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Abstract

Following the success of deep learning in a wide range of applications, neural network-
based machine-learning techniques have received significant interest for accelerating mag-
netic resonance imaging (MRI) acquisition and reconstruction strategies. A number of
ideas inspired by deep learning techniques for computer vision and image processing have
been successfully applied to nonlinear image reconstruction in the spirit of compressed
sensing for accelerated MRI. Given the rapidly growing nature of the field, it is impera-
tive to consolidate and summarize the large number of deep learning methods that have
been reported in the literature, to obtain a better understanding of the field in general.
This article provides an overview of the recent developments in neural-network based ap-
proaches that have been proposed specifically for improving parallel imaging. A general
background and introduction to parallel MRI is also given from a classical view of k-space
based reconstruction methods. Image domain based techniques that introduce improved
regularizers are covered along with k-space based methods which focus on better interpo-
lation strategies using neural networks. While the field is rapidly evolving with plenty of
papers published each year, in this review, we attempt to cover broad categories of methods
that have shown good performance on publicly available data sets. Limitations and open
problems are also discussed and recent efforts for producing open data sets and benchmarks
for the community are examined.

Keywords: MRI Reconstruction, Deep Leaning, machine learning, k-space reconstruc-
tion, parallel MRI

1. Introduction

Magnetic Resonance Imaging (MRI) is an indispensable clinical and research tool used to
diagnose and study several diseases of the human body. It has become a sine qua non in
various fields of radiology, medicine, and psychiatry. Unlike computed tomography (CT), it
can provide detailed images of the soft tissue and does not require any radiation, thus making
it less risky to the subjects. MRI scanners sample a patient’s anatomy in the frequency
domain that we will call “k-space”. The number of rows/columns that are acquired in
k-space is proportional to the quality (and spatial resolution) of the reconstructed MR
image. To get higher spatial resolution, longer scan time is required due to the increased
number of k-space points that need to be sampled (Fessler, 2010). Hence, the subject has
to stay still in the MRI scanner for the duration of the scan to avoid signal drops and
motion artifacts. Many researchers have been trying to reduce the number of k-space lines
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Figure 1: (Left to Right) An example of a fastMRI (Zbontar et al., 2018) knee image x,
fully sampled k-space yfull, corresponding reconstructed image xfull from yfull,
the sampling maskM of fastMRI that we apply on fully sampled k-space yfull, the
sampled k-space y, and the corresponding aliased reconstructed image xaliased.

to save scanning time, which leads to the well-known problem of “aliasing” as a result of the
violation of the Nyquist sampling criteria (Nyquist, 1928). Reconstructing high-resolution
MR images from the undersampled or corrupted measurements was a primary focus of
various sparsity promoting methods, wavelet-based methods, edge-preserving methods, and
low-rank based methods. This paper reviews the literature on solving the inverse problem
of MR image reconstruction from noisy measurements using Deep Learning (DL) methods,
while providing a brief introduction to classical optimization based methods. We shall
discuss more about this in Sec. 1.1.

A DL method learns a non-linear function f : Y → X from a set of all possible mapping
functions F . The accuracy of the mapping function can be measured using some notion of a
loss function l : Y ×X → [0,∞). The empirical risk (Vapnik, 1991), L̂(f), can be estimated
as L̂(f) = 1

2

∑m
i=1 l(f(yi),xi) and the generalization error of a mapping function f(·) can

be measured using some notion of accuracy measurement. MR image reconstruction using
deep learning, in its simplest form, amounts to learning a map f from the undersampled k-
space measurement Y ∈ CN1×N2 , or Y ∈ RN1×N2×2 to an unaliased MR image X ∈ CN1×N2 ,
or Y ∈ RN1×N2×2, where N1, N2 are the height and width of the complex valued image.
In several real-world cases, higher dimensions such as time, volume, etc., are obtained and
accordingly the superscripts of Y and X change to CN1×N2×N3×N4×···. For the sake of
simplicity, we will use assume Y ∈ CN1×N2 and X ∈ CN1×N2 .

In this survey, we focus on two broad aspects of DL methods, i.e. (i) generative models,
which are data generation processes capturing the underlying density of data distribution;
and (ii) non-generative models, that learn complex feature representations of images in-
tending to learn the inverse mapping from k-space measurements to MR images. Given
the availability and relatively broad access to open-source platforms like Github, PyTorch
(Paszke et al., 2019), and TensorFlow (Abadi et al., 2015), as well as large curated datasets
and high-performance GPUs, deep learning methods are actively being pursued for solv-
ing the MR image reconstruction problem with reduced number of samples while avoiding
artifacts and boosting the signal-to-noise ratio (SNR).

In Sec. 1.1, we briefly discuss the mathematical formulation that utilizes k-space mea-
surements from multiple receiver coils to reconstruct an MR image. Furthermore, we discuss
some challenges of the current reconstruction pipeline and discuss the DL methods (in Sec.
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1.2) that have been introduced to address these limitations. We finally discuss the open
questions and challenges to deep learning methods for MR reconstruction in sections 2.1,
2.2, and 3.

1.1 Mathematical Formulation for Image Reconstruction in Multi-coil MRI

Before discussing undersampling and the associated aliasing problem, let us first discuss
the simple case of reconstructing an MR image, x ∈ CN1×N2 , from a fully sampled k-space
measurement, yfull ∈ CN1×N2 , using the Fourier transform F (·):

yfull = Fx + η, (1)

where η ∼ N (0,Σ) is the associated measurement noise typically assumed to have a Gaus-
sian distribution (Virtue and Lustig, 2017) when the k-space measurement is obtained from
a single receiver coil.

Modern MR scanners support parallel acquisition using an array of overlapping receiver
coils n modulated by their sensitivities Si. So Eqn. 1 changes to: yfulli = FSix+ η, where
i = {1, 2, · · · , n} is the number of receiver coils. We use yi for the undersampled k-space
measurement coming from the ith receiver coil. To speed up the data acquisition process,
multiple lines of k-space data (for cartesian sampling) are skipped using a binary sampling
mask M ∈ CN1×N2 that selects a subset of k-space lines from yfull in the phase encoding
direction:

yi =M⊙FSix + η. (2)

An example of yfull, y, M is shown in Fig 1.
To estimate the MR image x from the measurement, a data fidelity loss function is

typically used to ensure that the estimated data is as close to the measurement as possible.
A typical loss function is the squared loss, which is minimized to estimate x:

x̂ = arg min
x

1

2

∑
i

||yi −M⊙FSix||22 = arg min
x
||y−Ax||22. (3)

We borrow this particular formulation from (Sriram et al., 2020a; Zheng et al., 2019). This
squared loss function is quite convenient if we wish to compute the error gradient during
optimization.

However, the formulation in Eqn. 3 is under-determined if data is undersampled and
does not have a unique solution. Consequently, a regularizer R(x) is typically added to
solve such an ill-conditioned cost function: 1

x̂ = arg min
x

1

2
||y−Ax||22 +

∑
i

λiRi(x). (4)

Please note that each Ri(x) is a separate regularizer, while the λis are hyperparameters
that control the properties of the reconstructed image x̂ while avoiding over-fitting. Eqn.

1. The regularization term, R(x) is related to the prior, p(x), of a maximum a priori (MAP) extimation
of x, i.e. x̂ = argminx(− log p(y|x)− log p(x)). In fact, in Ravishankar et al. (2019) the authors loosely
define βR(x) = − log p(x), which promotes some desirable image properties such as spatial smoothness,
sparsity in image space, edge preservation, etc. with a view to get a unique solution.
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Figure 2: MRI Reconstruction Methods: We shall discuss various MR reconstruction
methods with a main focus on Deep Learning (DL) based methods. Depending
on the optimization function, a DL method can be classified into a Generative
(discussed in Sec. 4) or a Non-Generative model (discussed in Sec. 5). However,
for the sake of completeness, we shall also discuss classical k-space (GRAPPA-
like) and image space based (SENSE-like) methods.

.

3 along with the regularization term can be optimized using various methods, such as
(i) the Morozov formulation, x̂ = min{R(x); such that, ||Ax − y|| ≤ δ}; (ii) the Ivanov
formulation, i.e. x̂ = min{||Ax−y||; such that,R(x) ≤ ϵ}; or (iii) the Tikonov formulation,
x̂ = min{||Ax− y||+ λR(x)}, discussed in (Oneto et al., 2016).

In general, the Tikonov formulation can be designed using a physics based, sparsity
promoting, dictionary learning, or a deep learning based model. But there are several
factors that can cause loss in data quality (especially small anatomical details) such as
inaccurate modeling of the system noise, complexity, generalizability etc. To overcome
these limitations, it is essential to develop inverse mapping methods that not only provide
good data fidelity but also generalize well to unseen and unexpected data. In the next
section, we shall describe how DL methods can be used as priors or regularizers for MR
reconstruction.

1.2 Deep Learning Priors for MR Reconstruction

We begin our discussion by considering DL methods with learn-able parameters θ. The
learn-able parameters θ can be trained using some notion of a learning rule that we shall
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discuss in Sec. 3. A DL training process helps us to find a function GDL(·) that acts as a
regularizer to Eqn. 4 with an overarching concept of an inverse mapping, i.e;

(
please note

that, we shall follow (Zheng et al., 2019) to develop the optimization formulation
)

x̂ = arg min
x

1

2
||y−Ax||22 + λLθ; where,Lθ = arg min

θ

∑
j

||xj −GDL(x|z, c, θ)||22 (5)

and z is a latent variable capturing the statistical regularity of the data samples, while c is a
conditional random variable that depends on a number of factors such as: undersampling of
the k-space (Shaul et al., 2020; Oksuz et al., 2019a; Shitrit and Raviv, 2017), the resolution
of the image (Yang et al., 2017; Yuan et al., 2020), or the type of DL network used (Lee
et al., 2019). Based on the nature of the learning, there are two types of DL methods known
as generative models, and non-generative models. We shall start with a basic understanding
of DL methods to a more in-depth study of different architectures in Secs. 4 and 5.

In generative modeling, the random variable z is typically sampled from a noisy Gaussian
distribution, z ∼ N (0, I) with or without the presence of the conditional random variable,
i.e.;

x̂ = arg min
x

1

2
||y−Ax||22 + λLθg ;Lθg = arg min

θg
Ez∼N (0,I)

1

2
||xj −GGEN (x|z, c, θg)||22 (6)

There are various ways to learn the parameters of Eqn. 6. For instance, the Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) allows us to learn the generator func-
tion GGEN (·) using an interplay between two modules, while the Variational Autoencoders
(VAEs) (Kingma and Welling, 2013) learns GGEN (·) by optimizing the evidence lower bound
(ELBO), or by incorporating a prior in a Bayesian Learning setup as described in Section
4.2. It is shown in the literature that a generative model can efficiently de-alias an MR
image that had undergone a 4× or 8× undersampling in k-space (Zbontar et al., 2018).

The non-generative models on the other hand do not learn the underlying latent rep-
resentation, but instead learn a mapping from the measurement space to the image space.
Hence, the random variable z is not required. The cost function for a non-generative model
is given by:

x̂ = arg min
x

1

2
||y−Ax||22 + λLθg ;Lθg = arg min

θg
Ex∼pdata

1

2
||xj −GNGE(x|c, θg)||22. (7)

The function GNGE(·) is a non-generative mapping function that could be a Convolutional
Neural Network (CNN) (Zheng et al., 2019; Akçakaya et al., 2019; Sriram et al., 2020b), a
Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), or any other simi-
lar deep learning model. The non-generative models show a significant improvement in im-
age reconstruction quality compared to classical methods. We shall describe the generative
and the non-generative modeling based approaches in detail in Secs. 4 and 5 respectively.
Below, we give a brief overview of the classical or the non-DL based approaches for MR
image reconstruction.

1.3 Classical Methods for MR Reconstruction

In the literature, several approaches can be found that perform an inverse mapping to
reconstruct the MR image from k-space data. Starting from analytic methods (Fessler and
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Sutton, 2003; Laurette et al., 1996), there are several works that provide ways to do MR
reconstruction, such as the physics based image reconstruction methods (Roeloffs et al.,
2016; Tran-Gia et al., 2016; Maier et al., 2019; Tran-Gia et al., 2013; Hilbert et al., 2018;
Sumpf et al., 2011; Ben-Eliezer et al., 2016; Zimmermann et al., 2017; Schneider et al., 2020),
the sparsity promoting compressed sensing methods (Feng and Bresler, 1996; Bresler and
Feng, 1996; Candès et al., 2006), and low-rank based approaches (Haldar, 2013). All these
methods can be roughly categorized into two categories, i.e. (i) GRAPPA-like methods:
where prior assumptions are imposed on the k-space; and (ii) SENSE-like methods: where
an image is reconstructed from the k-space while jointly unaliasing (or dealiasing) the image
using sparsity promoting and/or edge preserving image regularization terms.

A few k-space methods estimate the missing measurement lines by learning kernels
from an already measured set of k-space lines from the center of the k-space (i.e., the auto-
calibration or ACS lines). These k-space based methods include methods such as SMASH
(Sodickson, 2000), VDAUTOSMASH (Heidemann et al., 2000), GRAPPA and its variations
(Bouman and Sauer, 1993; Park et al., 2005; Seiberlich et al., 2008). The k-t GRAPPA
(Huang et al., 2005) takes advantage of the correlations in the k-t space and interpolates
the missing data. On the other hand, sparsity promoting low rank based methods are based
on the assumption that, when the image reconstruction follows a set of constraints (such as
sparsity, smoothness, parallel imaging, etc.), the resultant k-space should follow a structure
that has low rank. The low rank assumption has been shown to be quite successful in
dynamic MRI (Liang, 2007), functional MRI (Singh et al., 2015), and diffusion MRI (Hu
et al., 2019). In this paper we give an overview of the low-rank matrix approaches (Haldar,
2013; Jin et al., 2016; Lee et al., 2016; Ongie and Jacob, 2016; Haldar and Zhuo, 2016; Haldar
and Kim, 2017) in Sec. 2.1. While in k-t SLR (Lingala et al., 2011), a spatio-temporal total
variation norm is used to recover the dynamic signal matrix.

The image space based reconstruction methods, such as, the model based image re-
construction algorithms, incorporate the underlying physics of the imaging system and
leverage image priors such as neighborhood information (e.g. total-variation based sparsity,
or edge preserving assumptions) during image reconstruction. Another class of works in-
vestigated the use of compressed sensing (CS) in MR reconstruction after its huge success
in signal processing (Feng and Bresler, 1996; Bresler and Feng, 1996; Candès et al., 2006).
Compressed sensing requires incoherent sampling and sparsity in the transform domain
(Fourier, Wavelet, Ridgelet or any other basis) for nonlinear image reconstruction. We also
describe dictionary learning based approaches that are a spacial case of compressed sensing
using an overcomplete dictionary. The methods described in (Gleichman and Eldar, 2011;
Ravishankar and Bresler, 2016; Lingala and Jacob, 2013; Rathi et al., 2011; Michailovich
et al., 2011) show various ways to estimate the image and the dictionary from limited
measurements.

1.4 Main Highlights of This Literature Survey

The main contributions of this paper are:

• We give a holistic overview of MR reconstruction methods, that includes a family of
classical k-space based image reconstruction methods as well as the latest develop-
ments using deep learning methods.
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• We provide a discussion of the basic DL tools such as activation functions, loss func-
tions, and network architecture, and provide a systematic insight into generative mod-
eling and non-generative modeling based MR image reconstruction methods and dis-
cuss the advantages and limitations of each method.

• We compare eleven methods that includes classical, non-DL and DL methods on
fastMRI dataset and provide qualitative and quantitative results in Sec. 7.

• We conclude the paper with a discussion on the open issues for the adoption of deep
learning methods for MR reconstruction and the potential directions for improving
the current state-of-the-art methods.

2. Classical Methods for Parallel Imaging

This section reviews some of the classical k-space based MR image reconstruction methods
and the classical image space based MR image reconstruction methods.

2.1 Inverse Mapping using k-space Interpolation

Classical k-space based reconstruction methods are largely based on the premise that the
missing k-space lines can be interpolated (or extrapolated) based on a weighted combination
of all acquired k-space measurement lines. For example, in the SMASH (Sodickson, 2000)
method, the missing k-space lines are estimated using the spatial harmonics of order m.
The k-space signal can then be written as:

y(k1, k2) =
n∑
i=1

wmi yi(k1, k2) =

∫ ∫
dn1dn2

n∑
i=1

wmi Sixe
−jk1n1−j(k2+m∆k2)n2 (8)

where, wmi are the spatial harmonics of order m, ∆k2 = 2π
FOV is the minimum k-space inter-

val (FOV stands for field-of-view), and y(k1, k2) is the k-space measurement of an image
x, (k1, k2) are the co-ordinates in k-space along the phase encoding (PE) and frequency
encoding (FE) directions, and j represents the imaginary number. From Eqn. 8, one can
note that the mth-line of k-space can be generated using m-number of spatial harmonics
and hence we can estimate convolution kernels to approximate the missing k-space lines
from the acquired k-space lines. So, in SMASH a k-space measurement x, also known as
a composite signal in common parlance, is basically a linear combination of n number of
component signals (k-space measurements) coming from n receiver coils modulated by their
sensitivities Si, i.e.

y =

n∑
i=1

wiM⊙FSix + η. (9)

We borrow the mathematical notation from (Sodickson, 2000) and represent the composite
signal in Eqn. 9 as follows:

y(k1, k2) =

n∑
i=1

wiyi(k1, k2) =

∫ ∫
dn1dn2

n∑
i=1

wiMSixe−jk1n1−jk2n2 . (10)
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However, SMASH requires the exact estimation of the sensitivity of the receiver coils to
accurately solve the reconstruction problem.

To address this limitation, AUTO-SMASH (Jakob et al., 1998) assumed the existence
of a fully sampled block of k-space lines called autocalibration lines (ACS) at the center of
the k-space (the low frequency region) and relaxed the requirement of the exact estimation
of receiver coil sensitivities. The AUTO-SMASH formulation can be written as:

y(k1, k2 +m∆k2) =
n∑
i=1

w0
i y

ACS
i (k1, k2 +m∆k2) =

∫ ∫
dn1dn2

n∑
i=1

w0
i Sixe

−jk1n1−j(k2+m∆k2)n2
(11)

We note that the AUTO-SMASH paper theoretically proved that it can learn a kernel that
is,

∑n
i=1w

m
i yi(k1, k2) =

∑n
i=1w

m
i yACSi (k1, k2 + m∆k2), that is, it can learn a linear shift

invariant convolutional kernel to interpolate missing k-space lines from the knowledge of
the fully sampled k-space lines of ACS region. The variable density AUTO-SMASH (VD-
AUTO-SMASH) (Heidemann et al., 2000) further improved the reconstruction process by
acquiring multiple ACS lines in the center of the k-space. The composite signal x is esti-
mated by adding each individual component yi by deriving linear weights wmi and thereby
estimating the missing k-space lines. The more popular, generalized auto calibrating par-
tially parallel acquisitions (GRAPPA) (Bouman and Sauer, 1993) method uses this flavour
of VD-AUTO-SMASH, i.e. the shift-invariant linear interpolation relationships in k-space,
to learn the coefficients of a convolutional kernel from the ACS lines. The missing k-space
are estimated as a linear combination of observed k-space points coming from all receiver
coils. The weights of the convolution kernel are estimated as follows: a portion of the
k-space lines in the ACS region are artificially masked to get a simulated set of acquired
k-space points yACS1 and missing k-space points yACS2 . Using the acquired k-space lines
yACS1 , we can estimate the weights of the GRAPPA convolution kernel K by minimizing
the following cost function:

K̂ = arg min
K
||yACS2 −K ⊛ yACS1 ||22 (12)

where ⊛ represents the convolution operation. The GRAPPA method has shown very good
results for uniform undersampling, and is the method used in product sequences by Siemens
and GE scanners. There are also recent methods (Xu et al., 2018; Chang et al., 2012) that
show ways to learn non-linear weights of a GRAPPA kernel.

The GRAPPA method regresses k-space lines from a learned kernel without assuming
any specific image reconstruction constraint such as sparsity, limited support, or smooth
phase as discussed in (Kim et al., 2019). On the other hand, low-rank based methods
assume an association between the reconstructed image and the k-space structure, thus
implying that the convolution-structured Hankel or Toeplitz matrices leveraged from the
k-space measurements must show a distinct null-space vector association with the kernel.
As a result, any low-rank recovery algorithm can be used for image reconstruction. The
simultaneous autocalibrating and k-space estimation (SAKE) (Shin et al., 2014) algorithm
used the block Hankel form of the local neighborhood in k-space across all coils for image
reconstruction. Instead of using correlations across multiple coils, the low-rank matrix mod-
eling of local k-space neighborhoods (LORAKS) (Haldar, 2013) utilized the image phase
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constraint and finite image support (in image space) to produce very good image recon-
struction quality. The LORAKS method does not require any explicit calibration of k-space
samples and can work well even if some of the constraints such as sparsity, limited support,
and smooth phase are not strictly satisfied. The AC-LORAKS (Haldar, 2015) improved the
performance of LORAKS by assuming access to the ACS measurements, i.e.:

y = arg min
y
||y− P(MAx)N ||22 (13)

where P(·) is a mapping function that transforms the k-space measurement to a structured
low-rank matrix, and the matrix N is the null space matrix. The mapping P(·) basically
takes care of the constraints such as sparsity, limited support, and smooth phase. In the
PRUNO (Zhang et al., 2011) method, the mapping P(·) only imposes limited support and
parallel imaging constraints. On the other hand, the number of nullspace vectors in N is set
to 1 in the SPIRiT method (Lustig and Pauly, 2010). The ALOHA method (Lee et al., 2016)
uses the weighted k-space along with transform-domain sparsity of the image. Different from
them, the method of (Otazo et al., 2015) uses a spatio-temporal regularization.

2.2 Image Space Rectification based Methods

These methods directly estimate the image from k-space by imposing prior knowledge about
the properties of the image (e.g., spatial smoothness). Leveraging image prior through
linear interpolation works well in practice but largely suffers from sub-optimal solutions
and as a result the practical cone beam algorithm (Laurette et al., 1996) was introduced
that improves image quality in such a scenario. The sensitivity encoding (SENSE) method
(Pruessmann et al., 1999) is an image unfolding method that unfolds the periodic repetitions
from the knowledge of the coil. In SENSE, the signal in a pixel location (i, j) is a weighted
sum of coil sensitivities, i.e.;

Ik(i, j) =

Nc∑
k=1

N2∑
j=1

Skjx(i, j), (14)

where N2 is the height of image x ∈ RN1×N2 , Nc is the number of coils, and Sk is the coil
sensitivity of the kth coil. The Ik is the kth coil image that has aliased pixels at a certain
position, and i is a particular row and j = {1, · · · , N2} is the column index counting from
the top of the image to the bottom. The S is the sensitivity matrix that assembles the
corresponding sensitivity values of the coils at the locations of the involved pixels in the full
FOV image x. The coil images Ik, the sensitivity matrix S, and the image x in Eqn. 14
can be re-written as;

I = Sx. (15)

By knowing the complex sensitivities at the corresponding positions, we can compute the
generalized inverse of the sensitivity matrix:

x = (ŜH Ŝ)−1ŜH · I. (16)

Please note that, I represents the complex coil image values at the chosen pixel and has
length Nc. In k-t SENSE and k-t BLAST (Tsao et al., 2003) the information about the
spatio-temporal support is obtained from the training dataset that helps to reduce aliasing.
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The physics based methods allow statistical modeling instead of simple geometric mod-
eling present in classical methods and reconstruct the MR images using the underlying
physics of the imaging system (Roeloffs et al., 2016; Tran-Gia et al., 2016; Maier et al.,
2019; Tran-Gia et al., 2013; Hilbert et al., 2018; Sumpf et al., 2011; Ben-Eliezer et al., 2016;
Zimmermann et al., 2017; Schneider et al., 2020). These types of methods sometimes use
very simplistic anatomical knowledge based priors (Chen et al., 1991; Gindi et al., 1993;
Cao and Levin, 1997) or “pixel neighborhood” (Szeliski, 2010) information via a Markov
Random Field based regularization (Sacco, 1990; Besag, 1986).

A potential function based regularization takes the form R(x) =
∑n

i=2 ψ(xi − xi−1),
where the function, ψ(·), could be a hyperbolic, Gaussian (Bouman and Sauer, 1993) or
any edge-preserving function (Thibault et al., 2007). The Total Variation (TV) could also
be thought of as one such potential function. The (Rasch et al., 2018) shows a variational
approach for the reconstruction of subsampled dynamic MR data, which combines smooth,
temporal regularization with spatial total variation regularization.

Different from Total Variation (TV) approaches, (Bostan et al., 2012) proposed a stochas-
tic modeling approach that is based on the solution of a stochastic differential equation
(SDE) driven by non-Gaussian noise. Such stochastic modeling approaches promote the use
of nonquadratic regularization functionals by tying them to some generative, continuous-
domain signal model.

The Compressed Sensing (CS) based methods impose sparsity in the image domain by
modifying Eqn. 2 to the following:

x̂ = min
x

1

2
||y−Ax||22 + λ||Γx||1, (17)

where Γ is an operator that makes x sparse. The l1 norm is used to promote sparsity
in the transform or image domain. The l1 norm minimization can be pursued using a
basis pursuit or greedy algorithm (Boyd et al., 2004). However, use of non-convex quasi -
norms (Chartrand, 2007; Zhao and Hu, 2008; Chartrand and Staneva, 2008; Saab et al.,
2008) show an increase in robustness to noise and image non-sparsity. The structured
sparsity theory (Boyer et al., 2019) shows that only O(M + M logN) measurements are
sufficient to reconstruct MR images when M -sparse data with size N are given. The kt-
SPARSE approach of (Lustig et al., 2006) uses a spatio-temporal regularization for high
SNR reconstruction.

Iterative sparsity based methods (Ravishankar and Bresler, 2012; Liu et al., 2015, 2016)
assume that the image can be expressed as a linear combination of the columns (atoms)
from a dictionary Γ such that x = ΓTh and h is the coefficient vector. Hence Eqn. 4
becomes:

x̂ = min
x

1

2
||y−Ax||22 + λR(x); R(x) = min

h

1

2
||x− ΓTh||22 + α||h||1. (18)

The SOUP-DIL method (Bruckstein et al., 2009) uses an exact block coordinate descent
scheme for optimization while a few methods (Chen et al., 2008; Lauzier et al., 2012; Chen
et al., 2008) assume to have a prior image x0, i.e. R(x − x0), to optimize Eqn. 4. The
method in (Caballero et al., 2014) optimally sparsifies the spatio-temporal data by training
an overcomplete basis of atoms.
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The method in (Hongyi Gu, 2021) shows a DL based approach to leverage wavelets for
reconstruction.

The transform based methods are a generalization of the CS approach that assumes a
sparse approximation of the image along with a regularization of the transform itself, i.e.,
Γx = h + ϵ, where h is the sparse representation of x and ϵ is the modeling error. The
method in (Ravishankar and Bresler, 2015) proposed a regularization as follows:

R(x) = min
Γ,h

1

2
||x− ΓTh||22 + αQ(Γ), (19)

where Q(Γ) = − log |detΓ| + 0.5||Γ||2 is the transform regularizer. In this context, the
STROLLR method (Wen et al., 2018) used a global and a local regularizer.

In general, Eqn. 5 is a non-convex function and cannot be optimized directly with
gradient descent update rules. The unrolled optimization algorithm procedure decouples
the data consistency term and the regularization term by leveraging variable splitting in
Eqn 4 as follows:

min
x,z
||Ax− y||22 + µ||x− h||22 +R(h), (20)

where the regularization is decoupled using a quadratic penalty on x and an auxiliary
random variable z. Eqn 20 is optimized via alternate minimization of

hi = min
h
λ||xi−1 − h||22 +R(h) (21)

and the data consistency term:

xi = min
x
||Axi−1 − y||22 + λ||hi − x||22 (22)

where the hi,hi−1 are the intermediate variables at iteration i. The alternating direc-
tion method of multiplier networks (ADMM net) introduce a set of intermediate vari-
ables, h1,h2, · · · ,hn, and eventually we have a set of dictionaries, Γ1,Γ2, · · · ,Γn, such
that, hi = Γix, collectively promote sparsity. The basic ADMM net update (Yang et al.,
2018) is as follows:

arg min
x

1

2
||Ax− y||22 +

∑
i

||Γix + βi − zi||22; arg min
zi

∑
i

[λig(hi)||Γix + βi − hi||22]

βi ← βi−1 + αi(Γix− hi)

(23)

where g(·) can be any sparsity promoting operator and β is called a multiplier. The iterative
shrinkage thresholding algorithm (ISTA) solves this CS optimization problem as follows:

hi+1 = xi − ΦH(Φxi − y); xi+1 = arg min
x

1

2
||x− hi+1||22 + λ||Γx||1. (24)

Later in this paper, we shall show how ISTA and ADMM can be organically used within
the modern DL techniques in Sec. 5.3.
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3. Review of Deep Learning Building Blocks

In this section, we will describe basic building blocks that are individually or collectively
used to develop complex DL methods that work in practice. Any DL method, by design,
has three major components: the network structure, the training process, and the dataset
on which the DL method is trained and tested. We shall discuss each one of them below in
detail.

3.1 Various Deep Learning Frameworks

Perceptron: The journey of DL started in the year 1943 when Pitts and McCulloch
(McCulloch and Pitts, 1943) gave the mathematical model of a biological neuron. This
mathematical model is based on the “all or none” behavioral dogma of a biological neuron.
Soon after, Rosenblatt provided the perceptron learning algorithm (Rosenblatt, 1957) which
is a mathematical model based on the behaviour of a neuron. The perceptron resembles
the structure of a neuron with dendrites, axons and a cell body. The basic perceptron is a
binary classification algorithm of the following form:

f(x) =

{
1 if w · x + b > 0,

0 otherwise
(25)

where xi’s are the components of an image vector x, wi’s are the corresponding weights that
determine the slope of the classification line, and b is the bias term. This setup collectively
resembles the “all or none” working principle of a neuron. However, in the famous book of
Minsky and Papert (Minsky and Papert, 2017) called “Perpetron” it was shown that the
perceptron can’t classify non-separable points such as an exclusive-OR (XOR) function.
Multilayer Perceptron (MLP): It was understood that the non-separability problem of
perceptron can be overcome by a multilayer perceptron (Minsky and Papert, 2017) but the
research stalled due to the unavailability of a proper training rule. In the year 1986, Rumel-
hart et al. (Rumelhart et al., 1986) proposed the famous “backpropagation algorithm” that
provided fresh air to the study of neural network. A Multilayer Perceptron (MLP) uses sev-
eral layers of multiple perceptrons to perform nonlinear classification. A MLP is comprised
of an input layer, an output layer, and several densely connected in-between layers called
hidden layers:

h1 = ψ1
(∑

W 1x + b1
)

; hi = ψi
(∑

W ihi−1 + bi
)
,where, i ∈ {2, · · · , n− 1}

y = ψn
(∑

Wnhn−1 + bn−1
)
.

(26)

Along with the hidden layers and the input-output layer, the MLP learns features of the
input dataset and uses them to perform classification. The dense connection among hidden
layers, input and output layers often creates a major computational bottleneck when the
input dimension is very high.
Neocognitron or the Convolutional Neural Network (CNN): The dense connection
(also known as global connection) of a MLP was too flexible a model and prone to overfitting
and sometimes had large computational overhead. To cope with this situation, a local sliding
window based network with shared weights was proposed in early 1980s called neocognitron
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network (Fukushima and Miyake, 1982) and later popularized as Convolutional Neural
Network (CNN) in the year 1998 (LeCun et al., 1989). Similar to the formulation of (Liang
et al., 2020a), we write the feedforward process of a CNN as follows:

C0 = x

Ci = ψi−1(Ki−1 ⋆ Ci−1); i ∈ {1, · · · , n− 1}, Cn = ψn−1(Kn−1 ⋆ Cn−1),
(27)

where Ci ∈ Rh×w×d is the ith hidden layer comprised of d-number of feature maps each of
size h× w, Ki is the ith kernel that performs a convolution operation on Ci, and ψi(·) are
activation functions to promote non-linearity. We show a vanilla kernel operation in Eqn.
27. Please note that, the layers of the CNN can either be a fully connected dense layer, a
max-pooling layer that downsizes the input, or a dropout layer to perform regularization
that is not shown in Eqn. 27.
Recurrent Neural Networks (RNNs): A CNN can learn hidden features of a dataset
using its inherent deep structure and local connectivities through a convolution kernel. But
they are not capable of learning the time dependence in signals. The recurrent neural
network (RNN) (Rumelhart et al., 1986) at its basic form is a time series neural network
with the following form:

h0 = x

ht = ψt(Whhht−1 +Wxhxt), t ∈ {1, · · · , n− 1}; hn = ψn(Whyhn−1),
(28)

where t is the time and the RNN takes the input x in a sequential manner. However,
the RNN suffers from the problem of “vanishing gradient”. The vanishing gradient is
observed when gradients from output layer of a RNN trained with gradient based optimiza-
tion method changes parameter values by a very small amount, thus effecting no change
in parameter learning. The Long Short Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) uses memory gates, and sigmoid and/or tanh activation function and
later ReLU activation function (see Sec. 3.2 for activation functions) to control the gradient
signals and overcome the vanishing gradient problem.
Transformer Networks: Although the LSTM has seen tremendous success in DL and
MR reconstruction, there are a few problems associated with the LSTM model (Vaswani
et al., 2017) such as: (i) the LSTM networks perform a sequential processing of input; and
(ii) the short attention span of the hidden states that may not learn a good contextual
representation of input. Such shortcomings are largely mitigated using a recent advance-
ment called the Transformer Network (Vaswani et al., 2017). A transformer network has
a self-attention mechanism2, a positional embedding and a non-sequential input processing
setup and empirically this configuration outperforms the LSTM networks by a large margin
(Vaswani et al., 2017).

2. Self-attention: The attention mechanism provides a way to know which part of the input is to be
given more focus. The self-attention, on the other hand, measures the contextual relation of an input by
allowing it to interact with itself. Let’s assume that we are at hth

i ∈ Rc×N layer that has C number of
channels and N number of locations on a feature map. We get two feature vectors, f(hi) = Wfhi and
g(hi) = Wghi, by transforming the hth

i layer to a vector (typically done with a 1× 1 convolution). The
contextual similarity of these to vectors f(hi) and g(hi) is measured by;

βk,l =
exp(skl)∑N
l=1 exp(skl)

,where,skl = f(hi)
T g(hi)
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3.2 Activation Functions

The activation function, ψ(·), operates on a node or a layer of a neural network and provides
a boolean output, probabilistic output or output within a range. The step activation func-
tion was proposed by McCulloch & Pitts in (McCulloch and Pitts, 1943) with the following
form: ψ(x) = 1, if,x ≥ 0.5 and 0 otherwise. Several initial works also used the hyperbolic
tangent function, ψ(x) = tanh(x), as an activation function that provides value within
the range [−1,+1]. The sigmoid activation function, ψ(x) = 1

1+e−x , is a very common
choice and provides only positive values within the range [0, 1]. However, one major disad-
vantage of the sigmoid activation function is that its derivative, ψ

′
(x) = ψ(x)(1 − ψ(x)),

quickly saturates to zero which leads to the vanishing gradient problem. This problem
was addressed by adding a Rectified Linear Unit (ReLu) to the network (Brownlee, 2019),
ψ(x) = max(0,x) with the derivative ψ

′
(x) = 1, if,x > 0 or 0 elsewhere.

3.3 Network Structures

The VGG Network: In late 2015, Zisserman et al. published their seminal paper with the
title “very deep convolutional networks for large-scale image recognition” (VGG) (Simonyan
and Zisserman, 2014) that presents a 16-layered network called VGG network. Each layer
of the VGG network has an increasing number of channels. The network was shown to
achieve state-of-the-art level performance in Computer Vision tasks such as classification,
recognition, etc.

The ResNet Model: A recently developed model called Residual Networks or ResNet
(He et al., 2016), modifies the layer interaction shown in Eqn. 27 to the following form,
Ci = ψi−1(Ki−1 ⋆ Ci−1) + Ci−2 where, i ∈ {2, · · · , n − 1}, and provides a “shortcut
connection” to the hidden layers. The identity mapping using the shortcut connections has
a large positive impact on the performance and stability of the networks.

UNet: A UNet architecture (Ronneberger et al., 2015) was proposed to perform image
segmentation task in biomedical images. The total end-to-end architecture pictorially re-
sembles the english letter “U” and has a encoder module and a decoder module. Each
encoder layer is comprised of unpadded convolution, a rectified linear unit (ReLU in Sec.
3.2), and a pooling layer, which collectively downsample the image to some latent space.
The decoder has the same number of layers as the encoder. Each decoder layer upsamples
the data from its previous layer until the input dimension is reached. This architecture has
been shown to provide good quantitative results on several datasets.

Autoencoders: The autoencoders (AE) are a type of machine learning models that capture
the patterns or regularities of input data samples in an unsupervised fashion by mapping
the target values to be equal to the input values (i.e. identity mapping). For example,
given a data point x randomly sampled from the training data distribution pdata(x), a
standard AE learns a low-dimensional representation z using an encoder network, z ∼
D(z|x, θd), that is parameterized by θd. The low-dimensional representation z, also called
the latent representation, is subsequently projected back to the input dimension using a
decoder network, x̃ ∼ GGEN (x|z, θg), that is parameterized by θg. The model parameters,

The output is o = (o1,o2, · · · ,oN ), where ok = v(
∑N

l=1 βk,lm(hil)), and m(hil) = Wmhi, v(hil) =
Wvhil. Here, the Wv,Wm,Wf ,Wg are learnable matrices that collectively provide the self-attention
vector oo = (o1,o2, · · · ,oN ) for a given layer hi.
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0/1

Figure 3: Deep Learning Models: We visually demonstrate various DL models such as
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
Autoencoders, Residual Layer, Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) discussed in Sec. 3. The Convolutional Neu-
ral Network is comprised with many layers {C0, C1, · · · , Cn} and the network
gets input for layer Ci+1 from its previous layer Ci after imposing non-linearity,
i.e. Ci+1 = ψi(Ki ⋆ Ci), using a non-linear function ψi. The Recurrent Neural
Network is a time varying memory network. On the other hand, the Autoen-
coders perform non-linear dimensionality reduction by projecting the input x
to a lower dimensional variable z using an encoder network and projects back
z to the image space x using a decoder network. The ResNet uses the Resid-
ual Layer to solve problems like vanishing gradient, slow convergence, etc. The
Generative Adversarial Network and the Variational Autoencoder are
generative models that are discussed in Sec. 4.

i.e. (θd, θg), are trained using the standard back propagation algorithm with the following
optimization objective:

Lθd,θg = arg min
θg ,θd

Ez∼D(x,θd)
1

2
||x−GGEN (x|z, θg)||22. (29)

From a Bayesian learning perspective, an AE learns a posterior density, p(z|x), using the
encoder network, GGEN (z|x, θg), and a decoder network, D(x|z, θd). The vanilla autoen-
coder, in a way, can be thought of as a non-linear principal component analysis (PCA)
(Hinton and Salakhutdinov, 2006) that progressively reduces the input dimension using the
encoder network and finds regularities or patterns in the data samples.

Variational Autoencoder Networks: Variational Autoecoder (VAE) is basically an
autoencoder network that is comprised of an encoder network GGEN (z|x, θg) that estimates
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the posterior distribution p(z|x) and the inference p(x|z) with a decoder network D(z, θd).
However, the posterior p(z|x) is intractable3 and several methods have been proposed to
approximate the inference using techniques such as the Metropolis-Hasting (Metropolis
et al., 1953) and variational inference (VI) algorithms (Kingma and Welling, 2013). The
main essence of VI algorithm is to estimate an intractable probability density, i.e. p(z|x)
in our case, from a class of tractable probability densities, Z, with an objective to finding
a density, q(z), almost similar to p(z|x). We then sample from the tractable density q(z)
instead of p(z|x) to get an approximate estimation, i.e.

q∗(z) = arg min
q(z)∈Q

DKL(q(z)||p(z|x)). (30)

Here, DKL is the KL divergence (Kullback and Leibler, 1951). The VI algorithm, however,
typically never converges to the global optimal solution but provides a very fast approx-
imation. The VAE consists of three components: (i) the encoder network Eθe(z|x) that
observes and encodes a data point x from the training dataset D(x) and provides the mean
and variance of the approximate posterior, i.e. N (µθ(xi), σθ(xi)) from a batch of n data
points xi|ni=1; (ii) a prior distribution G(z), typically an isotropic Gaussian N (0, I) from
which z is sampled, and (iii) a generator network Gθg(x|z) that generates data points given
a sample from the latent space z. The VAE, however, cannot directly optimize the VI, i.e.
q∗(z) = arg minq(z)∈QDKL(q(z)||p(z|x)), as the KL divergence requires an estimate of the
intractable density p(x), i.e. DKL(q(z)||p(z|x)) = E[log q(z)] − E[log p(z,x)] + E[log p(x)].
As a result, VAE estimates the evidence lower bound (ELBO) that is similar to KL diver-
gence, i.e.:

ELBO(q) = E[log p(z,x)]− E[log q(z)] = E[log p(z)] + E[log p(x|z)]− E[log q(z)]

= E[log p(x|z)]−DKL(p(z|x)||q(z)) = Ez∼p(z|x)[log p(x|z)]−DKL(p(z|x)||q(z))

(31)

Since ELBO(q) ≤ log p(x), optimizing Eqn. (31) provides a good approximation of the
marginal density p(x). Please note that, Eqn. 31 is similar to Eqn. 4 where the first term
in Eqn. 31 is the data consistency term and the KL divergenece term acts as a regularizer.

Generative Adversarial Networks: A vanilla Generative Adversarial Networks (GAN)
setup, by design, is an interplay between two neural networks called the generator, that
is GGEN (x|z, θg), and the discriminator Dθd(·) parameterized by θg and θd respectively.
The GGEN (x|z, θg) samples the latent vector z ∈ Rn×1×1 and generates xgen. While the
discriminator, on the other hand, takes x (or xgen) as input and provides a {real, fake}
decision on x being sampled from a real data distribution or from GGEN (x|z, θg). The
parameters are trained using a game-theoretic adversarial objective, i.e.:

Lθd,θg = −Ex∼pdata [logD(x|θd)]− Ez∼N (0,I)[log(1−D(GGEN (x|z, θg), θd))]. (32)

3. Intractability: We can learn the density of the latent representation from the data points themselves,
i.e. p(z|x) = p(z)p(x|z)|p(x), by expanding the Bayes theorem of conditional distribution. In this
equation, the numerator is computed for a single realization of data points. However, the denominator
is the marginal distribution of data points, p(x), which are complex and hard to estimate; thus, leading
to intractability of estimating the posterior.
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As the training progresses, the generator GGEN (z|θg) progressively learns a strategy to
generate realistic looking images, while the discriminator D(x, θd) learns to discriminate
the generated and real samples.

3.4 Loss Functions

In Sec. 1.1, we mentioned the loss function, L, that estimates the empirical loss and the
generalization error. Loss functions that are typically used in MR image reconstruction
using DL methods are the Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity Loss function (SSIM), or an l1 loss to optimize Eqns. 3, 4, 5.
The MSE loss between an image x and its noisy approximation x̂ is defined as, MSE(x, x̂) =
1
n

∑n
i=1(x̂i − xi)

2, where n is the number of samples. The root MSE (RMSE) is essentially

the squared root of the MSE,
√
MSE(x, x̂). The l1 loss, l1(x, x̂) = 1

n

∑n
i=1 |x̂i−xi|, provides

the absolute difference and is typically used as a regularization term to promote sparsity.
The PSNR is defined using the MSE, PSNR(x, x̂) = 20 log10(MAXx−10 log10(MSE(x, x̂)),
where MAXx is the highest pixel value attained by the image x. The PSNR metric captures
how strongly the noise in the data affects the fidelity of the approximation with respect to the
maximum possible strength of the signal (hence the name peak signal to noise ratio). The
main concern with MSE(x, x̂) and PSNR(x, x̂) is that they penalize large deviations much
more than smaller ones (Zhao et al., 2016) (e.g., outliers are penalized more than smaller
anatomical details). The SSIM loss for a pixel i in the image x and the approximation x̂
captures the perceptual similarity of two images: SSIM(xi, x̂i) = 2µxµx̂+c1

µ2x+µ
2
x̂+c1

2σxx̂+c2
σ2
x+σx̂

2+c2
, here

c1, c2 are two constants, and µ is the mean and σ is the standard deviation.
The VGG loss: It is shown in (Johnson et al., 2016) that the deeper layer feature maps
(feature maps are discussed in Eqn. 27) of a VGG-16 network, i.e. a VGG network that
has 16 layers, can be used to compare perceptual similarity of images. Let us assume that,
the Lth layer of a VGG network has distinct NL feature maps each of size ML ×ML. The
matrix FL ∈ RNL×ML , stores the activations FLi,j of the ith filter at position j of layer L.

Then, the method computes feature correlation using: CLi,j =
∑

k F
L
i,kF

L
j,k, where any Fmn,o

conveys the activation of the nth filter at position o in layer m. The correlation CLi,j is
considered as a VGG-loss function.

4. Inverse Mapping using Deep Generative Models

Based on how the generator network, GGEN (x|z, θg), is optimized in Eqn. 6, we get differ-
ent manifestations of deep generative networks such as Generative Adversarial Networks,
Bayesian Networks, etc. In this section, we shall discuss specifics on how these networks
are used in MR reconstruction.

4.1 Generative Adversarial Networks (GANs)

We gave a brief introduction to GAN in Sec. 3.3 and in this section we shall take a
closer look on the different GAN methods used to learn the inverse mapping from k-space
measurements to the MR image space.
Inverse Mapping from k-space: The current GAN based k-space methods can be
broadly classified into two categories: (i) methods that directly operate on the k-space
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y and reconstruct the image x by learning a non-linear mapping and (ii) methods that
impute the missing k-space lines ymissing in the undersampled k-space measurements. In
the following paragraphs, we first discuss the recent GAN based direct k-space to MR im-
age generation methods followed by the undersampled k-space to full k-space generation
methods.

The direct k-space to image space reconstruction methods, as shown in Fig. 3 (a), are
based on the premise that the missing k-space lines can be estimated from the acquired
k-space lines provided we have a good non-linear interpolation function, i.e.;

Lθd,θg = −Ex∼pdata [logD(x|θd)]− Ez∼N (0,I)[log(1−D(GGEN (x|y, θg), θd))]. (33)

This GAN framework was used in (Oksuz et al., 2018) for correcting motion artifacts in
cardiac imaging using a generic AUTOMAP network4. Such AUTOMAP-like generator
architectures not only improve the reconstruction quality but help in other downstream
tasks such as MR image segmentation (Oksuz et al., 2019a, 2020, 2019b). However, while the
“AUTOMAP as generator” based methods solve the broader problem of motion artifacts,
but they largely fail to solve the banding artifacts along the phase encoding direction.
To address this problem, a method called MRI Banding Removal via Adversarial Training
(Defazio et al., 2020) leverages a perceptual loss along with the discriminator loss in Eqn. 32.
The perceptual loss ensures data consistency, while, the discriminator loss checks whether:
(i) the generated image has a horizontal (0) or a vertical (1) banding; and (ii) the generated
image resembles the real image or not. With a 4x acceleration, a 12-layered UNet generator
and a ResNet discriminator, the methodology has shown remarkable improvements (Defazio
et al., 2020) on fastMRI dataset.

Instead of leveraging the k-space regularization within the parameter space of a GAN
(Oksuz et al., 2018, 2019a), the k-space data imputation using GAN directly operates on
the k-space measurements to regularize Eqn. 32. To elaborate, these type of methods
estimate the missing k-space lines by learning a non-linear interpolation function (similar
to GRAPPA) within an adversarial learning framework, i.e.

Lθd,θg = −Ex∼pdata [logD(x|θd)]− Ez∼N (0,I)[log(1−D(FGGEN (yfull|y, θg), θd))]. (34)

The accelerated magnetic resonance imaging (AMRI) by adversarial neural network method
(Shitrit and Raviv, 2017) aims to generate the missing k-space lines, ymissing from y using
a conditional GAN, ymissing ∼ G(ymissing|z, c = y). The combined y,ymissing is Fourier
transformed and passed to the discriminator. The AMRI method showed improved PSNR
value with good reconstruction quality and no significant artifacts as shown in Fig. 4. Later,
in subsampled brain MRI reconstruction by generative adversarial neural networks method
(SUBGAN) (Shaul et al., 2020), the authors discussed the importance of temporal context
and how that mitigates the noise associated with the target’s movement. The UNet-based
generator in SUBGAN takes three adjacent subsampled k-space slices yi−1,yi,yi+1 taken

4. AUTOMAP (Zhu et al., 2018): This is a two stage network resembling the unrolled optimization like
methods (Schlemper et al., 2017). The first sub network ensures the data consistency, while, the other
sub network helps in refinement of the image. The flexibility of AUTOMAP enables it to learn the
k-space to image space mapping from alternate domains instead of strictly from a paired k-space to MR
image training dataset.
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Figure 4: Reconstruction using k-space Imputation: We show qualitative comparison
of a few methods with the AMRI method (Shitrit and Raviv, 2017). The first row
are the reconstructed images and the second row images are zoomed-in version of
the red boxes shown in first row. The Zero-filled, compressed sensing MRI (CS-
MRI), CNN network trained with l2 loss (CNN-L2) have lesser detail as compared
to the AMRI (proposed) method. The images are borrowed from AMRI (Shitrit
and Raviv, 2017) paper.

at timestamps ti−1, ti, ti+1 and provides the reconstructed image. The method achieved
a performance boost of ∼ 2.5 in PSNR with respect to the other state-of-the-art GAN
methods while considering 20% of the original k-space samples on IXI dataset (Rowland
et al., 2004). We also show reconstruction quality of SUBGAN on fastMRI dataset in
Fig. 5. Another method called multi-channel GAN (Zhang et al., 2018b) advocates the
use raw of k-space measurements from all coils and has shown good k-space reconstruction
and lower background noise compared to classical parallel imaging methods like GRAPPA
and SPIRiT. However, we note that this method achieved ∼ 2.8 dB lower PSNR than the
GRAPPA and SPIRiT methods.

Despite their success in MR reconstruction from feasible sampling patterns of k-space,
the previous models we have discussed so far have the following limitations: (i) they need
unaliased images for training, (ii) they need paired k-space and image space data, or (iii)
the need fully sampled k-space data. In contrast, we note a recent work called unsupervised
MR reconstruction with GANs (Cole et al., 2020) that only requires the undersampled k-
space data coming from the receiver coils and optimizes a network for image reconstruction.
Different from AutomapGAN (Oksuz et al., 2019a), in this setup the generator provides the
undersampled k-space (instead of the MR image as in case of AutomapGAN) after applying
Fourier transform, sensitivity encoding and a random-sampling maskM1 on the generated
image, i.e. ygen =M1FS(G(x|y, θg)). The discriminator takes the k-space measurements
instead of an MR image and provides thee learned signal to the generator.

Image space Rectification Methods: Image space rectification methods operate on the
image space and learn to reduce noise and/or aliasing artifacts by updating Eqn. 4 to the
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following form:

x̂ = arg min
x

1

2
||x−GGEN (x|xlow, θg)||22 + λ||yt −FGGEN (x|xlow, θg)||22 + ζLθd,θg ;

Lθd,θg = −Ex∼pdata [logD(x|θd)]− Ez∼N (0,I)[log(1−D(GGEN (x|xlow, θg), θd))].
(35)

The GAN framework for deep de-aliasing (Yang et al., 2017) regularizes the reconstruction
by adopting several image priors such as: (i) image content information like object boundary,
shape, and orientation, along with using a perceptual loss function: 1

2 ||x−xlow||22, (ii) data
consistency is ensured using a frequency domain loss 1

2 ||y
t−yu||22, and (iii) a VGG loss (see

Sec. 3.4) which enforces semantic similarity between the reconstructed and the ground truth
images. The method demonstrated a 2dB improvement in PSNR score on IXI dataset with
30% undersampling. However, it was observed that the finer details were lost during the
process of de-aliasing with a CNN based GAN network. In the paper called self-attention
and relative average discriminator based GAN (SARAGAN) (Yuan et al., 2020), the authors
show that fine details tend to fade away due to smaller size of the convolution kernels,
leading to poor performance. Consequently, the SARAGAN method adopts a relativistic
discriminator (Jolicoeur-Martineau, 2018) along with a self-attention network (see Sec. 3.1
for self-attention) to optimize the following equation that is different from Eqn. 35:

Lθd,θg = −Ex∼pdata [sigmoid(D(x)−D(G(xlow)))]−Ez∼N (0,I)[sigmoid(D(G(xlow))−D(x))]
(36)

where, sigmoid(·) is the sigmoid activation function discussed in Sec. 3.2. This method
showed excellent performance in the MICCAI 2013 grand challenge brain MRI reconstruc-
tion dataset and got an SSIM of 0.9951 and PSNR of 45.7536 ± 4.99 with 30% sampling
rate. Among other methods, sparsity based constraints are imposed as a regularizer to Eqn.
35 in compressed sensing GAN (GANCS) (Mardani et al., 2018a), RefineGAN (Quan et al.,
2018), and the structure preserving GAN (Deora et al., 2020; Lee et al., 2018) methods.
Some qualitative results using the RefineGAN method are shown in Fig. 5. On the other
hand, methods like PIC-GAN (Lv et al., 2021) and (MGAN) (Zhang et al., 2018a) use a
SENSE-like reconstruction strategy that combines MR images reconstructed from parallel
receiver coils using a GAN framework. Such methods have also shown good performance
with low normalized mean squared error in the knee dataset.
Combined k-space and image space methods: Thus far, we have discussed k-space
(GRAPPA-like GAN methods) and image space (SENSE-like GAN methods) MR recon-
struction methods that work in isolation. However, both these strategies can be combined
together to leverage the advantages of both methods. Recently, a method called sampling
augmented neural network with incoherent structure for MR image reconstruction (SAN-
TIS) (Liu et al., 2019) was proposed that leverages a cycle consistency loss, Lcyc in addition
to a GAN loss, Lθd,θg i.e.,

Lfull = Lθd,θg + Lcyc = λ1E[||x−G(xlow, θg)||22] + λGAN

(
E[logD(x, θd)]

+ E[log(1−D(G(xlow, θg), θd))]
)

+ λ2E[||y − F (G(xlow, θg), θf )||22],
(37)

where the function F (·) is another generator network that projects back the MR image
to k-space. The method achieved an SSIM value of 91.96 on the 4x undersampled knee
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Figure 5: Comparison of GAN Methods: Qualitative comparison of (i) k-space inter-
polation based method, i.e. SUBGAN; (ii) Image space rectification method, i.e.
RefineGAN; and (iii) the combined k-space and image space rectification method,
i.e. SANTIS.

FastMRI dataset (see Fig. 5 and Table 1). In the collaborative GAN method (CollaGAN)
(Lee et al., 2019), instead of cycle consistency between k-space and the image domain
from a single image, they consider a collection of domains such as T1-weighted and T2-
weighted data and try to reconstruct the MR images with cycle consistency in all domains.
The InverseGAN (Narnhofer et al., 2019) method performs cycle consistency using a single
network that learns both the forward and inverse mapping from and to k-space.

4.2 Bayesian Learning

Bayes’s theorem expresses the posterior p(x|y) as a function of the k-space data likelihood,
p(y|x) and the prior p(x) with the form p(x|y) ∝ p(y|x)p(x) also known as the “product-
of-the-experts” in DL literature. In (Tezcan et al., 2018), the prior is estimated with a
Monte Carlo sampling technique which is computationally intensive. To overcome the
computational cost, several authors have proposed to learn a non-linear mapping from
undersampled k-space to image space using VAEs. In these VAE based methods (Tezcan
et al., 2019; Gaillochet et al., 2020; Van Essen et al., 2012), the networks are trained on
image patches mj obtained from k-space measurement yi and the VAE network is optimized

using these patches with the following cost function:
∑N

j=1ELBO(mj),

arg min
m

[
||Ex− y||22 −

∑
x∈Ω(m)

ELBO(x)
]
;ELBO(x) = EDθd

(z|x)

[
logGθg(x|z) + log

p(z)

Gθg(x|z)

]
.

(38)

These methods have mainly been evaluated on the Human Connectome Project (HCP)
(Van Essen et al., 2012) dataset and have shown good performance on 4x undersampled
images (see Fig 6).

Different from them, PixelCNN+ considers each pixel as random variable and estimates
the joint distribution of pixels over an image x as the product of conditional distribution, i.e.
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Figure 6: MR Reconstruction using VAE Based Methods: Qualitative comparison
of (a) original; (b) zero-filled; and (c) VAE based DDP method (Tezcan et al.,
2019). Also shown are the difference maps in (d) between DDP and the original
images. These results are borrowed from the DDP (Tezcan et al., 2019) paper.

p(x) =
∏n2

i=1 p(xi|x1,x2, · · · ,xi−1). The method proposed in (Luo et al., 2020) considers
a generative regression model called PixelCNN+ (Oord et al., 2016) to estimate the prior
p(x). This method demonstrated very good performance, i.e. they achieved more than 3 dB
PSNR improvement than the current state-of-the-art methods like GRAPPA, variational
networks (see Sec. 5.3) and SPIRIT algorithms. The Recurrent Inference Machines (RIM)
for accelerated MRI reconstruction (Lonning et al., 2018) is an general inverse problem solver
that performs a step-wise reassessments of the maximum a posteriori and infers the inverse
transform of a forward model. Despite showing good results, the overall computational cost
and running time is very high compared to GAN or VAE based methods.

4.3 Active Acquisition Methods

Combined k-space and image methods: All of the above methods consider a fixed
k-space sampling that is predetermined by the user. This sampling process is isolated from
the reconstruction pipeline. Recent works have investigated if the sampling process itself
can be included as a part of the reconstruction optimization framework. A basic overview
of these works can be described as follows:

• The algorithm has access to the fully sampled training MR images {x1,x2, · · · ,xN}

• The encoder, Gθg(·), learns the sampling pattern by optimizing parameter θg.

• The decoder, Dθd(·), is the reconstruction algorithm that is parameterized by θd
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Figure 7: MR Reconstruction using Active Acquisition Method: Variable mask
learned by the active acquisition method LOUPE (Bahadir et al., 2019) can im-
prove the image quality of a UNet based MR image reconstruction task. The
leftmost image is the ground truth, the second image shows the reconstruction
using an optimized mask, the next image is the variaable mask, that is followed
by the uniformly random and Cartesian mask. The images are borrowed from
the LOUPE (Bahadir et al., 2019) paper.

• The encoder Gθg(·) is optimized by minimizing the empirical risk on the training

MR images, 1
N

∑N
i=1 Lq(xi, Dθd(Gθg(F (x)))), where Lq is some arbitrary loss of the

decoder.

This strategy was used in LOUPE (Bahadir et al., 2019) where a network was learnt to
optimize the under-sampling pattern such that Gθg(·) provided a probabilistic sampling
mask M(·) assuming each line in k-space as an independent Bernoulli random variable by
optimizing:

arg min
θg ,θd

EM∼Gθg
[||Dθd(MFx)− x||1 + λM], (39)

where Dθd is an anti-aliasing deep neural network. Experiments on T1-weighted structural
brain MRI scans show that the LOUPE method improves PSNR by ∼ 5% with respect
to the state-of-the-art methods that is shown in Fig. 7, second column. A follow-up
work to LOUPE (Bahadir et al., 2020) imposed a hard sparsity constraint on Gθg(·) to
ensure robustness to noise. In the deep active acquisition method (Zhang et al., 2019b),
Gθg(·) is termed the evaluator and Dθd(·) is the reconstruction network. Given a zero-
filled MR image, Dθd(xZF ) provides the reconstructed image and the uncertainty map.
The evaluator Gθg(·) decomposes the reconstructed image and ground truth image into
spectral maps and provides a score to each k-space line of the reconstructed image. Based
on the scores, the methodology decides to acquire the appropriate k-space locations from
the MR scanner. The Deep Probabilistic Subsampling (DPS) method in (Huijben et al.,
2019) develops a task-adaptive probabilistic undersampling scheme using a softmax based
approach followed by MR reconstruction. On the other hand, the work on joint model
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based deep learning (J-MoDL) (Aggarwal and Jacob, 2020) optimized both sampling and
reconstruction using Eqns 21 and 22 to jointly optimize a data consistency network and a
regularization network. The data consistency network is a residual network that acts as a
denoiser, while the regularization network decides the sampling scheme. The PILOT (Weiss
et al., 2021) method also jointly optimizes the k-space sampling and the reconstruction.
The network has a sub-sampling layer to decide the importance of a k-space line, while the
regridding and the task layer jointly reconstruct the image. The optimal k-space lines are
chosen either using the greedy traveling salesman problem or imposing acquisition machine
constraints. Joint optimization of k-space sampling and reconstruction also appeared in
recent methods such as (Heng Yu, 2021; Guanxiong Luo, 2021).

5. Inverse Mapping using Non-generative Models

In this section we discuss non-generative models that use the following optimization frame-
work:

x̂ = arg min
x

1

2
||y−Ax||22 + λLθg ; Lθg = arg min

θg
Ex∼pdata

1

2
||xj −GNGE(x|c, θg)||22. (40)

The non-generative models also have a data consistency term and a regularization term
similar to Eqn. 4. As discussed earlier in section 1.2, however, the non-generative models
do not assume any underlying distribution of the data and learn the inverse mapping by pa-
rameter optimization using Eqn. 7. Below, we discuss the different types of non-generative
models.

5.1 Perceptron Based Models

The work in (Kwon et al., 2017; Cohen et al., 2018) developed a multi-level perceptron
(MLP) based learning technique that learns a nonlinear relationship between the k-space
measurements, the aliased images, and the desired unaliased images. The input to an MLP
is the real and imaginary part of an aliased image and the k-space measurement, and the
output is the corresponding unaliased image. We show a visual comparison of this method
(Kwon et al., 2017) with the SPIRiT and GRAPPA methods in Fig. 8. This method showed
better performance with lower RMSE at different undersampling factors.

5.2 Untrained Networks

So far, we have talked about various deep leraning architectures and their training strate-
gies using a given training dataset. The most exciting question one can ask “is it always
necessary to train a DL network to obtain the best result at test time?”, or “can we solve
the inverse problem using DL similar to classical methods that do not necessarily require
a training phase to learn the parameter priors”? We note several state-of-the-art methods
that uses ACS lines or other k-space lines of the k-space measurement y to train a DL
network instead of an MR image as a ground truth. The robust artificial neural network
for k-space interpolation (RAKI) (Akçakaya et al., 2019) trains a CNN by using the ACS
lines. The RAKI methodology shares some commonality with GRAPPA. However, the
main distinction is the linear estimation of the convolution kernel in GRAPPA which is re-
placed with a non-linear kernel in CNN. The CNN kernels are optimized using the following
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Figure 8: Visual Comparison with Perceptron, SPIRiT and GRAPPA methods.
We note the dealiasing capability of the perceptron based method at different
sampling rates, i.e. row (a) and row (b), for a T2-weighted image are visibly
better than the classical methods. The figure is borrowed from (Kwon et al.,
2017) paper.

objective function:

x̂ = arg min
x

1

2
||y−Ax||22 + λLθg ; Lθg = ||yACS −GNGE(ỹACS ; θg)||2F (41)

where, yACS are the acquired ACS lines, and GNGE(·) is the CNN network that performs
MRI reconstruction. The RAKI method has shown 0%, 0%, 11%, 28%, and 41% improve-
ment in RMSE score with respect to GRAPPA on phantom images at {2x, 3x, 4x, 5x, 6x}
acceleration factors respectively. A followup work called residual RAKI (rRAKI) (Zhang
et al., 2019a) improves the RMSE score with the help of a residual network structure. The
LORAKI (Kim et al., 2019) method is based on the low rank assumption of LORAKS
(Haldar, 2013). It uses a recurrent CNN network to combine the auto-calibrated LORAKS
(Haldar, 2013) and the RAKI (Akçakaya et al., 2019) methods. On five different slices
of a T2-weighted dataset, the LORAKI method has shown good improvement in SSIM
scores compared to GRAPPA, RAKI, AC-LORAKS among others. Later, the sRAKI-RNN
(Hosseini et al., 2019b) method proposed a unified framework that performs regulariza-
tion through calibration and data consistency using a more simplified RNN network than
LORAKI.

Deep Image Prior (DIP) and its variants (Ulyanov et al., 2018; Cheng et al., 2019;
Gandelsman et al., 2019) have shown outstanding results on computer vision tasks such
as denoising, in-painting, super resolution, domain translation etc. A vanilla DIP network
uses a randomly weighted autoencoder, Dθd(Gθg(z)), that reconstructs a clean image x ∈
RW×H×3 given a fixed noise vector z ∈ RW×H×D. The network is optimized using the
“ground truth” noisy image x̂. A manual or user chosen “early stopping” of the optimization
is required as optimization until convergence overfits to noise in the image. A recent work
called Deep Decoder (Heckel and Hand, 2018) shows that an under-parameterized decoder
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network, Dθd(·), is not expressive enough to learn the high frequency components such as
noise and can nicely approximate the denoised version of the image. The Deep Decoder
uses pixel-wise linear combinations of channels and shared weights in spatial dimensions
that collectively help it to learn relationships and characteristics of nearby pixels. It has
been recently understood that such advancements can directly be applied to MR image
reconstruction (Mohammad Zalbagi Darestani, 2021). Given a set of k-space measurements
y1,y2, · · · ,yn from receiver coils, an un-trained network Gθ(z) uses an iterative first order
method to estimate parameters θ̂ by optimizing;

minLθ =
1

2
||yi −MFG(z; θ)||22. (42)

The network is initialized with random weight θ0 and then optimized using Eqn. 42 to
obtain θ̂. The work in (Dave Van Veen, 2021) introduces a feature map regularization:
1
2

∑L
j=1 ||Djyi −MFGj,i(z; θ)||22, in Eqn. 42 where Dj matches the features of jth layer.

This term encourages fidelity between the network’s intermediate representations and the
acquired k-space measurements. The works in (Heckel, 2019; Heckel and Soltanolkotabi,
2020) provide theoretical guarantees on recovery of image x from the k-space measurements.
Recently proposed method termed “Scan-Specific Artifact Reduction in k-space” or SPARK
(Arefeen et al., 2021) trains a CNN to estimate and correct k-space errors made by an input
reconstruction technique. The results of this method are also quite impressive given that
only ACS lines are used for training the CNN. Along similar lines, the authors in (Yoo
et al., 2021) used the Deep Image Prior setup for dynamic MRI reconstruction.

In the self supervised approach, a subset of the undersampled k-space lines are typically
used to validate the DL network in addition to the acquired undersampled k-space lines
that are used to optimize the network. Work in this direction divides the total k-space lines
into two portions:(i) k-space lines for data consistency ydc and (ii) k-space lines yloss for
regularization. In (Yaman et al., 2020), the authors use a multi-fold validation set of k-space
data to optimize the DL network. Other methods such as SRAKI (Hosseini et al., 2020,
2019a) use the self-supervision to reconstruct the images. A deep Reinforcement learning
based approach is studied in (Jin et al., 2019) that deploys a reconstruction network and
an active acquisition network. Another method such as (Yaman et al., 2021b) provides an
unrolled optimization algorithm to estimate the missing k-space lines. Other methods that
fall under this umbrella include the transformer based method (Korkmaz et al., 2021) and
a scan specific optimization method (Yaman et al., 2021a; Tamir et al., 2019).

5.3 Convolutional Neural Networks

Spatial models are mostly dominated by the various flavours of CNNs such as complex-
valued CNN (Wang et al., 2020b; Cole et al., 2019), unrolled optimization using CNN
(Schlemper et al., 2017), variational networks (Hammernik et al., 2018), etc. Depending on
how the MR images are reconstructed, we divide all CNN based spatial methods into the
following categories.
Inverse mapping from k-space: The AUTOMAP (Zhu et al., 2018) learns a recon-
struction mapping using a network having three fully connected layers (3 FCs) and two
convolutional layers (2 Convs) with an input dimension of 128 × 128. Any image of size
more than 128 × 128 is cropped and subsampled to 128 × 128. The final model yielded
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Figure 9: Comparison of a Complex-valued CNN with other state-of-the-art
methods: We show visual comparison of SPIRiT (Lustig and Pauly, 2010),
GRAPPA (Bouman and Sauer, 1993), VariationalNet, and the ComplexCNN.
We note from the difference map that the ComplexCNN performed well with
respect to the other state-of-the-art methods. The PSNR and SSIM values are
given at the bottom for each method.

a PSNR of 28.2 on FastMRI knee dataset outperforming the previous validation baseline
of 25.9 on the same dataset. Different from these methods, there are a few works (Wang
et al., 2020b; Cole et al., 2019) that have used CNN networks with complex valued kernels
to reconstruct MR images from complex valued k-space measurements. The method in
(Wang et al., 2020a) uses a complex valued ResNet (that is a type of CNN) network and is
shown to obtain good results on 12-channel fully sampled k-space dataset (see Fig. 9 for a
visual comparison with other methods). Another method uses a Laplacian pyramid-based
complex neural network (Liang et al., 2020b) for MR image reconstruction.

Inverse Mapping for Image Rectification: In CNN based sequential spatial models
such as DeepADMM net models (Sun et al., 2016; Schlemper et al., 2017) and Deep Cascade
CNN (DCCNN) (Schlemper et al., 2017), the regularization is done in image space using
the following set of equations:

arg min
x

1

2
||Ax− y||22 + ||x + β − z||22; arg min

zi

∑
i

[λig(Γizi)||x + β − z||22]

β ← β + α(x− z).

(43)

Here, α and β are Lagrange multipliers. The ISTA net (Zhang and Ghanem, 2018) modi-
fies the above image update rule as follows, xi = arg minx

1
2 ||C(x) − C(zi)||22 + λ||C(x)||1,

using a CNN network C(·). Note that the DeepADMM network demonstrated good perfor-
mance when the network was trained on brain data but tested on chest data. Later, MODL

27



Pal and Rathi

Figure 10: GrappaNet Comparison with VariationalNET, UNet methods

(Aggarwal et al., 2019) proposed a model based MRI reconstruction where they used a
convolution neural network (CNN) based regularization prior. Later, a dynamic MRI using
MODL based deep learning was proposed by (Biswas et al., 2019). The optimization, i.e.
arg minx

1
2 ||Ax−y||

2
2+λ||C(x)||22, denoises the alias artifacts and noise using a CNN network

C(·) as a regularization prior, and λ is a trainable parameter. To address this concern, a
full end-to-end CNN model called GrappaNet (Sriram et al., 2020b) was developed, which
is a nonlinear version of GRAPPA set within a CNN network. The CNN network has two
sub networks; the first sub network, f1(y), fills the missing k-space lines using a non-linear
CNN based interpolation function similar to GRAPPA. Subsequently, a second network, f2,
maps the filled k-space measurement to the image space. The GrappaNet model has shown
excellent performance (40.74 PSNR, 0.957 SSIM) on the FastMRI dataset and is one of the
best performing methods. A qualitative comparison is shown in Fig. 10. Along similar
lines, a deep variational network (Hammernik et al., 2018) is used to MRI reconstruction.
Other works, such as (Wang et al., 2016; Cheng et al., 2018; Aggarwal et al., 2018) train
the parameters of a deep network by minimizing the reconstruction error between the im-
age from zero-filled k-space and the image from fully sampled k-space. The cascaded CNN
network learns spatio-temporal correlations efficiently by combining convolution and data
sharing approaches in (Schlemper et al., 2017). The (Seegoolam et al., 2019) method pro-
posed to use a CNN network to estimate motions from undersampled MRI sequences that
is used to fuse data along the entire temporal axis.
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5.4 Recurrent Neural Networks

Inverse mapping from k-space: We note that a majority of the iterative temporal net-
works, a.k.a the recurrent neural network models, are k-space to image space reconstruction
methods and typically follow the optimization described in Section 5.3. The temporal meth-
ods, by design, are classified into two categories, namely (i) regularization methods, and
(ii) variable splitting methods.

Several state-of-the-art methods have considered temporal methods as a way to regular-
ize using the iterative hard threshold (IHT) method from (Blumensath and Davies, 2009)
that approximates the l0 norm. Mathematically, the IHT update rule is as follows:

xt+1 = Hk[xt − αΦT (Φxt − y)], (44)

where α is the step-size parameter, Hk[·] is the operator that sets all but k-largest values to
zero (proxy for l0 operation), and the dictionary Φ satisfies the restricted isometry property
(RIP)5. The work in (Xin et al., 2016) shows that this hard threshold operator resembles
the memory state of the LSTM network. Similar to the clustering based sparsity pattern of
IHT, the gates of LSTM inherently promotes sparsity. Along similar lines, the Neural Prox-
imal Gradient Descent work (Mardani et al., 2018b) envisioned a one-to-one correspondence
between the proximal gradient descent operation and the update of a RNN network. Math-
ematically, an iteration of a proximal operator Pf given by: xt+1 = Pf (xt +αΦH(y−Φx)),
resembles the LSTM update rule:

st+1 = g(xt;y); xt+1 = Pf (st+1), (45)

where g(xt;y) = xt + αΦH(y − Φx) is the update step, st+1 is the hidden state and Φ is
a dictionary. Different from these, a local-global recurrent neural network is proposed in
(Guo et al., 2021) that uses two recurrent networks, one network to capture high frequency
components, and another network to capture the low frequency components. The method
in (Oh et al., 2021) uses a bidirectional RNN and replaces the dense network structure of
(Zhu et al., 2018) while removing aliasing artifacts in the reconstructed image.

The Convolutional Recurrent Neural Networks or CRNN (Qin et al., 2018) method
proposed a variable splitting and alternate minimisation method using a RNN based model.
Recovering finer details was the main challenge of the PyramidRNN (Wang et al., 2019) that
proposed to reconstruct images at multiple scales. Three CRNNs are deployed to reconstruct
images at different scales, i.e. x0 = CRNN(xzero,y, θ1),x

1 = CRNN(x0,y, θ2),x
2 =

CRNN(x1,y, θ3), and the final data consistency is performed after x0,x1,x2 are combined
using another CNN. The CRNN is used as a recurrent neural network in the variational
approach of VariationNET (Sriram et al., 2020a), i.e.

xt+1 = xt − αΦH(y− Φx) +D(xt), (46)

where D(·) is a CRNN network that provides MR reconstruction. In this unrolled optimiza-
tion method, the CRNN is used as a proximal operator to reconstruct the MR image. The

5. Restricted Isometry Property (RIP): The projection from the measurement matrix E in Eqn. 17
should preserve the distance between two MR images x1 and x2 bounded by factors of 1− δ and 1 + δ,
i.e. (1− δ)||x1 − x2||22 ≤ ||E(x1 − x2)||22 ≤ (1 + δ)||x1 − x2||22, where δ is a small constant.
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Acceleration Model NMSE PSNR SSIM Acceleration Model NMSE PSNR SSIM

4-fold

Zero Filled 0.0198 32.51 0.811

8-fold

Zero Filled 0.0352 29.60 0.642
SENSE (Pruessmann et al., 1999) 0.0154 32.79 0.816 SENSE (Pruessmann et al., 1999) 0.0261 31.65 0.762
GRAPPA (Griswold et al., 2002) 0.0104 27.79 0.816 GRAPPA(Griswold et al., 2002) 0.0202 25.31 0.782
RfineGAN(Quan et al., 2018) 0.0138 34.00 0.901 RefineGAN(Quan et al., 2018) 0.0221 32.09 0.792
DeepADMM (Sun et al., 2016) 0.0055 34.52 0.895 DeepADMM(Sun et al., 2016) 0.0201 36.37 0.810
LORAKI (Kim et al., 2019) 0.0091 35.41 0.871 LORAKI (Kim et al., 2019) 0.0181 36.45 0.882
VariationNET (Sriram et al., 2020a) 0.0049 38.82 0.919 VariationNET (Sriram et al., 2020a) 0.0211 36.63 0.788
GrappaNet (Sriram et al., 2020b) 0.0026 40.74 0.957 GrappaNet (Sriram et al., 2020b) 0.0071 36.76 0.922
J-MoDL (Aggarwal and Jacob, 2020) 0.0021 41.53 0.961 J-MoDL (Aggarwal and Jacob, 2020) 0.0065 35.08 0.928
Deep Decoder (Heckel and Hand, 2018) 0.0132 31.67 0.938 Deep Decoder (Heckel and Hand, 2018) 0.0079 29.654 0.929
DIP (Ulyanov et al., 2018) 0.0113 30.46 0.923 DIP (Ulyanov et al., 2018) 0.0076 29.18 0.912

Table 1: Normalized mean squared error (NMSE), PSNR and SSIM over the test data with
1000 samples using eight different methods at 4-fold and 8-fold acceleration factors.

VariationNET is a followup work of Deep Variational Network of (Hammernik et al., 2018)
that we discussed in Sec. 5.3. The VariationalNET unrolls an iterative algorithm involving
a CRNN based recurrent neural network based regularizer, while the Deep Variational Net-
work of (Hammernik et al., 2018) unrolls an iterative algorithm involving a receptive field
based convolutional regularizer.

5.5 Hypernetwork Models

Hypernetworks are meta-networks that regress optimal weights of a task network (often
called as data network (Pal and Balasubramanian, 2019) or main network (Ha et al., 2016)).
The data network GNGE(xlow, θg) performs the mapping from aliased or the low resolution
images xlow to the high resolution MR images xgen. The hypernetwork H(α, θhyp) estimates
weights θg of the network GNGE(θg) given the random variable α sampled from a prior
distribution α ∼ p(α). The end-to-end network is trained by optimizing:

arg min
ψ

Eθg∼H(α,θhyp)[||GNGE(xlow, θg)− x||22 +R(GNGE(xlow, θg))]. (47)

In (Wang et al., 2021), the prior distribution p(α) is a uniform distribution U [−1,+1] (and
the process is called Uniform Hyperparameter Sampling) or the sampling can be based on
the data density (called data-driven hyperparameter sampling). Along similar lines, the
work in (Ramanarayanan et al., 2020) trained a dynamic weight predictor (DWP) network
that provides layer wise weights to the data network. The DWP generates the layer wise
weights given the context vector γ that comprises of three factors such as the anatomy
under study, undersampling mask pattern and the acceleration factor.

6. Comparison of state-of-the-art methods

Given the large number of DL methods being proposed, it is imperative to compare these
methods on a standard publicly available dataset. Many of these methods have shown
their effectiveness on various real world datasets using different quantitative metrics such
as SSIM, PSNR, RMSE, etc. There is, however, a scarcity of qualitative and quantitative
comparison of these methods on a single dataset. While the fastMRI challenge allowed
comparison of several methods, yet, several recent methods from the categories discussed
above were not part of the challenge. Consequently, we compare a few representative MR
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reconstruction methods both qualitatively and quantitatively on the fastMRI knee dataset
(Zbontar et al., 2018). We note that, doing a comprehensive comparison of all the methods
mentioned in this review is not feasible due to non-availability of the code as well as the
sheer magnitude of the number of methods (running into hundreds). We compared the
following representative models:

• Zero filled image reconstruction method

• Classical image space based SENSE method (Pruessmann et al., 1999)

• Classical k-space based GRAPPA method (Griswold et al., 2002)

• Unrolled optimization based method called DeepADMM (Sun et al., 2016)

• Low rank based LORAKI (Kim et al., 2019)

• Generative adversarial network based RefineGAN (Quan et al., 2018) network

• Variational network called VariationNET (Sriram et al., 2020a)

• The deep k-space method GrappaNet (Sriram et al., 2020b)

• Active acquisition based method J-MoDL (Aggarwal and Jacob, 2020)

• Untrained network model Deep Decoder (Heckel and Hand, 2018) and

• Deep Image Prior DIP (Ulyanov et al., 2018) method.

The fastMRI knee dataset consists of raw k-space data from 1594 scans acquired on four
different MRI machines. We used the official training, validation and test data split in our
experiments. We did not use images with a width greater than 372 and we note that such
data is only 7% of the training data split. Both the 4x and 8x acceleration factors were
evaluated.

We used the original implementation 6 of GrappaNet, VariationaNET, SENSE, GRAPPA,
DeepADMM, Deep Decoder, and DIP method. Similar to GrappaNET, we always use the
central 30 k-space lines to compute the training target. Treating the real and imaginary
as two distinct channels, we dealt with the complex valued input, i.e. we have 30 channel
input k-space measurements for the 15-coil complex-valued k-space. Where applicable, the
models were trained with a linear combination of L1 and SSIM loss, i.e.

J(x̂,x) = −SSIM(G(y),x) + λ||G(y)− x||1 (48)

where λ is a hyperparameter, G(y) is the model prediction, and x is the ground truth.

6. Below are the official implementations of various methods we discussed:
VariationaNET: https://github.com/VLOGroup/mri-variationalnetwork/
GrappaNET: https://github.com/facebookresearch/fastMRI.git
RefineGAN: https://github.com/tmquan/RefineGAN.git
DeepADMM: https://github.com/yangyan92/Deep-ADMM-Net.git
SENSE, GRAPPA: https://mrirecon.github.io/bart/
Deep Decoder: https://github.com/MLI-lab/ConvDecoder.git

31



Pal and Rathi

GRAPPANETVariationNETRefineGAN DeepADMMGround Truth

(a)

(b)

J-MoDL

SSIM: 0.815 SSIM: 0.957SSIM: 0.901

Zero Filled 
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Figure 11: Qualitative Comparison: Comparison for 8x acceleration using “Zero Filled”,
SENSE, DeepADMM (Sun et al., 2016), LORAKI (Kim et al., 2019), RefineGAN
(Quan et al., 2018), VariationNET (Sriram et al., 2020a), GrappaNet (Sriram
et al., 2020b), J-MoDL (Aggarwal and Jacob, 2020) results on fastMRI dataset.
We show qualitative results for (a) knee and (b) brain datasets and also report
the corresponding SSIM scores.

Quantitative results are shown in Table 1 for several metrics such as NMSE, PSNR, and
SSIM scores. We observe that GrappaNET, J-MoDL and VariationNET outperformed the
baseline methods by a large margin. We note that the zero-filled and SENSE reconstructions
in Fig 11 (a), (b) show a large amount of over-smoothing. The reconstruction of SENSE
and zero-filled model also lack a majority of the high frequency detail that is clinically
relevant, but fine details are visible in case of GrappaNET, VariationNET, J-MoDL, and
RefineGAN methods. The comparable performance of Deep Decoder and DIP advocates
the importance of letting untrained neural network figure out how to perform k-space to
MR image reconstruction. The J-MoDL method makes heavy use of training data and the
joint optimization of k-space lines and the reconstruction of MR images to get good results
both for 4× and 8× as shown in Table 1. On the other hand, the Deep Decoder and DIP
methods achieve good performance using untrained networks as discussed in Sec. 5.2, which
is advantageous as it generalizes to any MR reconstruction scenario.

7. Discussion

In this paper, we discussed and reviewed several classical reconstruction methods, as well
as deep generative and non-generative methods to learn the inverse mapping from k-space
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to image space. Naturally, one might ask the following questions given the review of several
papers above: “are DL methods free from errors?”, “do they always generalize well?”, and
“are they robust?”. To better understand the above mentioned rhetorical questions, we need
to discuss several aspects of the performance of these methods such as (i) correct recon-
struction of minute details of pathology and anatomical structures; (ii) risk quantification;
(iii) robustness; (iv) running time complexity; and (v) generalization.

Due to the blackbox-like nature of DL methods, the reliability and risk quantification
associated with them are often questioned. In a recent paper on “risk quantification in Deep
MRI reconstruction” (Edupuganti et al., 2020), the authors strongly suggest for quantifying
the risk and reliability of DL methods and note that it is very important for accurate patient
diagnoses and real world deployment. The paper also shows how Stein’s Unbiased Risk
Estimator (SURE) (Metzler et al., 2018) can be used as a way to assess uncertainty of the
DL model:

SURE = −nσ2 + ||x̂− x||2 + σ2trace(
∂x̂

∂x
), (49)

where the second term represents the end-to-end network sensitivity to small input pertur-
bations. This formulation works even when there is no access to the ground truth data x.
In this way, we can successfully measure the risk associated with a DL model. In addition
to the SURE based method, there are a few other ways to quantify the risk and reliability
associated with a DL model. The work “On instabilities of deep learning in image recon-
struction” (Antun et al., 2019) uses a set of pretrained models such as AUTOMAP (Zhu
et al., 2018), DAGAN (Yang et al., 2017), or Variational Network (Sriram et al., 2020a) with
noisy measurements to quantify their stability. This paper as well as several others (Narn-
hofer et al., 2021; Antun et al., 2019) have discussed how the stability of the reconstruction
process is related to the network architecture, training set and also the subsampling pattern.

Whether a DL method can capture high frequency components or not is also another area
of active research in MR reconstruction. The robustness of a DL based MR reconstruction
method is also studied in various papers such as (Raj et al., 2020; Cheng et al., 2020a;
Calivá et al., 2020; Zhang et al., 2021). For example, the (Cheng et al., 2020a; Calivá et al.,
2020; Cheng et al., 2020b) works perceived adversarial attack as a way to capture minute
details during sMR reconstruction thus showing a significant improvement in robustness
compared to other methods. The work proposed to train a deep learning network with a
loss that pays special attention to small anatomical details. The methodology progressively
adds minuscule perturbation δ to the input x not perceivable to human eye but may shift
the decision of a DL system. The method in (Raj et al., 2020) uses a generative adversarial
framework that entails a perturbation generator network G(·) to add minuscule distortion
on k-space measurement y. The work in (Zhang et al., 2021) proposed to incorporate fast
gradient based attack on a zero filled input image and train the deep learning network not to
deviate much under such attack. The FINE (Zhang et al., 2020) methodology, on the other
hand, has used pre-trained recon network that was fine-tuned using data consistency to
reduce generalization error inside unseen pathologies. Please refer to the paper (Darestani
et al., 2021) which provides a summary of robustness of different approaches for image
reconstruction.

Optimizing a DL network is also an open area of active research. The GAN networks
suffer from a lack of proper optimization of the structure of the network (Goodfellow et al.,
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2014). On the other hand, the VAE and Bayesian methods suffer from the large train-
ing time complexities. We see several active research groups and papers (Salimans et al.,
2016; Bond-Taylor et al., 2021) in Computer Vision and Machine Learning areas pondering
upon these questions and coming up with good solutions. Also, the work in (Hammernik
et al., 2017) has shown the effectiveness of capturing perceptual similarity using the l2 and
SSIM loss to include local structure in the reconstruction process. Recently, work done in
(Maarten Terpstra, 2021) shows that the standard l2 loss prefers or biases the reconstruction
with lower image magnitude and hence they propose a new loss function between ground
truth xgt and the reconstructed complex-valued images x, i.e. Lperp = P (x,xgt) + l1(x,x

gt)
where P (x,xgt) = |Real(x)Imaginary(xgt)−Real(xgt)Imaginary(x)|/|xgt| which favours the
finer details during the reconstruction process. The proposed loss function achieves better
performance and faster convergence on complex image reconstruction tasks.

Regarding generalization, we note that some DL based models have shown remarkable
generalization capabilities, for example: the AUTOMAP work was trained on natural im-
ages but generalized well for MR reconstruction. However, current hardware (memory)
limitations preclude from using this method for high resolution MR reconstruction. On the
other hand, some of the latest algorithms that show exceptional performance on the knee
dataset have not been extensively tested on other low SNR data. In particular, these meth-
ods also need to be tested on quantitative MR modalities to better assess their performance.

Another bottleneck for using these DL methods is the large amount of training data
required. While GAN and Bayesian networks produce accurate reconstruction of minute
details of anatomical structures if sufficient data are available at the time of training, it is
not clear as to how much training data is required and whether the networks can adapt
quickly to change in resolution and field-of-view. Further, these works have not been tested
in scenarios where changes in MR acquisition parameters such as relaxation time (TR), echo
time (TE), spatial resolution, number of channels, and undersampling pattern are made at
test time and are different from the training dataset.

Most importantly, MRI used for diagnostic purposes should be robust and accurate
in reconstructing images of pathology (major and minor). While training based methods
have demonstrated their ability to reconstruct normal looking images, extensive validation
of these methods on pathological datasets is needed for adoption in clinical settings. To
this end, the MR community needs to collaborate and collect normative and pathological
datasets for testing. We specifically note that, the range of pathology can vary dramatically
in the anatomy being imaged (e.g., the size, shape, location and type of tumor). Thus, ex-
tensive training and unavailability of pathological images may present significant challenges
to methods that are data hungry. In contrast, untrained networks may provide MR recon-
struction capabilities that are significantly better than the current state-of-the-art but do
not perform as well as highly trained networks (but generalize well to unknown scenarios).

Finally, given the exponential rate at which new DL methods are being proposed, sev-
eral standardized datasets with different degrees of complexity, noise level (for low SNR
modalities) and ground truth availability are required to perform a fair comparison be-
tween methods. Additionally, fully-sampled raw data (with different sampling schemes)
needs to be made available to compare for different undersampling factors. Care must be
taken not to obtain data that have already been “accelerated” with the use of standard
GRAPPA-like methods, which might bias the results (Efrat Shimron, 2021).
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Nevertheless, recent developments using new DL methods point to the great strides that
have been made in terms of data reconstruction quality, risk quantification, generalizability
and reduction of running time complexity. We hope that this review of DL methods for MR
image reconstruction will give researchers a unique viewpoint and summarize in succinct
terms the current state-of-the-art methods. We however humbly note that, given the large
number of methods presented in the literature, it is impossible to cite and categorize each
one of them. As such, in this review, we collected and described broad categories of methods
based on the type of methodology used for MR reconstruction.
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Mehmet Akcakaya. Scan-specific residual convolutional neural networks for fast mri using residual
raki. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 1476–1480.
IEEE, 2019a.

Chi Zhang, Jinghan Jia, Burhaneddin Yaman, Steen Moeller, Sijia Liu, Mingyi Hong, and Mehmet
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