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Abstract
In medical imaging, outliers can contain hypo/hyper-intensities, minor deformations, or
completely altered anatomy. To detect these irregularities it is helpful to learn the features
present in both normal and abnormal images. However this is difficult because of the wide
range of possible abnormalities and also the number of ways that normal anatomy can
vary naturally. As such, we leverage the natural variations in normal anatomy to create
a range of synthetic abnormalities. Specifically, the same patch region is extracted from
two independent samples and replaced with an interpolation between both patches. The
interpolation factor, patch size, and patch location are randomly sampled from uniform
distributions. A wide residual encoder decoder is trained to give a pixel-wise prediction of
the patch and its interpolation factor. This encourages the network to learn what features
to expect normally and to identify where foreign patterns have been introduced. The
estimate of the interpolation factor lends itself nicely to the derivation of an outlier score.
Meanwhile the pixel-wise output allows for pixel- and subject- level predictions using the
same model. Our code is available at https://github.com/jemtan/FPI.
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1. Introduction

Outliers in medical data can range from obvious lesions to subtle artifacts. This wide range
can make it difficult for a single detection system to identify all irregularities. Moreover,
examples of outliers are often not available before testing takes place. This makes it difficult
to use conventional classification methods that rely on training data to learn how to recognize
test images that come from the same distribution. Without knowing what to look for, this
task can be challenging even for human radiologists. For example, when focused on a lung
nodule detection task, 83% of radiologists failed to notice a gorilla superimposed on the
image (Drew et al. (2013)). This indicates that human attention can cause even experts to
be blind to unexpected stimuli. It is infeasible to have radiologists repeatedly scan for every
conceivable irregularity. As such, there may be an opportunity for automated systems to
support detection, especially if these tools can offer a complementary view of the data.
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Recent works have used neural networks to create high performance image recognition
systems. These systems typically learn to recognize different image classes based on features
that distinguish them from each other. However, outlier classes are not available during
training, so it is not known a priori which features will be most relevant.

To circumvent this issue, reconstruction-based methods (Baur et al. (2020); Zimmerer
et al. (2019); Alex et al. (2017); Schlegl et al. (2017)) aim to learn a complete model of
the normal data. Abnormalities are then found by comparing the original image to its
reconstruction. A key limitation of this approach is that it directly compares pixel intensities
under the assumption that intensity differences will be proportional to abnormality.

Self-supervised methods offer an alternative approach to feature learning. These methods
employ data augmentation techniques to create their own labelled samples from unlabelled
data. Methods such as geometric transformations (Golan and El-Yaniv (2018)) have been
successfully applied to outlier detection and outperform reconstruction-based methods on
datasets with high variation such as CIFAR-10 (Krizhevsky (2009)). These methods can
tolerate higher variation in normal data because they learn to identify salient structures in
the normal class rather than relying on precise reconstruction of every pixel. However, for
most cases in medical imaging, all of the major anatomical structures are present, even in
abnormal cases. To detect medically relevant outliers, we aim to develop a method that can
tolerate variations of normal anatomy while also being sensitive to fine-grained deviations
from normal.

We propose a self-supervised task to train a model to learn where and to what degree
a foreign pattern has been introduced. The goal is to encourage the model to learn what
features to expect normally, given the context, and to be sensitive to subtle irregularities.

We evaluate this approach on an internal evaluation set with synthetic abnormalities and
submitted the technique to the 2020 MICCAI medical out-of-distribution (MOOD) analysis
challenge (Zimmerer et al. (2020)) where it ranked first in both sample and pixel level tasks.
We also evaluate our method’s ability to detect real medical anomalies using the DeepLesion
dataset (Yan et al. (2018a)).

2. Related Work

Out-of-distribution (OOD) detection is a broad topic discussed by many communities (Pi-
mentel et al. (2014); Pang et al. (2020)). Depending on the context, OOD samples may
contain minute defects or completely unrelated content. It is often hard to formally define
what constitutes an OOD sample, especially without any reference examples. This makes
the task inherently heuristic and each approach must accept some assumptions which will
impact its ability to detect different types of outliers. One strategy is to choose assumptions
that will generalize as broadly as possible and be sensitive to the types of outliers that
are of most interest. Most existing methods detect outliers based on reconstruction error,
embedding space distances, or more recently, performance on self-supervised tasks.

Before discussing unsupervised methods, it is important to note that there are many
supervised and semi-supervised methods for detecting abnormalities. Supervised methods
have achieved expert-level performance in detecting breast cancer (Wu et al. (2019)), retinal
disease (De Fauw et al. (2018)), pneumonia and other chest abnormalities (Tang et al.
(2020)). Some of these methods also delineate the boundaries of abnormalities, e.g., brain
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tumor segmentation (Menze et al. (2014)). Typically, these supervised methods learn from
labelled examples of the target class and are not designed to generalize to other types of
abnormalities. Alternatively, there are outlier detection methods that use labelled examples
from a subset of anomalies with the goal of detecting broader classes of outliers. One example
is outlier exposure (Hendrycks et al. (2019)), which trains a multi-class classifier on several
classes of normal data and tunes the network to make less confident predictions on a set of
OOD training samples that do not belong to any of the normal classes. This tuning can
help the model to make less confident predictions on OOD samples, even if they come from
a different distribution than the OOD training samples. However, for medical anomalies,
which can be very subtle, it is not always possible to obtain a relevant OOD training dataset.
Since our proposed method uses only normal samples, we focus on comparing to similar
unsupervised methods described below.

Reconstruction-based methods attempt to reproduce images using a model of the normal
data. This model may be characterised by the bottleneck of an autoencoder (Atlason et al.
(2019)) or variational autoencoder (VAE) (Zimmerer et al. (2019)) or by the latent space
of a generative adversarial network (GAN) (Schlegl et al. (2017)). Reconstruction-based
methods are especially common in medical imaging applications. They allow for pixel-level
localization and offer some level of interpretability through the reconstructed images. Baur et
al. provide a comparative study with many variants of reconstruction-based methods using
brain MRI data (Baur et al. (2021)). Autoencoders are versatile and easy to implement
across a wide range of datasets and configurations. For example, different variations have
been applied to chest X-ray (Mao et al. (2020)), mammography (Wei et al. (2018)), and
brain CT (Pawlowski et al. (2018)) data. Unconstrained, autoencoders run the risk of
reconstructing anomalies along with normal anatomy. As such, many methods use some
form of regularization on the latent representation. For instance, Zimmerer et al. (2019)
use a VAE, which maps samples to distributions over the latent space and minimizes the
Kullback-Leibler divergence between the approximate posterior and a prior. Alternatively,
a discriminator can be used to match the distribution of latent codes to a prior; this type
of adversarial autoencoder has also been used in outlier detection (Chen and Konukoglu
(2018)). Another option is to eliminate the bottleneck entirely by using a GAN to learn the
distribution of normal data. To reconstruct a query image, a latent code can be optimized to
find the best match within the learned distribution (Schlegl et al. (2017)) or an encoder can
be learned to map images directly into latent codes in a single step (Schlegl et al. (2019)).
There are also restorative methods that replace low likelihood regions in the image with
samples from a learned prior (You et al. (2019); Marimont and Tarroni (2021)). As such,
there are multiple strategies for reconstructing the normal components of the input image.
Any errors in the reconstruction are then used to highlight anomalies. However, this means
that the abnormality score is proportional to intensity differences in the input space. This
neglects some of the key advantages of deep learning. Primarily, it fails to make use of
learned mappings that bring raw inputs into representations where semantic differences can
be distinguished more easily (LeCun et al. (2015)).

All of the above methods use whole images, but the reconstruction task can also be
simplified to focus on patterns at a smaller scale. Patch-level reconstruction can be effective
for detecting pathological textures in mammograms (Wei et al. (2018)). Decomposing an
image into smaller patches can also make it easier to train models, such as GAN’s, without
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down-sampling or losing high-resolution texture information (Alex et al. (2017)). Even if
a model is trained at the patch level, anomaly scores can be recovered at the pixel level
by using overlapping patches during inference (Alaverdyan et al. (2020)). Some of these
methods are trained using autoencoder or GAN losses, but exploit components other than
the reconstruction error to compute anomaly scores. These can include the discriminator
of a GAN (Alex et al. (2017)) or the latent representation of an autoencoder (Alaverdyan
et al. (2020)). Using the embeddings of an encoder has the potential to facilitate semantic
distinctions. However, if the encoder is not trained with an appropriate loss, then the
representation may not distinguish relevant samples. For example, a discriminator is trained
to separate real and generated samples. This does not necessarily make the representation
suitable for separating real healthy samples from real pathological samples.

Other approaches train encoders using losses that are specifically designed for outlier
detection. One example of this learns to map training samples to a compact sphere (Ruff
et al. (2018)). However, without any examples of outliers in the training data, this latent
space may accentuate the wrong features, i.e., variations within the normal data that are
class invariant. Some embedding approaches introduce a disjoint set of outlier examples (Bo-
zorgtabar et al. (2020)) to overcome this issue. However in this work we focus on methods
using only normal data.

Self-supervised methods have recently become a popular approach for unsupervised
feature learning, especially variants of contrastive predictive coding (CPC) (Oord et al.
(2018); Hénaff et al. (2019)). Self-supervised methods have also been used for outlier de-
tection (Golan and El-Yaniv (2018)), in some cases also combined with CPC (Tack et al.
(2020)). The main principle underlying many of these methods is to transform the images
(e.g., rotation) and train a network to identify the transformation. This will sensitize the
network to any features that change consistently with the transformation. For example, the
brainstem (in a coronal view) may provide a reliable signal for predicting image rotation.
However, if the brainstem structure is missing or occluded, the prediction accuracy may go
down, indicating a potential outlier. This approach works well for recognizing key char-
acteristics present in normal data. However, in medical images many pathological outliers
may still conform to the same global structure as normal data.

Data augmentation and image synthesis play important roles in several outlier detection
methods including our proposed method. In natural image datasets, data augmentation
has been used to apply affine transformations, blur or sharpen images, or alter the color,
brightness, and contrast of images. Methods such as AutoAugment and RandAugment
find the most suitable combination of transformations and achieve state-of-the-art perfor-
mance on supervised tasks through data augmentation alone (Cubuk et al. (2019, 2020)).
For medical imaging applications, elastic deformations and image synthesis can help gen-
erate more relevant or realistic augmentations (Nalepa et al. (2019)). Some methods even
model artifacts from the imaging modality used for data acquisition, e.g., the bias field in
MRI (Chen et al. (2020)). The data augmentation method that is most closely related to
ours is Mixup (Zhang et al. (2018)), which has previously been applied to improve brain
tumor segmentation (Eaton-Rosen et al. (2018)). Mixup creates convex combinations of
samples and their respective labels. This helps regularize the network to behave linearly
in-between classes. It also improves generalization and robustness to adversarial examples.
Similarly, CutMix (Yun et al. (2019)) works by copying a patch from one image and placing
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it into another image. The labels from both of these images are then mixed (as a convex
combination) using a mixing factor equal to the patch area divided by the total image area.

Both Mixup and CutMix use convex combinations of ground truth labels. However,
when there is only one class, which is the case in outlier detection, these convex combi-
nations become meaningless. Self-supervised methods solve this problem by creating new
classes through augmentations, e.g., geometric transformations. However, these methods
detect outliers through a proxy task, i.e., classifying transformations, instead of directly
identifying deviations from normal. This can make it harder to recognize more fine-grained,
localized irregularities. Classification-based proxy tasks also lack a direct means of locating
abnormalities in the image. In this paper, we show that these elements can be combined in
a novel way, using convex combinations to create a new class that represents abnormality.
This allows us to train directly on the task of estimating deviation from normal. Meanwhile,
our patch-level augmentation setup naturally lends itself to pixel-level localization.

We provide the full details of our proposed method in the following section. Compared
to existing methods, our self-supervised task is designed specifically to improve sensitivity to
subtle irregularities. We target these cases because 1) they may be more medically relevant
and 2) detecting them may be more useful to radiologists since fine-grained outliers typically
require more intense scrutiny, time, and energy to detect.

3. Method

Most self-supervised methods train a network on a proxy task (e.g., identifying geometric
transformations (Golan and El-Yaniv (2018))) and subsequently measure abnormality as
failure to perform this task. Many of these tasks are helpful for detecting the presence (or
absence) of prominent structures that appear in the normal class. But medical images often
contain more fine-grained outliers, where most major structures are still intact. As such, we
propose a patch-level self-supervision task.

To create a variety of subtle outliers we extract the same patch from two independent
subjects and replace the patch with an interpolation between both patches. The operation
is shown in Eqn. 1 where A and B are independent samples, i refers to individual pixels in
a patch h, and α is the interpolation factor. Note that A, B, and A′ are full sized images.
Pixels outside of the patch remain unchanged and whole images are used as inputs. The
patch size, hs, patch center coordinates, hc, and the interpolation factor are all randomly
sampled from uniform distributions (Eqn. 2-4). The pixel coordinates of the patch define
the region that will be extracted from both samples, A and B. For volumetric data, each
slice is paired with the corresponding slice from a second subject, based on slice indices.
For 2D data or data without a uniform number of slices, images are paired randomly. In
both cases, we do not perform any registration preprocessing steps on the data. Instead, we
exploit the natural variations and misalignment to create diverse training examples. Patches
are square unless truncated by image boundaries or in pixels where A and B have the same
value. Patch width ranges between 10% and 40% of the image width, d.

A′
i = (1− α)Ai + αBi , ∀ i ∈ h (1)

hs ∼ U(0.1 · d, 0.4 · d) (2)
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hc ∼ U2(0.1 · d, 0.9 · d) (3)

α ∼ U(0, 1) for continuous α or
α ∈ {0, 0.25, 0.50, 0.75, 1} for discrete α

(4)

Although A and B are both normal on their own, the differences between them will cause
the interpolation, A′, to have artificial defects. We train a network to estimate where, and
to what degree, a foreign pattern has been introduced. Given A′ as input, the corresponding
label includes the patch, h, and the interpolation factor, α, in the form of pixel-level values
(Eqn. 5). The loss is thus a pixel-wise regression if α is continuous, or a pixel-wise classifi-
cation if α is discrete. In both cases a standard cross-entropy loss is used (Eqn. 6-7, where
f represents the model). For continuous α, cross-entropy operates on labels that are not
one-hot; this is similar to applications such as label smoothing (Szegedy et al. (2016)), net-
work distillation with soft targets (Hinton et al. (2015)), and MixUp augmentations (Zhang
et al. (2018)) and has been studied extensively in its own right (Müller et al. (2019); Lukasik
et al. (2020)). To obtain predictions during testing, the abnormality score is derived directly
from the model’s estimate of the interpolation factor α. Examples of A and A′, with varying
alpha, are shown in Figure 1. The corresponding label for each example is equal to the label
mask scaled by the α value.

αi =

{
α, if i ∈ h and Ai ̸= Bi

0, otherwise
(5)

Lbce(A
′, αi, f) = −αilog(f(A′))− (1− αi)log(1− f(A′)) (6)

Lcce(A
′, αi, f) = −

N=5∑
c=1

αi,clog(f(A′)) (7)

Note that FPI does not involve any image registration steps. Nevertheless, it is able
to create a range of subtle training samples through simple linear interpolation (as seen in
Figure 1 and Appendices A and B). We experiment on datasets with varying degrees of
alignment, e.g., brain MRI volumes with affine registration and CT data with no alignment
(details in Section 3.1). In all cases, FPI is able to form useful training samples that improve
detection of outliers.

Architecture

The network architecture is a wide residual encoder-decoder. The encoder portion is a
standard wide residual network (Zagoruyko and Komodakis (2016)) with a width of 4 and
a depth of 14. This is designed for inputs with dimensions 256x256. For inputs with
dimensions 512x512, an additional residual block is added, bringing the depth up to 16.
The decoder follows the same structure as the encoder but in reverse. The terminating
activation is sigmoid in the case of continuous α or softmax with the appropriate number of
output channels for discrete α.
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Figure 1: Examples of foreign patch interpolation in brain and abdominal data from the
MOOD challenge (Zimmerer et al. (2020)). Different α values correspond to different con-
vex combinations. Scaling the label mask by the α value gives the label for each example.
Green markers indicate the corners of the patch. Regions where A and A′ are equal, e.g.,
background, are truncated in the label according to Eqn. 5. More examples are given in Ap-
pendix A and B.

Training

Training examples are created dynamically during training with random shuffling of the
training data at the start of every epoch. This creates different convex combinations with
different samples. Each model is trained for 50 epochs using Adam (Kingma and Ba (2014))
with a learning rate of 10−3. An additional training phase can be performed after regular
training for stochastic weight averaging (Izmailov et al. (2018)). This step is not necessary
to achieve good performance (Figure 4). However, we include its implementation details
for completeness. Note that stochastic weight averaging was used in our submission to the
MOOD challenge (Zimmerer et al. (2020)). To perform stochastic weight averaging, the
model is trained for an additional 10 epochs with stochastic gradient descent (Robbins and
Monro (1951)) and a cyclic learning rate oscillating in the range [10−4, 10−3]. The varying
learning rate helps the model to escape minima and settle in new ones. The parameters
are saved whenever the learning rate reaches a minimum (once per epoch). The final model
is consolidated by taking the mean of the 10 saved minima. Stochastic weight averaging
has been shown to give better generalization (Izmailov et al. (2018)) and approximates
ensembling methods without needing to increase model capacity.

3.1 Evaluation

Our method is evaluated on three datasets. The first two come from the MOOD chal-
lenge (Zimmerer et al. (2020)), while the third is a universal lesion dataset, DeepLesion (Yan
et al. (2018a,b)).
MOOD Datasets (Zimmerer et al. (2020)): the MOOD challenge provides two datasets,
800 brain MRI volumes (256x256x256) and 550 abdominal CT volumes (512x512x512). Each
subject is positioned in approximately the same way, but non-rigid registration is not used.
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As such, the same voxel/location in two different volumes may contain different tissue. All
samples are assumed to be healthy with no abnormalities. Given that no test data is pro-
vided, we reserve 10% of the data as healthy test cases and we use 30% of the data to create
anomalous test cases. The remaining 60% of the data is used for training. To create the
anomalous test set, we synthesize five types of outliers. In each case a sphere of random
size and location is selected within each volume; the pixels within that sphere are altered in
one of five ways listed below. An example of a sink/source synthetic outlier is given in Fig-
ure 2. Performance is evaluated using average precision (AP), which is the metric originally
used in the MOOD challenge (Zimmerer et al. (2020)). We also include evaluation with
area under the receiver operating characteristic curve (AUROC) and an estimated DICE
score (⌈DICE⌉). To compute an approximate DICE score, pixel-level anomaly scores are
converted to binary segmentation masks. Following Baur et al., a greedy search is used to
find an ideal threshold for this conversion (Baur et al. (2021)).

• Uniform addition - a sphere of uniform intensity is added to the image;

A′
i = Ai + n, ∀ i ∈ h, where n ∼ N (0, 1) (8)

• Noise addition - a sphere of random intensities is added to the image;

A′
i = Ai + ni, ∀ i ∈ h, where ni ∼ N (0, 1) (9)

• Sink/source deformation - pixels are shifted toward/away from the center of the sphere;

A′
I = AV , ∀ I ∈ h, where I = (i, j, k) and

V =

{
hc + s(I − hc), for source
I + (1− s)(I − hc), for sink

and s =

(
∥I − hc∥2

hs
2

)2

(10)

• Uniform shift - pixels in the sphere are resampled from a copy of the volume which
has been shifted by a random distance in a random direction;

A′
i,j,k = Ai+a, j+b, k+c ∀ i, j, k ∈ h,

where a, b, c ∼ σU(0.02 · d, 0.05 · d)

and σ =

{
+1, with prob. 1

2

−1, with prob. 1
2

(11)

• Reflection - pixels in the sphere are resampled from a copy of the volume that has
been reflected along an axis of symmetry.

A′
i,j,k = Ai,d−j,k ∀ i, j, k ∈ h,

where d is image width
(12)
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(a) Original (b) Synthetic Outlier (c) Label

Figure 2: Example of sink/source deformation used to synthesize an outlier. Original sample
from MOOD challenge (Zimmerer et al. (2020)). All types of synthetic outliers are displayed
in Appendix C.

DeepLesion Dataset (Yan et al. (2018a)): this dataset contains CT scans from 4,427
unique patients exhibiting a broad range of lesions. There are at least eight different types
of lesions including lung, abdomen, mediastinum, liver, pelvis, soft tissue, kidney, and bone.
Each lesion is annotated with a bounding box. This dataset also includes volumetric data
with slices above and below the annotated slice, typically about 30mm on both sides. In
many cases, there are multiple annotated slices contained within one volume. To extract
normal data from these volumes, we remove all annotated slices along with a margin about
10mm on either side. We train on 270,561 normal slices and test on 116,026 normal slices
and 4831 annotated slices with lesions. A supervised benchmark is also trained using 22,496
slices with lesions and corresponding bounding box labels. Image-level testing uses normal
slices and slices containing lesions. However, for pixel-level evaluation we only use slices with
lesions. In this case, pixels inside bounding boxes are considered anomalous and all pixels
outside of the bounding boxes are considered normal. All images are resized to 256x256.
Performance is evaluated using AUROC and ⌈DICE⌉. Receiver operating characteristic
(ROC) curves are also plotted.

The annotations in this dataset are mined from radiology reports and the creators of
DeepLesion acknowledge that there may be lesions that have not been annotated, e.g., those
that were not relevant to the radiologist’s examination (Yan et al. (2018a)). While this makes
training more difficult for outlier detection methods (and also for supervised methods), it
represents a more realistic scenario, where it is difficult to ensure that the normal data
contains no abnormalities of any kind.

3.2 Benchmark Methods

To evaluate the performance of the proposed method, foreign patch interpolation (FPI), we
compare with several benchmark methods. For the MOOD challenge data with synthetic
outliers, we compare with deep support vector data description (SVDD) (Ruff et al. (2018)),
a convolutional autoencoder (CAE) (Masci et al. (2011)), and a maximum-mean discrepancy
VAE (MMD-VAE) (Zhao et al. (2019)). For the DeepLesion data with real medical abnor-
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malities, we compare with several more advanced benchmarks including MMD-VAE (Zhao
et al. (2019)), a hierarchical vector-quantized VAE (VQ-VAE2) (Razavi et al. (2019)), a
restoration approach with VQ-VAE2 (You et al. (2019); Marimont and Tarroni (2021)), and
a supervised method.
Deep SVDD (Ruff et al. (2018)) is an embedding-based approach that learns a compact
representation of the normal data. The network used is a convolutional encoder with equiv-
alent depth to the encoder of FPI.
CAE (Masci et al. (2011)) is a reconstruction-based method. It reconstructs images using
features that are learned from normal data. Errors in the reconstruction are then used to
highlight abnormal regions. The architecture for the CAE is a convolutional network with
equivalent depth to the FPI network.
MMD-VAE (Zhao et al. (2019)) uses maximum-mean discrepancy (MMD) (Gretton et al.
(2007)) to measure the distance between a prior and the distribution of encodings from
real samples. Compared to conventional VAE’s, this method is more stable during training
and produces high fidelity reconstructions. For our implementation of MMD-VAE, we use
the same wide residual encoder-decoder as FPI. Fully connected layers are added to the
bottleneck resulting in latent codes of dimension 128.
VQ-VAE2 (Razavi et al. (2019)) compresses inputs by quantizing latent codes into discrete
values at two levels of the network. We implement VQ-VAE2 using the same wide-residual
encoder decoder network as FPI. Vector-quantization is performed at the two deepest lay-
ers (closest to the bottleneck). These have dimensions 32x32 and 16x16 respectively. At
both levels, latent codes are quantized into 128 discrete values. The activations from the
second deepest layer of the encoder are combined with the output of the first layer of the
decoder. This skip connection structure allows VQ-VAE2 to produce more accurate recon-
structions (Razavi et al. (2019)).
VQ-VAE2 Restoration (You et al. (2019); Marimont and Tarroni (2021)) uses two Pixel-
CNN models (Van Oord et al. (2016); Oord et al. (2016)), one at each of the vector quantized
layers of the VQ-VAE2. Note that the second PixelCNN takes the latent codes from the
first PixelCNN as a conditional input. After learning the distribution of the latent codes,
the PixelCNN models can be used to estimate the likelihood of each discrete code. Codes
that are deemed to have a low likelihood are discarded and resampled from the learned dis-
tribution. The corrected codes are then used to produce a restored image and an anomaly
scores is computed from the reconstruction error. Both PixelCNN models are composed of
four residual blocks with masked convolutions and four masked convolutional layers on their
own.
StyleGAN implementation of AnoGAN (Karras et al. (2019); Schlegl et al. (2017)) is a
reconstruction-based approach that aims to find a normal version of the query sample in the
latent space of a GAN. In this case, a StyleGAN (Karras et al. (2019)) is used. The model is
trained from scratch at progressively higher resolutions, which improves stability and helps
to produce more detailed, high resolution images. Instead of using a single latent code
as input to the generator, StyleGAN maps a latent code into multiple style codes that are
used to control adaptive instance normalization layers throughout the generator (Huang and
Belongie (2017)). Gaussian noise is also added at different layers throughout the generator
as a source of variation. To reconstruct a query image, we sample 80 initial sets of latent
codes and noise vectors and find the set that gives the lowest reconstruction error. Then we
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further optimize the latent code and noise vectors to minimize the reconstruction error with
20 gradient steps.
Supervised training is also done for comparison. Unlike all other benchmarks, which are
trained on only normal data, this supervised method is trained on only abnormal data.
Lesion bounding boxes are used as labels. The network architecture is the same as the wide
residual encoder decoder used in FPI. As such, this benchmark is trained in the same way
as FPI, except the labels are real lesion bounding boxes rather than synthetic patch masks.
Other more sophisticated supervised methods use region proposal networks to identify and
classify patches (Yan et al. (2018b)). But our arrangement allows us to directly assess the
value of ground truth annotations compared with artificial labels generated by FPI.

4. Results

We first evaluate FPI on the MOOD challenge data and our synthetic testset. This includes
an ablation study and comparison with simple baselines. Then we present results on the
DeepLesion dataset and compare with more advanced benchmark methods.

4.1 MOOD Datasets with Synthetic Anomalies

Using the synthetic test data described in Section 3.1, we evaluate the method’s ability to
detect different types of outliers. Figure 3 displays the model’s response to a sink/source
deformation outlier and a normal sample. The plot includes abnormality scores for individual
slices across the entire volume. Slices that include the artificially deformed sphere produce
a strong and consistent activation (Figure 3, red). Meanwhile, normal slices elicit only weak
activations (Figure 3, blue).

Figure 3: Image-level abnormality scores for slices throughout the volume. Showing
sink/source outlier (red plot and top images) and normal sample (blue line and bottom im-
ages). Data from MOOD (Zimmerer et al. (2020)). Slices with deformation have high
anomaly scores (red), concentrated around the bulbous deformation (top left image). Normal
sample has minimal abnormality scores.
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We perform an ablation study by modifying the self-supervision task. A ‘binary’ model is
trained using a binary interpolation factor (α ∈ {0, 1}). For a ‘continuous round-up’ model,
the training examples are generated using a continuous interpolation factor (α ∈ [0, 1]), but
the label supplied to the model is binary (α = 1 if α > 0). We also compare continuous and
discrete configurations (α ∈ {0, 0.25, 0.50, 0.75, 1}) as well as the application of stochastic
weight averaging. Figure 4 displays the results for individual types of outliers and also
overall sample and pixel level scores. Note that the overall scores (Figure 4, blue and green)
are calculated using all outlier samples and all normal samples, so the class distribution is
different from the individual scores. The binary and continuous round-up models are not able
to detect the outliers in the test set effectively. Both continuous and discrete models achieve
high performance, even without stochastic weight averaging. The low performance of the
continuous stochastic weight averaged model may indicate that optimization is less stable
for the continuous task. In contrast, stochastic weight averaging does not hurt performance
for the discrete model and can substantially improve pixel-level scores.

Figure 4: Average precision for MOOD brain data (Zimmerer et al. (2020)) using different
model configurations. The binary and continuous round-up models serve as simplified meth-
ods used in our ablation study. The continuous and discrete models represent our standard
method. The addition of SWA is an optional extension.

The abdominal models were trained in a similar manner and the discrete stochastic
weight averaged model achieved the best overall performance. Table 1 shows the performance
of the final selected models which are both trained using the discrete stochastic weight
averaged configuration.

Since FPI is trained on synthetic examples, i.e., interpolated patches, it is able to detect
other similar classes of synthetic anomalies relatively easily. In comparison, reconstruction-
based methods have difficulty identifying these synthetic anomalies because they have min-
imal intensity differences and occupy less than 1% of the total imaging volume of a subject.
Although the reconstruction-based methods have high scores for pixel-level AUROC, the
DICE scores are quite low (Table 1). This is because the DICE score focuses more on
anomalous pixels, while AUROC can be partly inflated by a large number of normal back-
ground pixels. These blank pixels are easy to reconstruct without error. This increases the
number of true negatives, which in turn decreases the false positive rate (x-axis of the ROC

12



Foreign Patch Interpolation

Table 1: Evaluation on synthetic test data, originally from brain and abdominal MOOD
data (Zimmerer et al. (2020)).

Anatomy Method
Subject-level Pixel-level
AP AUROC AP AUROC ⌈DICE⌉

Brain

Deep SVDD (Ruff et al. (2018)) 0.7695 0.5058 – – –
CAE (Masci et al. (2011)) 0.7617 0.4947 0.0120 0.8695 0.0269

MMD-VAE (Zhao et al. (2019)) 0.7572 0.4925 0.0144 0.8790 0.0350
FPI (ours) 0.9723 0.9321 0.7319 0.9852 0.7092

Abdomen

Deep SVDD (Ruff et al. (2018)) 0.8318 0.5648 – – –
CAE (Masci et al. (2011)) 0.7378 0.4717 0.0096 0.7240 0.0285

MMD-VAE (Zhao et al. (2019)) 0.7356 0.4737 0.0079 0.7228 0.0235
FPI (ours) 0.8854 0.8025 0.6229 0.9292 0.6354

curve) and increases the area under the curve. In contrast, pixels in tissue regions often have
some level of reconstruction error because there is a limit to the amount of detail that the
models can recreate. Since the synthetic anomalies have similar intensity values, they also
produce similar reconstruction error. When the reconstruction error is averaged across the
entire volume, the contribution from the synthetic anomaly is hidden by the contributions
from other healthy regions, which leads to a poor subject-level AUROC. Meanwhile, FPI
produces very low anomaly scores for normal tissue and activates specifically for certain
types of features, as seen in Figure 3.

In addition to the synthetic test set, which only includes local abnormalities, we provide
examples of global abnormalities in Figure 5. A normal sample produces minimal activation
in its canonical orientation (Figure 5, left most image in (a)). However, rotating the sample
produces scattered activations throughout the entire volume (Figure 5, (a)). Blurring or
substituting different anatomy produces even stronger activations (Figure 5, (b)).

4.2 DeepLesion Dataset with Medical Anomalies

For the DeepLesion dataset, FPI was trained under the continuous α (interpolation factor)
setting without stochastic weight averaging. The results demonstrate that FPI can identify
real medical anomalies despite being trained on only normal images. Table 2 displays both
image and pixel level AUROC scores as well as estimated DICE scores. ROC curves are
shown in Figure 6.

At the image level, the reconstruction-based methods score around 0.5 or below. Several
factors contribute toward this, including high variation in normal data, higher reconstruction
error from certain structures, and overrepresentation of certain tissue types in the normal
test data. Figure 8 shows that reconstruction-based models must learn to reproduce a
wide range of structures and different organs. Most of the reconstruction error comes from
sharp edges with high contrast and high spatial frequency, i.e., tissue interfaces. Also, the
more pixels involved, the higher the contribution to the overall (image-level) anomaly score.
As an example, the lungs generally have a high reconstruction error because they span
across a large area and contain details with high spatial frequency. The lungs may also be
overrepresented in the normal test data. As described in Section 3.1, each anomalous test
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(a) Rotations (b) Blurred and abdominal data

Figure 5: Examples of global outliers using MOOD data (Zimmerer et al. (2020)). (a)
Original normal sample (top left) and rotations. (b) Gaussian blur (σ = 1) and abdominal
data. Note the change of scale in activation maps. Plots display the abnormality score across
slices.

Table 2: Evaluation on DeepLesion data (Yan et al. (2018a)). Image-level evaluation is
performed using normal slices and slices with lesions. Pixel-level evaluation is done using
only slices with lesions; bounding boxes serve as approximate lesion segmentation masks.

Method
Image-level Pixel-level
AUROC AUROC ⌈DICE⌉

Supervised 0.554 0.923 0.226
MMD-VAE (Zhao et al. (2019)) 0.419 0.635 0.024
VQ-VAE2 (Razavi et al. (2019)) 0.405 0.576 0.018

VQ-VAE2 Restoration
(You et al. (2019); Marimont and Tarroni (2021))

0.469 0.664 0.023

StyleGAN (Karras et al. (2019)) 0.501 0.618 0.023
FPI (ours) 0.648 0.701 0.030

image is accompanied by parallel slices that give context above and below the anomalous
slice. The context slices, minus a margin around the anomalous slice, are used as normal test
data, resulting in 116,026 normal test images and 4831 anomalous test images. However,
certain regions have more context slices than others. For example, the average number of
context slices for an anomalous lung image is 79, whereas soft tissue type lesions (muscle,
skin, fat) only have 37 context slices on average. As such, the normal test data may be
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(a) Image-level (b) Pixel-level

Figure 6: ROC curves for DeepLesion data (Yan et al. (2018a)) for each method at the
image-level (a) and pixel-level (b). AUROC reported in the legend.

skewed toward certain organs that have high reconstruction error. This can increase the
false positive rate and reduce the area under the ROC curve. This skew may exist in
the training data as well, but reproducing details with high spatial frequency can still be
challenging for methods that rely on a lower dimensional representation of the data.

The supervised method, which is only trained on slices containing lesions, also performs
poorly when tested on images that are both normal and abnormal. This could be fixed by
including normal samples during supervised training. But it illustrates that even supervised
methods can face difficulty when the test distribution does not match the training distribu-
tion. FPI is specifically designed to handle out-of-distribution samples and does not rely on
proxy tasks that require full image reconstruction. These properties makes it suitable for
detecting subtle lesions within highly variable data.

For the pixel-level score, only slices with lesions are considered so that we can directly
assess localization. The supervised method excels in this setting because the training and
test data are consistent. Even so, the supervised DICE score is modest and the others
are quite low. This can be partly attributed to the fact that bounding boxes are used as
approximate segmentation masks. Although the pixel-level anomaly predictions may not
overlap accurately with the complete bounding boxes, the AUROC scores indicate that
these regions tend to be rated as more anomalous. This level of performance is insufficient
for lesion segmentation, but may be reasonable for highlighting suspicious regions in an
anomaly setting. All unsupervised methods achieve an AUROC over 0.5 with FPI scoring
the highest among the unsupervised methods. Full ROC curves are plotted in Figure 6 (b).
Individual ROC curves for each lesion type are also shown for FPI in Figure 7 (a) and for the
supervised method in Figure 7 (b). FPI performs similarly on each lesion type, indicating
that it is equally sensitive to a broad range of lesions.

Figure 9 displays anomalous examples from the DeepLesion dataset with bounding box
labels for each lesion. The outputs from each method show varying levels of sensitivity.
MMD-VAE exhibits reconstruction errors throughout the images which reflects the difficulty

15



Tan et al.

(a) FPI by lesion type (b) Supervised by lesion type

Figure 7: Pixel-level ROC curves for individual lesion types of DeepLesion data (Yan et al.
(2018a)). FPI and a supervised method are plotted in (a) and (b), respectively.

Input MMD-VAE VQ-VAE2 VQ Rest. StyleGAN FPI (ours)Supervised

Figure 8: Normal test samples from DeepLesion (Yan et al. (2018a)) and outputs from each
method. Note that reconstructiont error outputs are scaled down by a factor of five.

of learning a compact representation for data with high variation and detail. VQ-VAE2
uses a hierarchical architecture to produce higher fidelity reconstructions with less error.
However, this does not help the network to be sensitive to specific irregularities such as
lesions. Using the VQ-VAE2 for image restoration can help to highlight regions based on
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likelihood, rather than purely on intensity differences. This approach can be more selective,
but it also tends to highlight certain natural variations that may be deemed less likely.
Meanwhile, StyleGAN searches for a normal matching image in its latent space, but it is not
always possible to find a good match when the data has complex and detailed structures that
can vary greatly across images. In comparison to the reconstruction-based methods, FPI
highlights more specific areas in the image that contain lesions or other unusual elements
that are not lesions. Finally, the supervised method gives the most lesion-specific activations
which can only be learned through labelled examples.

Input MMD-VAE VQ-VAE2 VQ Rest. StyleGAN FPI (ours)Supervised

Figure 9: Anomalous test samples from DeepLesion (Yan et al. (2018a)) and outputs from
each method. Bounding boxes indicate lesions. Note that reconstructiont error outputs are
scaled down by a factor of five.
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5. Discussion

The proposed method uses a simple self-supervised task to simulate subtle irregularities in
the image. Our ablation study suggests that two aspects of this task are important, exposure
and difficulty. Without these qualities, the network can overfit to the self-supervised task
and fail to detect other types of anomalies. For instance, generating samples with a binary
interpolation factor limits the network’s exposure to samples with swapped patches. This
leads to poor generalization to other types of synthetic anomalies (Figure 4, ‘Binary’).
A varying interpolation factor provides exposure to abnormalities with varying levels of
subtlety. However, exposure is not sufficient on its own. The challenge of estimating the
value of the interpolation factor is also crucial. If training examples are created using a
varying interpolation factor (α ∈ [0, 1]), but the task is simplified by rounding the label
to a binary value (α = 1 if α > 0) then generalization is also poor (Figure 4, ‘Continuous
Round-up’). The difficulty and variety of the proposed task allow FPI to achieve high
performance, whether using continuous or discrete α values. Stochastic weight averaging
can also provide some benefit, particularly in pixel-wise scores on our synthetic test data
(Figure 4). Nonetheless, it is not strictly necessary and good results can be achieved without
it.

Due to the nature of the self-supervised task and the synthesized outliers, one concern is
that the network may only detect artifacts, such as discontinuities in image intensity. Indeed,
if the characteristics of the synthetic anomalies are more consistent than the characteristics of
the normal data, then the network may learn to recognize these artifacts instead of learning
the normal appearance of healthy anatomy, which is the real goal. As such, we evaluate
FPI using a range of synthetic anomalies, including intensity shifts and deformations; global
anomalies that have no discontinuities; and real medical anomalies. The results demonstrate
that FPI can detect a broad range of abnormalities, even if there are no discontinuities. This
implies that the self-supervised task helps the network to learn the normal appearance of
anatomy to some extent. Any deviations from that expectation are therefore seen as foreign
patterns being introduced (α > 0).

A major difference between this work and reconstruction-based methods is that we focus
on subtle irregularities. In a reconstruction-based approach, the abnormality score is directly
proportional to the intensity differences between the test image and its reconstruction. This
makes it difficult to detect more subtle irregularities, especially if the normal data has
a high variance and is more difficult to faithfully reconstruct. The DeepLesion dataset
exhibits both of these characteristics. The lesions can be very subtle and the anatomy varies
considerably. In some cases the field of view is centered on the anatomy of interest and other
structures are missing or misaligned. Our evaluation on the DeepLesion dataset indicates
that reconstruction-based methods are sensitive to gross intensity differences and variations
in anatomy. They are largely unable to selectively highlight subtle lesions (Figure 9). Image
level AUROC for both reconstruction-based methods is actually below 0.5 (Table 2). This
means that reconstruction error is higher in some normal slices than it is in abnormal slices.
This could be because normal slices are peripheral to the lesion slices and may have more
variance in structure. This in turn can raise the reconstruction error which is dominated by
larger structural differences in the image. In contrast, FPI is able to ignore most variations
in normal anatomy. Rather than trying to reconstruct every detail, FPI is trained to detect
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only regions that are incongruous with the rest of the image (i.e., foreign patches). This
allows FPI to be more sensitive to subtle irregularities such as lesions. In this way, FPI
can complement reconstruction-based methods and detect less obvious cases that might
otherwise require more intense scrutiny.

One challenge in unsupervised outlier detection is selecting the best model. Validation
sets can be used to select the most performant model. However, this may introduce a bias
toward the types of outliers in the validation set. Even if the validation set is disjoint from
the test set, there are likely similarities. This may lead to overestimation of performance
and failure on unexpected outliers encountered during deployment. As such, we avoid using
outliers for validation and simply keep the training duration fixed. Using the same training
regime we demonstrate FPI’s capability across several datasets. For real world deployment,
it may be important to add elements such as uncertainty estimation to make predictions
more informative.

6. Conclusion

We propose a self-supervision framework for detecting fine-grained abnormalities, common
in medical data. Foreign patterns are drawn from independent subjects and used to simulate
abnormalities. The network is trained to detect where and to what degree a foreign pattern
has been introduced. The resulting model is able to generalize to a wide range of subtle
irregularities and achieved the highest rank in the 2020 MICCAI MOOD challenge (Zim-
merer et al. (2020)) in both sample and pixel level tasks. We also demonstrate FPI’s ability
to detect a broad range of real medical lesions in the challenging DeepLesion dataset.

The goal of future work is to improve performance on cases where there is less structural
consistency. Further extensions could also provide uncertainty estimates for the predicted
anomaly scores. Ultimately we hope to reduce the burden placed on radiologists.
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Appendix A. Foreign Patch Interpolation in Brain Images

(a) Original (b) Interpolation (c) Label

Figure 10: MOOD brain images (Zimmerer et al. (2020)) with foreign patches.
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Appendix B. Foreign Patch Interpolation in Abdominal Images

(a) Original (b) Interpolation (c) Label

Figure 11: MOOD abdominal images (Zimmerer et al. (2020)) with foreign patches.
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Appendix C. Examples of Synthetic Outliers

(a) Original (b) Synthetic Outlier (c) Label

Figure 12: Each row shows one type of synthetic outlier. From top to bottom these are
uniform addition, noise addition, sink/source deformation, uniform shift, and reflection.
Original data from MOOD challenge (Zimmerer et al. (2020)).
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