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Abstract
In the recent past, nested structures in Riemannian manifolds has been studied in the context of

dimensionality reduction as an alternative to the popular principal geodesic analysis (PGA) tech-
nique, for example, the principal nested spheres. In this paper, we propose a novel framework
for constructing a nested sequence of homogeneous Riemannian manifolds. Common examples
of homogeneous Riemannian manifolds include the n-sphere, the Stiefel manifold, the Grassmann
manifold and many others. In particular, we focus on applying the proposed framework to the
Grassmann manifold, giving rise to the nested Grassmannians (NG). An important application in
which Grassmann manifolds are encountered is planar shape analysis. Specifically, each planar
(2D) shape can be represented as a point in the complex projective space which is a complex Grass-
mann manifold. Some salient features of our framework are: (i) it explicitly exploits the geometry
of the homogeneous Riemannian manifolds and (ii) the nested lower-dimensional submanifolds
need not be geodesic. With the proposed NG structure, we develop algorithms for the supervised
and unsupervised dimensionality reduction problems respectively. The proposed algorithms are
compared with PGA via simulation studies and real data experiments and are shown to achieve a
higher ratio of expressed variance compared to PGA.

Keywords: Grassmann Manifolds, Dimensionality Reduction, Shape Analysis, Homogeneous
Riemannian Manifolds

1. Introduction

Riemannian manifolds are often used to model the sample space in which features derived from
the raw data encountered in many medical imaging applications live. Common examples include
the diffusion tensors (DTs) in diffusion tensor imaging (DTI) (Basser et al., 1994), the ensemble
average propagator (EAP) (Callaghan, 1993). Both DTs and EAP are used to capture the diffusional
properties of water molecules in the central nervous system by non-invasively imaging the tissue
via diffusion weighted magnetic resonance imaging. In DTI, diffusion at a voxel is captured by a
DT, which is a 3 × 3 symmetric positive-definite matrix, whereas EAP is a probability distribution
characterizing the local diffusion at a voxel, which can be parametrized as a point on the Hilbert
sphere. Another example is the shape space used to represent shapes in shape analysis. There are
many ways to represent a shape, and the most simple one is to use landmarks. For the landmark-
based representation, the shape space is called Kendall’s shape space (Kendall, 1984). Kendall’s
shape space is in general a stratified space (Goresky and MacPherson, 1988; Feragen et al., 2014),
but for the special case of planar shapes, the shape space is the complex projective space, which
is a complex Grassmann manifold. The examples mentioned above are often high-dimensional: a

©2021 Yang and Vemuri. License: CC-BY 4.0.
https://www.melba-journal.org/papers/2022:002.html.

http://www.melba-journal.org
https://creativecommons.org/licenses/by/4.0/
https://www.melba-journal.org/papers/2022:002.html


YANG AND VEMURI

DTI scan usually contains half a million DTs; the shape of the Corpus Callosum (which is used
in our experiments) is represented by a several hundreds of boundary points in R2. Thus, in these
cases, dimension reduction techniques, if applied appropriately, can benefit the subsequent statistical
analysis.

For data on Riemannian manifolds, the most widely used dimensionality reduction method is
the principal geodesic analysis (PGA) (Fletcher et al., 2004), which generalizes the principal com-
ponent analysis (PCA) to manifold-valued data. In fact, there are many variants of PGA. Fletcher
et al. (2004) proposed to find the geodesic submanifold of a certain dimension that maximizes the
projected variance and computationally, it was achieved via a linear approximation, i.e., applying
PCA on the tangent space at the intrinsic mean. This is sometimes referred to as the tangent PCA.
Note that this approximation requires the data to be clustered around the intrinsic mean, otherwise
the tangent space approximation to the manifold leads to inaccuracies. Later on, Sommer et al.
(2010) proposed the Exact PGA (EPGA), which does not use any linear approximation. However,
EPGA is computationally expensive as it requires two non-linear optimizations steps per iteration
(projection to the geodesic submanifold and finding the new geodesic direction such that the loss
of information is minimized). Chakraborty et al. (2016) partially solved this problem for manifolds
with constant sectional curvature (spheres and hyperbolic spaces) by deriving closed form formulae
for the projection. Other variants of PGA include but are not limited to sparse exact PGA (Banerjee
et al., 2017), geodesic PCA (Huckemann et al., 2010), and probabilistic PGA (Zhang and Fletcher,
2013). All these methods focus on projecting data to a geodesic submanifold as in PCA where
one projects data to a vector subspace. Instead, one can also project data to a submanifold that
minimizes the reconstruction error without any further restrictions, e.g. being geodesic. This is the
generalization of the principal curve (Hastie and Stuetzle, 1989) to Riemannian manifolds presented
in Hauberg (2016).

Another feature of PCA is that it produces a sequence of nested vector subspaces. From this
observation, Jung et al. (2012) proposed the principal nested spheres (PNS) by embedding an n −
1-sphere into an n-sphere, and the embedding is not necessarily isometric. Hence PNS is more
general than PGA in that PNS is not required to be geodesic. Similarly, for the manifold Pn of
n × n SPD matrices, Harandi et al. (2018) proposed a geometry-aware dimension reduction by
projecting data in Pn to Pm for some m � n. They also applied the nested Pn for the supervised
dimensionality reduction problem. Damon and Marron (2014) considered a nested sequence of
relations which determine a nested sequence of submanifolds that are not necessarily geodesic.
They showed various examples, including Euclidean space and the n-sphere, depicting how the
nested relations generalized PCA and PNS. However, for an arbitrary Riemannian manifold, it is
not clear how to construct a nested submanifold. Another generalization of PGA was proposed by
Pennec et al. (2018), called the exponential barycentric subspace (EBS). A k-dimensional EBS is
defined as the locus of weighted exponential barycenters of (k + 1) affinely independent reference
points. The EBSs are naturally nested by removing or adding reference points.

Unlike PGA which can be applied to any Riemannian manifolds, the construction of the nested
manifolds relies heavily on the geometry of the specific manifold, and there is no general principle
for such a construction. All the examples described above (spheres and Pn) and several others
such as the Grassmannian, Stiefel etc. are homogeneous Riemannian manifolds (Helgason, 1979),
which intuitively means that all points on the manifold ’look’ the same. In this work, we propose
a general framework for constructing a nested sequence of homogeneous Riemannian manifolds,
and, via some simple algebraic computation, show that the nested sphere and the nested Pn can
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indeed be derived within this framework. We will then apply this framework to the Grassmann
manifolds, called the nested Grassmann manifolds (NG). The Grassmann manifold Gr(p,V) is the
manifold of all p-dimensional subspaces of the vector space V where 1 ≤ p ≤ dimV. Usually
V = Rn or V = Cn. An important example is Kendall’s shape space of 2D shapes. The space
of all shapes determined by k landmarks in R2 is denoted by Σk

2 , and Kendall (1984) showed that
it is isomorphic to the complex projective space CP k−2 ∼= Gr(1,Ck−1). In many applications,
the number k of landmarks is large, and so is the dimension of Gr(1,Ck−1). The core of the
proposed dimensionality reduction involves projecting data on Gr(p,V) to Gr(p, Ṽ) with dim Ṽ�
dimV. The main contributions of this work are as follows: (i) We propose a general framework
for constructing a nested sequence of homogeneous Riemannian manifolds unifying the recently
proposed nested spheres (Jung et al., 2012) and nested SPD manifolds (Harandi et al., 2018). (ii) We
present novel dimensionality reduction techniques based on the concept of NG in both supervised
and unsupervised settings respectively. (iii) We demonstrate via several simulation studies and real
data experiments, that the proposed NG can achieve a higher ratio of expressed variance compared
to PGA.

The rest of the paper is organized as follows. In Section 2, we briefly review the definition of
homogeneous Riemannian manifolds and present the recipe for the construction of nested homoge-
neous Riemannian manifolds. In Section 3, we first review the geometry of the Grassmannian. By
applying the procedure developed in Section 2, we present the nested Grassmann manifolds repre-
sentation and discuss some of its properties in details. Then we describe algorithms for our unsuper-
vised and supervised dimensionality reduction techniques, called the Principal Nested Grassmanns
(PNG), in Section 4. In Section 5, we present several simulation studies and experimental results
showing how the PNG technique performs compared to PGA under different settings. Finally, we
draw conclusions in Section 6.

2. Nested Homogeneous Spaces

In this section, we introduce the structure of nested homogeneous Riemannian manifolds. A Rie-
mannian manifold (M, τ) is homogeneous if the group of isometries G = I(M) admitted by the
manifold acts transitively on M (Helgason, 1979), i.e., for x, y ∈ M , there exists g ∈ G such that
g(x) = y. In this case, M can be identified with G/H where H is an isotropy subgroup of G at
some point p ∈ M , i.e. H = {g ∈ G : g(p) = p}. Examples of homogeneous Riemannian mani-
folds include but are not limited to, the n-spheres Sn−1 = SO(n)/SO(n − 1), the SPD manifolds
Pn = GL(n)/O(n), the Stiefel manifolds St(m,n) = SO(n)/SO(n − m), and the Grassmann
manifolds Gr(p, n) = SO(n)/S(O(p)× O(n− p)).

In this paper, we focus on the case whereG is either a real or a complex matrix Lie group, i.e.G
is a subgroup of GL(n,R) or GL(n,C). The main idea behind the construction of nested homoge-
neous spaces is simple: augmenting the matrix in G in an appropriate way. With an embedding of
the isometry group G, the embedding of the homogeneous space G/H follows naturally from the
quotient structure.

Let G and G̃ be two connected Lie groups such that dimG < dim G̃ and ι̃ : G → G̃ be an
embedding. For a closed connected subgroup H of G, let H̃ = ι̃(H). Since ι̃ is an embedding,
H̃ is also a closed subgroup of G̃. Now the canonical embedding of G/H in G̃/H̃ is defined by
ι(gH) = ι̃(g)H̃ for g ∈ G. It is easy to see that ι is well-defined. Let g1, g2 ∈ G be such that
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g1 = g2h for some h ∈ H . Then

ι(g1H) = ι̃(g1)H̃ = ι̃(g2h)H̃ = ι̃(g2)ι̃(h)H̃ = ι̃(g2)H̃ = ι(g2H).

Now for the homogeneous Riemannian manifolds (M = G/H, τ1) and (M̃ = G̃/H̃, τ2),
denote the left-G-invariant, right-H-invariant metric on G (resp. left-G̃-invariant, right-H̃-invariant
metric on G̃) by τ̄1 and τ̄2, respectively (see Cheeger and Ebin (1975, Prop. 3.16(4))).

Proposition 1 If ι̃ : G→ G̃ is isometric, then so is ι : G/H → G̃/H̃ .

Proof Denote the Riemannian submersions by π : G → G/H and π̃ : G̃ → G̃/H̃ . Let X and
Y be vector fields on G/H and X̄ and Ȳ be their horizontal lifts respectively, i.e. dπ(X̄) = X
and dπ(Ȳ ) = Y . By the definition of Riemannian submersions, dπ is isometric on the horizontal
spaces, i.e. τ̄1(X̄, Ȳ ) = τ1(dπ(X̄), dπ(Ȳ )) = τ1(X,Y ). Since ι̃ is isometric, we have τ̄1(X̄, Ȳ ) =
τ̄2(dι̃(X̄), dι̃(Ȳ )). By the definition of ι, we also have ι◦π = π̃◦ ι̃, which implies dι◦dπ = dπ̃◦dι̃.
Hence,

τ1(X,Y ) = τ̄1(X̄, Ȳ ) = τ̄2(dι̃(X̄), dι̃(Ȳ ))

= τ2((dπ̃ ◦ dι̃)(X̄), (dπ̃ ◦ dι̃)(Ȳ ))

= τ2((dι ◦ dπ)(X̄), (dι ◦ dπ)(Ȳ ))

= τ2(dι(X), dι(Y ))

where the third equality follows from the isometry of dπ̃.

Proposition 1 simply says that if the isometry group is isometrically embedded, then the as-
sociated homogeneous Riemannian manifolds will also be isometrically embedded. Conversely,
if we have a Riemannian submersion f̃ : G̃ → G, it can easily be shown that the induced map
f : G̃/H̃ → G/H would also be a Riemannian submersion where H = f̃(H̃). The construc-
tion above can be applied to a sequence of homogeneous spaces {Mm}∞m=1, i.e. the embedding
ιm : Mm →Mm+1 can be induced from the embedding of the isometry groups ι̃m : Gm → Gm+1

where Gm = I(Mm) provided dimGi < dimGj for i < j. See Figure 1 for the structure of nested
homogeneous spaces.

Gm Gm+1

Gm/Hm Gm+1/Hm+1

Mm Mm+1

ι̃

π π

f f

ι

Figure 1: Commutative diagram of the induced embedding for homogeneous spaces.
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3. Nested Grassmann Manifolds

In this section, we will apply the theory of nested homogeneous space from the previous section
to the Grassmann manifolds. First, we briefly review the geometry of the Grassmann manifolds in
Section 3.1. With the theory in Section 2, we derive the nested Grassmann manifolds in Section 3.2,
and the derivation for nested spheres and nested SPD manifolds are carried out in Section 3.3.

3.1 The Riemannian Geometry of Grassmann Manifolds

To simplify the notation, we assume V = Rn and write Gr(p, n) := Gr(p,Rn). All the results
presented in this section can be easily extended to the case of V = Cn by replacing transposition
with conjugate transposition and orthogonal groups with unitary groups. The Grassmann manifold
Gr(p, n) is the manifold of all p-dimensional subspaces of Rn, and for a subspace X ∈ Gr(p, n),
we write X = span(X) where the columns of X form an orthonormal basis for X . The space
of all n × p matrices X such that XTX = Ip is called the Stiefel manifold, denoted by St(p, n).
Special cases of Stiefel manifolds are the Lie group of all orthogonal matrices, O(n) = St(n, n),
and the n-sphere, Sn−1 = St(1, n). The Stiefel manifold with the induced Euclidean metric (i.e.
for U, V ∈ TXSt(p, n), 〈U, V 〉X = tr(UTV )) is a homogeneous Riemannian manifold, St(p, n) =
SO(n)/SO(n − p). A canonical Riemannian metric on the Grassmann manifold can be inherited
from the metric on St(p, n) since it is invariant to the left multiplication by elements of O(n) (Absil
et al., 2004; Edelman et al., 1998). The Grassmann manifold with this metric is also homogeneous,
Gr(p, n) = SO(n)/S(O(p)× O(n− p)).

With this canonical metric on the Grassmann manifolds, the geodesic can be expressed in closed
form. Let X = span(X) ∈ Gr(p, n) where X ∈ St(p, n) and H be an n × p matrix. Then the
geodesic γ(t) with γ(0) = X and γ′(0) = H is given by γX ,H(t) = span(XV cos Σt+ U sin Σt)
where H = UΣV T is the compact singular value decomposition (Edelman et al., 1998, Theorem
2.3). The exponential map at X is a map from TXGr(p, n) to Gr(p, n) defined by ExpXH =
γX ,H(1) = span(XV cos Σ + U sin Σ). If XTY is invertible, the geodesic distance between
X = span(X) and Y = span(Y ) is given by d2g(X ,Y) = tr Θ2 =

∑p
i=1 θ

2
i where (I −

XXT )Y (XTY )−1 = UΣV T , U ∈ St(p, n), V ∈ O(p), and Θ = tan−1 Σ. The diagonal en-
tries θ1, . . . , θk of Θ are known as the principal angles between X and Y .

Gr(p, n) Gr(p,m)
πA,B

ιA,B

X = span(X)

X̂ = span(AATX +B)

span(ATX)

span(ATX)

Figure 2: Illustration of the embedding of Gr(p,m) in Gr(p, n) parametrized by A ∈ St(m,n) and
B ∈ Rn×p such that ATB = 0.
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3.2 Embedding of Gr(p,m) in Gr(p, n)

Let X = span(X) ∈ Gr(p,m), X ∈ St(p,m). The map ι : Gr(p,m) → Gr(p, n), for m < n,
defined by

ι(X ) = span

([
X

0(n−m)×p

])
is an embedding and it is easy to check that this embedding is isometric (Ye and Lim, 2016, Eq.
(8)). However, for the dimensionality reduction problem, the above embedding is insufficient as it
is not flexible enough to encompass other possible embeddings. To design flexible embeddings, we
apply the framework proposed in Section 2. We consider Mm = Gr(p,m) for which the isometry
groups are Gm = SO(m) and Hm = S(O(p)× O(m− p)).

In this paper, we consider the embedding ι̃m : SO(m)→ SO(m+ 1) given by,

ι̃m(O) = GS
(
R

[
O a
bT c

])
(1)

where O ∈ SO(m), R ∈ SO(m + 1), a, b ∈ Rm, c ∈ R, c 6= bTO−1a, and GS(·) is the Gram-
Schmidt process. Since the Riemannian submersion π : SO(m)→ Gr(p,m) is defined by π(O) =
span(Op) where O ∈ SO(m) and Op is the m × p matrix containing the first p columns of O, the
induced embedding ιm : Gr(p,m)→ Gr(p,m+ 1) is given by,

ιm(X ) = span

(
R

[
X
bT

])
= span(R̃X + vbT ),

where b ∈ Rp, R ∈ SO(m+1), R̃ contains the first m columns of R (which means R̃ ∈ St(m,m+
1)), v is the last column of R, and X = span(X) ∈ Gr(p,m). It is easy to see that for R = I and
b = 0, this gives the natural embedding described in Ye and Lim (2016) and at the beginning of this
section.

Proposition 2 If b = 0, then ιm is an isometric embedding.

Proof With Proposition 1, it suffices to show that ι̃m is isometric when b = 0. Note that as ιm is
independent of a and c in the definition of ι̃m, we can assume a = 0 and c = 1 without loss of
generality. If b = 0, ι̃m simplifies to

ι̃m(O) = R

[
O 0
0 1

]
where R ∈ SO(m+ 1). The Riemannian distance on SO(n) given the induced Euclidean metric is
dSO(O1, O2) = 1√

2
‖ logOT1 O2‖F . Then for O1, O2 ∈ SO(m),

dSO(ι̃m(O1), ι̃m(O2)) =
1√
2

∥∥∥∥log

([
OT1 O2 0

0 1

])∥∥∥∥
F

= dSO(O1, O2).

Therefore ι̃m is an isometric embedding, and so is ιm by Proposition 1.

With the embedding ιm, we can construct the corresponding projection πm : Gr(p,m + 1) →
Gr(p,m) using the following proposition.
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Proposition 3 The projection πm : Gr(p,m+1)→ Gr(p,m) corresponding to ιm(X ) = span(R̃X+
vbT ) is given by πm(X ) = span(R̃TX).

Proof First, let Y = span(Y ) ∈ Gr(p,m) and X = span(X) ∈ Gr(p,m + 1) be such that
X = span(R̃Y + vbT ). Then XL = R̃Y + vbT for some L ∈ GL(p). Therefore, Y = R̃T (XL−
vbT ) = R̃TXL and Y = span(Y ) = span(R̃TXL) = span(R̃TX). Hence, the projection is given
by πm(X ) = span(R̃TX). This completes the proof.

Note that for X = span(X) ∈ Gr(p,m+1), ιm(πm(X )) = span(RRTX+vbT ) = span((I−
vvT )X + vbT ) where v ∈ Rm+1 and ‖v‖ = 1. The nested relation can be extended inductively and
we refer to this construction as the nested Grassmann structure:

Gr(p,m)
ιm
↪→ Gr(p,m+ 1)

ιm+1
↪→ . . .

ιn−2
↪→ Gr(p, n− 1)

ιn−1
↪→ Gr(p, n).

Thus the embedding from Gr(p,m) into Gr(p, n) can be constructed inductively by ι := ιn−1 ◦ . . .◦
ιm−1 ◦ ιm and similarly for the corresponding projection. The explicit forms of the embedding and
the projection are given in the following proposition.

Proposition 4 The embedding of Gr(p,m) into Gr(p, n) for m < n is given by ιA,B(X ) =
span(AX + B) where A ∈ St(m,n) and B ∈ Rn×p such that ATB = 0. The corresponding
projection from Gr(p, n) to Gr(p,m) is given by πA = span(ATX).

Proof By the definition, ι := ιn−1◦. . .◦ιm−1◦ιm and thus the embedding ι : Gr(p,m)→ Gr(p, n)
can be simplified as

ιA,B(X ) = span

( n−1∏
i=m

Ri

)
X +

n−1∑
i=m

(
n−1∏
j=i+1

Rj

)
vib

T
i

 = span(AX +B)

where Ri ∈ St(i, i + 1), vi is such that [Ri vi] ∈ O(i + 1), bi ∈ Rp, A = Rn−1Rn−2 · · ·Rm ∈
St(m,n), and B =

∑n−1
i=m

(∏n−1
j=i+1Rj

)
vib

T
i is an n × p matrix. It is easy to see that ATB = 0.

Similar to Proposition 3, the projection πA : Gr(p, n) → Gr(p,m) is then given by πA(X ) =
span(ATX). This completes the proof.

From Proposition 2, if B = 0 then ιA is an isometric embedding. Hence, our nested Grass-
mann structure is more flexible than PGA as it allows one to project the data onto a non-geodesic
submanifold. An illustration is shown in Figure 2. The results discussed in this subsection can
be generalized to any homogeneous space in principle. For a given homogeneous space, once the
embedding of the groups of isometries (e.g., Eq. (1)) is determined, the induced embedding and the
corresponding projection can be derived akin to the case of Grassmann manifolds.

3.3 Connections to Other Nested Structures

The nested homogeneous spaces proposed in this work (see Figure 1) actually provides a unified
framework within which, the nested spheres (Jung et al., 2012) and the nested SPD manifolds (Ha-
randi et al., 2018) are special cases.
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The n-Sphere Example: Since the n-sphere can be identified with a homogeneous space
Sn−1 ∼= O(n)/O(n− 1), with the embedding (1), the induced embedding of Sn−1 into Sn is

ι(x) = GS
(
R

[
x
b

])
=

1√
1 + b2

R

[
x
b

]
= R

[
sin(r)x
cos(r)

]
where x ∈ Sn−1, b ∈ R, and r = cos−1

(
b√
1+b2

)
. This is precisely the nested sphere proposed in

Jung et al. (2012, Eq. (2)).
The SPD Manifold Example: For the m-dimensional SPD manifold denoted by Pm, Gm =

GL(m) and Hm = O(m). Consider the embedding ι̃m : GL(m)→ GL(m+ 1) given by

Ã = ι̃m(A) = R

[
A 0
0 1

]
RT ,

where A ∈ GL(m), R ∈ O(m+ 1) and the corresponding projection π̃m : GL(m+ 1)→ GL(m)
is

π̃m(Ã) = W T ÃW

where W contains the first m columns of R = [W v] ∈ O(m + 1) (i.e., W ∈ St(m,m + 1) and
W T v = 0). The submersion ψ ◦ f : GL(m) → Pm is given by ψ ◦ f(A) = ATA. Hence the
induced embedding ιm : Pm → Pm+1 and projection πm : Pm+1 → Pm are

ιm(X) = WXW T + vvT and πm(X) = W TXW

which is the projection map used in Harandi et al. (2018, Eq. (13)). However, Harandi et al. (2018)
did not perform any embedding or construct a nested family of SPD manifolds. Recently, it came to
our attention that Jaquier and Rozo (2020) derived a similar nested family of SPD manifolds based
on the projection maps in Harandi et al. (2018) described above.

4. Dimensionality Reduction with Nested Grassmanns

In this section, we discuss how to apply the nested Grassmann structure to the problem of dimension
reduction. In Section 4.1 and 4.2, we describe the unsupervised and supervised dimension reduction
based on the nested Grassmann manifolds. In Section 4.3, we will discuss the choice of distance
metrics required by the dimensionality reduction algorithm and present some technical details re-
garding the implementation. Analysis of principal nested Grassmann (PNG) will be introduced and
discussed in Section 4.4 and Section 4.5.

4.1 Unsupervised Dimensionality Reduction

We can now apply the nested Grassmann structure to the problem of unsupervised dimensionality
reduction. Suppose that we are given the points, X1, . . . ,XN ∈ Gr(p, n). We would like to have
lower dimensional representations in Gr(p,m) forX1, . . . ,XN withm� n. The desired projection
map πA that we seek is obtained by the minimizing the reconstruction error, i.e.

Lu(A,B) =
1

N

N∑
i=1

d2(Xi, X̂i) =
1

N

N∑
i=1

d2(span(Xi), span(AATXi +B))

8
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where d(·, ·) is a distance metric on Gr(p, n). It is clear that Lu has a O(m)-symmetry in the first
argument, i.e. Lu(AO,B) = Lu(A,B) for O ∈ O(m). Hence, the optimization is performed over
the space St(m,n)/O(m) ∼= Gr(m,n) when optimizing with respect to this particular loss function.
Now we can apply the Riemannian gradient descent algorithm (Edelman et al., 1998) to obtain A
and B by optimizing Lu(A,B) over span(A) ∈ Gr(m,n) and B ∈ Rn×p such that ATB = 0.
Note that the restriction ATB = 0 simply means that the columns of B are in the null space of
AT , denoted N(AT ). Hence in practice this restriction can be handled as follows. For arbitrary
B̃ ∈ Rn×p, project B̃ on toN(AT ), i.e.B = PN(AT )B̃ where PN(AT ) = I−AAT is the projection
from Rn to N(AT ). Thus, the loss function can be written as

Lu(A,B) =
1

N

N∑
i=1

d2(span(Xi), span(AATXi + (I −AAT )B))

and it is optimized over Gr(m,n)×Rn×p. Note that since we represent a subspace by its orthonor-
mal basis, whenm > n/2, we can use the isomorphism Gr(m,n) ∼= Gr(n−m,n) to further reduce
the computational burden. This will be particularly useful whenm = n−1 as in Section 4.4. Under
this isomorphism Gr(m,n) ∼= Gr(n −m,n), the corresponding subspace of span(A) ∈ Gr(m,n)
is span(A⊥) ∈ Gr(n−m,n) whereA⊥ is an n× (n−m) matrix such that [A A⊥] is an orthogonal
matrix. Hence the loss function Lu can alternatively be expressed as

Lu(A,B) =
1

N

N∑
i=1

d2(span(Xi), span((I −A⊥AT⊥)Xi +A⊥A
T
⊥B)).

Remark 1 The reduction of the space of all possible projections from St(m,n) to Gr(m,n) is a
consequence of the choice of the loss function Lu. With a different loss function, one might have a
different space of possible projections.

4.2 Supervised Dimensionality Reduction

If in addition toX1, . . . ,XN ∈ Gr(p, n), we are given the associated labels y1, . . . , yN ∈ {1, . . . , k},
then we would like to use this extra information to sharpen the result of dimensionality reduc-
tion. Specifically, we expect that after reducing the dimension, points from the same class preserve
their proximity while points from different classes are well separated. We use an affinity function
a : Gr(p, n) × Gr(p, n) → R to encode the structure of the data as suggested by Harandi et al.
(2018, Sec 3.1, Eq. (14)-(16)). For completeness, we repeat the definition of the affinity function
here. The affinity function is defined as a(Xi,Xj) = gw(Xi,Xj)− gb(Xi,Xj) where

gw(Xi,Xj) =

{
1 if Xi ∈ Nw(Xj) or Xj ∈ Nw(Xi)
0 Otherwise

gb(Xi,Xj) =

{
1 if Xi ∈ Nb(Xj) or Xj ∈ Nb(Xi)
0 Otherwise

.

The set Nw(Xi) consists of νw nearest neighbors of Xi that have the same labels as yi, and the
set Nb(Xi) consists of νb nearest neighbors of Xi that have different labels from yi. The nearest
neighbors can be computed using the geodesic distance.

9
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The desired projection map πA that we seek is obtained by the minimizing the following loss
function

Ls(A) =
1

N2

N∑
i,j=1

a(Xi,Xj)d2(span(ATXi), span(ATXj))

where d is a distance metric on Gr(p,m). Note that if the distance metric d has O(m)-symmetry, e.g.
the geodesic distance, so does Ls. In this case the optimization can be done on St(m,n)/O(m) ∼=
Gr(m,n). Otherwise it is on St(m,n). This supervised dimensionality reduction is termed as,
supervised nested Grassmann (sNG).

4.3 Choice of the distance function

The loss functions Lu and Ls depend on the choice of the distance d : Gr(p, n)×Gr(p, n)→ R≥0.
Besides the geodesic distance, there are many widely used distances on the Grassmann manifold,
see, for example, Edelman et al. (1998, p. 337) and Ye and Lim (2016, Table 2). In this work, we use
two different distance metrics: (1) the geodesic distance dg and (2) the projection distance, which is
also called the chordal distance in Ye and Lim (2016) and the projection F -norm in Edelman et al.
(1998). The geodesic distance was defined in Section 3.1 and the projection distance is defined
as follows. For X ,Y ∈ Gr(p, n), denote the projection matrices onto X and Y by PX and PY
respectively. Then, the distance between X and Y is given by dp(X ,Y) = ‖PX − PY‖F /

√
2 =(∑p

i=1 sin2 θi
)1/2 where θ1, . . . , θp are the principal angles of X and Y . If X = span(X), then

PX = X(XTX)−1XT . It is also easy to see the the projection distance has O(n)-symmetry. We
choose the projection distance mainly for its computational efficiency as it involves only matrix
multiplication which has a time complexity O(n2) whereas the geodesic distance requires an SVD
which has a time complexity of O(n3).

4.4 Analysis of Principal Nested Grassmannians

To determine the dimension of the nested submanifold that fits the data well enough, we can choose
p < m1 < . . . < mk < n and estimate the projection onto these nested Grassmann manifolds. The
ratio of expressed variance for each projection is the ratio of the variance of the projected data and
the variance of the original data. With these ratios, we can choose the desired dimension according
to the pre-specified percentage of expressed variance as one would do for choosing the number of
principal components in PCA.

Alternatively, one can have a full analysis of principal nested Grassmanns (PNG) as follows.
Starting from Gr(p, n), one can reduce the dimension down to Gr(p, p + 1). Using the diffeomor-
phism between Gr(p, n) and Gr(p, n− p), we have Gr(p, p+ 1) ∼= Gr(1, p+ 1), and hence we can
continue reducing the dimension down to Gr(1, 2). The resulting sequence will be

Gr(p, n)→ Gr(p, n− 1)→ · · · → Gr(p, p+ 1) = Gr(1, p+ 1)→ Gr(1, p)→ · · · → Gr(1, 2).

Furthermore, we can reduce the points on Gr(1, 2), which is a 1-dimensional manifold, to a 0-
dimensional manifold, which is simply a point, by computing the Fréchet mean (FM). We call this
FM the nested Grassmannian mean (NGM) of X1, . . . ,XN ∈ Gr(p, n). The NGM is unique since
Gr(1, 2) ∼= RP 1 can be identified as the half circle in R2 and the FM is unique in this case. Note that
in general, the NGM will not be the same as the FM of X1, . . . ,XN since the embedding/projection

10
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(a) The fiber Mπm(X ) in Gr(p,m+ 1). (b) The horizontal space (in blue) and the vertical
space (in green) induced by πm : Gr(m + 1) →
Gr(p,m).

Figure 3: Illustrations of submanifolds induced by πm.

need not be isometric. The supervised PNG (sPNG) can be obtained similarly by replacing each
projection with it supervised counterpart.

4.5 Principal Scores

Whenever we apply a projection πm : Gr(p,m + 1) → Gr(p,m) to the data, we might lose some
information contained in the data. More specifically, since we project data on a p(m + 1 − p)-
dimensional manifold to a p(m − p)-dimensional manifold, we need to describe this p(m + 1 −
p) − p(m − p) = p dimensional information loss during the projection. In PCA, this is done by
computing the scores of each principal component, which are the transformed coordinates of each
sample in the eigenspace of the covariance matrix. We can generalize the notion of principal scores
to the nested Grassmanns as follows: For each X ∈ Gr(p,m + 1), denote by Mπm(X ), the fiber
of πm(X ), i.e. Mπm(X ) = π−1m (πm(X )) = {Y ∈ Gr(p,m + 1) : πm(Y) = πm(X )}, which is a
p-dimensional submanifold of Gr(p,m + 1). An illustration of this fiber is given in Figure 3a. Let
X̃ = ιm(πm(X )) and let the unit tangent vector V ∈ TX̃Mπm(X ) be the geodesic direction from X̃
to X . Given a suitable basis on TX̃Mπm(X ), V can be realized as a p-dimensional vector, and this
will be the score vector of X associated with the projection πm.

By the definition of Mπm(X ), we have the following decomposition of the tangent space of
Gr(p,m+ 1) at X̃ into the horizontal space and the vertical space induced by πm,

TX̃Gr(p,m+ 1) = TX̃Mπm(X ) ⊕ (dιm)πm(X )(Tπm(X )Gr(p,m)).

An illustration of this decomposition is given in Figure 3b. A tangent vector ofMπm(X ) at X̃ is of the
form ∆ = A⊥b

T where A⊥ is any (m+ 1)-dim vector such that [A A⊥] is orthogonal and b ∈ Rp.
It is easy to check that πm(span(AATX + A⊥b

T )) = πm(span(X)) = span(ATX). Hence a
natural coordinate for the tangent vector ∆ = A⊥b

T is b ∈ Rp, and the geodesic direction from X̃
to X would be V = XTA⊥. It is easy to see that ‖V ‖F = 1 since X has orthonormal columns.
To reflect the distance between X̃ and X , i.e. the reconstruction error, we define d(X̃ ,X )V as the

11
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score vector for X associated with πm. In the case of Gr(1, 2) → NGM, we use the sign distance
to the NGM as the score. For complex nested Grassmanns however, the principal score associated
with each projection is a p-dimensional complex vector. For the sake of visualization, we transform
this p-dimensional complex vector to a 2p-dimensional real vector. The procedure for computing
the PNG and the principal scores is summarized in Algorithm 1.

Remark 2 Note that this definition of principal score is not intrinsic as it depends on the choice
of basis. Indeed, it is impossible to choose a p-dimensional vector for the projection πm in an
intrinsic way, since the only property of a map that is independent of bases is the rank of the map.
A reasonable choice of basis is made by viewing the Grassmann Gr(p,m) as a quotient manifold
of St(p,m), which is a submanifold in Rm×p. This is how we define the principal score for nested
Grassmanns.

5. Experiments

In this section, we will demonstrate the performance of the proposed dimensionality reduction tech-
nique, i.e. PNG and sPNG, via experiments on synthetic and real data. The implementation1 is based
on the python library pymanopt (Townsend et al., 2016) and we use the steepest descent algorithm
for the optimization (with default parameters in pymanopt). The optimization was performed on a
desktop with 3.6GHz Intel i7 processors and took about 30 seconds to converge.

5.1 Synthetic Data

In this subsection, we compare the performance of the projection and the geodesic distances respec-
tively. The questions we will answer are the following. (1) From Section 4.3, we see that using
projection distance is more efficient than using the geodesic distance. But how do they perform
compared to each other under varying dimension n and variance level σ2? (2) Is our method of
dimensionality reduction ”better” than PGA? Under what conditions does our method outperform
PGA?

5.1.1 PROJECTION AND GEODESIC DISTANCE COMPARISONS

The procedure we used to generate random points on Gr(p, n) for the synthetic data experiments
is as follows: First, we generate N points from a uniform distribution on St(p,m) (Chikuse, 2003,
Ch. 2.5), generate A from the uniform distribution on St(m,n), and generate B as an n× p matrix
with i.i.d entries from N(0, 0.1). Then we compute X̃i = span(AXi + (I − AAT )B) ∈ Gr(p, n).
Finally, we compute Xi = ExpX̃i

(σUi), where Ui = Ũi/‖Ũi‖ and Ũi ∈ TX̃i
Gr(p, n), to include

some perturbation.
This experiment involves comparing the performance of the NG representation in terms of the

explained variance, under different levels of data variance. In this experiment, we set N = 50,
n = 10, m = 3, and p = 1 and σ is ranging from 0.5 to 1. The results are averaged over 100
repetitions and are shown in Figure 4. From these results, we can see that the explained variance for
the projection distance and the geodesic distance are indistinguishable but using projection distance
leads to much faster convergence than when using the geodesic distance. The reason is that when

1. Our code is available at https://github.com/cvgmi/NestedGrassmann.

12

https://github.com/cvgmi/NestedGrassmann


NESTED GRASSMANNS FOR DIMENSIONALITY REDUCTION

Algorithm 1: Principal Nested Grassmanns
Input : X1, . . .XN ∈ Gr(p, n)
Output: An N × p(n− p) score matrix.
Let X = (X1, . . . ,XN ).
/* Gr(p, n)→ Gr(p, n− 1)→ · · · → Gr(p, p+ 1) */

for m = n− 1, . . . , p+ 1 do
v̂, b̂ = arg minv,b

∑N
i=1 d

2(Xi, span((I − vvT )Xi + vbT ));
/* v ∈ Rm+1, ‖v‖ = 1, b ∈ Rp */

for i = 1, . . . , N do
Let X̂i = span((I − v̂v̂T )Xi + v̂b̂T ) where Xi = span(Xi).
Vi,m = dg(Xi, X̂i)XT

i v ; // the score vector for Xi
Xi ← span(RTXi) ; // R ∈ St(m,m+ 1) such that RT v̂ = 0.

if p > 1 then
for i = 1, . . . , N do
Xi ← X⊥i ; // Gr(p, p+ 1) ∼= Gr(1, p+ 1)

/* Gr(1, p+ 1)→ Gr(1, p)→ · · · → Gr(1, 2) */

for m = p, . . . , 2 do
v̂, b̂ = arg minv,b

∑N
i=1 d

2(Xi, span((I − vvT )Xi + vbT ));
/* v ∈ Rm+1, ‖v‖ = 1, b ∈ Rp */

for i = 1, . . . , N do
Let X̂i = span((I − v̂v̂T )Xi + v̂b̂T ) where Xi = span(Xi).
Vi,m = dg(Xi, X̂i)XT

i v ; // the score vector for Xi
Xi ← span(RTXi) ; // R ∈ St(m,m+ 1) such that RT v = 0.

/* Gr(1, 2)→ NGM */

/* Note that X̂i ∈ Gr(1, 2) */

NGM← FM(X̂1, . . . , X̂N );
Let Ui ∈ R2 be the geodesic direction from the NGM to Xi such that
‖Ui‖ = dg(NGM,Xi).;

for i = 1, . . . , N do
Vi,1 ∈ R is such that Ui = Vi,1 × U1

‖U1‖ ;

Return the score matrix S = [Vi,m]. (Note that Vi,m ∈ R for m = 1, . . . , p and Vi,m ∈ Rp
for m = p+ 1, . . . , n− 1.)
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two points on the Grassmann manifold are close, the geodesic distance can be well-approximated by
the projection distance. When the algorithm converges, the original point Xi and the reconstructed
point X̂i should be close and the geodesic distance can thus be well-approximated by the projection
distance. Therefore, for all the experiments in the next section, we use the projection distance for
the sake of efficiency.

Figure 4: Comparison of the NG representations based on the projection and geodesic distances
using the expressed variance.

5.1.2 COMPARISON OF PNG AND PGA

Now we compare the proposed PNG to PGA. In order to have a fair comparison between PNG
and PGA, we define the principal components of PNG as the principal components of the scores
obtained as in Section 4.5. Similar to the previous experiment, we set N = 50, n = 10, m = 5,
p = 2, and σ = 0.01, 0.05, 0.1, 0.5 and apply the same procedure to generate synthetic data. The
results are averaged over 100 repetitions and are shown in Figure 5.
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Figure 5: Comparison of PNG and PGA under different levels of noise.

From Figure 5, we can see that our method outperforms PGA by virtue of the fact that it is able
to capture a larger amount of variance contained in the data. We can see that when the variance is
small, the improvement of PNG over PGA is less significant, whereas, our method is significantly
better for the large data variance case (e.g. comparing σ = 0.5 and σ = 0.01). Note that when the
variance in the data is small, i.e. the data are tightly clustered around the FM, and PGA captures the
essence of the data well. However, the requirement in PGA on the geodesic submanifold to pass
through the anchor point, namely the FM, is not meaningful for data with large variance as explained
through the following simple example. Consider, a few data points spread out on the equator of a
sphere. The FM in this case is likely to be the north pole of the sphere if we restrict ourselves to
the upper hemisphere. Thus, the geodesic submanifold computed by PGA will pass through this
FM. However, what is more meaningful is a submanifold corresponding to the equator, which is
what a nested spheres representation (Jung et al., 2012) in this case yields. In similar vein, for data
with large variance on a Grassmann manifold, our NG representation will yield a more meaningful
representation than PGA.

5.2 Application to Planar Shape Analysis

We now apply our method to planar (2-dimensional) shape analysis. A planar shape σ can be
represented as an ordered set of k > 2 points in R2, called a k-ad or a configuration. Here we
assume that these k points are not all identical. Denote the configuration by X which is a k × 2
matrix. Let H be the (k − 1) × k Helmert submatrix (Dryden and Mardia, 2016, Ch. 2.5). Then
Z = HX/‖HX‖F is called the pre-shape of X from which the information about translation and
scaling is removed. The space of all pre-shapes is called the pre-shape space, denoted by Sk2 . By
definition, the pre-shape space is a (2k−3)-dimensional sphere. The shape is obtained by removing
the rotation from the pre-shape, and thus the shape space is Σk

2 = Sk2 /O(2). It was shown by Kendall
(1984) that Σk

2 is a smooth manifold and, when equipped with the quotient metric, is isometric to
the complex projective space CP k−2 equipped with the Fubini-Study metric (up to a scale factor)
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(a) digit3 (b) gorf (c) gorm

Figure 6: Example shapes from the three datasets.

Figure 7: Cumulative explained variance by the first 5 principal components of PNG, PGA, and
PNSS.

which is a special case of the complex Grassmannians, i.e. CP k−2 ∼= Gr(1,Ck−1). Hence, we can
apply the proposed PNG to planar shapes. For planar shapes, we also compare with the recently
proposed principal nested shape spaces (PNSS) (Dryden et al., 2019), which is an application of
PNS on the pre-shape space. We will now demonstrate how the PNG performs compared to PGA
and PNSS using some simple examples of planar shapes and the OASIS dataset.

Examples of Planar Shapes We take three datasets: digit3, gorf, and gorm, from the R
package shapes (Dryden, 2021). The digit3 dataset consists of 30 shapes of the digit 3, each
of which is represented by 13 points in R2; the gorf dataset consists of 30 shapes of female gorilla
skull, each of which is represented by 8 points in R2; the gorm dataset consists of 29 shapes of
male gorilla skull, each of which is represented by 8 points in R2. Example shapes from these three
datasets are shown in Figure 6. The cumulative ratios of variance explained by the first 5 principal
components2 of PNG, PGA, and PNSS are shown in Figure 7. It can be seen from Figure 7 that the
proposed PNG achieves higher explained variance than PGA and PNSS respectively in most cases.

OASIS Corpus Callosum Data Experiment The OASIS database (Marcus et al., 2007) is a
publicly available database that contains T1-MR brain scans of subjects of age ranging from 18 to

2. Here the principal components in PNG and PGA are complex whereas the principal components in PNSS are real.
Hence, we choose 5 principal components in PNG and PGA and 10 principal components in PNSS, so that the
reduced (real) dimension is 10 in all three cases.
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96. In particular, it includes subjects that are clinically diagnosed with mild to moderate Alzheimer’s
disease. We further classify them into three groups: young (aged between 10 and 40), middle-aged
(aged between 40 and 70), and old (aged above 70). For demonstration, we randomly choose 4
brain scans within each decade, totalling 36 brain scans. From each scan, the Corpus Callosum
(CC) region is segmented and 250 points are taken on the boundary of the CC region. See Figure 8
for samples of the segmented corpus callosi. In this case, the shape space is Σ248

2
∼= CP 248 ∼=

Gr(1,C249). Results of application of the three methods to this data are shown in Figure 9.

Young Middle-aged Old

Figure 8: Example Corpus Callosi shapes from three distinct age groups, each depicted using the
boundary point sets.

Figure 9: Cumulative explained variance captured by the first 10 principal components of PNG,
PGA, and PNSS respectively.

Since the data are divided into three groups (young, middle-aged, and old), we can apply the
sPNG described in Section 4.2 to reduce the dimension. The purpose of this experiment is not to
demonstrate state-of-the-art classification accuracy for this dataset. Instead, our goal here is to
demonstrate that the proposed nested Grassmann representation in a supervised setting is much
more discriminative than the competition, namely the supervised PGA. Hence, we choose a simple
classifier such as the support vector machine (SVM) Vapnik (1995) to highlight the aforementioned
discriminative power of the nested Grassmann over PGA.

For comparison, the PGA can be easily extended to supervised PGA (sPGA) by first diffeo-
morphically mapping all the data to the tangent space anchored at the FM and then performing
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supervised PCA Bair et al. (2006); Barshan et al. (2011) on the tangent space. However, generaliz-
ing PNSS to the supervised case is nontrivial and is beyond the scope of this paper. Therefore, we
limit our comparison to the unsupervised PNSS. In this demonstration, we apply an SVM on the
scores obtained from different dimension reduction algorithms, and we choose only the first three
principal scores to show that even with the 3-dimensional representation of the original shapes, we
can still achieve good classification results. The results are shown in Table 1. These results are in
accordance with our expectation since in sPNG, we seek a projection that minimizes the within-
group variance while maximizing the between-group variance. However, as we observed earlier,
the constraint of requiring the geodesic submanifold to pass through the FM is not well suited for
this dataset which has a large variance across the data. This accounts for why the sPNG exhibits far
superior performance compared to sPGA in accuracy.

Method Accuracy

sPNG 83.33%
PNG 75%
sPGA 66.67%
PGA 63.89%
PNSS 80.56%

Table 1: Classification accuracies for sPGA and sPNG respectively.

6. Conclusion

In this work, we proposed a novel nested geometric structure for homogeneous spaces and used this
structure to achieve dimensionality reduction for data residing in Grassmann manifolds. We also dis-
cuss how this nested geometric structure served as a natural generalization of other existing nested
geometric structures in literature namely, spheres and the manifold of SPD matrices. Specifically,
we showed that a lower dimensional Grassmann manifold can be embedded into a higher dimen-
sional Grassmann manifold and via this embedding we constructed a sequence of nested Grassmann
manifolds. Compared to the PGA, which is designed for general Riemannian manifolds, the pro-
posed method can capture a higher percentage of data variance after reducing the dimensionality.
This is primarily because our method, unlike the PGA, does not require the submanifold to be a
geodesic submanifold and to pass through the Fréchet mean of the data. Succinctly, the nested
Grassmann structure allows us to fit the data to a larger class of submanifolds than PGA. We also
proposed a supervised dimensionality reduction technique which simultaneously differentiates data
classes while reducing dimensionality. Efficacy of our method was demonstrated on the OASIS
Corpus Callosi data for dimensionality reduction and classification. We showed that our method
outperforms the widely used PGA and the recently proposed PNSS by a large margin.
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