will remain constant. The method did not predict ADAS-Cog13 or
Ventricles.
Publication link: https://hal.inria.fr/tel-02433613/document
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Team: ATRI Biostat (Members: Samuel Iddi1,2, Dan Li1, Wesley K. Thompson3 and
Michael C. Donohue1. Institutions: 1Alzheimer’s Therapeutic Research Institute, USC, USA;
2Department of Statistics and Actuarial Science, University of Ghana, Ghana; 3Department of
Family Medicine and Public Health, University of California, USA)
Overall Ranking: 48-53
Feature selection: Automatic - features were ranked by their importance in classifying
diagnostic status using a random forest algorithm. All cognitive tests, imaging biomarkers,
demographic information and APOE status were considered as potential features
Selected features: ADAS-Cog13, EcogTotal, CDRSOB, FAQ, MOCA, MMSE, RAVLT
immediate, Ventricles/ICV, Entorhinal, Hippocampus/ICV and FDG Pet. Age, gender and
APOE status were included as covariates. The interaction between diagnosis at first available
visit and years since first visit was also considered.
Missing data: Imputed using the MissForest Algorithm, based on a non-parametric random
forest methodology (Stekhoven and Bühlmann (2011)). The algorithm was chosen based on
its ability to handle mixed-type outcomes, complex interactions and non-linear relationships
between variables.
Confounder correction: APOE status, last known clinical status, age and gender.
Method category: Machine learning and data-driven disease progression models
Prediction method: The method applied different types of mixed-effects models to forecast
ADAS-Cog13 and Ventricles, and then used a Random Forest classifier to predict the clinical
diagnosis from the forecasted continuous scores.

• JMM – Joint Mixed-effect Modelling with subject-specific intercept and slope.
• LTJMM – Latent Time Joint Mixed-effect Modelling with subject-specific intercept,

slope and time-shift
• MA – Model average of the two models above, as well as a third model where random

intercepts are shared across outcomes.

Confidence Intervals: The 50% prediction intervals for ADAS-Cog13 and Ventricles were
obtained by taking the 25th and 75th percentile of the posterior predicted samples.
Publication link: https://braininformatics.springeropen.com/articles/10.1186/

s40708-019-0099-0

Team: BGU (Members: Aviv Nahon, Yarden Levy, Dan Halbersberg, Mariya Cohen,
Institution: Ben Gurion University of the Negev, Beersheba, Israel)
Overall Ranking: 20-28
Feature selection: Automatic – used the following algorithm: 1. Find the two variables with
highest correlation (Spearman for continuous variables and Mutual information for discrete
variables). 2. Compute the correlation of each variable with the target variables separately
and remove the variable with the lower correlation. 3. If there are still pairs of variables with
a correlation of more than 80%, repeat from step 1.
Selected features: Cognitive tests (CDRSOB, MMSE, RAVLT, MOCA, all Ecog), MRI
biomarkers (Freesurfer cross-sectional and longitudinal), FDG- PET (hypometabolic con-
vergence index), AV45 PET (Ventricles, Corpus Callosum, Hippocampus), White-matter
hypointensities’ volume, CSF biomarkers (amyloid-beta, tau, phosphorylated tau). For each
continuous variable, an additional set of 20 augmented features was used, representing changes
and trends in variables (e.g. mean, standard deviation, trend mean, trend standard deviation,
minimum, mean minus global mean, baseline value, last observed value). This resulted in 233
features, which were used for prediction.
Missing data: Random forest can deal automatically with missing data. LSTM network used
indicator that was set to zero for missing data.
Confounder correction: None
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Method category: Machine learning
Prediction method:

• BGU-LSTM : This model consisted of two integrated neural networks: an LSTM
network for modelling continuous variables and a feed-forward neural network for the
static variables.

• BGU-RF : A semi-temporal Random Forest was used which contained the augmented
features.

• BGU-RFFIX : Same as BGU-RF, but with small correction for the prediction of
diagnosis: whenever the model predicted AD with probability higher than 80%, the
probability of CN was changed to zero and vice versa.

Team: BIGS2 (Members: Huiling Liao, Tengfei Li, Kaixian Yu, Hongtu Zhu, Yue Wang,
Binxin Zhao, Institution: University of Texas, Houston, USA)
Overall Ranking: 51
Feature selection: Automatic – used auto-encoder to extract aggregated features.
Selected features: All continuous features in D1/D2, which represented the input for the
autoencoder. Apart from the autoencoder-extracted features, other features used for the
classifier were demographic information, APOE status, whole brain biomarkers from MRI
(volume) and PET (FDG, PIB and AV45), and MMSE.
Missing data: SoftImpute method (Mazumder et al. (2010)) was used for imputing missing
data. The complete dataset was then used as input to the autoencoder.
Confounder correction: none
Method category: Regression and Machine Learning
Prediction method: Linear models were used to predict ADAS-Cog13 and Ventricle scores
independently. For prediction of clinical diagnosis, a random forest was used based on the
autoencoder-extracted features and the other selected features.

Team: Billabong (Members: Neil Oxtoby, Institution: University College London,
UK)
Overall Ranking: 46-52
Feature selection: Manual, using knowledge from literature
Selected features: MRI biomarkers normalised by ICV (ventricles, hippocampus, whole
brain, entorhinal, fusiform, middle temporal), FDG, AV45, CSF biomarkers (amyloid beta, tau,
phosphorylated tau) and cognitive tests (ADAS-Cog13, MMSE, MOCA, RAVLT immediate).
Separate submissions (Billabong-UniAV45, Billabong-MultiAV45) were made which also
included AV45, that was initially excluded due to noise.
Missing data: Only imputed during staging via linear regression against age. The method
can deal with missing data during training.
Confounder correction: None
Method category: Data-driven disease progression model
Prediction method: For each selected feature independently, a data-driven longitudinal
trajectory was estimated using a differential equation model based on Gaussian Process Re-
gression (Oxtoby et al. (2018)). Subjects were staged using either a multivariate or univariate
approach:

• Billabong-Uni: Univariate staging which estimates disease stage for each target variable
independently.

• Billabong-Multi: Multivariate staging that combines all selected features, producing an
average disease stage.
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For the prediction of clinical diagnosis, the historical ADNI diagnoses were mapped to a linear
scale using partially-overlapping squared-exponential distribution functions. The linear scale
and the three distributions were used to forecast the future diagnoses.
Custom prediction set: Predictions were made also for a custom dataset, which was similar to
D3 but missing data was filled in using the last available biomarker data.
Confidence Intervals: The 25th and 75th percentiles of the GPR posterior were each
integrated into a trajectory to obtain 50% confidence (credible) intervals for the forecasts of
ADAS-Cog13 and Ventricles/ICV.
Publication link: https://doi.org/10.1093/brain/awy050

Team: BORREGOSTECMTY (Members: José Gerardo Tamez-Peña, Institution:
Tecnologico de Monterrey, Monterrey, Mexico)
Overall Ranking: 9
Feature selection: Automatic, using bootstrapped stage-wise selection.
Selected features: Main cognitive tests (excluding subtypes), MRI biomarkers, APOE
status, demographic information (age, gender, education) and diagnosis status. Augmented
features were further constructed from the MRI set: the cubic root of all volumes, the square
root of all surface areas, the compactness, the coefficient of variation, as well as the mean value
and absolute difference between the left and right measurements.
Missing data: Imputed using nearest-neighbourhood strategy based on L1 norm.
Confounder correction: Gender and intracranial volume (ICV) adjustments relative to
controls.
Method category: Regression (ensemble of statistical models)
Prediction method: ADAS-Cog13 and Ventricles were predicted using an ensemble of 50
linear regression models, one set for each diagnostic category. The best models were selected
using Bootstrap Stage-Wise Model Selection, using statistical fitness (Pencina et al. (2008))
tests to evaluate models and features to use within the models. All selected models were then
averaged in a final prediction using bagging. For prediction, the last known diagnosis of the
subject was used to select the category of models for forecasting.
For the prediction of clinical diagnosis, a two-stage approach was used based on prognosis and
time-to-event estimation. The prognosis approach used an ensemble of 50 regression models
to estimate the future diagnosis, while the time-to-event method used an ensemble of 25
models to estimate the square root of the time it took for a subject to convert to MCI or AD.
These approaches were performed independently for CN-to-MCI, MCI-to-AD and CN-to-AD
conversion.
Confidence Intervals: The 50% confidence intervals for ADAS-Cog13 and Ventricle volume
were estimated by extracting the interquartile range of the 50 regression estimates.
Repository link: https://github.com/joseTamezPena/TADPOLE

Team: BravoLab (Members: Aya Ismail, Timothy Wood, Hector Corrada Bravo,
Institution: University of Maryland, USA)
Overall Ranking: 42
Feature selection: Automatic, using a random forest to select features with highest cross-
entropy or GINI impurity reduction.
Selected features:

• Ventricle prediction: MRI volumes of ventricular sub-regions (Freesurfer cross-sectional
and longitudinal)

• ADAS-Cog13 prediction: RAVLT, Diagnosis, MMSE, CDRSOB
• Diagnosis prediction: ADAS-Cog13, ADAS11, MMSE, CSRSOB
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Missing data: Imputation using Hot Deck (Andridge and Little (2010)) was done only for
data missing at random.
Confounder correction: None
Method category: Machine learning
Prediction method: A long-short term memory network (LSTM) with target replication
was trained independently for each category: Diagnosis, ADA13 and Ventricles. All existing
data was used for the first forecast, after which the output of the last prediction was used
as input for the next prediction, along with other features that remain constant over time.
Since subjects had a different number of visits and available biomarker data, the network was
adapted to accept inputs of variable length. For predictions, the network used a weighted
mean absolute error as a loss function. In addition, for the prediction of the clinical diagnosis,
a soft-max function was used to get the final prediction.

Team: CBIL (Members: Minh Nguyen, Nanbo Sun, Jiashi Feng, Thomas Yeo, In-
stitution: National University of Singapore, Singapore)
Overall Ranking: 5
Feature selection: Manual, based on model performance on D1 subset.
Selected features: Cognitive tests (CDRSOB, ADAS11, ADAS-Cog13, MMSE, RAVLT
immediate, learning, forgetting and percent forgetting, MOCA, FAQ), MRI biomarkers
(entorhinal, fusiform, hippocampus, ICV, middle temporal, ventricles, whole brain), whole
brain AV45 and FDG, CSF biomarkers (amyloid-beta, tau, phosphorylated tau).
Missing data: Imputation using interpolation.
Confounder correction: None
Method category: Machine learning and data-driven disease progression model
Prediction method: Recurrent neural network adapted for variable duration between
time-points. A special loss function was designed, which ensured forecasts at timepoints close
together are more correlated than those at timepoints further apart.
Confidence Intervals: hardcoded values
Publication link: https://www.biorxiv.org/content/10.1101/755058v1

Repository link: https://github.com/ThomasYeoLab/CBIG/tree/master/stable_

projects/predict_phenotypes/Nguyen2020_RNNAD

Team: Chen-MCW (Members: Gang Chen, Institution: Medical College of Wis-
consin, Milwaukee, USA)
Overall Ranking: 32-35
Feature selection: Manual
Selected features: ADAS-Cog13, MMSE, MRI volumes (hippocampus, whole brain, entorhi-
nal, fusiform and middle temporal), APOE status, gender and education.
Missing data: No imputation performed.
Confounder correction: None
Method category: Regression and data-driven disease progression model
Prediction method: Prediction of ADAS-Cog13 and Ventricles was made using linear
regression using age, APOE status, gender and education as covariates. Different models were
estimated for CN, MCI and AD subjects. For diagnosis prediction, an AD risk stage was
calculated based on the Event-based probability (EBP) model (Chen et al. (2016)). Prediction
of clinical diagnosis was then made based on two approaches:

• Chen-MCW-Std: Predict diagnosis based on AD stage as well as APOE4, gender and
education using a Cox proportional hazards model.
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• Chen-MCW-Stratify: As above, but the model was further stratified based on AD risk
stages, into low risk and high-risk.

Team: CN2L (Members: Ke Qi1, Shiyang Chen1,2, Deqiang Qiu1,2, Institutions: 1Emory
University, 2Georgia Institute of Technology)
Overall Ranking: 11-17
Feature selection: Automatic
Selected features: For the neural network, all features in D1/D2 are used; For the random
forest, the main cognitive tests, MRI biomarkers (cross-sectional only), FDG, AV45, AV1451,
DTI, CSF, APOE, demographics and clinical diagnosis are used.
Missing data: Imputation in a forward filled manner (i.e. using last available value).
Confounder correction: None
Method category: Machine learning
Prediction method:

• CN2L-NeuralNetwork : 3-layer recurrent neural network, 1024 units/layer. Dropout
layers (dropout rate:0.1) were added to output and state connections to prevent overfitting.
Adam method was used for training. Validation was performed using a leave-last-time-
point-out approach.

• CN2L-RandomForest : Random forest method was used, where features of small im-
portance for diagnosis prediction were filtered out. For the prediction of clinical diagnosis,
an ensemble of 200 trees was trained on a class-balanced bootstrap sample of the train-
ing set. For the prediction of ADAS-Cog13 and Ventricles, an ensemble of 100 trees was
used. Different predictions are made for different previous visits of a patient, and the final
prediction is taken as the average of all predictions.

• CN2L-Average : The average of the above two methods.

Confidence Intervals: Confidence intervals are estimated based on probabilities output of
the model.
Publication link: https://cds.ismrm.org/protected/18MPresentations/abstracts/

3668.html Chen et al., ISMRM, 2018 (S et al. (2018))

Team: CyberBrains (Members: Ionut Buciuman, Alex Kelner, Raluca Pop, Denisa
Rimocea, Kruk Zsolt, Institution: Vasile Lucaciu College, Baia Mare, Romania)
Overall Ranking: 23
Feature selection: Manual
Selected features: MRI volumes (Ventricles, middle temporal), ADAS-Cog13, APOE status
Missing data: For subjects with no ventricle measurements, authors computed an average
value based on ADAS-Cog13 tests. This was used especially for D3 predictions.
Confounder correction: None
Method category: Regression
Prediction method: Fit a linear model of monthly difference in ventricle volume, as a
function of ventricle volume, stratified by clinical diagnosis and ventricle volumes smaller and
larger than 140,000 mm3. A similar model is applied for ADAS-Cog13 prediction, but stratified
by APOE status and middle temporal volume smaller or greater than 16,000 mm3. Prediction
of clinical diagnosis also used a linear model that was stratified based on the ADAS-Cog13, for
ADAS-Cog13 ranges between 10 and 45. For ADAS-Cog13 greater than 45 and smaller than
10, pre-defined values were used for the probabilities of each diagnosis.

Team: DIKU (Members: Mostafa Mehdipour Ghazi1,2,3,5, Mads Nielsen1,2,3, Ak-
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shay Pai1,2,3, Marc Modat4,5, M. Jorge Cardoso4,5, Sebastien Ourselin4,5, Lauge Sørensen1,2,3;
Institutions: 1Biomediq A/S, 2Cerebriu A/S, 3University of Copenhagen, Denmark, 4King’s
College London, UK, 5University College London, UK)
Overall Ranking: 21-44
Feature selection: Semi-automatic; linear discriminant analysis (LDA) was applied to select
the top most-informative biomarkers, and ventricular volume and a few other MRI measures
were subsequently manually added.
Selected features: Cognitive tests (CDR-SB, ADAS-11, ADAS-13, MMSE, FAQ, MOCA,
RAVLT-Immediate, RAVLT-Learning, RAVLT-Percent-Forgetting), CSF measures (amyloid-
beta, phosphorylated tau), MRI volumetric measures divided by ICV (ventricles, hippocampus,
whole brain, entorhinal, fusiform, middle temporal).
Missing data: Method automatically deals with missing data.
Confounder correction: Linear transformation of age as part of the algorithm.
Method category: Data-driven disease progression model.
Prediction method: For predicting ADAS-13 and Ventricles, a data-driven disease progres-
sion model was used, which estimated a parametric trajectory for each selected feature over
a common disease progression axis reflecting an estimated latent disease progression score
(DPS). The chosen parametric function was generalised logistic function (Richard’s curve), and
the DPS was a linear transformation of the age of subjects representing the subject-specific
time shift and progression speed. The constrained fitting was performed alternating between
estimation of subject-specific DPS transformations and global biomarker trajectories using
L2-norm loss functions. The authors made three submissions:

• DIKU-GeneralisedLog-Std: constrained, generalised logistic function for the trajectory
model;

• DIKU-ModifiedLog-Std: constrained sigmoid function for the trajectory model;
• DIKU-ModifiedMri-Std: as above, but separately fitting MRI biomarkers for Ventricles

prediction.

The above models were trained on D1 data only. Authors also made predictions from a custom
training set (D1+D2 together), named DIKU-***-Custom. Clinical diagnosis was predicted
based on the DPS scores using both a Bayesian classifier with likelihoods modeling using
Gaussian mixture models, as well as an ensemble of LDAs. The final prediction was obtained
through bagging of the two classifiers’ predictions. The whole method and a robust extension
developed post-TADPOLE is described in (Ghazi et al. (2019)).
Confidence Intervals: They were obtained by using bootstrapping via Monte Carlo resam-
pling and evaluating the model performance assuming a Gaussian distribution.
Publication link: https://arxiv.org/abs/1908.05338

Team: DIVE (Members: Razvan Marinescu, Institution: University College Lon-
don, UK, Massachusetts Institute of Technology, USA)
Overall Ranking: 38
Feature selection: Manual
Selected features: FDG, AV45, CDRSOB, ADAS-Cog13, MRI volumes (ventricles, hip-
pocampus, whole brain, entorhinal, middle temporal), CSF (amyloid-beta, tau, phosphorylated
tau)
Missing data: Method automatically deals with missing data
Confounder correction: None
Method category: Data-driven disease progression model
Prediction method:
For predicting the ADAS-Cog13 and Ventricle volume, the “Data-Driven Inference of Ver-
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texwise Evolution” (DIVE) algorithm was used (Marinescu et al. (2019)), which clusters the
input biomarkers based on how similar their progression is over the disease time-course. While
the original DIVE method was a spatio-temporal model, for TADPOLE it was applied on
extracted features directly. The model estimates a parametric, sigmoidal trajectory of the
biomarkers, which are a function of subjects’ disease progression scores (DPS), representing a
linear transformation of their age. Subject-specific parameters included the latent time-shift
and progression speed, as well as an intercept. For the prediction of clinical diagnosis,
the posterior probability of each class was computed given the future DPS scores using
non-parametric Kernel Density Estimators (KDE), fitted on the DPS scores for each diagnostic
class independently. Code for the model is available online:
Confidence Intervals: The model estimates a variance parameter under a gaussian noise
model, which was scaled accordingly to obtain the 50% confidence intervals for ADAS-Cog13
and Ventricle volume.
Publication link: https://www.sciencedirect.com/science/article/pii/

S1053811919301491

Repository link: https://github.com/mrazvan22/dive

Team: EMC1 (Members: Vikram Venkatraghavan, Esther Bron, Stefan Klein, In-
stitution: Erasmus MC, The Netherlands)
Overall Ranking: 2-4
Feature selection: Automatic – Only the subjects who had converted to AD were used for
feature selection. Features with the largest changes over time after correcting for age, gender,
education and ICV were selected
Selected features: 250 features from the set of FDG, AV45, DTI, MRI (cross-sectional
Freesurfer volumes), Arterial Spin Labelling (ASL) MRI, CSF and cognitive tests.
Missing data: Imputed using nearest-neighbour interpolation. For D2, visits with missing
diagnosis were excluded. For the D3 subjects with no known diagnosis, this was estimated
using a nearest-neighbour search based on disease severity
Confounder correction: Corrected for age, gender, education and ICV using linear regression
based on data from controls.
Method category: Data-driven disease progression model and machine learning
Prediction method: Authors hypothesize that aging and progression of AD are the primary
causes for the change in biomarker values with time and that these changes eventually lead
to a change in clinical status. To predict biomarker values at future timepoints, the rate of
AD progression is estimated in each subject. This is followed by estimating the interactions of
aging and AD progression in the progression of different biomarkers. Lastly, authors use the
biomarkers estimated at the future timepoint to predict the change in clinical status. These
steps are elaborated below:
Rate of Progression of AD: To assess the severity of AD, we estimated the sequence in which
the selected features became abnormal in AD using a Discriminative Event-Based Model
(Venkatraghavan et al. (2019)) and used it to estimate the disease severity at all the timepoints
for each subject. A linear mixed effect model was fit to estimate the rate of change of disease
severity for different subjects. This model was used for predicting the disease severity at all
the future timepoints.
Interactions of aging and AD progression: For predicting the biomarker values at the future
timepoint, we fit linear mixed effect models for each biomarker considering interactions between
the estimated disease severity and age, with gender and ICV as additional covariates. This
model was used to forecast the future values of all 250 selected features, including ADAS-Cog13
scores and Ventricle volumes.
Predicting the change in clinical status: For the diagnosis prediction, the forecasted values of
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the biomarkers and the last known clinical diagnosis of the subject were used as inputs for a
soft-margin SVM classifier with a radial basis function kernel. Two separate submissions were
made:

• EMC1-Std (ID 1): ASL based features were excluded in this model
• EMC1-Custom (ID 2): ASL based features were included in this model

Confidence Intervals: Standard errors of the predicted values of Ventricles and ADAS-Cog-
13 were estimated by repeating the prediction procedure, including the estimation of disease
severity, for 10 repetitions of bootstrap sampling. These standard errors were used to define
the confidence intervals.
Publication link: https://doi.org/10.1016/j.neuroimage.2018.11.024

Repository link: https://github.com/88vikram/TADPOLE_submission_with_debm

Team: EMC-EB (Members: Esther E. Bron, Vikram Venkatraghavan, Stefan Klein,
Institution: Erasmus MC, The Netherlands)
Overall Ranking: 10
Feature selection: Automatic – For the D2 prediction, features were selected that had the
largest change over time in subjects who converted to AD using corrections for age, gender,
education and ICV, i.e. the same approach as EMC1. For the D3 prediction, features with less
than 50% missing data were selected.
Selected features: 200 (D2 prediction) and 338 (D3 prediction) from the set of clinical
diagnosis, cognitive tests, MRI volumes (Freesurfer cross-sectional), FDG PET, DTI measures
(FA, MD, RD, AD) and CSF features.
Missing data: Imputation using nearest-neighbour interpolation based on the subject’s earlier
timepoints. If not possible, imputation by the mean of training set was used. Visits with no
clinical diagnosis were excluded for classifier training.
Confounder correction: None
Method category: Machine learning
Prediction method: All predictions were based on SVMs. For diagnosis and ADAS-Cog13
prediction, respectively a classifier with balanced class weights and a regressor were trained
to predict the target measures at the next visit. These predictions do not explicitly take
account of time, but assume that the times between two visits are roughly equal. For Ventricle
prediction, a regressor was trained to predict the change of ventricle volume per year. Ventricle
volumes were normalized using ICV at baseline (ICV at current time point for D3). Using the
predicted change, the normalized ventricle volume at each future visit was computed. For all
predictions, authors used a radial basis function (RBF) kernel SVM, of which the C-parameter
was set to C = 0.5 and gamma to the reciprocal of the number of features. All features were
normalized to zero mean and unit standard deviation.
Confidence Intervals: Bootstrap resampling (n = 100) of the training set.
Repository link: https://github.com/tadpole-share/tadpole-algorithms/tree/

master/tadpole_algorithms/models/ecmeb

Team: FortuneTellerFish (Members: Alexandra Young, Institutions: University College
London, UK, King’s College London, UK)
Overall Ranking: 15-29
Feature selection: Manual
Selected features: Age at assessment, age at scan, APOE4 status, education, gender, MRI
volumes (ventricles, hippocampus, whole brain, entorhinal, fusiform, middle temporal, all
major lobes, insula, and basal ganglia). The probability of being amyloid positive, obtained
from joint mixture modelling of CSF amyloid-beta and global AV45, was also included as a

27

https://doi.org/10.1016/j.neuroimage.2018.11.024
https://github.com/88vikram/TADPOLE_submission_with_debm
https://github.com/tadpole-share/tadpole-algorithms/tree/master/tadpole_algorithms/models/ecmeb
https://github.com/tadpole-share/tadpole-algorithms/tree/master/tadpole_algorithms/models/ecmeb


Marinescu et al.

feature. Two key features, disease subtype and stage, were derived from the Subtype and Stage
Inference (SuStaIn) model based on the MRI features (Young et al. (2018).
Missing data: Imputed by averaging over the k-nearest neighbours with k = 5
Confounder correction: Brain volumes were corrected for age, intracranial volume and field
strength using linear regression. Parameters for the linear regression were estimated based on
amyloid-negative controls.
Method category: Data-driven disease progression models + statistical regression
Prediction method: For ADAS-Cog13 and Ventricle prediction, a linear mixed effects model
was used which used a different set of fixed/random effects, depending on the submission:

• FortuneTellerFish-Control : For Ventricles, fixed effects were age at scan and gender.
For ADAS-Cog13 and MMSE the fixed effects were age at scan, education, APOE status
and amyloid positivity. For all target measures, there was one random effect per subject.

• FortuneTellerFish-SuStaIn : two additional fixed effects from the SuStaIn model: sub-
type and stage.

For the prediction of clinical diagnosis, a multiclass error-correcting output codes (ECOC)
classifier based on SVMs was trained with the following inputs: age at assessment, age at scan,
APOE status, amyloid positivity, gender, education, SuStaIn subtype and stage, ADAS-Cog13,
MMSE and ventricle volume. For diagnosis prediction at future timepoints, the forecasted
values for ADAS-Cog13, MMSE and Ventricle volume were used as input to the classifier.

Team: Frog (Members: Keli Liu, Christina Rabe, Paul Manser Institution: Genen-
tech, USA)
Overall Ranking: 1
Feature selection: Automatic using the Xgboost package (Chen and Guestrin (2016))
Selected features: Cognitive tests (ADAS-Cog13, CDRSB, MMSE, RAVLT), clinical diag-
nosis, MRI measurements, FDG PET measurements, APOE status and CSF measurements.
For each longitudinal measurement (e.g. test scores and MRI), the following transformations
were computed and used to augment the original feature set: most recent measurement, time
since most recent measurement, the historical highest (lowest) measurement, time since the
historical highest and lowest measurement, and the most recent change in measurement.
Missing data: Xgboost package automatically deals with missing data through inference
based on reduction of training loss.
Confounder correction: None
Method category: Statistical prediction using regression
Prediction method: Flexible models and features were chosen automatically using gradient
boosting (Xgboost package). Different models were trained for the following forecast windows:
0-8 months, 9-15, 16-27, 28-39, 40-60, >60 (given windows are for clinical status prediction,
slightly different windows used for ADAS-Cog13 and ventricular volume prediction) . Variable
importance scores from Xgboost suggest that MRI features play a bigger role in models trained
for longer forecast windows.
Confidence Intervals: Standard deviation for prediction error was estimated based on cross
validation (on training set). Normality of prediction errors was then assumed to construct
prediction intervals based on estimated standard deviation.

Team: GlassFrog-LCMEM-HDR (Members: Steven Hill1, James Howlett1, Robin
Huang1, Steven Kiddle1, Sach Mukherjee2, Anäıs Rouanet1, Bernd Taschler2, Brian Tom1,
Simon White1, Institutions: 1MRC Biostatistics Unit, University of Cambridge, UK; 2German
Center for Neurodegenerative Diseases (DZNE), Bonn, Germany)
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Overall Ranking: 30
Feature selection:

• MSM: Automatic, by selecting features which passed a likelihood ratio test when compared
against a model with no covariates.

• LCMEM: Manual
• HDR: Automatic, selected via sparse Lasso regression.

Selected features:

• MSM: D2 - gender, age, education, ADAS-Cog13, diagnosis, MMSE, CDRSOB, APOE
status, first 5 principal components from imaging, amyloid positivity, tau level. D3 -
gender, age, education, ADAS-Cog13, diagnosis, MMSE, Ventricles/ICV

• LCMEM: ADAS-Cog13, gender, education, age at baseline
• HDR: all features were provided to the method, excluding some features with many missing

values

Missing data:

• MSM: Filling with last known value, or nearest neighbour if feature was never observed.
• LCMEM: Complete case analysis (assumption that missing data are missing at random)
• HDR: Imputation using within-subject interpolation and nearest neighbour matching

Confounder correction: None
Method category: Combination of statistical regression and data-driven disease progression
models
Prediction method: The prediction of clinical diagnosis was done using a Multi-State Model
(MSM). Multi-state models (MSMs) (Kalbfleisch and Lawless (1985)) are continuous-time
Markov chain models, here with states corresponding to CN, MCI, AD, and transition rates
estimated from the data using covariates selected as described above. The model accounts for
noise in the historical diagnostic labels. Predictions for a given forecast month were made using
the last observed disease state and associated covariates.

Prediction of ADAS-Cog13 was done using a Latent class mixed effects model (LCMEM).
The model used four latent classes, where class membership probability was modelled via a
multinomial logistic. For each latent class a specific linear mixed effects model defined a Gaus-
sian latent process, with class-specific fixed effects, random effects for intercept, slope and
square slope, and Gaussian noise. Age at baseline, gender and education were also included
as covariates. Finally, a Beta cumulative distribution link function was used (and estimated
simultaneously) between ADAS-Cog 13 and the latent process, to account for the departure
from the Gaussian assumption on the outcome. The number of latent classes was optimised
with the Bayesian Information Criterion (BIC).

Prediction of Ventricle volume was done using high-dimensional regression (HDR) and
disease state-specific slope models: Subject-specific slopes were obtained by a combination of
Lasso regression and shrinkage towards disease-state-specific shrinkage targets. Conversion
times, from one disease state to another, were forecasted using the MSM model.
Confidence Intervals: LCMEM: the 50% confidence intervals for ADAS-Cog13 were obtained
using a bootstrap approach. HDR: Confidence intervals were set as percentages of the predicted
values.

Team: GlassFrog-SM (members and affiliations as above)
Overall Ranking: 8
Feature selection: Manual
Selected features: ADAS-Cog13, Ventricles/ICV, age at visit, APOE status, education,
diagnosis
Missing data: For training, complete case analysis was performed. For prediction, imputation
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was performed for missing outcomes using a linear model with age, education, diagnosis and
APOE status as covariates.
Confounder correction: None
Method category: Combination of statistical regression and data-driven disease progression
models
Prediction method: The prediction of clinical diagnosis was using MSM models as in
GlassFrog-LCMEM-HDR. The prediction for ADAS-Cog13 and Ventricles used a Slope Model
(SM), which used a quadratic function to model the slope of the outcome variable as a function
of the current outcome value and covariates. Covariates used were age at visit, education and
APOE status.
Confidence Intervals: SM: Confidence intervals were set as percentages of the predicted
values. The percentages used were manually selected and depended on the missingness of
covariates for each individual.

Team: GlassFrog-Average (members and affiliations as above)
Overall Ranking: 7
Prediction method: The prediction of clinical diagnosis was using MSM models as in
GlassFrog-LCMEM-HDR. For ADAS-Cog13 and Ventricles an ensemble approach was used
that averaged the predictions from three methods: LCMEM, HDR and SM, as described above.
Confidence interval bounds were also averaged.

Team: IBM-OZ-Res (Members: Noel Faux, Suman Sedai, Institution: IBM Research
Australia, Melbourne, Australia)
Clinical Diagnosis Ranking: 18
Feature selection: using boosting regression
Selected features: Ventricle volume, AV45, FDG PET, cognitive tests, clinical diagnosis, age
Missing data: Imputed with zero; observations with missing ventricle volume are dropped.
Confounder correction: None
Method category: Machine Learning
Prediction method: A stochastic gradient boosting regression machine (GBM) was used
to predict Ventricle Volume, with a Huber loss function. To reduce overfitting, a shrinkage
mechanism was adopted, where the response of each tree is reduced by a factor of 0.01.
Independent predictions were made for each individual visit, and averaged when a subject had
more than one visit. For the prediction of clinical status, a similar GBM model was adopted,
but with a multinomial deviance loss function.

Team: ITESMCEM (Members: Javier de Velasco Oriol1, Edgar Emmanuel Vallejo
Clemente1, Karol Estrada2. Institution: 1Instituto Tecnológico y de Estudios Superiores de
Monterrey, 2Brandeis University)
Overall Ranking: 39
Feature selection: Manual
Selected features: Demographics, MRI volumes, FDG PET and all cognitive tests
Missing data: Imputation using the mean of previous values of that patient, otherwise mean
across all patients.
Confounder correction: None
Method category: Machine learning
Prediction method: ADAS-Cog13 is predicted with a Lasso model with α = 0.1. Ventricles
are predicted using a Bayesian ridge regression. Clinical diagnosis is predicted using two
different Random Forest models, one which selected between CN and either MCI or AD and
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the second which in turn predicted between MCI and AD for those selected as non-CN. The
predictions for all target variables made use of a “transition model”, which predicted the next
timepoint given the current one, until all 60 monthly predictions were made. The transition
model was implemented using a total of 29 Lasso models.
Confidence Intervals: They were calculated by sampling the test samples multiple times,
evaluating the performance of the model with those samples and analyzing the CIs supossing
a Gaussian distribution and the corresponding t-distribution.

Team: lmaUCL (Members: Leon Aksman, Institution: University College London,
UK)
Overall Ranking: 11-25
Feature selection: Manual
Selected features: Diagnosis, gender, education, APOE4 status and MMSE.
Missing data: Imputation using regression over ventricles and demographics (age, gender,
education)
Confounder correction: None
Method category: Statistical regression and machine learning
Prediction method: For ADAS-Cog13 and Ventricles, a multi-task learning model was used
with similar trajectories across subjects. The regression model was a linear model over age, but
dependencies between different subjects were modelled through a special prior structure over
the coefficients of the linear model. The prior structure has hyperparameters that control for
the amount of coupling across subjects, and are optimised through empirical Bayes. Clinical
diagnosis was predicted using the ADAS-Cog13 trajectory estimates plus a simple estimate of
the mean and standard deviation of ADAS-Cog13 in each diagnostic group (AD/MCI/CN).
Each ADAS-Cog13 prediction was then assigned a probability of belonging to each group.
Three different submissions were made:

• lmaUCL-Std: used only last available diagnosis as covariate
• lmaUCL-Covariates: as above, but also used gender, education, APOE status and MMSE

as covariates
• lmaUCL-halfD1: trained only on half of the D1 dataset, but allowed for longer training

time of 10 hours.

Confidence Intervals: Both the multi-task learning and clinical diagnosis models are
probabilistic, providing estimates of predictive mean and standard deviation assuming a
normal distribution. These were converted to confidence intervals using the inverse normal
CDF.
Publication link: https://doi.org/10.1002/hbm.24682

Repository link: https://github.com/LeonAksman/bayes-mtl-traj

Team: Mayo-BAI-ASU (Members: Cynthia M. Stonnington1, Yalin Wang2, Jian-
feng Wu2, Vivek Devadas3, Institution: 1Mayo Clinic, Scottsdale, AZ, USA, 2School of
Computing, Informatics and Decision Systems Engineering, Arizona State University, USA,
3Banner Alzheimer’s Institute, Phoenix, AZ, USA)
Overall Ranking: 27
Feature selection: Manual, from clinical experience
Selected features: Age, PET(AV45, AV1451, FDG), hippocampal volume/ICV, ventricle
volume/ICV, diagnosis, cognitive tests (ADAS11, ADAS-Cog13, MMSE, RAVLT, MOCA,
Ecog), amyloid-beta, tau, phosphorylated tau, APOE status. All features except age were
z-score normalised.
Missing data: Imputation with zero.
Confounder correction: None
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Method category: Statistical regression
Prediction method: ADAS-Cog13 and Ventricles were forecasted using a linear mixed effects
model, using all features as fixed effects and one random effect per subject (intercept). Training
used all visits, but the forecasts only used the last visit. Clinical diagnosis was predicted with
a similar model, by converting to CN/MCI/AD to a categorical variable (1/2/3).

Team: Orange (Members: Clementine Fourrier, Institution: Institut du Cerveau et
de la Moelle épinière, ICM, Paris, France)
Clinical Diagnosis Ranking: 44-45
Feature selection: Manual, through knowledge from literature
Selected features: demographics (age, education, gender), cognitive tests (ADAS11, CDSRB,
MMSE), imaging(AV45 PET, FDG PET, hippocampus size, cortical thickness) and molecular
markers (phosphorylated tau to amyloid-beta ratio, total tau, CMRgl, HCI)
Method category: Decision tree of a clinician
Prediction method: This method is based on the decision tree of a clinician. It looks at the
latest available visit for a patient, and based on the value of the selected features, it predicts a
duration to conversion. The duration to conversion depends on the initial clinical diagnosis and
the other available data. Depending on the initial diagnosis, the algorithm assumes the patient
will convert within a certain time period, and this time period is modulated by the available
data about the patient. In that regard, the algorithm does not need to account for missing
values. The ADAS-Cog13 and Ventricle measures at each month are computed assuming a
linear evolution between the current time point and the conversion date.

Team: Rocket (Members: Lars Lau Raket, Institutions: H. Lundbeck A/S, Den-
mark; Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund
University, Lund, Sweden )
Overall Ranking: 33
Feature selection: Manual
Selected features: ADAS-Cog13, baseline diagnosis, and APOE4 carrier status.
Missing data: APOE4: Imputed using median number of alleles per baseline diagnostic
group. Missing ADAS-Cog13 scores were imputed using multivariate imputation by chained
equations based on age, sex, diagnosis and cognitive tests.
Confounder correction: None
Method category: Statistical regression and data-driven disease progression modelling
Prediction method: Prediction of ADAS-Cog13 is done through a latent-time non-linear
mixed-effects model, where the trajectory is parameterised using an exponential function. The
time shift is built from a fixed effect shift relative to time since baseline for different diagnostic
groups (e.g. AD patients will be shifted to be later in the course of cognitive decline) and a
random effect shift for each subject. The model also includes APOE status as a fixed effect
that modifies rate of decline. This disease progression modeling methodology along with
several extensions is presented in (Raket (2019)). Prediction of Ventricles/ICV uses a linear
mixed-effects model using an integrated B-spline basis (5 knots + intercept) in predicted
ADAS-Cog13 disease time. A random intercept is included per subject. Prediction of clinical
diagnosis is based on kernel density estimation of the states (CN/MCI/AD) across the disease
time from the ADAS-Cog13 model.
Confidence Intervals: Prediction intervals conditioned on the predicted disease time of
the subject were derived based on the estimated variance-covariance matrix of the model.
Because of the monotone nature of cognitive decline, and to heuristically compensate for the
conditioning on disease time, the upper limit of the prediction interval was multiplied by 1.5.
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Publication link: https://doi.org/10.1101/2019.12.13.19014860

Team: SBIA (Members: Aristeidis Sotiras, Guray Erus, Jimit Doshi, Christos Da-
vatzikos, Institution: Center for Biomedical Image Computing and Analytics, University of
Pennsylvania)
Overall Ranking: 31
Feature selection: Manual
Selected features: demographics, cognitive tests, diagnosis, MRI features (Freesurfer cross-
sectional). Imaging indices (SPARE-AD and SPARE-MCI) that summarise brain atrophy
patterns were estimated through support vector machines with linear kernels. Another index
representing brain age (SPARE-BA) was estimated using a regressor model applied to imaging
features.
Missing data: Features and time-points with missing data were not included
Confounder correction: Age, gender, APOE4, education, and SPARE scores were used as
covariates in the linear mixed effects models. Also, the regression model was applied separately
on different diagnosis groups.
Method category: Statistical regression and machine learning
Prediction method: A linear mixed effects model was used to forecast the SPARE indices
for future timepoints. For diagnosis predictions, authors used class probability distribution
estimations based on the forecasted SPARE-AD score. For the prediction of ADAS-Cog13
and Ventricles, linear mixed effects models were used, with age, gender and SPARE scores as
covariates.

Team: SmallHeads – BigBrains (Members: Jacob Vogel, Andrew Doyle, Angela Tam,
Alex Diaz-Papkovich, Institution: McGill University, Montreal, Canada)
ADAS-Cog13 Ranking: 46-53
Feature selection: Automatic
Selected features:

• SmallHeads-NeuralNetwork : All features in the TADPOLE spreadsheet were consid-
ered, as long as they had less than 50% missing data. This resulted in a final set of 376
features. Features were normalised to zero mean and unit variance.

• SmallHeads-LinMixedEffects : All features were normalised to zero mean and unit
variance. A LASSO feature selection algorithm with ADAS-Cog13 and “Y” variable was
used to select the best features, which were required to have a weight greater than 0.001.
10-fold cross-validation was used to estimate the best LASSO parameters.

Missing data: Imputed using 5-nearest neighbour method, using Euclidean distance (Fancy-
Impute 0.0.4)
Confounder correction: None
Method category: Machine learning
Prediction method:

• SmallHeads-NeuralNetwork: A Deep fully connected neural network was trained to predict
the future diagnosis using the selected features and time until future timepoint as input.
Network has 5 fully-connected layers with Leaky ReLU activations. Each layer has 512,
512, 1024, 1024 and 256 neurons, with softmax layer at output. Training used P(0.5)
dropout using the Adam optimiser, based on a class-unweighted categorical cross-entropy
loss function.

• SmallHeads-LinMixedEffects: Only ADAS-Cog13 was predicted with a linear mixed effects
model, using months since baseline as an interaction term. A random (subject — time)
effect was also added, allowing variable subject-specific slopes over time.
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Repository link: https://github.com/SmallHeads/tadpole

Team: SPMC-Plymouth (Members: Emmanuel Jammeh, Institution: University of
Plymouth, UK)
Overall Ranking: N/A
Feature selection: Automatic – Authors used the WEKA (https://www.cs.waikato.ac.
nz/ml/weka/) machine learning tool.
Selected features: Age, gender, education, ApoE4, CDRSB, ADAS11, MMSE, RAVLT,
Moca, Ecog, Hippocampus, WholeBrain, Entorhinal, MidTemp, FDG, AV45, PIB, ABETA,
TAU, PTAU
Missing data:
Confounder correction: None
Method category: Machine learning
Prediction method: A machine learning classifier based on k-nearest neighbours, Naive
Bayes, Random Forest and SVM was used to predict the clinical diagnosis. ADAS-Cog13
and Ventricle volume were not predicted. Two predictions were made, SPMC-Plymouth1 and
SPMC-Plymouth2, but the authors could not be contacted to provide details on the differences
between the two.

Team: Sunshine (Members: Igor Koval, Stanley Durrleman, Institution: Institut
du Cerveau et de la Moelle épinière, ICM, Paris, France)
Overall Ranking: 41-45
Feature selection: Semi-automatic – An initial set of 60 features was selected by a clinical
expert. Out of this set, the features that had more than 30% missing data were removed. A
final subset of features was chosen based on cross-validation results using trial and error.
Selected features: Age, APOE status, MMSE, ADAS-Cog13, RAVLT immediate and
CDRSOB
Missing data: Imputed using mean value
Confounder correction: None
Method category: Statistical regression and machine learning
Prediction method: A linear model was used to predict future values of ADAS-Cog13 and
Ventricles, as well as other cognitive tests: MMSE, RAVLT and CDRSOB. For the prediction
of clinical diagnosis, forecasted values of the previous five measures were used as input to
an SVM. APOE4 status and education were also used as inputs to the SVM. Adding extra
features did not seem to increase prediction scores based on cross-validation. Two submissions
were made:

• Sunshine-Conservative: CN and AD subjects were forecasted to have the same diagnosis
(i.e. no conversion) for all future timepoints, after observing that a small proportion of
them convert after 1 year.

• Sunshine-Std: Without the above modification.

Team: Threedays (Members: Paul Moore1, Terry J. Lyons1, John Gallacher2, Institution:
1Mathematical Institute, University of Oxford, 2Department of Psychiatry, University of
Oxford, UK)
Clinical Diagnosis Ranking: 2
Feature selection: Manual
Selected features: Age, months since baseline, gender, race, marital status, diagnosis,
cognitive tests (MMSE, CDRSB, ADAS11, ADAS-Cog13, RAVLT immediate, learning,
forgetting and percent forgetting, FAQ) and APOE status.
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Missing data: Random forest method deals with missing data automatically, by finding
optimal splits with existing data only.
Confounder correction: None
Method category: Machine learning
Prediction method: For the prediction of clinical diagnosis, two random forest models are
trained, the first for transitions from a healthy diagnosis, and the second for transitions from
an MCI diagnosis. For AD individuals, authors assume that the diagnosis will not change.
The training data was generated by ordering each participant’s data by time, then associating
the feature vector x with diagnosis y for each time horizon available for the participant.
ADAS-Cog13 and Ventricles were not predicted. The PLOS paper describes a method similar
to the original, but using different predictors and a single random forest.
Publication link: https://journals.plos.org/plosone/article?id=10.1371/journal.

pone.0211558

Team: Tohka-Ciszek (Members: Jussi Tohka, Robert Ciszek Institution: A.I. Virtanen
Institute for Molecular Sciences, University of Eastern Finland, Finland)
Overall Ranking: 19
Feature selection: Manual
Selected features:

• D2: diagnosis, gender, education, race, marital and APOE status, age, cognitive tests
(CDRSB, ADAS11, ADAS-Cog13, MMSE, RAVLT learning, immediate and perc. for-
getting, FAQ, MOCA, all Ecog), MRI volumes (ventricles, hippocampus, whole brain,
entorhinal, fusiform, middle temporal, ICV)

• D3: diagnosis, age, gender, education, ethnicity, race, marital status, ADAS-Cog13,
MMSE, MRI volumes as above

Missing data:

• SMNSR : A sub-model is trained for each subset of features which occurs without
missing values. A specific catch-all subset is used for patients for which well performing
whole measurement set cannot be found. For this data set, values are imputed using the
median of k-nearest neighbours or replaced with -1.

• RandomForestLin : Imputation using mean values from the timepoints of the same
subject (D2) or diagnostic category (for D3).

Confounder correction: None
Method category: Machine learning
Prediction method:

• Tohka-Ciszek-SMNSR : For ADAS-Cog13 prediction, a Sparse Multimodal Neighbor-
hood Search Regression was used. This method first uses a linear regression model to
estimate ADAS-Cog13 from the selected features belonging to the current subject and
neighbour subjects, estimated based on a K-nearest neighbour algorithm. The forecasts
from this model were passed to a gradient-boosted tree model, providing the final predic-
tion. Ventricles and clinical diagnosis were not predicted.

• Tohka-Ciszek-RandomForestLin : To predict ADAS-Cog13 and Ventricles, a weighted
average of two models was used: 1) a unimodal linear model 2) a linear model taking
the response variable from the final time point and predictor variables from a time point
before that. For diagnosis prediction, a random forest was trained using ADAS-Cog13,
Ventricle/ICV, age and APOE status.

Confidence Intervals: Predicted score +/- cross-validation MAE.
Repository link: https://github.com/jussitohka/tadpole(RandomForestLin),https:

//github.com/rciszek/SMNSR (SMNSR)
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Team: VikingAI (Members: Bruno Jedynak1, Kruti Pandya1, Murat Bilgel2, William
Engels1, Joseph Cole1, Institutions: 1Portland State University, USA, 2Laboratory of Behav-
ioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD,
USA)
Overall Ranking: 3-13
Feature selection: Manual
Selected features: Diagnosis, age, ADAS-Cog13, CDRSOB, MMSE, RAVLT immediate, tau,
ventricles/ICV, hippocampus/ICV. Features were normalized prior to model fitting.
Missing data: Method automatically deals with missing data through Bayesian inference
Confounder correction: None
Method category: Data-driven disease progression model
Prediction method: For the prediction of ADAS-Cog13 and Ventricles, a latent-time
parametric model was used, estimating a linear subject-specific model over the age of subjects,
resulting in a disease progression score (DPS). The trajectories of biomarkers were assumed to
be either sigmoidal functions or a sum of logistic basis functions over the DPS space. Some
feature-specific parameters are estimated from the features’ histograms, while the rest are
optimized. Priors over the parameters to be optimized are set a-priori. Two submissions were
made:

• VikingAI-Sigmoid: sigmoidal function as biomarker trajectory
• VikingAI-Logistic: the sum of 15 logistic basis functions as the biomarker trajectory

Confidence Intervals: Bayesian predictive intervals

In addition to the above entries, the organisers also included several benchmark algo-
rithms as well as some extra predictions: (1) two ensemble predictions averaging all the
predictions submitted by the participants, and (2) 62 randomised predictions which can tell
how likely it is that top submissions obtained their scores due to chance, by building a null
distribution of the performance metrics. The
Source code of some benchmarks (BenchmarkLastVisit, BenchmarkMixedEffectsAPOE, Bench-
markSVM ) was offered to participants before the conference deadline, as a starting point for
making predictions.

Benchmark: BenchmarkLastVisit (Authors: Daniel Alexander, Razvan Marinescu,
Institutions: University College London, UK, Massachusetts Institute of Technology, USA)
Overall Ranking: 40
Feature selection: None
Selected features: ADAS-Cog13, ventricle volume, diagnosis
Missing data: Not required
Confounder correction: None
Method category: Regression
Prediction method: For ADAS-Cog13 and Ventricles, the last available measure is used,
otherwise the average for the current diagnostic group is used. Confidence intervals are set
to default widths of 2 for ADAD13 and 0.001 for Ventricles/ICV. For prediction of clinical
diagnosis, the last available diagnosis is used with probability 100%, and 0% probability for
the other diagnoses.
Confidence Intervals: hard-coded
Repository link: https://github.com/noxtoby/TADPOLE/blob/master/evaluation

Benchmark: BenchmarkMixedEffects (Author: Razvan Marinescu, Daniel Alexan-
der, Institution: University College London, UK, Massachusetts Institute of Technology, USA)
Overall Ranking: 10-18
Feature selection: None
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Selected features: ADAS-Cog13, ventricle volume, diagnosis (, APOE status)
Missing data: Automatic, since model is univariate.
Confounder correction: APOE status was used as covariate in the linear mixed effects
model
Method category: Regression
Prediction method: Linear Mixed Effects Model with age at visit as the predictor variable.
Model was fitted independently for ADAS-Cog13 and Ventricles. Predictions for clinical
diagnosis were derived from the corresponding ADAS-Cog13 forecasts, using three Gaussian
likelihood models for CN, MCI and AD. The likelihoods for diagnostic classes were finally
converted to probabilities by normalisation. Default values were used for confidence intervals.
Two predictions were made:

• BenchmarkMixedEffectsAPOE: the slope of the population trajectory was stratified by
APOE status

• BenchmarkMixedEffects: as above but without APOE

Confidence Intervals: hard-coded
Repository link: https://github.com/noxtoby/TADPOLE/blob/master/evaluation

Benchmark: BenchmarkSVM (Author: Esther Bron, Institution: Erasmus MC)
Overall Ranking: 34-35
Feature selection: Manual
Selected features: Diagnosis, age, ADAS-Cog13, Ventricles, ICV, APOE
Missing data: Fill-in using average value of biomarker from past visits of the same subject,
otherwise population average.
Confounder correction: None
Method category: Machine Learning
Prediction method: For the prediction of clinical diagnosis, a probabilistic SVM was used
based on the selected features, while for the prediction of ADAS-Cog13 and Ventricles, a
Support Vector Regressor (SVR) was used. All SVM/SVRs used linear kernels. Default values
were used for confidence intervals.
Confidence Intervals: hard coded
Repository link: https://github.com/noxtoby/TADPOLE/blob/master/evaluation

Benchmark: RandomisedBest (Author: Razvan Marinescu, Institutions: Univer-
sity College London, UK, Massachusetts Institute of Technology, USA)
Overall Ranking: 15
Feature selection: Manual
Selected features: Diagnosis, age, ADAS-Cog13, Ventricles, ICV
Missing data: Fill-in using last available measurement
Confounder correction: None
Method category: Regression
Prediction method: The method aims to construct a null distribution of values, to check how
likely a high score could be obtained by chance alone. Starting from the simplest prediction
method, i.e. BenchmarkLastVisit which simply takes the last available measure, 62 randomised
predictions were created (as many as the total number of predictions in D2) by adding random
perturbations to the predictions. For Diagnosis prediction, the probability of controls and MCI
subjects to convert within 1 year was computed from ADNI historical data, and then each
control and MCI was randomly chosen to convert with those probabilities. For ADAS-Cog13
and Ventricles, random uniform noise was added to the predictions as follows:

• ADAS: new adas ∼ last available adas + U(0, 7)
• Ventricles: new ventricles ∼ last available ventricles + U(0, 0.01)
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The new values new adas and new ventricles, as well as the new diagnosis, were assigned to
all 60 months, thus assuming no change across the 60 month predictions. All 62 different
predictions were evaluated, and the RandomisedBest entry shows the best scores obtained by
all 62 submissions in each category separately.
Confidence Intervals: hard-coded
Repository link: https://github.com/noxtoby/TADPOLE/blob/master/evaluation
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Appendix A. Creating the D1-D4 datasets

The data used from ADNI consists of: (1) CSF markers of amyloid-beta and tau deposition;
(2) various imaging modalities such as magnetic resonance imaging (MRI), positron emission
tomography (PET) using several tracers: Fluorodeoxyglucose (FDG, hypometabolism), AV45
(amyloid), AV1451 (tau) as well as diffusion tensor imaging (DTI); (3) cognitive assessments
acquired in the presence of a clinical expert; (4) genetic information such as alipoprotein E4
(APOE4) status extracted from DNA samples; and (5) general demographic information. Ex-
tracted features from this data were merged together into a final spreadsheet and made available
on the LONI ADNI website.

The imaging data has been pre-processed with standard ADNI pipelines. For MRI scans,
this included correction for gradient non-linearity, B1 non-uniformity correction and peak sharp-
ening. [ADNI MRI pre-processing]. Meaningful regional features such as volume and cortical
thickness were extracted using the Freesurfer cross-sectional and longitudinal pipelines (Reuter
et al. (2012)). Each PET image (FDG, AV45, AV1451) had their frames co-registered, aver-
aged across the six five-minute frames, standardised with respect to the orientation and voxel
size, and smoothed to produce a uniform resolution of 8mm full-width/half-max (FWHM)
(see http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/). Standardised
uptake value ratio (SUVR) measures for relevant regions-of-interest were extracted after regis-
tering the PET images to corresponding MR images using the SPM5 software (Friston et al.
(1994)). Further details have been provided in the ADNI procedures manual. DTI scans were
corrected for head motion and eddy-current distortion, skull-stripped, EPI-corrected, and fi-
nally aligned to the T1 scans using the pipeline from (Prasad et al. (2013)). Diffusion tensor
summary measures were estimated based on the Eve white-matter atlas (Oishi et al. (2009)).

In addition to the standard datasets, we also created three leaderboard datasets LB1, LB2
and LB2 which mimick the D1, D2 and D4 datasets. These datasets were used by participants
to preliminarily evaluate their algorithms before the competition deadline, and to compare their
results on the leaderboard system (https://tadpole.grand-challenge.org/Leaderboard/).

Appendix B. Statistical testing

B.1 Differences in MAUC scores

For analysing whether the MAUC scores obtained by top algorithms are significantly different,
we performed a bootstrapped hypothesis test (Efron and Tibshirani (1994)), since the signifi-
cance test for comparing two AUC scores (DeLong et al. (1988)) does not extend to multiple
classes. Let A and B be two TADPOLE algorithms and MA and MB be their associated MAUC
scores. If MA > MB on the full D4 test set, we want to confirm if algorithm A was significantly
better than B, or if this was likely due to chance. We define the null hypothesis H0 : MA = MB

and the alternative hypothesis H1 : MA > MB. We then proceed as follows:

• Sample N = 100 random bootstraps Di of the D4 test set with replacement.
• Compute the MDi

A and MDi
B based on the bootstrapped dataset. Repeat for all N boot-

straps.
• Compute the p-value as

∑
i I[MDi

A < MDi
B ]/N , which is the proportion of bootstrapped

datasets where A performed worse than B.
• Accept/reject H0 based on a 5% significance level.

B.2 Differences in MAE scores

For comparing differences in MAE scores, we applied the non-parametric Wilcoxon signed-rank
test on paired samples of absolute errors across all visits of the D4 subjects. We chose the
non-parametric Wilcoxon test because the input samples are not normally distributed, as they
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represent absolute errors and are always positive. We report results based on a 5% significance
level.

B.3 Differences between D2 and D3 forecasts

For comparing differences between the scores obtained by two algorithms on D2 vs D3 forecasts,
we use an approach similar to comparing MAUC scores (section 8.4.2).

B.4 Comparisons with random guessing model

We used predictions from the RandomisedBest model to test whether a TADPOLE algorithm
was significantly better performance than random guessing. If the MAE error of a TADPOLE
algorithm was X and the performance of a random guess model was R, we wanted to test
whether H0 : X = R (no difference in performance) or H1 : X < R (there is a difference in
performance). For this, we performed the following:

• Generate 100 random predictions Ri, i = [1, ..., 100].
• Compute the p-value as

∑
i I[X < Ri]

Appendix C. Supplementary Results

Overall Diagnosis ADAS-Cog13 Ventricles (% ICV)
Submission Rank Rank MAUC BCA Rank MAE WES CPA Rank MAE WES CPA

Billabong-UniAV45 1 1 0.719 0.624 1-2 8.71 8.55 0.33 3-4 3.49 3.40 0.50
Billabong-Uni 2 2 0.717 0.621 1-2 8.71 8.55 0.33 3-4 3.49 3.40 0.50

Billabong-MultiAV45 3 3 0.661 0.562 3-4 12.95 12.71 0.42 1-2 3.16 3.08 0.47
Billabong-Multi 4 4 0.658 0.552 3-4 12.95 12.71 0.42 1-2 3.16 3.08 0.47

Simple-SPMC-Plymouth2 - 5 0.500 0.504 - - - - - - - -
Simple-SPMC-Plymouth1 - 6 0.500 0.499 - - - - - - - -

Table 6: Results on custom prediction sets from two teams: Billabong and SPMC-Plymouth.
SPMC-Plymouth predicted fewer subjects due to an incomplete submission, while Billabong
used a prediction set similar to D3, but filled in missing data for cognitive tests and MRI
with the last available measurement. SPMC-Plymouth only submitted predictions for clinical
diagnosis, and obtained an MAUC score of 0.5. Results from Billabong show higher MAUC
and BCA in diagnosis prediction compared to D3, but lower performance for ADAS-Cog13 and
Ventricle volume prediction. Bold entries show best scores in this category.

Appendix D. External validation

This section reports an external validation experiment to verify, on an independent data set,
the general finding that TADPOLE participants’ algorithms perform better than simple base-
lines and that consensus approaches perform as well or better than individual entries. To this
end, we evaluate our primary performance metrics for each prediction task on external data
for the ConsensusMean and ConsensusMedian algorithms, all benchmark algorithms, and the
challenge-winning submission (Team Frog).

D.1 Data

External data comes from a clinical trial and an observational study. Data from the completed
DHA clinical trial (Quinn et al. (2010)); https://www.adcs.org/dha/) was obtained from
the Alzheimer’s Disease Cooperative Study (https://www.adcs.org/), including MMSE and
ADAS-Cog scores from 402 AD participants over 18 months. A subset of approximately 90
also had T1-weighted MRI from which we calculated Ventricle volume (normalised by ICV)
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Figure 2: Distribution of performance metrics for clinical diagnosis (MAUC and BCA), ADAS-
Cog13 (MAE, WES and CPA) and ventricle volume (MAE, WES and CPA) on the longitudinal
D2 prediction set. For each entry, we plot the distribution of performance metrics derived using
50 bootstrap data sets drawn from the D4 test set. The submissions (rows) are in the same
order as in Table 4. Entries are missing where teams did not make predictions for a particular
target variable.

using FreeSurfer version 6.0.0. The ADAS-Cog11 scores in DHA were mapped to ADAS-Cog13
using a simple regression model trained on ADNI data. Clinical data was obtained from the
Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing (AIBL) (Ellis et al.
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Figure 3: Box plots of performance metrics for clinical diagnosis (MAUC and BCA), ADAS-
Cog13 (MAE, WES and CPA) and ventricle volume (MAE, WES and CPA) on the cross-
sectional D3 prediction set. The submissions (rows) are in the same order as in Table 5. Some
entries are missing because teams did not make predictions for those target variables.

(2009)), including MMSE and diagnosis from 857 participants (608 CN, 144 MCI, 105 AD) over
a 5-year period (average followup interval 1.5 ± 1.9 years). The data from both studies was
assembled into three external datasets as follows:

• D5 (analogous to D3): The external cross-sectional prediction set containing baseline data
from the DHA clinical trial and AIBL observational study.
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Figure 4: For D2 submissions, we show scatter plots of pairs of performance metrics for (top
row) clinical diagnosis, (middle row) ADAS-Cog13 and (bottom row) Ventricles. Each dot is a
participant submission, coloured according to the type of prediction algorithm used. Correlation
coefficients and p-values are given above each subplot. A few outlier submissions with ADAS
MAE > 20, ADAS WES > 40 or Ventricle WES > 3 were excluded from the analysis.

• D6 (analogous to D4): The external test set containing data from the n=361 DHA par-
ticipants with follow-up visits providing at least one of the following variables: (i) ADAS-
Cog13 score, (ii) Ventricle Volume.

• D7 (analogous to D4): The external test set containing data from the n=399 AIBL
participants (318 CN, 47 MCI, 34 AD) with follow-up visits, which include only clinical
diagnosis.

We could not run all participants’ methods directly on the external data sets, since the
external evaluation necessarily occurred after the original challenge was complete. Instead, we
obtain predictions for each subject in the external data sets by copying predictions from the
closest matching TADPOLE data point. We used a weighted L2-norm to find the closest match
for each D5 case among TADPOLE subjects with the same sex and diagnosis. We eliminated 93
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Figure 5: For D3 submissions, we show scatter plots of pairs of performance metrics for (top
row) clinical diagnosis, (middle row) ADAS-Cog13 and (bottom row) Ventricles. Each dot is a
participant submission, coloured according to the type of prediction algorithm used. Correlation
coefficients and p-values are given above each subplot. A few outlier submissions with ADAS
MAE > 20, ADAS WES > 40 or Ventricle WES > 3 were excluded from the analysis.

subjects from D5 for whom we could not find a sufficiently close match in D3, i.e. within 7 years
in age, 3 points on the MMSE test, 7 points on ADAS-Cog13, and Ventricles volume within
±29%. These cutoff values are σ/

√
2 for each variable, where σ is the standard deviation of

that variable in D5 (DHA and AIBL participants at baseline). The prediction of each quantity
(diagnosis, ADAS-Cog13, ventricle volume) for a matched D5 case using a particular algorithm
is then the prediction of the same quantity using the same algorithm on the matched D3 case;
the matches do not vary among algorithms.
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Figure 6: Bias in prediction of clinical diagnosis for MCI subjects only. X-axis shows indi-
vidual subjects with designated MCI status at the clinical visit in D4, while the Y-axis shows
TADPOLE algorithms. Red represents subjects which were predicted as CN with true diagno-
sis of MCI, while blue represents subjects predicted as AD with true diagnosis of MCI. Some
algorithms show systematic biases either towards CN or AD.

D.2 External test results

In D3 we found acceptable matches for 268 of 361 DHA participants and all 399 AIBL partici-
pants in D5. Supplementary Table 7 shows prediction performance metrics for the test sets (D6
and D7), together with corresponding metrics from the internal test set D4 (reproduced from
Figure 3.1).

Similar trends in predictive performance among methods arise on the external test sets as on
the internal: consensus methods perform better overall than the best individual method, and
substantially outperform all benchmarks; the representative strongly performing submission
overall outperforms benchmarks. Results for diagnosis directly reflect that trend; consensus
methods now outperform even Frog and Frog remains substantially ahead of all benchmarks.
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Figure 7: Bias in prediction of ADAS-Cog13. X-axis shows individual subjects with ADAS-
Cog measurements in D4, while Y-axis shows TADPOLE algorithms. Red represents under-
estimates while blue represents over-estimates. Most algorithms under-estimate ADAS-Cog
measurements.

For ADAS-Cog13, as with the internal test set, Frog fails to outperform the simple benchmarks
and only consensus methods approach viable (better than simple default) performance. Slightly
anomalous results arise for ventricle volume prediction (Frog attains the worst MAE), which
likely arises from the small sample; consensus methods still perform best. In comparison with
internal performance metrics, clinical diagnosis MAUC is lower (indicating lower predictive
accuracy) for D7 than D4; ADAS-Cog13 MAE is higher (lower predictive accuracy) on D6
than D4; ventricle volume MAE is slightly lower (higher predictive accuracy) on D6 than D4.
In general, we expect the imperfect matching process to reduce performance on the unseen
external data set compared to the internal data set, as we observe in diagnosis and ADAS-
Cog13 prediction. However, the elimination of D5 subjects for which no good match is found
may push average performance up by avoiding difficult/unusual subjects, as we observe in
ventricle-volume prediction.
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Figure 8: Bias in prediction of ventricle volume. X-axis shows individual subjects with Ven-
tricle volume measurements in D4, while Y-axis shows TADPOLE algorithms. Red represents
under-estimates while blue represents over-estimates. Some algorithms systematically under-
estimate or over-estimate ventricle volume.

D.3 Conclusion

External test set results reaffirm the strong performance of consensus methods in comparison
to individual TADPOLE entries and baselines, as well as the particular difficulty in predicting
cognitive test scores, such as ADAS-Cog13.
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Figure 9: Distribution of ranks in clinical diagnosis MAUC for TADPOLE submissions using
the longitudinal prediction set (D2), obtained from N = 50 bootstraps of the test set (D4).
More precisely, we computed the MAUC ranks given a specific bootstrap of the test set, and
then for each TADPOLE submission (Y-axis) we plotted the number of times it achieved a
specific rank. Figures 10 – 14 use the same methodology.
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Figure 10: Distribution of ranks in ADAS-Cog13 MAE for TADPOLE submissions using the
longitudinal prediction set (D2)

Diagnosis ADAS-Cog13 Ventricles, % ICV
Algorithm MAUC (D7) MAUC (D4) MAE (D6) MAE (D4) MAE (D6) MAE (D4)

ConsensusMedian 0.864 0.925 6.39 5.12 0.35 0.38
ConsensusMean 0.863 0.920 7.45 3.75 0.39 0.48
Frog 0.835 0.931 9.18 4.85 0.92 0.45
BenchmarkLastVisit 0.787 0.774 8.88 7.05 0.70 0.63
BenchmarkSVM 0.773 0.836 9.77 6.82 0.57 0.86
BenchmarkMixedEffects 0.740 0.846 10.09 4.19 0.42 0.56
BenchmarkMixedEffectsAPOE 0.740 0.822 9.61 4.75 0.42 0.57

Table 7: External validation results using consensus models and benchmark methods on D6
(ADAS-Cog13 and Ventricles) and D7 (Diagnosis), together with internal test results on D4 (as
in Figure 3.1). The increase in performance of consensus methods over individual methods and
benchmarks remains similar. Cognitive test scores remain difficult to predict.
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Figure 11: Distribution of ranks in Ventricle Volume MAE for TADPOLE submissions using
the longitudinal prediction set (D2).
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Figure 12: Distribution of ranks in clinical diagnosis MAUC for TADPOLE submissions using
the longitudinal prediction set (D3).
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Figure 13: Distribution of ranks in ADAS-Cog13 MAE for TADPOLE submissions using the
longitudinal prediction set (D3).
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Figure 14: Distribution of ranks in Ventricle Volume MAE for TADPOLE submissions using
the longitudinal prediction set (D3).
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