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Abstract

Partial shapes correspondences is a problem that often occurs in computer vision (occlusion,
evolution in time...). In medical imaging, data may come from different modalities and be
acquired under different conditions which leads to variations in shapes and topologies. In
this paper we use an asymmetric data dissimilarity term applicable to various geometric
shapes like sets of curves or surfaces, assessing the embedding of a shape into another one
without relying on correspondences. It is designed as a data attachment for the Large
Deformation Diffeomorphic Metric Mapping (LDDMM) framework, allowing to compute
a meaningful deformation of one shape onto a subset of the other. We refine it in order
to control the resulting non-rigid deformations and provide consistent deformations of the
shapes along with their ambient space. We show that partial matching can be used for
robust multi-modal liver registration between a Computed Tomography (CT) volume and a
Cone Beam Computed Tomography (CBCT) volume. The 3D imaging of the patient CBCT
at point of care that we call live is truncated while the CT pre-intervention provides a full
visualization of the liver. The proposed method allows the truncated surfaces from CBCT
to be aligned non-rigidly, yet realistically, with surfaces from CT with an average distance
of 2.6mm(±2.2). The generated deformations extend consistently to the liver volume,
and are evaluated on points of interest for the physicians, with an average distance of
5.8mm(±2.7) for vessels bifurcations and 5.13mm(±2.5) for tumors landmarks. Such multi-
modality volumes registrations would help the physicians in the perspective of navigating
their tools in the patient’s anatomy to locate structures that are hardly visible in the CBCT
used during their procedures. Our code is available at https://github.com/plantonsanti/
PartialMatchingVarifolds.
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1. Introduction

In medical imaging, the problem of registering images has been tackled by numerous authors
(Sotiras et al., 2013) by registering directly the images, most of the time assuming that
both images contain the entire object of interest. When dealing with similar images (e.g.
same acquisition modality of a given patient), techniques driven by a distance between
voxel intensities (called similarity) usually perform well (Bauer et al., 2021). When more
variability in terms of intensity arises, other studies propose feature based methods that
match structures of interest such as surfaces, curves or even patches (Jiang et al., 2021),
showing better robustness than their intensity based counterparts.

The problem of finding correspondences between these structures has numerous appli-
cations such as pattern recognition (Bronstein et al., 2006, 2009; van Kaick et al., 2013),
annotation (Benseghir et al. (2013), Feragen et al. (2015)), and reconstruction (Halimi
et al., 2020). In particular, in the field of medical imaging, matching an atlas and a pa-
tient’s anatomy (Feragen et al., 2015), or comparing exams of the same patient acquired
with different imaging techniques (Zhen et al., 2012; Bashiri et al., 2018), provide critical
information to physicians for both planning and decision making. In practice, it often hap-
pens that only part of an object is visible in one of the two modalities (e.g. disease, surgery,
multi-modality imaging, noise). When only partial correspondence between the images are
present, handling missing structures is often done manually or heuristically.

Cone Beam Computed Tomography (CBCT), for instance, is used during image guided
procedures -live- to improve navigation and guidance. Yet, the imaged organs are generally
larger than the field of view, while the whole organ such as the liver can be acquired in
Computed Tomography (CT) scanners during the disease diagnostic phase.

(a) (b)

Figure 1: Examples of slices from a CBCT volume (a) and CT volume (b) from a same
patient visualized with a 3mm Maximum Intensity Projection (MIP). The liver is only
partially visible in CBCT.

In order to make the best of the different images both in terms of field of view and
image characteristics (see Fig. 1), one can find a partial matching between them and the
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feature-based approaches seem suited to such matching problems. This work is focused
on the registration of shapes where only part of these structures can be matched and its
application to the registration of liver surfaces extracted from CT and CBCT to guide multi-
modal volumes registration. In particular we apply the registration to the whole volumes,
and must control the deformations in order to generate anatomically relevant ones. We
study the clinical application of the proposed partial matching term for The present paper
is an extension of Antonsanti et al. (2021) from the 2021 Information Processing in Medical
Imaging conference in which we introduced the partial matching in the space of varifolds.

1.1 Previous works

The problem of matching shapes has been widely addressed in the literature in the past
decades (van Kaick et al., 2011). In the specific case of partial matching, one can find
two main approaches to such problem: either by finding correspondences, sparse or dense,
between structures from descriptors that are invariant to different transformations (Aiger
et al., 2008; Rodolà et al., 2017; Halimi et al., 2019), or by looking for a deformation aligning
the shapes with respect to a given metric (Aiger et al., 2008; Benseghir et al., 2013; Zhao
et al., 2015; Feragen et al., 2015; Halimi et al., 2020).

The early works on partial shape correspondence as reviewed in van Kaick et al. (2011)
rely on correspondences between points computed from geometric descriptors extracted
from an isotropic local region around the selected points. The method is refined in van Kaick
et al. (2013) by selecting pairs of points to better fit the local geometry using bilateral map.
The features extracted can also be invariant to different transformation, as in Rodolà et al.
(2013) where the descriptors extracted are scale invariant. Such sparse correspondences are
naturally adapted to partial matching, yet they cannot take the whole shapes into account
in the matching process.

Using a different approach, functional maps were introduced in Ovsjanikov et al. (2012)
allowing dense correspondences between shapes by transferring the problem to linear func-
tions between spaces of functions defined over the shapes. In Rodolà et al. (2017) the
non-rigid partial shape correspondence is based on the Laplace-Beltrami eigenfunctions
used as prior in the spectral representation of the shapes. Recently in Halimi et al. (2019),
such functional map models were adapted in a deep unsupervised framework by finding
correspondences minimizing the distortion between shapes. Such methods are yet limited
to surface correspondences.

The second kind of methods relies on the deformations that can be generated to align
the shapes with each other. It usually involves minimizing a function called data attachment
that quantifies the alignment error between the shapes. A deformation cost is sometimes
added to regularize these deformations. The sparse correspondences being naturally suited
to partial matching, they are notably used in Iterative Closest Point (ICP) methods and
their derivatives to guide a registration of one shape onto the other. In Aiger et al. (2008)
a regularized version of the ICP selects the sets of four co-planar points in the points cloud.
In Benseghir et al. (2013) the ICP is adapted to the specific case of vascular trees and
compute curves’ correspondences through an Iterative Closest Curve method. Working on
trees of 3D curves as well, Feragen et al. (2015) hierarchically selects the overall curves
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correspondences minimizing the tree space geodesic distance between the trees. This latter
method, although specific to tree-structures, allows topological changes in the deformation.

On the other hand some authors compute the deformation guided by a dense data
attachment term. In Bronstein et al. (2006) isometry-invariant minimum distortion defor-
mations are applied to 2D Riemannian manifolds thanks to a multiscale framework using
partial matching derived from Gromov’s theory. This work is extended in Bronstein et al.
(2009) by finding the optimal trade-off between partial shape matching and similarity be-
tween these shapes embedded in the same metric space. Recently in Halimi et al. (2020)
a partial correspondence is performed through a non-rigid alignment of one shape and its
partial scan seen as points clouds embedded in the same representation space. The non-rigid
alignment is done with a Siamese architecture network. This approach seems promising and
is part of a completion framework, however it requires a huge amount of data to train the
network.

Interestingly, the regularization cost can be seen as a distance between shapes itself
(Feragen et al., 2015) by quantifying the deformation amount necessary to register one
shape onto the other. This provides a complementary tool to the metrics used to quantify
the shapes dissimilarities.

A well established and versatile framework to compute meaningful deformations is the
Large Deformation Diffeomorphic Metric Mapping (LDDMM) (Trouvé, 1995; Christensen
et al., 1996; Beg et al., 2005). It allows to see the difference between shapes through the
optimal deformation to register a source shape S onto a target shape T . However, the data
attachment metrics proposed so far aim to compare the source and target shapes in their
entirety (Charon et al., 2020), or look for explicit correspondences between subparts of these
shapes (Feydy et al., 2017). In Kaltenmark and Trouvé (2018) the proposed growth model
introduces a first notion of partial matching incorporated to the LDDMM framework. More
recently, the bijectivity constraint is circumvented by the introduction of weighted shapes:
in Hsieh and Charon (2021); Sukurdeep et al. (2021), authors optimize a mask defined on
the shapes to exclude some subparts of these shapes (source or target). In Antonsanti et al.
(2021) a partial matching data fidelity term was introduced in the space of varifolds. We
use it in this paper and extend its formulation to better control the non-rigid deformations.
We then apply the overall method to guide multi-modal volumes registration.

1.2 Organization of the Paper

In the first part we will shortly review the main elements of the representation of shapes in
the space of varifolds (Charon and Trouvé, 2013) and the expression of the partial matching
we use in this space, introduced in Antonsanti et al. (2021). In particular, we recall how
it can be used with LDDMMs to compute diffeomorphic registration of a source shape
to a subset of a target one. We will also discuss the use of the partial matching with a
rigid registration. We then provide more details on the regularization term used for the
application to the registration of truncated liver surfaces in order to limit the shrinkage
effect that can occur when using partial matching with LDDMM.

The second section of this paper is dedicated to its clinical application to multi-modality
volume registration based on the partial matching of liver surfaces. In this application
we register liver surfaces obtained from segmentations of pre-interventional CT volumes
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intended for diagnostic purposes, and per-interventional CBCT volumes in which the livers
are wider than the field of view, leading to truncation of the surfaces in the latter modality.

2. Partial Matching in the space of varifolds

In this section we quickly review the methodology introduced in Antonsanti et al. (2021).
We refer to this article for all details.

We are interested in the problem of finding an optimal deformation to register a source
shape S onto an unknown subset of a target shape T , where S, T are assumed to be compact
m-rectifiable subsets of Rd with either m = 1 (curves) or m = d− 1 (hypersurfaces).

2.1 Shape registration via oriented varifolds

The varifold method for shape matching was first introduced in Charon and Trouvé (2013).
In this section we use the notations and concepts of the more general oriented varifold
framework, developed in Kaltenmark et al. (2017). This framework associates with any
shape S a representer function, defined on Rd × Sd−1, as follows:

ωS(y, τ) =

∫
S
ke(y, x)kt(τ, τxS)dx ,

where τx denotes the unit tangent vector - for curves - or unit normal vector - for hyper-
surfaces - at point x on the shape S, and ke, kt are predefined fixed kernels functions over

Rd and Sd−1. In practice, we use ke : (Rd)2 → R a gaussian kernel ke(x, y) = e−‖x−y‖
2/σ2

W ,

where σW is a scale parameter, and for kt : (Sd−1)
2 → R the kernel kt(u, v) = e〈u,v〉Rd .

Mathematically, the product kernel ke ⊗ kt defines a Reproducing Kernel Hilbert Space
(RKHS) structure W , and ωS corresponds to the Riesz representer of the oriented varifold
µS ∈W ′, associated with S, and W ′ the space of continuous linear forms on W .

The shape matching dissimilarity between S and T is then the squared W -norm between
their representers, which is also the squared W ′ (dual) norm between their varifolds:

dW ′(S, T )2 = ‖ωS − ωT ‖2W = ‖µS − µT ‖2W ′
= 〈µS , µS〉W ′ − 2〈µS , µT 〉W ′ + 〈µT , µT 〉W ′ ,

where the scalar product has an explicit form using the kernels:

〈µS , µT 〉W ′ = 〈ωS , ωT 〉W =

∫
S

∫
T
ke(x, y)kt(τxS, τyT )dx dy .

2.2 Definition of the Partial Matching Dissimilarity

The proposed partial dissimilarity term is designed to look locally at the inclusion of the
deformed source shape into the target one, and to compensate (with the max(., .) function)
for the imbalance of weights between the simple shape and the more complex one with a
normalization. The following term tends to 0 when the deformed shape is included in the
target one (for more details and discussion, see Antonsanti et al. (2021)).
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Definition 1. Let g : R 7→ R defined as g(s) = (max(0, s))2, and denote for x, x′ ∈ S,
~x = (x, τxS), ωS(~x) = ωS(x, τxS) and k(~x, ~x′) = ke(x, x

′)kt(τxS, τx′S). We define the
normalized partial matching dissimilarity as follows:

∆(S, T ) =

∫
S
g

(
ωS(~x)−

∫
T

minε

(
1,
ωS(~x)

ωT (~y)

)
k(~x, ~y)dy

)
dx (1)

where minε(1, s) =
s+1−
√
ε+(s−1)2

2 with ε > 0 small, is used as a smooth approximation of
the min(1, ·) function.

Discrete formulation The discrete version of the partial matching dissimilarity can be
derived very straightforwardly, following the same discrete setting described in Charon
et al. (2020) for varifold matching. We are working with surfaces, seen as triangular meshes
with vertices q1, ..., qK . Each triangle fi, i ∈ [1, .., NS ] with the vertices (q1

i , q
2
i , q

3
i ) of

the shape S is associated to the center ci =
x1i +x2i +x3i

3 and to the normal vector ηxiS =

(1/2) ∗ (q2
i − q1

i ) × (q3
i − q1

i ). The unit normal vector is then τxiS =
ηxiS

‖ηxiS‖
. We define

similarly the centers yl of the target shape T and their associated normal vectors ηylT and
unit normal vectors τylT .

The discrete normalized partial matching term is then written as follows:

∆(S, T ) =
NS∑
i=1

g

(
ωS(~xi)−

NT∑
l=1

minε

(
1,
ωS(~xi)

ωT (~yl)

)
k(~xi, ~yl)

)
(2)

with ωS(~xi) =
NS∑
j=1

ke(xi, xj)kt(τxiS, τxjS) ‖ηxiS‖
∥∥ηxjS∥∥.

2.3 Use in the LDDMM setting

In the LDDMM framework Beg et al. (2005), the partial matching problem consists in
minimizing

J(v) = λ

∫ 1

0
‖vt‖2V dt+ ∆(φv1(S), T ) ,

where φv1 is the flow of the time-dependent square integrable velocity fields t ∈ [0, 1] 7→ vt,
and ‖ · ‖V is the regularization Hilbert norm over vector fields.

The LDDMM registration procedure is numerically solved via a geodesic shooting algo-
rithm introduced by Miller et al. (2006), optimizing on a set of initial momentum vectors
located at the discretization points of the source shape. Implementations of the dissimilarity
terms are available on our github repository 1.

2.4 Use with Rigid Deformations

We can define a second minimization problem for a rigid registration, by minimizing the
function:

Jrig(r) = ∆(r(S), T ) ,

1. https://github.com/plantonsanti/PartialMatchingVarifolds

6

https://github.com/plantonsanti/PartialMatchingVarifolds


How to Register a Live onto a Liver ?

with r a rigid deformation composed of a translation and a rotation.
For any rigid deformation ωr(S)(r(~x)) = ωS(~x), ∀x ∈ S, and we can thus write in the

discrete setting:

∆(r(S), T ) =
NS∑
i=1

g

(
ωS(~xi)−

NT∑
l=1

minε

(
1,
ωS(~xi)

ωT (~yl)

)
k(r(~xi), ~yl)

)
We have that Jrig is a composition of continuous functions and that : k(r(~xi), ~yl) −→ 0

when the translation goes to infinity from the construction of the kernel k. We can de-

duce that for all rigid deformation we have minε

(
1,
ωS(~xi)

ωT (~yl)

)
k(r(~xi), ~yl) > 0 and Jrig(r) <

NS∑
i=1

g (ωS(~xi)).

Jrig is continuous and bounded over the space of finite dimension of rotations and
translations, the minimization problem has a solution.

2.5 Additional a priori

It is known from experiments that the deformations can lead to abnormal shrinkage or
stretching of the deformed shapes. This phenomenon comes from two things combined:
first, we introduce an attachment term to the data favoring the inclusion of a deformed
object in a target, thus an asymmetric term. In the case of non-rigid deformations, there
is a multitude of local minima, and this must be controlled with a regularization of the
deformations. Second, in the regularization of the LDDMM model (2.3), the deformations
tend to shrink the objects along the geodesics, so it is possible that the diffeomorphisms
create a shrinkage of the non-realistic source shape. In order to limit this we can add a
regularization term in the function J to minimize.

2.5.1 Definition

The purpose of this regularization term is to prevent the deformations from shrinking or
stretching the source shape. We chose to address it in the shape space of Varifolds as well,
by controlling the norm of the deformed shape:

Rglobal(S,Φ(S)) =
(
‖ωS‖2W − ‖ωΦ(S)‖2W

)2
(Global) (3)

Interestingly this term can be written with the area formula:

Rglobal(S,Φ(S)) =

(∫
S
ωS(~x)dx−

∫
Φ(S)

ωΦ(S)(~y)dy

)2

=

(∫
S
ωS(~x)− ωΦ(S)(Φ(~x))

∣∣∣dxφ|τxS∣∣∣ dx)2

This enforces the conservation of the norm of the deformed shape. Yet in practice it
can lead to local deformations of one part of the shape compensated with another part
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(Fig. 2). We therefore introduce a local regularization allowing to locally preserve the mass
by enforcing the terms inside the integral to be close to 0 everywhere:

Rlocal(S,Φ(S)) =

∫
S

(
ωS(~x)− ωΦ(S) (Φ(~x))

∣∣∣dxφ|τxS∣∣∣)2
dx (Local) (4)

Discrete formulation Similarly to the partial matching term, we can write the regular-
ization terms (both global and local) in the discrete setting:

Rglobal(S,Φ(S)) =

(
NS∑
i=1

ωS(~xi)−
NS∑
i=1

ωΦ(S)(Φ(~xi))

)2

(Discrete Global) (5)

Rlocal(S,Φ(S)) =

NS∑
i=1

(
ωS(~xi)− ωΦ(S) (Φ(~xi))

∥∥ηΦ(~xi)Φ(S)
∥∥

‖η~xi
S‖

)2

(Discrete Local) (6)

The overall function to minimize in this LDDMM setting is given by the formula:

Jreg(v) = λ1

∫ 1

0
‖vt‖2V dt+ ∆(φv1(S), T ) + λ2.R(S, φv1(S)) (7)

with R = Rglobal or Rlocal.

Proposition 1. Let λ1 > 0 and λ2 > 0 be two fixed parameters. The regularized par-
tial matching problem, which consists in minimizing over L2

V the function Jreg (defined in
Eq.2.5.1) has a solution.

Similarly to Antonsanti et al. (2021), the proof boils down to showing that the mapping
v 7→ A(v) = ∆(φv1(S), T ) + Rlocal(S, φ

v
1(S)) is weakly continuous on L2

V . We use the same
notations, and define (vn) a sequence in L2

V , weakly converging to some v ∈ L2
V . We only

need to show that Rlocal(S, φ
vn
1 (S)) −→ Rlocal(S, φ

v
1(S)).

To simplify we denote Sn = φvn1 (S), S∗ = φv1(S) and for any ~x ∈ Rd × Sd−1, fn(~x) =

ωSn(~x)−
∫
T

minε

(
1,
ωSn(~x)

ωT (~y)

)
k(~x, ~y)dy and f∗(~x) likewise for S∗.

Using Antonsanti et al. (2021), we have that dxφ
n converge to dxφ, uniformly on x ∈

S (Glaunès (2005)). In addition ωSn converges uniformly to ωS∗ . We can deduce that
Rlocal(S, φ

vn
1 (S))−Rlocal(S, φv1(S)) −→ 0.

2.5.2 Influence of the Regularization Term

We illustrate the influence of the regularization terms with the example of the registration of
a truncated surface onto a complete one. To do so we perform a LDDMM registration using
a small regularization parameter λ1 = 1000 in the functional Jreg and we set λ2 = 1. The
data attachment term we use is the one proposed for the partial matching in Section. 2.2. We

8



How to Register a Live onto a Liver ?

(a) Source and Target (b) Partial Varifold
No Regularization

(d) Partial Varifold
Global Regularization

(e) Partial Varifold
Local Regularization

Figure 2: Influence of the regularization term on the non rigid deformation of a truncated
sphere onto a complete one. (a): Source (blue, opaque) and target (red, transparent)
surfaces. (b-c-d): registration results. The colormap for (b-c-d) indicates the euclidean
distance (in mm) of the points to their initial position before diffeomorphic deformations.

observe that without any regularization, the non-rigid deformations lead to global shrinkage
of the source shape. On the contrary the proposed regularizations both global and local
prevent from such shrinkage. The global one though preserves the norm of the shape at
the end of the diffeomorphic deformation and does not prevent from inconsistent local
deformations. The most regular deformation is thus induced by the local regularization,
which allows to locally control the value of the varifold associated to the deformed source.
It should be noted that we work at a small scale of attachment to the data, and that this
influences the regularization. In the rest of the paper, we will use this local mass preserving
term for the clinical application (section 3).

2.5.3 Implementation Details

In all the following experiments, we initialize the registration by aligning objects barycenters
since no prior positioning is known in our applications. To model non-rigid deformations,
we define the reproducing kernel KV of V to be a sum of Gaussian kernels:

KV (x, y) =
∑
s

exp
(
−‖x− y‖2 / (σ0/s)

2
)

9
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where s ∈ [1, 4, 8, 16] and σ0 is about half the size of the shapes bounding boxes. For each set
of experiments we use the same hyperparameters (σ0, σW , λ1, λ2) to compare the influence
of the regularization and for the clinical application. The parameter σ0 controls the range
of the non-rigid deformations produced by LDDMM, while σW is associated to the spatial
kernel used for the data attachment term in the space of varifolds, and denotes the reach
of each varifold. Our Python implementation makes use of the libraries PyTorch (Paszke
et al., 2017) and KeOps (Charlier et al., 2021), to benefit from automatic differentiation
and GPU acceleration of kernel convolutions.

2.5.4 Computational Cost

To compute the registrations, we use a TITAN RTX Graphic Processing Unit. One rigid
deformation of a 444 × 512 × 512 voxel grid is computed in 9.10 × 10−1s when the diffeo-
morphic deformation takes 57.0 seconds. In terms of optimization, the ICP (on CPU) takes
4.64× 10−2s for a source and a target of approximately 104 points. On the same data the
rigid registration guided with our partial matching dissimilarity function takes 9.63×10−1s
and the LDDMM optimization takes 274s. This huge difference between LDDMM and the
others methods comes from the number of parameters to optimize in its framework : the
dimension of the space times the number of points in the source shape.

There are many possible ways to accelerate the LDDMM, from reducing the number
of points in the source to the approximation of the diffeomorphisms with other deforma-
tions models. No matter the deformation, the computational cost of the partial matching
dissimilarity function for the same data is 7.24× 10−3s.

3. Clinical application : Feature-based Multi-modality Liver Volume
Registration

Medical images are often acquired through different modalities, including ultrasound, com-
puted tomography, and magnetic resonance imaging, each providing different and com-
plementary information. In this context, image registration allows physicians to obtain
combined inputs from different imaging modalities using for instance image comparison or
fusion. The latter has been shown to be valuable in image-guided procedures, yielding less
complications and decreasing radiation dose (Rajagopal and Venkatesan, 2016). This sec-
tion is the clinical application of the work introducing the partial matching in the space of
varifolds (Antonsanti et al., 2021) and the extensions proposed in 2.

3.1 CT/CBCT Volume Registration

Transcatheter directed liver therapies are part of the therapeutic arsenal of primary and
secondary liver malignancies. The objective of these procedures is to locally treat the
tumor and be as selective as possible (meaning placing the microcatheter used to inject
the treatment as close as possible to the tumor) to preserve surrounding healthy tissues all
while ensuring the destruction of the malignant cells.

These minimally invasive procedures are performed by navigating through the patient’s
arteries under real time 2D angiography, acquired through an imaging device called C-arm.
Additionally, the latter can perform a 200 degrees rotation to allow 3D reconstruction of
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the patient’s anatomy, called Cone Beam Computed Tomography (CBCT) (Tacher et al.,
2015), to obtain a ”live” 3D imaging of the patient at point of care. Performing CBCT
during such procedure improves tumor detection and navigation guidance (Fig. 1a).

Classically, preprocedural diagnostic CT scan or MRI are reviewed by the interventional
radiologist to plan the procedure accordingly. The preprocedural acquisitions provide in-
formation on the entire liver anatomy, tumor burden and tumor feeding arteries that are
decisive for procedural planning, such as number of tumors to be treated in one session
and the dose of therapeutic agent to inject. Contrary to CT or MRI, CBCT is performed
during the procedure, and the operator can compare procedural CBCT to preprocedural
CT (Fig. 1b) to ensure adequate treatment delivery.

While CBCT offers a superior spatial resolution compared to conventional CT scan, with
intra-arterial injection of contrast agent providing a detailed visualization of the arteries, low
contrast visibility is better in CT (Fig. 1a). CBCT can also be subject to several artifacts
such as beam hardening and motion artifacts that might decrease the CBCT performance
to visualize the tumor, which is key to selective and successful treatment. A major difficulty
in the fusion of a CT volume with a CBCT one comes from the fact that, unlike CT, liver
is only partially visible in CBCT (due to the limited size of the field of view in the latter
modality). In addition the acquisitions are taken at different times, potentially several
weeks apart, and with different patient stances introducing deformations of the liver. For
all these reasons, the two types of volumes are very different one from another as illustrated
in Fig. 1.

We propose a registration method based on liver surfaces (one of the feature that is
visible in both the CT and CBCT whatever the clinical acquisition protocol) providing a
deformation of the entire volume. To that extent we apply our partial matching dissim-
ilarity term allowing to tackle the issue of partial correspondence between the truncated
surface extracted from the CBCT (Live) and the one extracted from the CT (Liver). The
registrations are evaluated on landmarks inside the liver, which were annotated by a physi-
cian.

3.2 Database Description

The database is composed of CBCT/CT pairs where CBCT have been acquired during
hepatic arteriography and CT scans obtained at early or late arterial phase. We do not
provide the acquisition parameters here, yet the spatial resolution (in mm) of the volumes
are (0.45, 0.45, 0.45) for the CBCT and in average (0.75, 0.75, 1.25) for the CT. Both were
selected to show good visualization of the vessels and tumors. In total, 19 pairs of CT/CBCT
liver volumes were evaluated, as the one illustrated in Fig. 1.

3.2.1 Liver Segmentation

The livers were segmented in each modality using a deep neural network (Milletari et al.,
2016) providing a binary volume in both modalities. In this application, the segmentations
were evaluated by a clinical specialist and manually corrected if a major error was detected
such as missing part of the liver. The idea is to be close to the clinical set up. By doing
so, we ensure that the registrations are based on features as reliable as possible. The mesh
of the surfaces were then extracted and decimated, leading to meshes of approximately 104
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(a) (b)

(c) (d)

Figure 3: Examples of annotated Points of Interest on CBCT (a) and on CT (b). Examples
of annotated longest axis diameter lesion visualized on CBCT (c) and on CT (d). All images
come from the same patient.

points per surface. In the case of CBCT volumes, the meshes are then cut by the cylinder
corresponding to the field of view using Musy et al. (2021). The CBCT livers surfaces
obtained are then truncated.

3.2.2 Points of Interest

For each patient, the branches of the proper hepatic artery visible on CT volume were
annotated with Points of Interest (POIs) for evaluation purpose. Each POI was similarly
annotated in the same location on the corresponding CBCT volume. Selected POIs often
corresponded to arterial bifurcations that are easily identifiable on both CT and CBCT. For
each pair of volumes, a physician annotated 10 POIs (Fig. 3a,3b). Because of the limited
visibility of distal hepatic arteries on arterial phase CT compared to CBCT acquired during
hepatic arteriography, most of POIs were located close to the bifurcation of the proper
hepatic artery, thus mainly located at central parts of the livers, of importance to physicians.
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3.2.3 Tumors Annotation

To evaluate the registrations, in addition to POIs, we annotated the longest axis diameter of
a tumor according to Ghosn et al. (2021) to ensure better reproducibility of the annotations
across volumes (Fig. 3c, Fig 3d). It was done in the axial view of the volumes for tumors
that were visible in both modalities. The axis can be decomposed into 3 Tumor Points :
the extremities and the center. In the database, one invasive tumor could not be annotated,
reducing the number of pairs of tumors to 18. The annotated tumors were located in all
the liver segments and their size varied from 9mm to 109mm. This variability in terms of
position and size provides a complementary information to that of the POIs.

3.3 Liver Surface Registration with Partial Matching

As a first registration step, the truncated liver surfaces from CBCT were registered onto
complete liver surfaces from CT scans with a LDDMM deformation model using the discrete
framework described in Sec. 2.2. The LDDMM deformations of the truncated livers sur-
faces with partial dissimilarity function may lead to small shrinkage of the borders. In order
to compensate this phenomenon in the application we added the a priori regularization of
Eq. 4 to the partial data attachment term that prevents from strong local deformations. For
illustration purpose, one subject was registered twice with this model: once with the dis-
tance in the space of Varifolds, once with the normalized partial dissimilarity term (Def. 1)
with the local regularization (Eq. 4). This particular experiment is illustrated in Fig. 4.
Both results are generated with the same deformations and regularization parameters. As
expected the Varifold distance leads to unrealistic deformations that tend to fill the holes in
the source shape to cover the entire target. From the anatomical and medical point of view
this is misleading and can not be used in a clinical application of multi-modality volumes
registration. On the contrary the partial matching produces a more realistic deformation of
the source onto a subset of the complete surface. We will only use and discuss this model
in the following.

In order to initialize the LDDMM deformations, one classically performs a rigid regis-
tration. We find in the literature that the livers are principally deformed in translation,
so we tested a set of combinations between rigid deformations and LDDMM. We selected
the methods providing the best results: a translation followed by LDDMM (denoted trans-
lation+LDDMM ) and a rigid deformation of limited angulation followed by LDDMM (de-
noted rigid+LDDMM ). The rigid registration is limited to rotations between −15◦ and 15◦

around each axis that is the range of realistic rotations for the liver deformations.

In addition to these registration methods, we tested the standard rigid Iterative Closest
Point (ICP) applied to the surfaces, using as data attachment term the function:

∆ICP (S, T ) =
1

Card(S)

∑
x∈S

min
y∈T

(‖x− y‖Rd) .

By minimizing this term one minimizes the average distance of the source points to the
target. This asymmetric function can be seen as a partial matching dissimilarity term,
being equal to 0 if S is included in T .
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(a) (b)

(c) (d)

Figure 4: Registration of a truncated liver’s surface (Live) from a CBCT (a) onto a complete
liver’s surface (Liver) from a CT (b) for Patient 2. Varifold registration (c); Partial normal-
ized registration (Def. 1) with a local regularization (Eq. 4) (d). The color scale indicates
the euclidean distance (in mm) of the points to their initial position before diffeomorphic
deformation.

3.3.1 Implementation details

LDDMM is computed with the partial matching dissimilarity term and the localized mass
preservation term Eq. 4. In the rest of the paper J is written as follows:

J(v) = λ1

∫ 1

0
‖vt‖2V dt+ ∆(φv1(S), T ) + λ2Rlocal(S, φ

v
1(S)) (8)

The optimization of this functional J is performed using Limited-memory Broyden–-
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. In the LDDMM framework the cost of
the deformations is controlled by the parameters λ1 and λ2. In order to enforce smooth
deformations of the surface as well as its ambient space, we set λ1 to 107, and we control
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Rigid Rigid+LDDMM Translation+LDDMM

with ICP with Partial Varifold with Partial Varifold

(a) POIs metric: 2.77mm,
Tumor metric : 9.12mm

(b) POIs metric: 3.61mm,
Tumor metric : 9.32mm

(c) POIs metric: 4.22mm,
Tumor metric : 2.86mm

Figure 5: Tiled visualization of the registrations for Patient 11 for which the approaches
using rigid deformations (a,b) register correctly the vessels but fail to align the tumor. The
tiles of the CBCT target volume are the dark ones, those of the deformed CT volumes are
the light ones.

the risk of shrinkage of the partial matching non-rigid registration by setting λ2 = 1. The
Reproducing Kernel of the deformations is the same as in 2.5.3 allowing large deformations
of the shapes along with more detailed ones. In order to better register the shapes, we also
use a multi-scale registration scheme for the data attachment terms by iterative applications
with σW = 10mm and σW = 5mm the output of the optimization at scale 10 is used as
input at the scale 5.

3.4 From Surface to Volume Registration

Both rigid deformation and LDDMM can be extended to the whole volume. To do so, the
voxel grid of the source volume is deformed and interpolated on the target volume. In the
case of LDDMM deformations, the voxel grid is deformed with the diffeomorphism of R3 as
described in 2.3. The values of the interpolated grid are then reported in the initial volume,
providing a registration of the CT volume onto the CBCT one as illustrated in Fig. 5.

The registrations of the volumes can be visualized to qualitatively assess the registration
in the livers. To provide a 2D visualization of the results, we use in Fig. 5 and Fig. 6 a tiled
representation that alternatively shows two volumes. Such visualization allows to see the
continuities between the volumes. Each tile contains a 2D view of the CT volume (light
tiles) or the CBCT one (dark tiles). As the dynamics of the images are very different,
and the tissues that emerge differ from one modality to another, we are interested in the
continuity of the emerging structures such as vessels, liver parenchyma or tumors.

3.5 Evaluation and Results

We recall that the key to clinical success is to register precisely the local area around the
tumor despite the fact that this tumor is not segmented in CBCT (live) clinical routine
(and thus not usable in the registration procedure). Therefore the liver registration is
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Rigid Rigid Translation+LDDMM

with ICP with Partial Varifold with Partial Varifold

(a) POIs metric: 9.75mm (b) POIs metric : 8.53mm (c) POIs metric : 4.94mm

(d) Tumor metric : 19.8mm (e) Tumor metric : 17.4mm (f) Tumor metric : 3.62mm

Figure 6: Tiled visualization of the registrations for Patient 2. The tiles of the CBCT
target volume are the dark ones, those of the deformed CT volumes are the light ones.
First row : sagittal view, second row : axial view.

evaluated through the euclidean distance between the deformed points of interest of the
CBCT and those of the CT. It is done similarly with the tumors landmarks. Since the
POIs are more centered than the tumor landmarks (see Fig.3), this second evaluation is
significant as we will further explain in the discussion. The detailed results per case are
provided in Table 1 and Table 2. In addition, we evaluate the registration at the surface
level, which provides an indication of the overall registration quality, and gives the physician
an additional benchmark for the comparison of CT and CBCT volumes. We first compute
the barycenters registrations between the surfaces and apply the resulting translations to
the volumes.We obtain an average distance of 18.3mm between the POIs, and of 21.5mm
between the tumors landmarks. We show these values as red lines in the corresponding
figures. They illustrate what the physicians can quickly obtain during the procedures,
registering the volumes in translation by clicking one corresponding point in both modalities.
As a reference method for the rigid registration, we also computed the ICP registration
directly based on the distance between the points of interest. This registration setting
is the only one to exploit the annotated landmarks as input and it will only be used for
quantitative comparison.
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Therefore the liver registration is evaluated through the euclidean distance between the
deformed points of interest of the CBCT and those of the CT. It is done similarly with
the tumors landmarks. Since the POIs are more centered than the tumor landmarks (see
Fig.3), this second evaluation is significant as we will further explain in the discussion. The
detailed results per case are provided in Table 1 and Table 2. In addition, we evaluate
the registration at the surface level, which provides an indication of the overall registration
quality, and gives the physician an additional benchmark for the comparison of CT and
CBCT volumes. We first compute the barycenters registrations between the surfaces and
apply the resulting translations to the volumes.We obtain an average distance of 18.3mm
between the POIs, and of 21.5mm between the tumors landmarks. We show these values as
red lines in the corresponding figures. They illustrate what the physicians can quickly obtain
during the procedures, registering the volumes in translation by clicking one corresponding
point in both modalities.

3.5.1 Evaluation on the POIs

We computed the euclidean distance between the POIs in the target volumes and the
deformed ones. The results are presented in two figures: the first one (Fig. 7) provides a
detail of the distances between the POIs as a function of the average distances from the
points of the deformed surface to those of the target surface. This gives an idea of the
distance between the edges of the liver after registration and the influence on the distance
between the POIs. The associated box plots in Fig. 8 provide a summary of the interest
point registration results according to the method used. The right box in Fig. 8 corresponds
to the ICP rigid registration based on the POIs for the data attachment term and is used
as reference. Note that this box shows that the variations cannot be explained by rigid
deformations only. We observe in Fig. 7 that the LDDMM deformations allow a consistent
and robust registration of the surfaces with an average distance of the deformed source
points to the target of about 2mm in average. This cannot be achieved by only rigid
deformations guided by ICP (4mm in average), but must be validated with other metric
in order to assess the quality of the deformation applied to the whole livers volumes. In
terms of POIs distances, none of the three methods illustrated in this scatter plot shows
significant difference with the others, as validated in Fig. 8.

Each of them performs differently depending on which patient they are evaluated as one
can see in the detailed table in Appendix A, but none of them stands out for the POIs metric.
The best average performance 5.78mm ± 5.32 is achieved with the translation+LDDMM
deformation guided by our partial dissimilarity term yet it is not significantly better that
the rigid ICP (6.49mm ± 5.18) or the rigid+LDDMM method (6.54mm ± 5.09). When
referring to the details in Appendix A, we see that the LDDMM deformations significantly
improve the translations (reducing by 44% the distance between the POIs). However, rigid
registrations provide a poor initialization for the LDDMM deformations. By looking at the
rotations angles obtained with the ICP based on the surfaces in Table 3 (Appendix C), we
observe a difference with those obtained with the reference rigid registration based on the
POIs. The wrong rotations of the rigid ICP based on the surfaces come from the truncation
of the source which can be interpreted as less constraints for the registration problem.
Similar results are observed for the rigid registration guided by the partial varifold term.
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Figure 7: Registration’s evaluation on the Points of Interest. The non-rigid LDDMM
deformations based on partial matching allow robust surface registration while ensuring
consistent deformation of the POIs. The red line corresponds to the average metric on
POIs using barycenters registration.

In such cases, the LDDMM fails to compensate for the error that causes the non-rigid
deformation to start in a local minimum. It is illustrated in Fig. 6, where the vessel and
the tumor are clearly mismatched for the volumes deformed by approaches using a rigid
transformation.

Inherently, we will not be able to do better than the reference method based on POIs, but
we observe that the surface-based registration provides satisfactory results on the whole.
When viewing the results, the points of interest are quickly found from one volume to
another, even for Patient 14 which is the outlier. Even in this case (first row of Appendix D)
we can see that the structures are not so far apart visually, which illustrates a certain
robustness of the registrations. In particular, the partial varifold term allows both rigid
and non-rigid consistent registrations with respect to the metric on the POIs.

Fig. 5 displays the results for Patient 11. This case corresponds to the best result in
terms of POIs distance (2.77mm), which is achieved by the rigid method guided by the
ICP. Yet this case illustrates that a good alignment of the POIs does not guarantee a good
alignment of the tumors: tumors boundaries have been highlighted for better visibility.

3.5.2 Evaluation on the Tumors

In the Figure 9 we show the metric results for the lesions landmarks that we resume per
approach in Figure 10 and a detailed table is provided in Appendix B. The first remarkable
result is that the methods using rigid deformations fail to register the tumors closer than

18



How to Register a Live onto a Liver ?

Figure 8: Registration’s evaluation on the Points of Interest. The rightmost box corre-
sponds to the reference rigid registration of the POIs, hence the best possible results for rigid
deformations. The red line corresponds to the average metric on POIs using barycenters
registration.

about 1cm in average while the translation+LDDMM guided by the partial varifold term
maintains the same performance level as for the POIs metric with an average distance of
5.13mm. In the scatter plot of Fig. 9 we observe that the rigid ICP and the rigid+LDDMM
are more spread than in the scatter plot with the metric on the POIs. In particular,
the reference deformation optimized with the POIs does not perform well on the tumor
registration. The main reason is that none of the POIs is located on the tumor. In fact
the results of rigid ICP and rigid+LDDMM Partial Varifolds are similar to those of the
reference rigid registration. These observations suggest that the rigid deformation, based
on surfaces or POIs, is not always the global solution to the volume registration and may
lead to local minimum. In addition, the non-rigid deformations driven by LDDMM do not
improve rigid registration, despite the limitation of the rotation angles.

There is a clear difference between these methods and the registration with transla-
tion+LDDMM.

Fig. 6 (Patient 2), second row, shows a case for which the translation+LDDMM was
better overall. In such case, the rotations based on the surfaces could not explain the
registration between the volumes with a poor result on the lesion metric (about 17.5mm).
On the contrary, the translation only guided by partial matching shows performance of
10.8mm that is further improved by 7mm with LDDMM for a distance between the lesion
landmarks of 3.62mm.

In Appendix D, first row, is illustrated the worst case (Patient 14) for which the infil-
trated tumor was not annotated, and the liver is hardly visible in CBCT. Comparing the
results of rigid+LDDMM in Appendix B and Appendix A, we see that the LDDMM defor-
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Figure 9: Registration’s evaluation on the Tumors Landmarks. Only the Translation +
LDDMM deformation method using Partial Matching preserves the same level of perfor-
mance on the Tumors Landmarks as for the metric on POIs. The red line corresponds to
the average metric on tumors using barycenters registration. The outlier (Patient 14) is
excluded from this evaluation.

mations fail to improve significantly the rigid registration guided by the partial matching in
the space of varifolds both regarding the POIs metric and the tumors one. The best initial-
ization for the non-rigid deformations of LDDMM is the translation, providing consistent
results for both metrics.

3.6 Discussion

We applied the proposed partial matching dissimilarity term to the registration of pre-op
CT volumes on CBCT volumes acquired during the interventions based on segmented liver
surfaces. These surfaces, truncated in CBCT, present non-rigid deformations between them
due to differences in time point and patient stances in each modality. Partial matching can
be used in a rigid registration process, providing results equivalent to a standard method
like ICP. It is important to note that the registered surfaces in this application are relatively
smooth, which favors the ICP for the rigid registration part. However, this approach in the
non-rigid case can lead to projecting several points on one point of the target, and does not
take into account the local orientations of the objects or their resolution. On less regular
anatomies, one could expect less good performances. Moreover, this approach tends to
minimize the average distance from the deformed source to the target. In some cases, as
for patient 2 or patient 9, the truncation allows a freedom of deformation which makes
the method unsuitable and leads to errors, whereas the reference method generating rigid
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Figure 10: Registration’s evaluation on the tumors landmarks. The rightmost box corre-
sponds to the application of the rigid registration computed with the POIs. The red line
corresponds to the average metric on tumors using barycenters registration.

deformations allowed to obtain good results on both POIs and tumor landmarks. In some
cases (Patients 1, 2, 9 for instance), the reference rigid method is providing better results
than the rigid ICP based on the livers surfaces, which ensures that despite an acceptable
global rigid deformation, the rigid ICP fails at retrieving the correct one using the surfaces
to drive the registrations.

The proposed Partial Matching can also be used in LDDMM, providing the tools of
computational anatomy and allowing non-rigid, yet regular, deformations. The diffeomor-
phic deformations that this generates lead to accurate registration of the surfaces of the
livers (about 2mm on average), which gives the physician a first tool to easily compare CT
and CBCT volumes during the procedure. However, the areas of interest for the procedures
are also within the liver, and care must be taken to ensure that the non-rigid deformations
generated from the surfaces generalize well within the liver volume.

The distance between the Points of Interest, close to the bifurcation of the proper
hepatic artery, provide a first evaluation metric to the registration methods. However,
since they do not cover the volume of the livers correctly, it does not allow to discriminate
between the deformation models. Regarding their location, a rigid registration is sufficient
to align them when it fails to extend to the tumors landmarks as illustrated in Fig. 5.
In particular, the extremities of the livers seem to be deformed by non-rigid deformations
which can be explained by the better performance of the translation+LDDMM regarding
the distance on the tumor landmarks. In this case, the rigid deformations with rotation
lead to a local minimum that the LDDMM are unable to compensate. On the contrary,
translation+LDDMM provide a consistent registration of both POIs and tumors. This
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last finding indicates that the correct deformations to generate to register a liver from a
CBCT acquisition to the liver from the CT acquisition are translations and local non-rigid
deformations without large (or even no) rotations.

Although the methods based on surface registrations are sensitive to surface extraction,
we have seen through one case illustrated in Appendix D that the proposed registrations
remain suitable, despite the outlier (Patient 14) with respect to the metric on the POIs. In
particular natural the regularization of the LDDMM associated to the one proposed in this
paper provide a smooth and consistent non rigid registration of the surface and its ambient
space, ensuring realistic registrations of the volumes.

Regarding the computation time, we are studying a non-rigid multi-modality volume
registration solution with partial matching. The current computation time does not allow
to use this registration as is in a real time procedure, however there are many levers to ac-
celerate the diffeomorphic deformations, main source of computation cost. These solutions,
such as limiting the number of control points (and therefore variables), could allow the use
of this solution in an application used during the procedures.

The purpose of this study is to provide a visualization tool for the transcatheter di-
rected liver therapies in minimally invasive procedures. The results obtained with the
translation+LDDMM method thus provide robust metrics around 5mm on average, which
is useful for physicians in the perspective of navigating their tools in the patient’s anatomy
to locate structures that are hardly visible in the CBCT used during the procedure. Such
registrations could facilitate the physician’s intervention by providing, for example through
image fusion, an improved visualization of the pre-procedure CT volume tumor placed in
the CBCT volume. This would allow the physician to avoid redoing a traditional CBCT
to see the tumor correctly, thus limiting the X-ray dose sent to the patient and the time of
the procedure.

4. Conclusion

In this paper we adapted dissimilarity metrics in the space of varifolds to guide partial
shape matching and registration. This data attachment term is suited to different shapes
comparison such as unions of curves or surfaces. As a clinical application, we showed that
this new partial matching term is suitable for the registration of a truncated surface onto a
complete one, providing realistic feature-based CT-CBCT volumes registration. Regarding
the simplicity of the shapes, the rigid ICP shows equivalent results to rigid deformations
associated with the proposed partial matching. Yet this term can also be associated with
a LDDMM registration and allow diffeomorphic deformations. Provided a correct feature
extraction, such registrations could facilitate the physicians procedures during transcatheter
directed liver therapies to treat primary and secondary liver malignancies.

In this application we only used one feature extracted from the volumes. In order to
better align the CT and CBCT volumes, we could extend the feature extraction to different
structures that can be observed in both modalities, such as the hepatic vascular tree, which
is partially visible in the CT and in detail in the CBCT. The dissimilarity term introduced
can also be modified to fit the problem of registering a complete shape onto a truncated
one. The main bottleneck of our approach is the risk of shrinkage when no easy registration
is possible. Apart from regularization proposed in this paper, a promising lead to tackle
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this issue would be to also find a subset of the target to include in the source, such as done
in Bronstein et al. (2009).
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Appendix A. POIs Detailed Results per Patients

Patients ICP Rigid Rigid
Rigid
+ LDDMM

Translation
Translation
+ LDDMM

ICP Rigid
Based PoIs

Patient 0 5.18 4.29 4.15 18.6 4.71 2.47
Patient 1 7.33 22.5 15.8 14.1 7.86 4.32
Patient 2 9.75 9.88 8.53 12.8 4.94 4.92
Patient 3 5.9 5.97 5.09 9.09 6.14 2.87
Patient 4 5.04 5.95 6.05 8.31 6.89 5.66
Patient 5 5.1 6.14 4.89 5.06 3.37 2.26
Patient 6 4.26 4.42 6.08 6.91 10.8 1.28
Patient 7 4.06 2.93 3.75 6.36 3.6 1.74
Patient 8 4.72 3.55 4.76 5.87 3.67 2.36
Patient 9 13.7 7.4 9.14 14.0 6.26 1.66
Patient 10 3.7 2.93 2.88 5.25 2.93 1.65
Patient 11 2.77 3.48 3.61 8.87 4.22 1.48
Patient 12 5.97 5.31 6.02 9.03 6.3 3.02
Patient 13 6.53 5.71 5.56 13.4 5.6 2.47
Patient 14 18.9 22.3 22.8 28.1 13.6 1.69
Patient 15 2.97 2.3 2.55 6.46 3.59 2.64
Patient 16 4.12 3.34 3.75 4.07 4.4 2.28
Patient 17 6.17 11.0 3.1 5.72 5.32 2.34
Patient 18 7.17 7.05 5.74 13.9 5.76 1.89

Average 6.49 7.18 6.54 10.3 5.79 2.58
Stdev 3.93 5.83 4.95 5.9 2.66 1.18

Median 5.18 5.71 5.09 8.87 5.32 2.34

Table 1: Average distance between the Points of Interest per case.
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Appendix B. Lesions Detailed Results per Patients

Patients ICP Rigid Rigid
Rigid
+ LDDMM

Translation
Translation
+ LDDMM

ICP Rigid
Based PoIs

Patient 0 5.19 3.94 5.11 17.6 3.31 13.6
Patient 1 11.2 18.2 6.05 1.41 2.93 5.2
Patient 2 19.8 18.8 17.4 10.8 3.62 2.21
Patient 3 16.6 16.8 16.0 16.7 11.2 14.0
Patient 4 7.14 9.34 7.92 9.78 6.91 13.7
Patient 5 5.68 6.77 6.03 7.25 3.18 8.0
Patient 6 4.67 4.32 4.15 4.37 5.7 12.0
Patient 7 3.24 4.02 2.14 2.8 0.59 6.39
Patient 8 6.76 6.17 7.48 6.77 4.93 5.76
Patient 9 23.3 18.4 16.6 6.86 3.94 8.68
Patient 10 13.9 14.4 15.1 13.0 8.81 9.15
Patient 11 9.12 7.49 9.32 3.66 2.86 18.7
Patient 12 7.56 8.22 8.0 6.73 4.48 4.04
Patient 13 21.4 21.2 17.7 22.7 8.55 13.4
Patient 14 None None None None None None
Patient 15 6.69 7.36 8.28 9.49 6.36 19.3
Patient 16 5.31 4.7 5.03 6.96 3.3 6.97
Patient 17 5.56 12.5 8.22 7.29 7.37 2.87
Patient 18 7.83 7.75 7.21 12.0 4.32 7.44

Average 10.1 10.6 9.31 9.23 5.13 9.52
StDev 6.06 5.71 4.8 5.37 2.56 5.08

Median 7.35 7.98 7.96 7.27 4.4 8.34

Table 2: Average distance between the tumors landmarks per case. The invasive tumor
could not be annotated for Patient 12.
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Appendix C. Rotations Deformations Comparison

Rigid ICP Based POIs Rigid ICP Based Surfaces

Patients X Y Z X Y Z

Patient 0 -1.15 -11.52 14.2 -1.53 -12.18 10.7
Patient 1 -5.58 -11.68 0.8 -9.69 -6.51 3.89
Patient 2 -8.66 -6.28 -0.03 -17.39 -2.59 0.64
Patient 3 -13.49 -0.11 2.58 -13.03 0.51 1.33
Patient 4 -9.02 3.17 -10.8 -8.37 0.93 -9.45
Patient 5 -2.37 -4.13 -2.43 -4.96 -1.93 1.89
Patient 6 -5.09 -1.27 -3.64 -6.42 0.65 -4.96
Patient 7 -6.13 2.37 -5.04 -4.85 0.85 -3.43
Patient 8 -6.36 4.98 6.14 -6.81 3.45 2.47
Patient 9 -0.77 -5.45 8.57 -3.49 -12.56 6.15
Patient 10 2.49 6.94 3.18 -0.72 6.71 3.68
Patient 11 -10.15 -5.21 1.52 -9.34 -3.62 0.27
Patient 12 5.1 4.96 -6.6 5.3 4.18 -4.14
Patient 13 -5.25 -2.79 11.2 -2.5 -6.93 10.2
Patient 14 3.3 -12.94 -4.14 -9.25 -16.26 6.0
Patient 15 -2.38 6.39 -5.4 -3.88 6.68 -5.35
Patient 16 1.71 -1.56 1.45 -2.71 -2.01 0.31
Patient 17 -0.93 -1.01 4.24 -4.11 -2.33 7.57
Patient 18 -3.28 10.3 -4.61 4.76 9.8 0.54

Table 3: Rigid ICP Rotation Values in degree along each axis, based on the Points of
Interest and based on the Surfaces. In bold are highlighted the most important differences
in terms of rotation angles.
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Appendix D. Worst Case Scenario : Bad Feature Extraction

Rigid Rigid+LDDMM Translation+LDDMM

with ICP with Partial Varifold with Partial Varifold

(a) POIs metric: 18.9mm,
Surface metric : 10.1mm

(b) POIs metric: 22.8mm,
Surface metric : 6.06mm

(c) POIs metric: 13.5mm,
Surface metric : 4.22mm

Figure 11: Tiled visualization of the registrations for Patient 14. The infiltrated tumor
could not be annotated. The tiles of the CBCT target volume are the dark ones, those of
the deformed CT volumes are the light ones.
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