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Abstract

We propose a novel federated learning paradigm to model data variability among hetero-
geneous clients in multi-centric studies. Our method is expressed through a hierarchical
Bayesian latent variable model, where client-specific parameters are assumed to be realiza-
tion from a global distribution at the master level, which is in turn estimated to account for
data bias and variability across clients. We show that our framework can be effectively opti-
mized through expectation maximization (EM) over latent master’s distribution and clients’
parameters. We also introduce formal differential privacy (DP) guarantees compatibly with
our EM optimization scheme. We tested our method on the analysis of multi-modal medical
imaging data and clinical scores from distributed clinical datasets of patients affected by
Alzheimer’s disease. We demonstrate that our method is robust when data is distributed
either in iid and non-iid manners, even when local parameters perturbation is included
to provide DP guarantees. Moreover, the variability of data, views and centers can be
quantified in an interpretable manner, while guaranteeing high-quality data reconstruction
as compared to state-of-the-art autoencoding models and federated learning schemes. The
code is available at https://gitlab.inria.fr/epione/federated-multi-views-ppca.

Keywords: Federated Learning, Hierarchical Generative Model, Heterogeneity, Differen-
tial Privacy

1. Introduction

The analysis of medical imaging datasets requires the joint modeling of multiple views (or
modalities), such as clinical scores and multi-modal medical imaging data. For example,
in dataset from neurological studies, views are generated through different medical imaging
data acquisition processes, as for instance Magnetic Resonance Imaging (MRI) or Positron
Emission Tomography (PET). Each view provides specific information about the pathology,
and the joint analysis of all views is necessary to improve diagnosis, for the discovery of
pathological relationships or for predicting disease evolution. Nevertheless, the integration
of multi-views data, accounting for their mutual interactions and their joint variability,
presents a number of challenges.

When dealing with high dimensional and noisy data it is crucial to be able to extract an
informative lower dimensional representation to disentangle the relationships among obser-
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vations, accounting for the intrinsic heterogeneity of the original complex data structure.
From a statistical perspective, this implies the estimation of a model of the joint variability
across views, or equivalently the development of a joint generative model, assuming the
existence of a common latent representation generating all views.

Several data assimilation methods based on dimensionality reduction have been de-
veloped (Cunningham and Ghahramani, 2015), and successfully applied to a variety of
domains. The main goal of these methods is to identify a suitable lower dimensional la-
tent space, where meaningful statistical properties of the original dataset are identified
after projection. The most basic among such methods is Principal Component Analysis
(PCA) (Jolliffe, 1986), where data are projected over the axes of maximal variability. More
flexible approaches based on non-linear representation of the data variability are Auto-
Encoders (Kramer, 1991; Goodfellow et al., 2016), enabling to learn a low-dimensional
representation minimizing the reconstruction error. In the medical imaging community,
non-linear counterparts of PCA have been also proposed by extending the notion of princi-
pal components and variability to the Riemannian setting (Sommer et al., 2010; Banerjee
et al., 2017).

In some cases, Bayesian counterparts of the original dimensionality reduction methods
have been developed, such as Probabilistic Principal Component Analysis (PPCA) (Tipping
and Bishop, 1999), based on factor analysis, or, more recently, Variational Auto-Encoders
(VAEs) (Kingma and Welling, 2019), and Bayesian principal geodesic analysis (Zhang and
Fletcher, 2013; Hromatka et al., 2015; Fletcher and Zhang, 2016). In particular, VAEs are
machine learning algorithms based on a generative function which allows probabilistic data
reconstruction from the latent space. Encoder and decoder can be flexibly parametrized
by neural networks (NNs), and efficiently optimized through Stochastic Gradient Descent
(SGD). The added values of Bayesian methods is to provide a tool for sampling new ob-
servations from the estimated data distribution, and quantify the uncertainty of data and
parameters. In addition, Bayesian model selection criteria, such as the Watanabe-Akaike
Information Criteria (WAIC) (Gelman et al., 2014), allow to perform automatic model
selection.

Multi-centric biomedical studies offer a great opportunity to significantly increase the
quantity and quality of available data, hence to improve the statistical reliability of their
analysis. Nevertheless, in this context, three main data-related challenges should be con-
sidered. 1) Statistical heterogeneity of local datasets (i.e. center-specific datasets): observa-
tions may be non-identically distributed across centers with respect to some characteristics
affecting the output (e.g. diagnosis). Additional variability in local datasets can also come
from data collection and acquisition bias (Kalter et al., 2019). 2) Missing views: not all
views are usually available for each center, due for example to heterogeneous data acquisi-
tion and processing pipelines. 3) Privacy concerns: privacy-preserving laws are currently
enforced to ensure protection of personal data (e.g. the European General Data Protection
Regulation - GDPR1), often preventing the centralized analysis of data collected in multiple
centers (Iyengar et al., 2018; Chassang, 2017). These limitations impose the need for ex-
tending currently available data assimilation methods to handle decentralized heterogeneous
data and missing views in local datasets.

1. https://gdpr-info.eu/
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Federated learning (FL) is an emerging analysis paradigm specifically developed for the
decentralized training of machine learning models. The standard aggregation method in FL
is Federated Averaging (FedAvg) (McMahan et al., 2017a), which combines locally trained
models via weighted averaging. This aggregation scheme is generally sensitive to statistical
heterogeneity, which naturally arises in federated datasets (Li et al., 2020), for example
when dealing with multi-view data, or when data are not uniformly represented across data
centers (e.g. non-iid distributed). In this case a faithful representation of the variability
across centers is not guaranteed.

In order to guarantee data governance, FL methods are conceived to avoid sensitive data
transfer among centers: raw data are processed within each center, and only local param-
eters are shared with the master. Nevertheless, no formal privacy guarantees are provided
on the shared statistics, which may still reveal sensitive information about individual data
points used to train the model. Differential privacy (DP) is an established framework to
provide theoretical guarantees about the anonymity of the shared statistics with respect to
the training data points. Recent works (Abadi et al., 2016; Geyer et al., 2017; Triastcyn and
Faltings, 2019) show the importance of combining FL and DP to prevent potential infor-
mation leakage form the shared parameters, while providing theoretical privacy guarantees
for both clients and server.

Local data
distribution P (tc|θc)

Local parameters
distribution: prior P (θc|θ̃)

Global parameters
distribution: hyperprior P (θ̃)

Figure 1: Hierarchical structure of Fed-mv-PPCA. Global parameters θ̃ characterize the
distribution of the local θc, which parametrize the local data distribution in each center.

We present here Federated multi-view PPCA (Fed-mv-PPCA), a novel FL framework
for data assimilation of heterogeneous multi-view datasets. Our framework is designed to
account for the heterogeneity of federated datasets through a fully Bayesian formulation.
Fed-mv-PPCA is based on a hierarchical dependency of the model’s parameters to handle
different sources of variability in the federated dataset (Figure 1). The method is based
on a linear generative model, assuming Gaussian latent variables and noise, and allows to
account for missing views and observations across datasets. In practice, we assume that
there exists an ideal global distribution of each parameter, from which local parameters are
generated to account for the local data distribution for each center. We show, in addition,
that the privacy of the shared parameters of Fed-mv-PPCA can be explicitly quantified
and guaranteed by means of DP. The code developed in Python is publicly available at
https://gitlab.inria.fr/epione/federated-multi-views-ppca.

The paper is organized as follows: in Section 2 we provide a brief overview of the state-
of-the-art and highlight the advancements introduced with Fed-mv-PPCA. In Section 3 we
describe Fed-mv-PPCA, while its extension to improve privacy preservation through DP is
provided in Section 3.2. In Section 4 we show results with applications to synthetic data
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and to data from the Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI). Section
5 concludes the paper with a brief discussion.

2. Related Works

Several methods for dimensionality reduction based on generative models have been devel-
oped in the past years, starting from the seminal work of PPCA by Tipping and Bishop
(1999), to Bayesian Canonical Correlation Analysis (CCA) (Klami et al., 2013), which Mat-
suura et al. (2018) extended to include multiple views and missing modalities, up to more
complex methods based on multi-variate association models (Shen and Thompson, 2019),
developed, for example, to integrate multi-modal brain imaging data and high-throughput
genomics data. Other works with interesting applications to medical imaging data are based
on Riemannian approaches to better deal with non linearity (Sommer et al., 2010; Baner-
jee et al., 2017), and have been extended to a latent variable formulation (Probabilistic
Principal Geodesic Analysis - PPGA - by Zhang and Fletcher (2013)).

More recent methods for the probabilistic analysis of multi-views datasests include the
multi channel Variational Autoencoder (mc-VAE) by Antelmi et al. (2019) and Multi-Omics
Factor Analysis (MOFA) by Argelaguet et al. (2018). MOFA generalizes PPCA for the
analysis of multi-omics data types, supporting different noise models to adapt to continuous,
binary and count data, while mc-VAE extends the classic VAE (Kingma and Welling, 2014)
to jointly account for multi-views data. Additionally, mc-VAE can handle sparse datasets:
data reconstruction in testing can be inferred from available views, if some are missing.

Despite the possibility offered by the above methods for performing data assimilation and
integrating multiple views, these approaches have not been conceived to handle federated
datasets.

Statistical heterogeneity is a key challenge in FL and, more generally, in multi-centric
studies (Li et al., 2020). To tackle this problem, Li et al. (2018) proposed the FedProx
algorithm, which improves FedAvg by allowing for partial local work (i.e. adapting the
number of local epochs) and by introducing a proximal term to the local objective function to
avoid divergence due to data heterogeneity. Other methods have been developed under the
Bayesian non-parametric formalism, such as probabilistic neural matching (Yurochkin et al.,
2019), where the local parameters of NNs are federated depending on neurons similarities.

Since the development of FedAvg, researchers have been focusing in developing FL
frameworks robust to the statistical heterogeneity across clients (Sattler et al., 2019; Liang
et al., 2020). Most of these frameworks are however formulated for training schemes based
on stochastic gradient descent, with principal applications to NNs models. Nevertheless,
beyond applications taylored around NNs, we still lack of a consistent and privacy-compliant
Bayesian framework for the estimation of local and global data variability, as part of a global
optimization model, while accounting for data heterogeneity. In particular, FL alone does
not provide clear theoretical guarantees for privacy preservation, leaving the door open to
potential data leakage from malicious clients or the central server, such as through model
inversion (Fredrikson et al., 2015), and researchers are currently focusing to adapt FL
schemes to account for DP mechanisms (McMahan et al., 2017b).

4



Private Probabilistic Framework for Federated Heterogeneous Multi-View Datasets Variability

All these considerations ultimately motivate for the development of Fed-mv-PPCA and
its differential private extension. The main contributions of the work presented in this paper
are the following:

• we theoretically develop a novel Bayesian hierarchical framework, Fed-mv-PPCA, for
data assimilation from heterogeneous multi-views private federated datasets;

• we investigate the improvement our framework’s security against data leakage by
coupling it with differential privacy, and propose DP-Fed-mv-PPCA;

• We apply both models to synthetic data and real multi-modal imaging data and
clinical scores form the Alzheimer’s Disease Neuroimaging Initiative, demonstrating
the robustness of our framework against non-iid data distribution across centers and
missing modalities.

3. Methods

3.1 Federated multi-views PPCA

3.1.1 Problem setup

We consider C independent centers. Each center c ∈ {1, . . . , C} owns a private local dataset
Tc = {tc,n}n=1,...,Nc

, where we denote by tc,n the data row for subject n in center c, with
n = 1, . . . , Nc. We assume that a total of K distinct views have been measured across all
centers, and we allow missing views in some local dataset (i.e. some local dataset could be
incomplete, including only measurements for Kc < K views). For every k ∈ {1, . . . ,K}, the
dimension of the kth-view (i.e. the number of features defining the kth-view) is dk, and we

define d :=
∑K

k=1 dk. We denote by t
(k)
c,n the raw data of subject n in center c corresponding

to the kth-view, hence tc,n =
(
t

(1)
c,n, . . . , t

(K)
c,n

)
.

3.1.2 Modeling assumptions

The main assumption at the basis of Fed-mv-PPCA is the existence of a hierarchical struc-
ture underlying the data distribution. In particular, we assume that there exist global
parameters θ̃, following a distribution P (θ̃), able to describe the global data variability,
i.e. the ensemble of local datasets. For each center, local parameters θc are generated from
P (θc|θ̃), to account for the specific variability of the local dataset. Finally, local data tc
are obtained from their local distribution P (tc|θc). Given the federated datasets, Fed-mv-
PPCA provides a consistent Bayesian framework to solve the inverse problem and estimate
the model’s parameters across the entire hierarchy.

We assume that in each center c, the local data of subject n corresponding to the

kth-view, t
(k)
c,n, follows the generative model:

t(k)
c,n = W (k)

c xc,n + µ(k)
c + ε(k)

c , (1)

where xc,n ∼ N (0, Iq) is a q-dimensional latent variable, and q < mink(dk) is the dimension

of the latent-space. W
(k)
c ∈ Rdk×q provides the linear mapping between latent space and

observations for the kth-view, µ
(k)
c ∈ Rdk is the offset of the data corresponding to view k,
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and ε
(k)
c ∼ N

(
0, σ

(k)
c

2
Idk

)
is the Gaussian noise for the kth-view. This formulation induces

a Gaussian distribution over t
(k)
c,n, implying:

t(k)
c,n ∼ N (µ(k)

c , C(k)
c ), (2)

where C
(k)
c = W

(k)
c W

(k)
c

T
+ σ

(k)
c

2
Idk ∈ Rdk×dk . Finally, a compact formulation for tc,n (i.e.

considering all views concatenated) can be derived from Equation (1):

tc,n = Wcxc,n + µc + Ψc, (3)

where Wc,µc are obtained by concatenating all W
(k)
c ,µ

(k)
c , and Ψc is a block diagonal ma-

trix, where the kth-block is given by ε
(k)
c . The local parameters describing the center-specific

dataset thus are θc :=

{
µ

(k)
c ,W

(k)
c , σ

(k)
c

2
}

k

. According to our hierarchical formulation, we

assume that each local parameter in θc is a realization of a common global prior distribution

described by θ̃ :=
{
µ̃(k), σ

µ̃(k) , W̃ (k), σ
W̃ (k) , α̃

(k), β̃(k)
}
k
. In particular we assume that µ

(k)
c

and W
(k)
c are normally distributed, while the variance of the Gaussian error, σ

(k)
c

2
, follows

an inverse-gamma distribution. Formally:

µ(k)
c |µ̃(k), σ

µ̃(k) ∼ N
(
µ̃(k), σ2

µ̃(k)Idk
)
, (4)

W (k)
c |W̃ (k), σ

W̃ (k) ∼ MN k,q

(
W̃ (k), Idk , σ

2
W̃ (k)Iq

)
, (5)

σ(k)
c

2|α̃(k), β̃(k) ∼ Inverse-Gamma(α̃(k), β̃(k)), (6)

where MN k,q denotes the matrix normal distribution of dimension dk × q.

3.1.3 Proposed framework

The assumptions made in Section 3.1.2 allow to naturally define an optimization scheme
based on Expectation Maximization (EM) locally, and on Maximum Likelihood estimation
(ML) at the master level (Algorithm 1). Figure 2 shows the graphical model of Fed-mv-
PPCA.

Algorithm 1: Fed-mv-PPCA algorithm

Input : Rounds R; Iterations I; Latent space dimension q
Output: Global parameters θ̃

for r = 1, . . . , R do
for c = 1, . . . , C in parallel do

Each center c initializes θc using P (θc|θ̃);

I iterations of MAP estimation of θc using θ̃ as prior;

end
Each center c returns θc to the master;

The master collects θc, c = 1, . . . , C and estimates θ̃ through ML;

The master sends θ̃ to all centers
end

With reference to Algorithm 1, the optimization of Fed-mv-PPCA is as follows:
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W̃ (k) µ̃(k)
σ̃(k)2Master

t
(k)
c

W
(k)
c

tc

σ
(k)
c

2
µ

(k)
c

View

xc

Center

Legend:
Communication master-centers
Generative model
Complete data to views-specific subset

Figure 2: Graphical model of Fed-mv-PPCA. Thick double-sided red arrows relate nodes
which are shared between center and master, while plain black arrows define the relations
between the local dataset and the generative model parameters. Grey filled circles corre-
spond to raw data: the dashed double-sided arrow highlights the complexity of the dataset,
composed by multiple views.

Optimization. The master collects the local parameters θc for c ∈ {1, . . . , C} and esti-
mates the ML updated global parameters characterizing the prior distributions of Equations
(4) to (6). Updated global parameters θ̃ are returned to each center, and serve as priors
to update the MAP estimation of the local parameters θc, through the M step on the

functional Ep(xc,n|tc,n) ln
(
p(tc,n,xc,n|θc)p(θc|θ̃)

)
, where:

xc,n|tc,n ∼ N
(
Σ−1
c Wc

TΨ−1
c (tc,n − µc),Σ−1

c

)
,Σc := (Iq +W T

c Ψ−1
c Wc)

and

〈ln (p(tc,n,xc,n|θc))〉 = −
Nc∑

n=1

{
K∑

k=1

[
dk
2

ln
(
σ(k)
c

2
)

+
1

2σ
(k)
c

2 ‖t(k)
c,n − µ(k)

c ‖2+

1

2σ
(k)
c

2 tr
(
W (k)
c

T
W (k)
c 〈xc,nxTc,n〉

)

− 1

σ
(k)
c

2 〈xc,n〉TW (k)
c

T
(
t

(k),g
c,i − µ(k)

c

)]
+

1

2
tr
(
〈xc,nxTc,n〉

)}
,

Initialization at round r=1. The latent-space dimension q, the number of local it-
erations I and the number of communication rounds R (i.e. number of complete cycles
centers-master) are user-defined parameters. For the sake of simplicity, we set here the
same number of local iterations for every center. Note that this constraint can be easily
adapted to take into account systems heterogeneity among centers, as well as the size of each
local dataset. At the first round, local parameters initialization, hence optimization, can be
performed in two distinct ways: 1) each center can initialize randomly every local parame-
ter, then perform EM through I iterations, maximizing the functional 〈ln (p(tc,n,xc,n|θc))〉;
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2) the master can provide priors for at least some parameters, which will be optimized using
MAP estimation as described above. In case of a random initialization of local parameters,
the number of EM iterations for the first round can be increased: this can be seen as an
exploratory phase.

The reader can refer to Appendix A for further details on the theoretical formulation of
Fed-mv-PPCA and the corresponding optimization scheme.

3.2 Fed-mv-PPCA with Differential Privacy

Despite the Bayesian federated learning scheme deployed prevents data transfer, it does
not provide theoretical privacy guarantees on the shared statistics. Differential privacy
(DP) (Dwork et al., 2014; Abadi et al., 2016) is a standard framework for privacy-preserving
computations allowing to quantify a privacy protection budget attached to a given operation,
and to sanitize model parameters through output perturbation machanisms based on the
addition of a random noise. The noise strength has to be tuned to ensure a good balance
between privacy and utility of the outputs.

In Section 3.2.1 we recall the standard definition of differential privacy and established
results on classical random perturbation mechanisms, as well as the composition theorem
(Dwork et al., 2014). A differentially private version of Fed-mv-PPCA (DP-Fed-mv-PPCA)
is subsequently derived in Section 3.2.2.

3.2.1 Differential privacy: background

We denote by D,D′ two datasets: D and D′ are said to be neighboring or adjacent datasets
if they only differ by a datapoint t′, D = D′ ∪ {t′}. In this case we write ‖D − D′‖ = 1,
where ‖ · ‖ denotes the cardinality of a given set.

Definition 1 A randomized algorithm M : D → R with domain D and range R is (ε, δ)-
differentially private if for any D,D′ ∈ D s.t. ‖D −D′‖ = 1 and for any S ∈ R:

P [M(D) ∈ S] ≤ eε
[
M(D′) ∈ S

]
+ δ

When δ = 0, we simply say that the algorithm M is ε-differentially private.
A common mechanism to approximate a deterministic function or a query f : D → Rd

with differential privacy is the addition of a random noise calibrated on the sensitivity of f .

Definition 2 The lp-sensitivity of a function f : D → Rd is defined as:

∆pf = max
‖D−D′‖=1

‖f(D)− f(D′)‖p

Classical mechanisms used for perturbation are the Laplace mechanism and the Gaussian
mechanism. A Laplace (resp. Gaussian) mechanism is simply obtained by computing f ,
hence perturbing it with noise added from a Laplace (resp. Gaussian) distribution centered
in the origin and with variance depending on the sensitivity of f :

M(D) := f(D) +Noise,

where Noise ∼ Laplace (0, stdL(∆pf)) (resp. Noise ∼ N (0, varG(∆pf))).
Hereafter we recall the condition of a Laplace (resp. Gaussian) mechanism to preserve

(ε, δ)-DP.
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Theorem 3 Given any function f : D → Rd and ε > 0, the Laplace mechanism defined as

M(D) := f(D) + (L1, . . . , Ld),

where Li are iid drawn from Laplace(0,∆1f/ε), preserves ε-DP.

Theorem 4 Given any function f : D → Rd and (ε, δ) ∈ (0, 1)2, the Gaussian mechanism
defined as

M(D) := f(D) +N


0,

(√
2 ln (1.25δ)∆2f

ε

)2

Id


 ,

preserves (ε, δ)-DP.

The formal proofs of Theorems 3-4 are provided e.g. by Dwork et al. (2014).
An improved Gaussian mechanism is further described by Zhao et al. (2019), with the

advantages of 1) remaining valid for ε > 1 given δ ≤ 0.5, and 2) adding a smaller noise as
compared to the result of Theorem 4 in the case 0 < ε ≤ 1.

Theorem 5 Given any function f : D → Rd, ε > 0, and δ ∈ (0, 0.5), the Gaussian
mechanism defined as

M(D) := f(D) +N


0,

(
(c+

√
c2 + ε)∆2f

ε
√

2

)2

Id


 ,

where c =
√

ln
(
2/(
√

16δ + 1− 1)
)
, preserves (ε, δ)-DP.

It is worth noting that Theorems 4 and 5 can be naturally extended to queries mapping
to Rd×q and matrix normal mechanisms:

Corollary 6 Given any function f : D → Rd×q, ε > 0, and δ ∈ (0, 0.5), the matrix normal
mechanism defined as

M(D) := f(D) +MN d,q


0d,q, Id,

(
(c+

√
c2 + ε)∆2f

ε
√

2

)2

Iq


 ,

where c =
√

ln
(
2/(
√

16δ + 1− 1)
)
, preserves (ε, δ)-DP.

We conclude this section by recalling the well known composition theorem (Dwork et al.,
2014), which will be useful to quantify the global privacy budget for each center in the next
sections.

Theorem 7 For i = 1, . . . , k, let Mi : D → Ri be an (εi, δi)-differentially private algo-
rithm, and M : D → ∏k

i=1Ri defined as M(D) := (M1(D), . . . ,Mk(D)). Then M is(∑k
i=1 εi,

∑k
i=1 δi

)
-differentially private.
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3.2.2 Differential privacy for local parameters

In this section we propose a novel federated learning scheme for Fed-mv-PPCA with DP to
protect client-level privacy and avoid potential private information leakage from the shared
local parameters.

We are interested in preserving the privacy of the shared local parameters θc = {µ(k)
c ,W

(k)
c , σ

(k)
c

2
}k,

which can be done by the addition of some properly tuned random noise, as detailed in Sec-
tion 3.2.1. Nevertheless, the client-level optimization scheme in Fed-mv-PPCA is based on
an iterative algorithm: therefore we do not have a closed formula to evaluate the sensitivity
of each local parameter (i.e. the queries), nor an upper bound. To overcome this problem,
we propose to perform difference clipping (Geyer et al., 2017; Zhang et al., 2021), one of
the clipping strategies proposed for differentially private SGD models. Algorithm 2 outlines
the optimization scheme for the DP-Fed-mv-PPCA framework.

Algorithm 2: DP-Fed-mv-PPCA algorithm

Input : Rounds R; Iterations I; Latent space dimension q; Privacy parameters ε, δ
Output: Global parameters θ̃

for r = 1, . . . , R do
for c = 1, . . . , C in parallel do

Initialize θc using P (θc|θ̃[r − 1]);
Update local parameters: I iterations of MAP estimation (EM + prior) to
optimize θc[r] using θ̃[r − 1] as prior;

Compute difference: ∆θc[r] := (θc[r]− θ̃[r − 1]);

Clip: ∆θc[r] := ∆θc[r]/max
(
1, ‖∆θc[r]‖p/g(σ

θ̃
[r − 1])

)
;

Perturb: Mθc [r] := ∆θc[r] +Noise(2g(σ
θ̃
[r − 1]), ε, δ);

Return θc[r] :=Mθc [r] + θ̃[r − 1] to the master;

end

The master collects all θc[r] and estimates θ̃[r] through ML;

The master sends θ̃[r] to all centers
end

Difference clipping and perturbation. With respect to Algorithm 1, difference clip-
ping and perturbation are performed at the client level compatibly with the probabilistic
formulation of the model:

1. The client computes the difference between the current local update and the initial
prior (i.e. the corresponding global parameter obtained at the previous communica-
tion round, r − 1):

∆θc[r] := (θc[r]− θ̃[r − 1])

2. The updated difference is clipped according to the standard deviation of the prior:

∆θc[r] := ∆θc[r] ·
(

max

(
1,
‖∆θc[r]‖p
g(σ

θ̃
[r − 1])

))−1

,
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where g(σ
θ̃
[r − 1]) := const · (σ

θ̃
[r − 1]), and the multiplicative constant is fixed by

the user. This clipping mechanism enforces the lp norm of ∆θc[r] to be at most
g(σ

θ̃
[r − 1]). Consequently, the lp sensitivity of ∆θc[r] is bounded by 2 · g(σ

θ̃
[r − 1]).

3. The clipped difference is perturbed:

Mθc [r] := ∆θc[r] +Noise(2g(σ
θ̃
[r − 1]), ε, δ)

In particular, for ∆µ(k)
c and ∆W (k)

c, we propose to use a Gaussian (resp. matrix
normal) mechanism (Theorem 5, resp. Corollary 6), in accordance with the Gaussian
prior distributions of these parameters, while a Laplace mechanism (Theorem 3) is

used to perturb ∆σ(k)2
c.

4. The client adds again the prior and finally sends to the master θc[r] :=Mθc [r]+ θ̃[r−
1].

Conversely to model clipping (Abadi et al., 2016; Wei et al., 2020), where the parameter
update is directly clipped and perturbed, difference clipping has the advantage to allow
reducing the magnitude of the perturbation: indeed, we expect the lp norm of the difference
∆θc to be small compared to the lp norm of θc. Moreover, our framework provides a natural
way to define the clipping parameter according to the prior. Indeed, the clipping parameter
is defined here as the standard deviation of global parameters. Hence, from a conceptual
viewpoint, we are enforcing local parameters updates to remain closer to the global ones
by some ratio of their standard deviation. This allows to obfuscate the participation of the
individual centers at the expense of a reduction of the ability of the framework in capturing
the between-centers variability.

Privacy budget

Theorem 8 For sake of simplicity, let us choose the same ε, δ for all mechanisms con-
sidered above (a generalization to a parameter-specific choice of εi, δi is straightforward).
The total privacy budget for the outputs of Algorithm 2 is (3Kε, 2Kδ), where K is the total
number of views.

Proof The proof of Theorem 8 follows from Theorems 3-5 and Corollary 6, and by noting
that data in each center are disjoint. In all centers, we are dealing with the mechanism
M := (M

µ
(k)
c
,M

W
(k)
c
,M

σ
(k)
c

2)k, where for all k, M
µ

(k)
c

and M
W

(k)
c

are (ε, δ)-differentially

private, while for all k, M
σ
(k)
c

2 is ε-differentially private. The result follows thanks to

composition Theorem 7 and the invariance of differential privacy under post-processing.

Corollary 9 If for local parameter θc ∈ θc the client-specific differential parameters are
(εc, δc), then the total privacy budget for the corresponding global parameter θ̃ is bounded by
(max (εc),max (δc)).

Proof The result directly follows from Theorem 8 and by considering Definition 1 and the
monotonicity of the exponential function.
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3.3 Computational complexity and communication cost

The computational complexity of local parameters optimization in Fed-mv-PPCA (with or
without the introduction of the DP mechanism depicted in Section 3.2) can be derived from
the complexity of standard PPCA (Chen et al., 2009). We recall that performing simple
PPCA locally in center c ∈ {1, . . . , C} implies a computational complexity of O(Ncdcq),
where Nc and dc are respectively the number of samples and dimensions in center c, while
q is the chosen latent dimension. In the multi-view extension here considered, the total
dimension is decomposed across views, meaning that dc :=

∑
k∈Kc

dk, where Kc is the set
of observed views in center c, and dk the dimension of view k. The complete data log-
likelihood to be maximized in the M step of the expectation-maximization algorithm, can
consequently be written as a sum over the number of samples and number of observed
views in center c (see Section 3.1.3 and Appendix A.). For each k ∈ Kc, the computational
complexity to optimize all k-specific local parameters is O(Ncdkq). This finally implies a
computational complexity of O(Ncq

∏
k∈Kc

dk) ≈ O(Nc
∏
k∈Kc

dk) when q � mink(dk).

The communication cost of both (DP-)Fed-mv-PPCA can be derived as well from the
communication cost of distributed PPCA (Elgamal et al., 2015), by considering that each

center c will communicate to the central server the parameter set: θc := {µ(k)
c ,W

(k)
c , σ

(k)
c

2
}k∈Kc .

For every k, the communication cost of θ
(k)
c is O(dkq). Consequently, the global communi-

cation cost of θc will be O(q
∑

k∈Kc
dk) := O(dcq), which is the same communication cost

of standard PPCA for a dc-dimensional dataset.

4. Applications

4.1 Materials

In the preparation of this article we used two datasets.

Synthetic dataset (SD): using the generative model described in Section 3.1.2, we
generated 400 observations consisting of k = 3 views of dimension d1 = 15, d2 = 8, d3 = 10
respectively. Each view was generated from a common 5-dimensional latent space. We
randomly chose parameters W (k),µ(k), σ(k). Finally, to simulate heterogeneity, a randomly
chosen sub-sample composed by 250 observations was shifted in the latent space by a ran-
domly generated vector: this allowed to simulate the existence of two distinct groups in the
population.

Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI)2: we consider
311 participants extracted from the ADNI dataset, among cognitively normal (NL) (104
subjects) and patients diagnosed with AD (207 subjects). All participants are associated
with multiple data views: cognitive scores including MMSE, CDR-SB, ADAS-Cog-11 and
RAVLT (CLINIC), Magnetic resonance imaging (MRI), Fluorodeoxyglucose-PET (FDG)
and AV45-Amyloid PET (AV45) images. MRI morphometrical biomarkers were obtained
as regional volumes using the cross-sectional pipeline of FreeSurfer v6.0 and the Desikan-

2. The ADNI project was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI was to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neu-
ropsychological assessments can be combined to measure the progression of early Alzheimer’s disease
(AD) (see www.adni-info.org for up-to-date information).
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Killiany parcellation (Fischl, 2012). Measurements from AV45-PET and FDG-PET were
estimated by co-registering each modality to their respective MRI space, normalizing by the
cerebellum uptake and by computing regional amyloid load and glucose hypometabolism
using PetSurfer pipeline (Greve et al., 2014) and the same parcellation. Features were
corrected beforehand with respect to intra-cranial volume, sex and age using a multivariate
linear model. Data dimensions for each view are: dCLINIC = 7, dMRI = 41, dFDG = 41
and dAV45 = 41. Further details on the demographics of the ADNI sample are provided in
Appendix B, Table 3.

4.2 Benchmark

We compare our method to two state-of-the art data assimilation methods: Variational Au-
toencoder (VAE) (Kingma and Welling, 2014) and multi-channel VAE (mc-VAE) (Antelmi
et al., 2019). To maintain the modeling setup consistent across methods, both auto-encoders
were tested by considering linear encoding and decoding mappings. In order to obtain the
federated version of VAE and mc-VAE we use FedAvg (McMahan et al., 2017a), which is
specifically conceived for stochastic gradient descent optimization. Additional tests were
performed by considering non-linear VAEs (2-layers for both encoding and decoding archi-
tectures), and FedProx as additional regularized FL aggregation method (results in Supp.
Table 7 and Supp. Figure 11). For all optimization methods and federation schemes we
set to 100 the total number of communication rounds, of 15 epochs each, with the default
learning rate (10−3).

4.3 Results

We apply Fed-mv-PPCA to both SD and ADNI datasets, and quantify the quality of re-
construction and identification of the latent space with respect to the increasing number
of centers, C, and the increasing data heterogeneity. We investigate also the ability of
Fed-mv-PPCA in estimating the data variability and predicting the distribution of missing
views. To this end, we consider 4 different scenarios of data distribution across multiple
centers, detailed in Table 1.

For each experiment considered hereafter with Fed-mv-PPCA, we perform 3-fold Cross
Validation (3CV) tests. For every test, local parameters are initialized randomly (i.e. no
prior is provided by the master at the beginning), and the number of rounds is set to 100.
Each round consists of 15 iterations for local MAP optimization, except the initialization
round, which consists of 30 EM iterations. Finally, when a centralized setting is tested, the
number of rounds is set to 1 and the number of EM iterations to 800.

4.3.1 Model selection

The latent space dimension q is an user defined parameter, with the only constraint q <
mink{dk}. To assess the optimal q, we consider the IID scenario and let q vary. We perform
10 times a 3-fold Cross Validation (3-CV), and split the train dataset across 3 centers. The
resulting models are compared using the WAIC criterion (Gelman et al., 2014). In addition,
we consider the Mean Absolute reconstruction Error (MAE) in an hold-out test dataset:
the MAE is obtained by evaluating the mean absolute distance between real data and data
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Table 1: Distribution of Datasets Across Centers.

Scenario Description

IID Data are iid distributed across C centers with respect to groups
and for all subjects a complete data raw is provided

G Data are non-iid distributed with respect to groups across C cen-
ters: C/3 centers includes subjects from both groups; C/3 centers
only subjects from group 1 (AD in the ADNI case); C/3 centers
only subjects from group 2 (NL for ADNI). All views have been
measured in each center.

K C/3 centers contribute with observations for all views; in C/3
centers the second view (MRI for ADNI) is missing; in C/3 centers
the third view (FDG for ADNI) is missing. Data are iid distributed
across C centers with respect to groups.

G/K Data are non-iid distributed (scenario G) and there are missing
views (scenario K).

reconstructed using the global distribution. Figure 3 shows the evolution of WAIC and
MAE with respect to the latent space dimension.

(a) SD (b) ADNI

Figure 3: WAIC score and MAE for (a) the SD dataset and (b) the ADNI dataset. In both
figures, the left y-axis scaling describes the MAE while the right y-axis scaling corresponds
to the WAIC score.

Concerning the SD dataset, the WAIC suggests q = 5 latent dimensions (Figure 3
(a)), hence demonstrating the ability of Fed-mv-PPCA to correctly recover the ground
truth latent space dimension used to generate the data. Analogously, the MAE improves
drastically up to the dimension q = 5, and subsequently stabilizes. For ADNI, the MAE
improves for increasing latent space dimensions, and we obtain the best WAIC score for
q = 6. In this case, one can notice that both the WAIC and MAE keep decreasing when
considering q varying from 1 to 6. In Figure 4 we display the standardized mean differences
of WAIC scores for 2 < q ≤ 15: increasing the latent dimension q above 6 implies a mild
relative improvement of the WAIC, while requiring a computationally more complex model
and higher communication costs (see Section 3.3). This ultimately indicates that the choice
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Figure 4: Standardized mean differences between the WAIC score for ADNI data, computed
as (mean(WAICq) −mean(WAICq−1))/

√
var(WAICq)/Nq − var(WAICq−1)/Nq−1, 2 < q ≤

15.

of q = 6 is a reasonable compromise for the ADNI database, allowing to efficiently capture
most data variability, while remaining coherent with the model hypotheses (cf q < mink dk).
Additionally, we should stress that when the k-th view dimension is smaller or equal to the
latent dimension (dk ≤ q for some k), we assumed that only the first dk − 1 columns of

W
(k)
c were effectively contributing for the latent projection of view k, and we forced the

remaining columns of W
(k)
c to be filled of zeros. For completeness, Supplementary Figure 9

provides the evolution of WAIC for q > 6 and shows that a latent dimension choice above
q = 6 is associated to a generally higher variance, suggesting less stable models and results.

It is worth noting that despite the agreement of MAE and WAIC for both datasets, the
WAIC has the competitive advantage of providing a natural and automatic model selection
measure in Bayesian models, which does not require testing data, conversely to MAE.

In the following experiments, we set the latent space dimension q = 5 for the SD dataset
and q = 6 for the ADNI dataset.

4.3.2 Increasing heterogeneity across datasets

To test the robustness of Fed-mv-PPCA’s results, for each scenario of Table 1, we perform
10 times 3-CV to obtain train and test datasets, hence we split the train dataset across
C centers. We compare our method to VAE and mc-VAE, using the same partition of
train and test datasets for CV. For all methods we consider the MAE in both the train
and test datasets, as well as the accuracy score in the Latent Space (LS) discriminating
the groups (synthetically defined in SD or corresponding to the clinical diagnosis in ADNI).
The classification was performed via Linear Discriminant Analysis (LDA) on the individual
projection of test data in the latent space.

In what follows we present a detailed description of results corresponding to the ADNI
dataset. Results for the SD dataset are in line with what we observe for ADNI (see Sup-
plementary Table 6 in Appendix B), and confirm that our method outperforms both VAE
and mc-VAE in reconstruction in all scenarios. In addition, Fed-mv-PPCA outperforms in
discrimination both methods in the non-iid setting, while mc-VAE shows slightly improved
discriminating ability in the IID scenario.
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Table 2: Results on ADNI dataset for all scenarios, and comparison with VAE and mc-VAE.

Scenario Centers Method MAE Train MAE Test Accuracy in LS

IID

1
(centralized

case)

Fed-mv-PPCA 0.0805±0.0003 0.1110±0.0011 0.8680±0.0379
VAE 0.1055±0.0017 0.1344±0.0019 0.8003±0.0409
mc-VAE 0.1382±0.0009 0.1669±0.0020 0.8727±0.0319

3

Fed-mv-PPCA 0.1027±0.0015 0.1073±0.0004 0.8652±0.0270
DP-Fed-mv-PPCA 0.1304±0.0047 0.1304±0.0041 0.8321±0.0388
VAE 0.1172±0.0022 0.1192±0.0015 0.8289±0.0383
mc-VAE 0.1602±0.0035 0.1567±0.0017 0.8850±0.0262

6

Fed-mv-PPCA 0.1203±0.0042 0.1074±0.0007 0.8742±0.0267
DP-Fed-mv-PPCA 0.1489±0.0051 0.1295±0.0029 0.8502±0.0347
VAE 0.1357±0.0042 0.1191±0.0014 0.8224±0.0377
mc-VAE 0.1840±0.0054 0.1563±0.0017 0.8894±0.0230

G

3
Fed-mv-PPCA 0.1077±0.0090 0.1096±0.0011 0.8409±0.0293
DP-Fed-mv-PPCA 0.1362±0.0117 0.1340±0.0067 0.7977±0.0480
VAE 0.1212±0.0077 0.1219±0.0015 0.7962±0.0440
mc-VAE 0.1677±0.0156 0.1611±0.0025 0.8210±0.0464

6
Fed-mv-PPCA 0.1264±0.0126 0.10912±0.0011 0.8168±0.0324
DP-Fed-mv-PPCA 0.1585±0.0158 0.1340±0.0065 0.7898±0.0407
VAE 0.1401±0.0114 0.1202±0.0016 0.7882±0.0534
mc-VAE 0.1924±0.0219 0.1589±0.0018 0.8085±0.0464

K
3

Fed-mv-PPCA 0.0951±0.0086 0.1212±0.0109 0.8624±0.0303
DP-Fed-mv-PPCA 0.1208±0.0081 0.1462±0.0092 0.8357±0.0329

6
Fed-mv-PPCA 0.1107±0.0106 0.1293±0.0162 0.8720±0.0308
DP-Fed-mv-PPCA 0.1434±0.0099 0.1604±0.0164 0.8515±0.0375

G/K
3

Fed-mv-PPCA 0.0995±0.0029 0.1271±0.0087 0.7338±0.0308
DP-Fed-mv-PPCA 0.1287±0.0081 0.1547±0.0125 0.7164±0.0474

6
Fed-mv-PPCA 0.1173±0.0061 0.1268±0.0088 0.7469±0.0202
DP-Fed-mv-PPCA 0.1463±0.0088 0.1523±0.0104 0.7174±0.0387

Moreover, for the sake of completeness, supplementary Table 7 and supplementary Fig-
ure 11 provide results for both VAE and mc-VAE with two layers, as well as both methods
with one layer and using FedProx as robust aggregation scheme with the proximal term
λ varying from 0.01 to 0.5: this method aims at improving convergence in case of het-
erogeneous data distributions. No significant improvement as been observed comparing
to the FedAvg scheme for the considered datasets and settings, while non linear models
are associated with a negligible improvement in testing compared to the linear variational
autoencoders.

IID distribution. We consider the IID scenario and split the train dataset across 1 to
6 centers. Table 2 shows that results from Fed-mv-PPCA are stable when moving from a
centralized to a federated setting, and when considering an increasing number of centers C.
We only observe a degradation of the MAE in the train dataset, but this does not affect
the performance of Fed-mv-PPCA in reconstructing the test data. Moreover, irrespectively
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from the number of training centers, Fed-mv-PPCA outperforms VAE and mc-VAE in
reconstruction.

(a) Original space

(b) Latent space (c) Missing views imputation

Figure 5: G/K scenario. First two dimensions for (a) sampling from posterior distribution

of latent variables xc,n, and (b) predicted distribution t
(k)
c,n against real data. (c) Predicted

testing distribution (blue curve) of sample features of the missing MRI view against real
data (histogram).

Heterogeneous distribution. We simulate an increasing degree of heterogeneity in 3 to
6 local datasets, to further challenge the models in properly recovering the global data. In
particular, we consider both a non-iid distribution of subjects across centers, and missing
views in some local dataset. It is worth noting that scenarios implying datasets with missing
views cannot be handled by VAE nor by mc-VAE, hence in these cases we reported only
results obtained with our method.

In Table 2 we report the average MAEs and Accuracy in the latent space for each
scenario, obtained over 10 tests for the ADNI dataset. Fed-mv-PPCA is robust despite an
increasing degree of heterogeneity in the local datasests. We observe a slight deterioration
of the MAE in the test dataset in the more challenging non-iid cases (scenarios K and
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G/K), while we note a drop of the classification accuracy in the most heterogeneous setup
(G/K). Nevertheless, Fed-mv-PPCA demostrates to be more stable and to perform better
than VAE and mc-VAE when statistical heterogeneity is introduced.

Figure 5 (a) shows the sampling posterior distribution of the latent variables, while in
Figure 5 (b) we plot the predicted global distribution against observations, for the G/K
scenario and considering 3 training centers. We notice that the variability of centers is well
captured, in spite of the heterogeneity of the distribution in the latent space. In particular
center 2 and center 3 have two clearly distinct means: this is due to the fact that subjects
in these centers belong to two distinct groups (AD in center 2 and NL in center 3). Despite
this, Fed-mv-PPCA is able to reconstruct correctly all views, even if 2 views are completely
missing in some local datasets (MRI is missing in center 2 and FDG in center 3).

After convergence of Fed-mv-PPCA, each center is supplied with global distributions for
each parameter: data corresponding to each view can therefore be simulated, even if some
are missing in the local dataset. Considering the same simulation in the challenging G/K
scenario, in Figure 5 (c) we plot the global distribution of some randomly selected features
of a missing imaging view in the test center, against ground truth density histogram, from
the original data. The global distribution provides an accurate description of the missing
MRI view. Supplementary Figure 8 shows imputation for all features of the missing MRI
and FDG views.

4.3.3 Differentially private Fed-mv-PPCA

We repeated all experiments described in Section 4.3.2, using Fed-mv-PPCA with differ-
ential privacy. For each parameter θc ∈ θc we set ε = 10, δ = 0.01, except when stated
otherwise. Finally, to perform difference clipping (Algorithm 2), we set the maximal lp
norm of the difference between the updated parameter at round r and the prior, ∆θc[r], to
be σ

θ̃
[r − 1].

DP parameters utility. We tested the utility of global parameters obtained with the
differentially private Algorithm 2, to appreciate if data reconstruction and accuracy in the
latent space are well preserved when the perturbation is performed at the client level (see
Table 2, DP-Fed-mv-PPCA rows). As expected, we observe a deterioration of previous
results, which increases with the number of training centers, due to the communication of
a larger number of perturbed parameters. Nevertheless, results remain still coherent, and
illustrate the utility of the differentially private global parameters. In particular Figure 6
shows how ε and the multiplicative constant used for difference clipping affect the ability
of the optimzed DP global parameters in preserving a meaningful separation of subjects
by diagnosis in the test set. For instance, we note that when (ε, δ) are fixed to (1, 0.01),
the clipping constant should be at most 0.2 to preserve a reasonable utility of the model
outputs, in comparison to the one obtained using Fed-mv-PPCA (reported in Figure 6, not
DP column). This further stresses the need of carefully tuning these DP parameters to
ensure a good balance between privacy and utility.

Evolution of the standard deviation of global parameters and convergence. To
better understand the effect of performing difference clipping with respect to the priors,
in Figure 7 (a-b) we plot the median evolution of the estimated standard deviation for
each global parameter during training in the G/K scenario, comparing Fed-mv-PPCA and
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(a) δ = 0.01, clipping constant= 1 (b) ε = 1, δ = 0.01

Figure 6: DP-Fed-mv-PPCA performance in preserving subjects separation in the Latent
Space (LS) by diagnosis, varying (a) ε and (b) the multiplicative constant for difference
clipping. Results for Fed-mv-PPCA (without DP) are reported for comparison purposes.
∗∗ := p ≤ 1.e− 2, ∗ ∗ ∗ := p ≤ 1.e− 3, ∗ ∗ ∗∗ := p ≤ 1.e− 4.

DP-Fed-mv-PPCA. When DP is not introduced, we can see that all global parameters’
standard deviations converge, as expected, indicating harmonization of local parameters
during training. In particular, it is worth noticing that the clinical view displays higher
variability for both intercept and noise parameters. Indeed, the clinical view is the most
discriminant one between healthy and Alzheimer patients, and results plotted in Figure
7 are obtained under a non-iid scenario. Furthermore, one can notice the low magnitude
of the standard deviations for µ̃(FDG) and σ̃(MRI): this may be explained by the fact
that there are less centers contributing to the estimation of both FDG- and MRI-specific
parameters, since in the G/K scenario the FDG and MRI views are missing in some centers.
On the other hand, when differential privacy is introduced we tend to loose information
concerning variability of global parameters: in this case all standard deviations drop towards
0 after approximately 20 communication rounds, meaning that the final global parameters
distributions are strongly concentrated around their mean.

Finally, we empirically investigate the convergence of DP-Fed-mv-PPCA. The conver-
gence of the EM algorithm for PPCA has already been commented by Tipping and Bishop
(1999). Nevertheless, in the case of DP-Fed-mv-PPCA, local parameters updates are per-
formed using priors estimated at the master level from perturbed previous local updates. In
addition, as commented above, the standard deviations of global parameters used as priors
tend to decrease rapidly due to the clipping mechanism. Consequently, priors provided to
the centers will be increasingly informative, affecting the algorithm convergence. Figure 7
(c) shows the mean evolution of the accuracy in the latent space (and for the test dataset)
during successive rounds of both Fed-mv-PPCA and DP-Fed-mv-PPCA: mean and stan-
dard deviation are obtained by repeating 10 times a 3-CV test. Although the convergence of
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(a) Fed-mv-PPCA

(b) DP-Fed-mv-PPCA (c) Comparison of accuracy metric

Figure 7: Evolution of the standard deviation (in log10 scale) of all global parameters for
the GK scenario using 3 centers: comparison between (a) Fed-mv-PPCA and (b) DP-Fed-
mv-PPCA. (c) Accuracy in the latent space across round (mean and std over 10 3-CV tests
performed in the IID case), comparing Fed-mv-PPCA and DP-Fed-mv-PPCA.

the algorithm seems to be reached in both cases, DP-Fed-mv-PPCA optimized parameters
are clearly sub-optimal. Moreover, we notice a higher variability of the accuracy metric,
as a consequence of the random perturbation performed over local parameters, which in
turns affects the priors. Further insights are provided in Supp. Figure 10, showing the
estimated global variance of the Gaussian noise, which is greater when using DP-Fed-mv-
PPCA compared to Fed-mv-PPCA, indicating an estimated higher variability in the global
dataset (i.e. the ensemble of the local datasets). This is an expected consequence of the
perturbation mechanism, which necessary affects the global model’s performance.

5. Conclusions

In spite of the large amount of currently available multi-site biomedical data, we still lack
of reliable analysis methods to be applied in multi-centric applications in compliance with
privacy. To tackle this challenge, Fed-mv-PPCA proposes a hierarchical generative model
to perform data assimilation of federated heterogeneous multi-views data. The Bayesian
approach allows to naturally handle statistical heterogeneity across centers and missing
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views in local datasets, to provide an interpretable model of data variability and a valuable
tool for missing data imputation. We show that Fed-mv-PPCA can be further coupled with
differential privacy. Compatibly with our Bayesian formulation, we provide formal privacy
guarantees of the proposed federated learning scheme against potential private information
leakage from the shared statistics.

Our applications demonstrate that Fed-mv-PPCA is robust with respect to an increas-
ing degree of heterogeneity across training centers, and provides high-quality data recon-
struction, outperforming competitive methods in all scenarios. Moreover, when differential
privacy is introduced, we provide an investigation of the method’s performance according to
different privacy budget scenarios. It is worth noting that three DP hyperparameters play a
key role, and could affect the performance of DP-Fed-mv-PPCA: the privacy budget param-
eters (ε, δ), and the clipping constant multiplying σ

θ̃
. These parameters are tightly related

and all contribute to determine the magnitude of the noise used for perturbing the updated
difference ∆θ. Indeed, increasing either ε or δ, or reducing the multiplicative constant in
the clipping mechanism, implies the addition of a smaller noise, hence the improvement of
the overall utility of the global model. Nevertheless, smaller ε and δ corresponds to higher
privacy guarantees.

Further extensions of this work are possible in several directions. The computational
efficiency of Fed-mv-PPCA and its scalability to large datasets can be improved by leverag-
ing on data sparsity and optimizing matrix multiplications and norm calculations as showed
by Elgamal et al. (2015). In addition, introducing sparsity on the reconstruction weights is
also expected to improve the robustness of the approach to non-informative dimensions and
modalities. Another interesting research direction concerns the handling of missing data.
Indeed, in this paper we considered Missing At Random (MAR) views in local datasets due
to heterogeneous pipelines (Rubin, 1976). Fed-mv-PPCA could be extended to take into
account and impute Missing Not At Random (MNAR) data as well, covering for instance
the case of missing data due to self censoring, of interest in the biomedical context.

In this work we adopted DP to increase our framework’s security, motivated by the
need to derive explicit theoretical privacy guarantees for our model. Alternatively, some
recent works propose to improve data privacy (and eventually model utility) in a federated
setting by generating fake data through generative adversarial networks (Rajotte et al.,
2021; Rasouli et al., 2020). Despite formal privacy guarantees cannot be provided by data
augmentation methods, their comparison to DP is a problem of great interest and should
be further investigated.

In addition, we provided an experimental analysis of the convergence properties of DP in
the proposed setting. In the future, formal convergence guarantees could be investigated, for
example for the general optimization setting associating DP to EM. Furthermore, adaptive
clipping strategies (Andrew et al., 2019) could be investigated and employed to improve
the convergence of DP-Fed-mv-PPCA and the final utility of global parameters. Finally, in
order to improve the robustness of DP-Fed-mv-PPCA, non-Gaussian data likelihood and
priors could be introduced in the future, to better account for heavy-tailed distributions
defined by outliers datasets and centers.
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Appendix A. Theoretical derivation of Fed-mv-PPC method

Problem setting

We consider C centers, each center c ∈ {1, . . . , C} providing data from Nc subjects, each
consisting of Kc ≤ K views. Let dk be the dimension of data corresponding to the kth-view,
and d :=

∑K
k=1 dk.

For each k, c and each n ∈ {1, . . . , Nc}, the generative model is:

t(k)
c,n = W (k)

c xc,n + µ(k)
c + ε(k)

c , (7)

where:

• t
(k)
c,n ∈ Rdk denotes the raw data of the kth-view of the sample indexed by n in center
c, which belongs to group g.

• xc,n ∼ N (0, Iq) is a q-dimensional latent variable, q ≤ mink(dk) being a suitable
user-defined latent-space dimension.

• W (k)
c ∈ Rdk×q provides the linear mapping between the two sets of variables for the

kth-view.

• µ(k)
c ∈ Rdk allows data corresponding to view k to have a non-zero mean.

• ε(k)
c ∼ N

(
0, σ

(k)
c

2
Idk

)
is a Gaussian noise for the kth-view.

A compact formulation for tc,n (i.e. considering all views concatenated) can be easily
derived from Equation (7):

tc,n = Wcxc,n + µc + εc, (8)

where:

• tc,n =

[
t

(1)
c,n

T
, . . . , t

(K)
c,n

T
]T
∈ Rd

• Wc =

[
W

(1)
c

T
, . . . ,W

(K)
c

T
]T
∈ Rd×q

• µc =

[
µ

(1)
c

T
, . . . ,µ

(K)
c

T
]T
∈ Rd

• εc =

[
ε

(1)
c

T
, . . . , ε

(K)
c

T
]T
∼ N (0,Ψc),

where Ψc is a diagonal block-matrix, Ψc = diag

(
σ

(1)
c

2
Id1 , . . . , σ

(K)
c

2
IdK

)

Note that for the sake of simplicity we represented all K views. If in center c the kth-view
is missing, than it will be simply removed, e.g. one would have:
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tc,n =

[
t

(1)
c,n

T
, . . . , t

(k−1)
c,n

T
, t

(k+1)
c,n

T
, . . . , t

(K)
c,n

T
]T

, tc,n ∈ Rd−dk .

For each center c and each k we want to estimate θc :=

{
µ

(k)
c ,W

(k)
c , σ

(k)
c

2
}

k=1,...,Kc

assuming that all local parameters are a realization of a common global distribution, to be
estimated as well. The latter, provide a global model, which should be able to describe data
across all centers.

Parameter µ

We assume that ∀c, k:

µ(k)
c |µ̃(k), σ2

µ̃(k) ∼ N
(
µ̃(k), σ2

µ̃(k)Idk
)

(9)

Step 1. (In each center): Estimate µ
(k)
c [s + 1] given

(
µ̃(k), σ2

µ̃(k)

)
[s] (iteration s is

denoted by [s]).

From Equation (7), the marginal distribution of t
(k),g
c,n is:

t(k)
c,n ∼ N (µ(k)

c , C(k)
c ),

where C
(k)
c = W

(k)
c W

(k)
c

T
+ σ

(k)
c

2
Idk , C

(k)
c ∈ Rdk×dk .

The corresponding log-likelihood gives:

L(k)
c = −1

2

{
Ncdk ln (2π) +Nc ln |C(k)

c |+
Nc∑

n=1

(
t(k)
c,n − µ(k)

c

)T (
C(k)
c

)−1 (
t(k)
c,n − µ(k)

c

)}

(10)

Therefore, for each center c and for all k ∈ {1, . . . ,K}, the following optimization problem
should be considered:

max
µ

(k)
c

L(k)
c + ln p

(
µ(k)
c

)
,

where:

ln p
(
µ(k)
c

)
= − 1

2σ2
µ̃(k)

(
µ(k)
c − µ̃(k)

)T (
µ(k)
c − µ̃(k)

)
+ const,

where const collects terms which are independents from µ
(k)
c . We obtain:

µ(k)
c [s+ 1] =

[
NcIdk +

1

σ2
µ̃(k) [s]

C(k)
c

]−1 [ Nc∑

n=1

t(k)
c,n +

1

σ2
µ̃(k) [s]

C(k)
c µ̃(k)[s]

]

(11)

Step 2. (In the master): Estimate
(
µ̃(k)[s+ 1], σ2

µ̃(k)

)
[s+1] given µ

(k)
c [s+1] for all c.
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Using (9), we obtain the following log-likelihood:

L =
C∑

c=1

ln p(µ(k)
c ) =

C∑

c=1

{
const− 1

σ2
µ̃(k)

‖µ(k)
c − µ̃(k)‖2

}
(12)

By imposing ∂(
µ̃(k),σ2

µ̃(k)

) ((12)) = 0 we obtain:

µ̃(k)[s+ 1] =
1

C

C∑

c=1

µ(k)
c [s+ 1] (13)

and

σ2
µ̃(k) [s+ 1] =

1

Cdk

C∑

c=1

∥∥∥µ(k)
c [s+ 1]− µ̃(k)[s+ 1]

∥∥∥
2

(14)

Complete-data log-likelihood

From Equations (7)-(8) one can derive the following marginal distributions:

t(k)
c,n|xc,n ∼ N

(
W (k)
c xc,n + µ, σ(k)

c

2
Idk
)

and

xc,n|tc,n ∼ N
(
Σ−1
c Bc(tc,n − µc),Σ−1

c

)
,

where:

• Σc := (Iq +W T
c Ψ−1

c Wc) =

(
Iq +

∑K
k=1

1(
σ
(k)
c

)2W (k)
c

T
W

(k)
c

)
∈ Rq×q

• Bc := Wc
TΨ−1

c =

[
W

(1)
c

T(
σ
(1)
c

)2 . . . , W (K)
c

T(
σ
(K)
c

)2
]
∈ Rq×d

Hence:

• 〈xc,n〉 = Σ−1
c Bc(tc,n − µc)

• 〈xc,nxTc,n〉 = Σ−1
c + 〈xc,n〉〈xc,n〉T

The joint distribution of tc,n and xc,n follows (p(tc,n,xc,n) = p(tc,n|xc,n)p(xc,n)), hence
the expectation of the complete-data log-likelihood for each center c with respect to p(xc,n|tc,n):

〈LCc〉 = −
Nc∑

n=1

{
K∑

k=1

[
dk
2

ln
(
σ(k)
c

2
)

+
1

2σ
(k)
c

2 ‖t(k)
c,n − µ(k)

c ‖2 +
1

2σ
(k)
c

2 tr
(
W (k)
c

T
W (k)
c 〈xc,nxTc,n〉

)

− 1

σ
(k)
c

2 〈xc,n〉TW (k)
c

T
(
t(k)
c,n − µ(k)

c

)]
+

1

2
tr
(
〈xc,nxTc,n〉

)
}
, (15)
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Parameter W

We assume that ∀c, k:

W (k)
c |W̃ (k), σ2

W̃ (k) ∼MN dk,q

(
W̃ (k), Idk , σ

2
W̃ (k)Iq

)
(16)

Step 1. (In each center): Estimate W
(k)
c [s+ 1] given

(
W̃ (k), σ2

W̃ (k)

)
[s].

For each center c, we consider the following optimization problem:

max
W

(k)
c

〈LCc〉+ ln p
(
W (k)
c

)
,

where ln p
(
W

(k)
c

)
= − 1

2σ2

W̃ (k)

tr
(
‖W (k)

c − W̃ (k)‖22
)

+ const.

It follows:

W (k)
c [s+ 1] =



Nc∑

n=1

(t(k)
c,n − µ(k)

c )〈xc,n〉T +
σ

(k)
c

2

σ2
W̃ (k)

[s]
W̃ (k)[s]





Nc∑

n=1

〈xc,nxTc,n〉+
σ

(k)
c

2

σ2
W̃ (k)

[s]
Iq



−1

Step 2. (In the master): Estimate
(
W̃ (k), σ2

W̃ (k)

)
[s+ 1] given W

(k)
c [s+ 1] for all c.

Proceeding as for parameter µ and using (16):

W̃ (k)[s+ 1] =
1

C

C∑

c=1

W (k)
c [s+ 1] (17)

and

σ2
W̃ (k) [s+ 1] =

1

Cdkq

C∑

c=1

tr

[(
W (k)
c [s+ 1]− W̃ (k)[s+ 1]

)T (
W (k)
c [s+ 1]− W̃ (k)[s+ 1]

)]

(18)

Parameter σ2

We assume that ∀c, k:

σ(k)
c

2|σ̃(k)2 ∼ Inverse-Gamma(α(k), β(k)), (19)

so that:

V ar
(
σ(k)
c

2
)

=
β(k)2

(α(k) − 1)2(α(k) − 2)
:= σ̃(k)2 (20)

Step 1. (In each center): Estimate σ
(k)
c

2
[s+ 1] given

(
α(k), β(k)

)
[s].

For each center c, we consider the following optimization problem:

max
σ
(k)
c

2
〈LCc〉+ ln p

(
σ(k)
c

2
)
,
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where ln p

(
σ

(k)
c

2
)

= −(α(k) + 1) ln

(
σ

(k)
c

2
)
− β(k)

σ
(k)
c

2 + const:

It follows:

(
σ(k)
c

)2
[s+ 1] =

1

Ncdk + 2(α(k)[s] + 1)

{
Nc∑

n=1

[
‖t(k)
c,n − µ(k)

c ‖2 + tr
(
W (k)
c

T
W (k)
c 〈xc,nxTc,n〉

)

−2〈xc,n〉TW (k)
c

T
(
t(k)
c,n − µ(k)

c

)]
+ 2β(k)[s]

}

=
1

Ncdk + 2(α(k)[s] + 1)

{
Nc∑

n=1

[
‖(t(k)

c,n − µ(k)
c )−W (k)

c 〈xc,n〉‖2

+tr
(
W (k)
c Σ−1

c W (k)
c

T
)]

+ 2β(k)[s]
}

(21)

Step 2. (In the master): Estimate
(
α(k), β(k)

)
[s+ 1] given σ

(k)
c

2
[s+ 1] for all c.

In order to estimate the parameters of the inverse-gamma distribution, we use the (ML1)
method described by Llera and Beckmann Llera and Beckmann (2016).

Appendix B. Supplementary Tables and Figures

Table 3: Demographics of the clinical sample from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI).

Group Sex Count Age Range

AD
Female 94 71.58 (7.59) 55.10 - 90.30
Male 113 74.37 (7.19) 55.90 - 89.30

NL
Female 58 73.76 (4.61) 65.10 - 84.70
Male 46 75.39 (6.58) 59.90 - 85.60

Table 4: Data Types.

View Dim. Description

CLINIC 7 Cognitive assessments
MRI 41 Magnetic resonance imaging
FDG 41 Fluorodeoxyglucose-Positron

Emission Tomography (PET)
AV45 41 AV45-Amyloid PET
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Table 5: Latent Space Dimension Assessment.

SD ADNI

q WAIC MAE Train MAE Test WAIC MAE Train MAE Test

2 -2911 0.0886±0.0031 0.0879±0.0024 -4916 0.1240±0.0017 0.1249±0.0011
3 -3954 0.0640±0.0029 0.0662±0.0038 -5275 0.1170±0.0028 0.1187±0.0023
4 -4725 0.0450±0.0036 0.0485±0.0042 -6088 0.1113±0.0016 0.1142±0.0009
5 −5114 0.0327±0.0038 0.0375±0.0054 -6915 0.1064±0.0017 0.1102±0.0007
6 -3688 0.0313±0.0032 0.0366±0.0052 −7546 0.1028±0.0015 0.1073±0.0005
7 5722 0.0320±0.0036 0.0373±0.0053 - - -

Table 6: Results on SD dataset for all scenarios, and comparison with VAE and mc-VAE.

Scenario Centers Method MAE Train MAE Test Accuracy in LS

IID

1
(centralized

case)

Fed-mv-PPCA 0.0124±3.e−5 0.0405±0.0037 1±0
VAE 0.0851±0.0039 0.1011±0.0048 1±0
mc-VAE 0.1236±0.0099 0.1382±0.0087 1±0

3

Fed-mv-PPCA 0.0320±0.0024 0.0373±0.0035 1±0
DP-Fed-mv-PPCA 0.0858±0.0111 0.0848±0.0099 1±0
VAE 0.0683±0.0073 0.0702±0.0073 1±0
mc-VAE 0.1172±0.0030 0.1146±0.0046 1±0

6

Fed-mv-PPCA 0.0422±0.0052 0.0371±0.0039 1±0
DP-Fed-mv-PPCA 0.0843±0.0093 0.0738±0.0076 1±0
VAE 0.0769±0.0093 0.0680±0.0080 1±0
mc-VAE 0.1295±0.0055 0.1134±0.0030 1±0

G

3

Fed-mv-PPCA 0.0432±0.0074 0.0433±0.0026 0.9930±0.0093
DP-Fed-mv-PPCA 0.0960±0.0151 0.0951±0.0144 0.9873±0.0176
VAE 0.0787±0.0135 0.0698±0.0082 0.9835±0.0272
mc-VAE 0.1562±0.0086 0.1497±0.0076 0.9732±0.0512

6

Fed-mv-PPCA 0.0538±0.0101 0.0420±0.0048 0.9995±0.0019
DP-Fed-mv-PPCA 0.0945±0.0129 0.0813±0.0114 1±0
VAE 0.0891±0.0148 0.0685±0.0063 0.9918±0.0428
mc-VAE 0.1758±0.0154 0.1495±0.0112 0.9607±0.0398

K
3

Fed-mv-PPCA 0.0320±0.0052 0.0455±0.0069 1±0
DP-Fed-mv-PPCA 0.0922±0.0137 0.1048±0.0151 1±0

6
Fed-mv-PPCA 0.0402±0.0065 0.0448±0.0088 1±0
DP-Fed-mv-PPCA 0.0959±0.0105 0.1014±0.0119 1±0

G/K
3

Fed-mv-PPCA 0.0395±0.0068 0.0567±0.0108 0.7812±0.02179
DP-Fed-mv-PPCA 0.1144±0.0215 0.1343±0.0235 0.7852±0.0526

6
Fed-mv-PPCA 0.0499±0.0104 0.0575±0.0128 0.7785±0.0222
DP-Fed-mv-PPCA 0.1070±0.0139 0.1119±0.0144 0.7887±0.0449
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Table 7: Results on ADNI dataset for all scenario G using VAE (resp. mc-VAE), and
FedProx as aggregation scheme with the proximal term λ varying from 0.01 to 0.5.

Centers Method λ MAE Train MAE Test Accuracy in LS

3

VAE

0 (FedAvg) 0.1172±0.0022 0.1192±0.0015 0.8289±0.0383
0.01 0.1209±0.0074 0.1215±0.0013 0.7962±0.0438
0.05 0.1215±0.0076 0.1218±0.0015 0.8009±0.0425
0.1 0.1214±0.0075 0.1220±0.0018 0.8067±0.0399
0.2 0.1218±0.0077 0.1221±0.0016 0.7977±0.0469
0.3 0.1212±0.0075 0.1216±0.0017 0.7865±0.0443
0.4 0.1212±0.0074 0.1217±0.0014 0.8033±0.0355
0.5 0.1214±0.0077 0.1218±0.0020 0.7878±0.0420

mc-VAE

0 (FedAvg) 0.1602±0.0035 0.1567±0.0017 0.8850±0.0262
0.01 0.1674±0.0155 0.1605±0.0028 0.8185±0.0494
0.05 0.1667±0.0153 0.1604±0.0028 0.8156±0.0444
0.1 0.1674±0.0154 0.1609±0.0022 0.8249±0.0399
0.2 0.1676±0.0156 0.1610±0.0025 0.8217±0.0431
0.3 0.1676±0.0157 0.1610±0.0029 0.8184±0.0511
0.4 0.1673±0.0155 0.1607±0.0021 0.8275±0.0426
0.5 0.1679±0.0157 0.1613±0.0025 0.8229±0.0408

6

VAE

0 (FedAvg) 0.1357±0.0042 0.1191±0.0014 0.8224±0.0377
0.01 0.1400±0.0114 0.1198±0.0022 0.7804±0.0470
0.05 0.1403±0.0115 0.1203±0.0021 0.7827±0.0411
0.1 0.1406±0.0116 0.1205±0.0019 0.7847±0.0531
0.2 0.1407±0.0117 0.1207±0.0018 0.7837±0.0433
0.3 0.1404±0.0115 0.1207±0.0018 0.7837±0.0569
0.4 0.1405±0.0116 0.1203±0.0020 0.7753±0.0546
0.5 0.1406±0.0113 0.1205±0.0023 0.7776±0.0501

mc-VAE

0 (FedAvg) 0.1840±0.0054 0.1563±0.0017 0.8894±0.0230
0.01 0.1932±0.0220 0.1596±0.0019 0.8140±0.0420
0.05 0.1927±0.0219 0.1592±0.0016 0.8101±0.0484
0.1 0.1932±0.0221 0.1595±0.0022 0.8043±0.0399
0.2 0.1930±0.0219 0.1596±0.0020 0.8066±0.0441
0.3 0.1931±0.0221 0.1595±0.0019 0.8217±0.0453
0.4 0.1931±0.0220 0.1594±0.0018 0.8111±0.0419
0.5 0.1934±0.0221 0.1596±0.0022 0.8021±0.0581
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(a) MRI (b) FDG

Figure 8: Global distribution of all features of missing views in the Test dataset, for the
G/K scenario. In this scenario, 1/3 of all subjects in the Test dataset do not provide
MRI data and 1/3 do not provide FDG data. In both figure, the blue curve denotes the
predicted global distribution of all features of the (a) MRI view and (b) the FDG view.
Gray histograms correspond to real data in the Test dataset.
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(a) 2 ≤ q ≤ 15, boxplot (b) 2 ≤ q ≤ 6, boxplot

Figure 9: Boxplots showing the evolution of the WAIC with the latent space dimension
varying (a) from 2 to 15 and (b) a zoom with latent dimension q up to 6. We notice that
an increasing complexity of the model provide only a relative improvement of the median
WAIC score, while being associated to a higher variation suggesting less stable results.

Figure 10: Mean and standard deviation of σ̃(k)2 at each round over 10 3-CV tests per-
formed in the IID case, using (red) Fed-mv-PPCA and (blue) DP-Fed-mv-PPCA. By model
definition, σ̃(k)2 represents the global variance of the Gaussian noise for the kth-view. As one
can see, when DP is introduced the estimated global data variance is greater for every view.
This fact can affect the performance of the final global model, both for the reconstruction
and the separation tasks.
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(a) Mean absolute error for VAE (left) and mc-VAE (right)

(b) Classification accuracy in the latent space for VAE (left) and mc-VAE (right)

Figure 11: ADNI data, scenario G with 3 centers, comparing the performance of VAE
(left column) and mc-VAE (right column) either increasing the number of considered layers
(2 layers), or adopting a robust aggregation scheme alternative to Fed-Avg (FedProx, with
varying parameter λ). For the sake of comparison, in each plot, the first element corresponds
to results obtained with our method - Fed-mv-PPCA - for the considered scenario. Upper
row: MAE results for the (blue) train and (red) test datasets. Bottom row: accuracy in
the latent space for the test dataset. For each metric we provide results obtained using a 2-
layers VAE, resp. a 2-layers mc-VAE (second element of each plot), and federated averaging
as aggregation scheme. Finally, results for both MAE and accuracy in the latent space
using FedProx as aggregation scheme are provided, with the FedProx proximal parameter
λ varying between 0 to 0.5. Note that if we set λ = 0 we recover the Fed-Avg aggregation
scheme.
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