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Abstract

Limiting failures of machine learning systems is of paramount importance for safety-critical
applications. In order to improve the robustness of machine learning systems, Distributionally
Robust Optimization (DRO) has been proposed as a generalization of Empirical Risk
Minimization (ERM). However, its use in deep learning has been severely restricted due to
the relative inefficiency of the optimizers available for DRO in comparison to the wide-spread
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variants of Stochastic Gradient Descent (SGD) optimizers for ERM. We propose SGD with
hardness weighted sampling, a principled and efficient optimization method for DRO in
machine learning that is particularly suited in the context of deep learning. Similar to a hard
example mining strategy in practice, the proposed algorithm is straightforward to implement
and computationally as efficient as SGD-based optimizers used for deep learning, requiring
minimal overhead computation. In contrast to typical ad hoc hard mining approaches, we
prove the convergence of our DRO algorithm for over-parameterized deep learning networks
with ReLU activation and finite number of layers and parameters. Our experiments on
fetal brain 3D MRI segmentation and brain tumor segmentation in MRI demonstrate the
feasibility and the usefulness of our approach. Using our hardness weighted sampling for
training a state-of-the-art deep learning pipeline leads to improved robustness to anatomical
variabilities in automatic fetal brain 3D MRI segmentation using deep learning and to
improved robustness to the image protocol variations in brain tumor segmentation. Our
code is available at https://github.com/LucasFidon/HardnessWeightedSampler.

Keywords: Machine Learning, Image Segmentation, Distributionally Robust Optimization

1. Introduction

Datasets used to train deep neural networks typically contain some underrepresented subsets
of cases. These cases are not specifically dealt with by the training algorithms currently used
for deep neural networks. This problem has been referred to as hidden stratification (Oakden-
Rayner et al., 2020). Hidden stratification has been shown to lead to deep learning models
with good average performance but poor performance on underrepresented but clinically
relevant subsets of the population (Larrazabal et al., 2020; Oakden-Rayner et al., 2020; Puyol-
Antón et al., 2021). In Figure 1 we give an example of hidden stratification in fetal brain
MRI. The presence of abnormalities associated with diseases with low prevalence (Aertsen
et al., 2019) exacerbates the anatomical variability of the fetal brain between 18 weeks and
38 weeks of gestation.

While uncovering the issue, the study of Oakden-Rayner et al. (2020) does not study
the cause or propose a method to mitigate this problem. In addition, the work of Oakden-
Rayner et al. (2020) is limited to classification. In standard deep learning pipelines, this
hidden stratification is ignored and the model is trained to minimize the mean per-example
loss, which corresponds to the standard Empirical Risk Minimization (ERM) problem. As
a result, models trained with ERM are more likely to underperform on those examples
from the underrepresented subdomains, seen as hard examples. This may lead to unfair AI
systems (Larrazabal et al., 2020; Puyol-Antón et al., 2021). For example, state-of-the-art deep
learning models for brain tumor segmentation (currently trained using ERM) underperform
for cases with confounding effects, such as low grade gliomas, despite achieving good average
and median performance (Bakas et al., 2018). For safety-critical systems, such as those
used in healthcare, this greatly limits their usage as ethics guidelines of regulators such
as European Commission (2019) require AI systems to be technically robust and fair prior to
their deployment in hospitals.

Distributionally Robust Optimization (DRO) is a robust generalization of ERM that has
been introduced in convex machine learning to model the uncertainty in the training data
distribution (Chouzenoux et al., 2019; Duchi et al., 2016; Namkoong and Duchi, 2016; Rafique
et al., 2018). Instead of minimizing the mean per-example loss on the training dataset, DRO
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seeks to optimize for the hardest weighted empirical training data distribution around the
(uniform) empirical training data distribution. This suggests a link between DRO and Hard
Example Mining. However, DRO as a generalization of ERM for machine learning still lacks
optimization methods that are principled and computationally as efficient as SGD in the
non-convex setting of deep learning. Previously proposed principled optimization methods for
DRO consist in alternating between approximate maximization and minimization steps (Jin
et al., 2019; Lin et al., 2019; Rafique et al., 2018). However, they differ from SGD methods
for ERM by the introduction of additional hyperparameters for the optimizer such as a
second learning rate and a ratio between the number of minimization and maximization
steps. This makes DRO difficult to use as a drop-in replacement for ERM in practice.

In contrast, efficient weighted sampling methods, including Hard Example Mining (Chang
et al., 2017; Loshchilov and Hutter, 2016; Shrivastava et al., 2016) and weighted sam-
pling (Berger et al., 2018; Puyol-Antón et al., 2021), have been empirically shown to mitigate
class imbalance issues and to improve deep embedding learning (Harwood et al., 2017; Suh
et al., 2019; Wu et al., 2017). However, even though these works typically start from an
ERM formulation, it is not clear how those heuristics formally relate to ERM in theory. This
suggests that bridging the gap between DRO and weighted sampling methods could lead to
a principled Hard Example Mining approach, or conversely to more efficient optimization
methods for DRO in deep learning.

Given an efficient solver for the inner maximization problem in DRO, DRO could
be addressed by maintaining a solution of the inner maximization problem and using a
minimization scheme akin to the standard ERM but over an adaptively weighted empirical
distribution. However, even in the case where a closed-form solution is available for the inner
maximization problem, it would require performing a forward pass over the entire training
dataset at each iteration. This cannot be done efficiently for large datasets. This suggests
identifying an approximate, but practically usable, solution for the inner maximization
problem based on a closed-form solution.

From a theoretical perspective, analysis of previous optimization methods for non-convex
DRO (Jin et al., 2019; Lin et al., 2019; Rafique et al., 2018) made the assumption that the
model is either smooth or weakly-convex, but none of those properties are true for deep
neural networks with ReLU activation functions that are typically used.

In this work, we propose SGD with hardness weighted sampling, a novel, principled
optimization method for training deep neural networks with DRO and inspired by Hard
Example Mining, that is computationally as efficient as SGD for ERM. Compared to SGD,
our method only requires introducing an additional softmax layer and maintaining a stale
per-example loss vector to compute sampling probabilities over the training data. This
work is an extension of our previous preliminary work (Fidon et al., 2021b) in which we
applied the proposed hardnes weighted sampler to distributionally robust fetal brain 3D
MRI segmentation and studied the link between DRO and the minimization of percentiles
of the per-example loss. In this extension, we formally introduce our hardness weighted
sampler and we generalize recent results in the convergence theory of SGD with ERM and
over-parameterized deep learning networks with ReLU activation functions (Allen-Zhu et al.,
2019b,a; Cao and Gu, 2020; Zou and Gu, 2019) to our SGD with hardness weighted sampling
for DRO. This is, to the best of our knowledge, the first convergence result for deep learning
networks with ReLU trained with DRO. We also formally link DRO in our method with Hard
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Example Mining. As a result, our method can be seen as a principled Hard Example Mining
approach. In terms of experiments, we have extended the evaluation on fetal brain 3D MRI
with 69 additional fetal brain 3D MRIs. We have also added experiments on brain tumor
segmentations and experiments on image classification with MNIST as a toy example. We
show that our method outperforms plain SGD in the case of class imbalance, and improves
the robustness of a state-of-the-art deep learning pipeline for fetal brain segentation and brain
tumor segmentation. We evaluate the proposed methodology for the automatic segmentation
of white matter, ventricles, and cerebellum based on fetal brain 3D T2w MRI. We used a
total of 437 fetal brain 3D MRIs including anatomically normal fetuses, fetuses with spina
bifida aperta, and fetuses with other central nervous system pathologies for gestational
ages ranging from 19 weeks to 40 weeks. Our empirical results suggest that the proposed
training method based on distributionally robust optimization leads to better percentiles
values for abnormal fetuses. In addition, qualitative results shows that distributionally robust
optimization allows to reduce the number of clinically relevant failures of nnU-Net. For brain
tumor segmentation our DRO-based method allows reducing the interquartile range of the
Dice scores of 2% for the segmentation of the enhancing tumor and the tumor core regions.

1.1 Main Mathematical Notations

We summarize here the main mathematical notations. An extended list of notations can be
found in Appendix A.

• Training dataset: {(xi,yi)}ni=1.

• ∆n = {(pi)ni=1 ∈ [0, 1]n,
∑

i pi = 1} is a n-simplex.

• Let q = (qi) ∈ ∆n, and f a function, we denote Eq[f(x)] :=
∑n

i=1 qif(xi).

• Let q ∈ ∆n, and f a function, we denote Vq[f(x)] :=
∑n

i=1 qi ∥f(xi)− Eq[f(x)]∥2.

• ptrain is the uniform training data distribution, i.e. ptrain =
(
1
n

)n
i=1
∈ ∆n.

• L is the per-example loss function.

• ERM is short for Empirical Risk Minimization.

• DRO is short for Distributionally Robust Optimisation.

2. Related Works

An optimization method for group-DRO was proposed in (Sagawa et al., 2020). In contrast
to the formulation of DRO that we study in this paper, their method requires additional
labels allowing to identify the underrepresented group in the training dataset. However,
those labels may not be available or may even be impossible to obtain in most applications.
Sagawa et al. (2020) show that, when associated with strong regularization of the weights of
the network, their group DRO method can tackle spurious correlations that are known a
priori in some classification problems. It is worth noting that, in contrast, no regularization
was necessary in our experiments with MNIST.
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Figure 1: Illustration of the anatomical variability in fetal brain across gestational ages and
diagnostics. 1: Control (22 weeks); 2: Control (26 weeks); 3: Control (29 weeks); 4: Spina
bifida (19 weeks); 5: Spina bifida (26 weeks); 6: Spina bifida (32 weeks); 7: Dandy-walker
malformation with corpus callosum abnormality (23 weeks); 8: Dandy-walker malformation
with ventriculomegaly and periventricular nodular heterotopia (27 weeks); 9: Aqueductal
stenosis (34 weeks).

Biases of convolutional neural networks applied to medical image classification and
segmentation has been studied in the literature. State-of-the-art deep neural networks
for brain tumor segmentation underperform for cases with confounding effects, such as
low grade gliomas (Bakas et al., 2018). It has been shown that scans coming from 15
different studies can be re-assigned with 73.3% accuracy to their source using a random forest
classifier (Wachinger et al., 2019). A state-of-the-art deep neural networks for the diagnosis
of 14 thoracic diseases using X-ray trained on a dataset with a gender bias underperform
on X-ray of female patients (Larrazabal et al., 2020). And a state-of-the-art deep learning
pipeline for cardiac MRI segmentation was found to underperform when evaluated on racial
groups that were underrepresented in the training dataset (Puyol-Antón et al., 2021). To
mitigate this problem, Puyol-Antón et al. (2021) proposed to use a stratified batch sampling
approach during training that shares similarities with the group-DRO approach mentioned
above (Sagawa et al., 2020). In contrast to our hardness weighted sampler, their stratified
batch sampling approach requires additional labels, such as the racial group, that may not
be available for training data. In addition, they do not study the formal relationship between
the use of their stratified batch sampling approach and the training optimization problem.

In this work, we focus on DRO with a ϕ-divergence (Csiszár et al., 2004). In this case,
the data distributions that are considered in the DRO problem (3) are restricted to sharing
the support of the empirical training distribution. In other words, the weights assigned
to the training data can change, but the training data itself remains unchanged. Another
popular formulation is DRO with a Wasserstein distance (Chouzenoux et al., 2019; Duchi
et al., 2016; Sinha et al., 2018; Staib and Jegelka, 2017). In contrast to ϕ-divergences, using
a Wasserstein distance in DRO seeks to apply small data augmentation to the training data
to make the deep learning model robust to small deformation of the data, but the sampling
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weights of the training data distribution typically remains unchanged. In this sense, DRO
with a ϕ-divergence and DRO with a Wasserstein distance can be considered as orthogonal
endeavours. While we show that DRO with ϕ-divergence can be seen as a principled Hard
Exemple Mining method, it has been shown that DRO with a Wasserstein distance can be
seen as a principled adversarial training method (Sinha et al., 2018; Staib and Jegelka, 2017).

The effect of multiplicative weighting during training, rather than weighted sampling
used in our algorithm, has been studied empirically by (Byrd and Lipton, 2019) for image
classification. They find that the effect of multiplicative weighting vanishes over training
for classification tasks in which we can achieve zero loss on the training dataset. However,
multiplicative weighting and weighted sampling affect the optimization dynamic in different
ways. This may explain why we did not observe this vanishing effect in our experiments on
classification and segmentation. Previous work have also studied empirical and convergence
results of DRO for linear models (Hu and et al, 2018).

3. Methods

3.1 Background: Deep Learning with Distributionally Robust Optimization

Standard training procedures in machine learning are based on Empirical Risk Minimization
(ERM) (Bottou et al., 2018). For a neural network h with parameters θ, a per-example
loss function L, and a training dataset {(xi,yi)}ni=1, where xi are the inputs and yi are the
labels, the ERM problem corresponds to

min
θ

{
Eptrain

[L (h(x;θ),y)] = 1

n

n∑
i=1

L (h(xi;θ),yi)

}
(1)

where ptrain is the empirical uniform distribution on the training dataset and Eptrain
is the

expected value operator as defined in section 1.1. When data augmentation is used, the
number of samples n can become infinite. For our theoretical results, we suppose that ptrain

contains a finite number of examples. The extension of our Algorithm 1 to an infinite number
of data augmentations using importance sampling is presented in section 3.2.2. Optionally,
L can contain a parameter regularization term that is only a function of θ.

The ERM training formulation assumes that ptrain is an unbiased approximation of the
true data distribution. However, this is generally impossible in domains such as medical
image computing. This makes models trained with ERM at risk of underperforming on
images from parts of the data distribution that are underrepresented in the training dataset.

In contrast, Distributionally Robust Optimization (DRO) is a family of generalization of
ERM in which the uncertainty in the training data distribution is modelled by minimizing
the worst-case expected loss over an uncertainty set of training data distributions (Rahimian
and Mehrotra, 2019).

In this paper, we consider training deep neural networks with DRO based on a ϕ-
divergence. We denote ∆n := {(pi)ni=1 ∈ [0, 1]n |

∑n
i=1 pi = 1} the set of empirical training

data probabilities vectors under consideration (i.e. the uncertainty set). The different
probabilities vectors in ∆n correspond to all the possible weighting of the training dataset.
Every p = (pi)

n
i=1 in ∆n gives a weight to each training example but keep the examples the

same. We use the following definition of ϕ-divergence in the remainder of the paper.
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Definition 1 (Strong Convexity) Let f : Ω→ R be differentiable on Ω, a convex subset
of R and f ′ be the first derivative of f . Let ρ > 0, f is ρ-strongly convex if for all x, y ∈ Ω,
ϕ(y) ≥ ϕ(x) + ϕ′(x)(y − x) + ρ

2(y − x)2.

Definition 2 (ϕ-divergence) Let ϕ : R+ → R be two times continuously differentiable on
[0, n], ρ-strongly convex on [0, n] with ρ > 0, and satisfying ∀z ∈ R, ϕ(z) ≥ ϕ(1) = 0, ϕ′(1) =
0. The ϕ-divergence Dϕ is defined as, for all p = (pi)

n
i=1, q = (qi)

n
i=1 ∈ ∆n,

Dϕ (q∥p) =
n∑

i=1

piϕ

(
qi
pi

)
(2)

We refer to our example 1 on page 9 to highlight that the KL divergence is indeed a
ϕ-divergence.

The DRO problem for which we propose an optimizer for training deep neural networks
can be formally defined as

min
θ

{
R (L(h(θ))) := max

q∈∆n

(
Eq [L (h(x;θ),y)]−

1

β
Dϕ (q∥ptrain)

)}
(3)

where ptrain is the uniform empirical distribution, and β > 0 an hyperparameter. The choice
of β and ϕ controls how the unknown training data distribution q is allowed to differ from
ptrain. Here and thereafter, we use the notation L(h(θ)) := (L(h(xi;θ),yi))

n
i=1 to refer to

the vector of loss values of the n training samples for the value θ of the parameters of the
neural network h. In the remainder of the paper, we will refer to R as the distributionally
robust loss.

Our analysis of the properties of R in the next sections relies on the Fenchel dual-
ity (Moreau, 1965) and the notion of Fenchel conjugate (Fenchel, 1949).

Definition 3 (Fenchel Conjugate Function) Let f : Rm → R ∪ {+∞} be a proper
function. The Fenchel conjugate of f is defined as ∀v ∈ Rm, f∗(v) = supx∈Rm⟨v,x⟩ − f(x)
where ⟨·, ·⟩ is the inner product.

3.2 Hardness Weighted Sampling for Distributionally Robust Deep Learning

In the case where h is a non-convex predictor (such as a deep neural network), existing
optimization methods for the DRO problem (3) alternate between approximate minimization
and maximization steps (Jin et al., 2019; Lin et al., 2019; Rafique et al., 2018), requiring the
introduction of additional hyperparameters compared to SGD. However, these are difficult to
tune in practice and convergence has not been proven for non-smooth deep neural networks
such as those with ReLU activation functions.

In this section, we present an SGD-like optimization method for training a deep learning
model h with the DRO problem (3). We first highlight, in Section 3.2.1, mathematical
properties that allow us to link DRO with stochastic gradient descent (SGD) combined with
an adaptive sampling that we refer to as hardness weighted sampling. In Section 3.2.2, we
present our Algorithm 1 for distributionally robust deep learning. Then, in Section 3.3, we
present theoretical convergence results for our hardness weighted sampling.
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3.2.1 A sampling approach to Distributionally Robust Optimization

The goal of this subsection is to show that a stochastic approximation of the gradient of the
distributionally robust loss can be obtained by using a weighted sampler. This result is a
first step towards our Algorithm 1 for efficient training with the distributionally robust loss
presented in the next subsection.

To reformulate R as an unconstrained optimization problem over Rn (rather than con-
straining it to the n-simplex ∆n), we define

∀p ∈ Rn, G(p) =
1

β
Dϕ(p∥ptrain) + δ∆n(p) (4)

where δ∆n is the characteristic function of the to the n-simplex ∆n which is a closed convex
set, i.e.

∀p ∈ Rn, δ∆n(p) =
{

0 if p ∈ ∆n

+∞ otherwise (5)

The distributionally robust loss R in (3) can now be rewritten using the Fenchel conjugate
function G∗ of G. This allows us to obtain regularity properties for R.

Lemma 4 (Regularity of R) If ϕ satisfies Definition 2 (i.e. can be used for a ϕ-divergence),
then G and R satisfy the following:

G is
(
nρ

β

)
-strongly convex (6)

∀θ, R(L(h(θ))) = max
q∈Rn

(
⟨L(h(θ)), q⟩ −G(q)

)
= G∗ (L(h(θ))) (7)

R is
(

β

nρ

)
-gradient Lipschitz continuous. (8)

Equation (7) follows from Definition 3. Proofs of (6) and (8) can be found in Appendix E.
According to (6), the optimization problem (7) is strictly convex and admits a unique solution
in ∆n, which we denote as

p̄(L(h(θ))) = argmax
q∈Rn

(⟨L(h(θ)),q⟩ −G(q)) (9)

Thanks to those properties, we can now show the following lemma that is essential for
the theoretical foundation of our Algorithm 1. Equation (10) states that the gradient of the
distributionally robust loss R is a weighted sum of the the gradients of the per-example losses
(i.e. the gradients computed by the backpropagation algorithm in deep learning) with the
weights given by the empirical distribution p̄(L(h(θ))). We further show that straightforward
analytical formulas exist for p̄, and give an example of such probability distribution for the
Kullback-Leibler (KL) divergence.

Lemma 5 (Stochastic Gradient of the Distributionally Robust Loss) For all θ, we
have

∇θ(R ◦L ◦ h)(θ) = Ep̄(L(h(θ))) [∇θ L (h(x;θ),y)] (10)
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The proof is found in Appendix F. We now provide a closed-form formula for p̄ given L(h(θ))
for the KL divergence as the choice of ϕ-divergence.

Example 1 For ϕ : z 7→ z log(z)− z + 1, Dϕ is the Kullback-Leibler (KL) divergence:

Dϕ(q∥p) = DKL(q∥p) =
n∑

i=1

qi log

(
qi
pi

)
(11)

In this case, we have (see Appendix D for a proof)

p̄(L(h(θ))) = softmax (βL(h(θ))) (12)

3.2.2 Proposed Efficient Algorithm for Distributionally Robust Deep
Learning

We now describe our algorithm for training deep neural networks with DRO using our
hardness weighted sampling.

Algorithm 1 Training procedure for DRO with Hardness Weighted Sampling. Additional
operations as compared to standard training algorithms are highlighted in blue.
Require: {(xi,yi)}ni=1: training dataset with n > 0 the number of training samples.
Require: b ∈ {1, . . . , n}: batch size.
Require: L: (any) smooth per-example loss function (e.g. cross entropy loss, Dice loss).
Require: β > 0: robustness parameter defining the distributionally robust optimization

problem.
Require: θ0: initial parameter vector for the model h to train.
Require: Linit: initial stale per-example loss values vector.
1: t← 0 ▷ initialize the time step
2: L← Linit ▷ initialize the vector of stale loss values
3: while θt has not converged do
4: pt ← softmax(βL) ▷ online estimation of the hardness weights
5: I ∼ pt ▷ hardness weighted sampling
6: if importance sampling is not used then
7: ∀i ∈ I, wi = 1
8: else
9: ∀i ∈ I, wi ← exp (β(L(h(xi;θ),yi)− Li)) ▷ importance sampling weights

10: ∀i ∈ I, wi ← clip (wi, [wmin, wmax]) ▷ clip the weights for stability
11: ∀i ∈ I, Li ← L(h(xi;θ),yi) ▷ update the vector of stale loss values
12: gt ← 1

b

∑
i∈I wi∇θ L(h(xi;θt),yi)

13: θt+1 ← θt − η gt ▷ SGD step or any other optimizer (e.g. SGD momentum, Adam)
14: Output: θt

Equation (10) implies that ∇θ L(h(xi;θ),yi) is an unbiased estimator of the gradient
of the distributionally robust loss gradient when i is sampled with respect to p̄(L(h(θ))).
This suggests that the distributionally robust loss can be minimized efficiently by SGD by
sampling mini-batches with respect to p̄(L(h(θ))) at each iteration. However, even though
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closed-form formulas were provided in Example 1 for p̄, evaluating exactly L(h(θ)), i.e.
doing one forward pass on the whole training dataset at each iteration, is computationally
prohibitive for large training datasets.

In practice, we propose to use a stale version of the vector of per-example loss values
by maintaining an online history of the loss values of the examples seen during training(
L(h(xi;θ

(ti)),yi)
)n
i=1

, where for all i, ti is the last iteration at which the per-example loss
of example i has been computed. Using the Kullback-Leibler divergence as ϕ-divergence, this
leads to the SGD with hardness weighted sampling algorithm proposed in Algorithm 1.

When data augmentation is used, an infinite number of training examples is virtually avail-
able. In this case, we keep one stale loss value per example irrespective of any augmentation
as an approximation of the loss for this example under any augmentation.

Importance sampling is often used when sampling with respect to a desired distribution
cannot be done exactly (Kahn and Marshall, 1953). In Algorithm 1, an up-to-date estimation
of the per-example losses (or equivalently the hardness weights) in a batch is only available
after sampling and evaluation through the network. Importance sampling can be used to
compensate for the difference between the initial and the updated stale losses within this
batch. We propose to use importance sampling in steps 9-10 of Algorithm 1 and highlight
that this is especially useful to deal with data augmentation. Indeed, in this case, the
stale losses for the examples in the batch are expected to be less accurate as they were
estimated under a different augmentation. For efficiency, we use the following approximation
wi =

pnew
i

poldi

≈ exp (β(L(h(xi;θ),yi)− Li)) where we have neglected the typically small change
in the denominator of the softmax. More details are given in Appendix C. To tackle the
typical instabilities that can arise when using importance sampling (Owen and Zhou, 2000),
the importance weights are clipped.

Compared to standard SGD-based training optimizers for the mean loss, our algorithm
requires only an additional softmax operation per iteration and to store an additional vector of
scalars of size n (number of training examples), thereby making it well suited for deep learning
applications. The computational time and memory overheads are studied in section 4.3.

For the convergence theorem, the stopping criteria is ∥∇θ(R ◦L ◦ h)(θ)∥ ≤ ϵ. However,
in our experiments, a fixed number of iterations is used as implemented in the state-of-the-art
method nnU-Net Isensee et al. (2021).

3.3 Overview of Theoretical Results

In this section, we present convergence guarantees for Algorithm 1 in the framework of over-
parameterized deep learning. We further demonstrate properties of our hardness weighted
sampling that allow to clarify its link with Hard Example Mining and with the minimization
of percentiles of the per-sample loss on the training data distribution.

3.3.1 Convergence of SGD with Hardness Weighted Sampling for
Over-parameterized Deep Neural Networks with ReLU

Convergence results for over-parameterized deep learning have recently been proposed
in (Allen-Zhu et al., 2019a). Their work gives convergence guarantees for deep neural
networks h with any activation functions (including ReLU), and with any (finite) number of
layers L and parameters m, under the assumption that m is large enough. In our work, we

10



Distributionally Robust Deep Learning

extend the convergence theory developed by (Allen-Zhu et al., 2019a) for ERM and SGD
to DRO using the proposed SGD with hardness weighted sampling and stale per-example
loss vector (as stated in Algorithm 1). The proof in Appendix I.4 deals with the challenges
raised by the non-linearity of R with respect to the per-sample stale loss and the non-uniform
dynamic sampling used in Algorithm 1.

Theorem 6 (Convergence of Algorithm 1 for neural networks with ReLU) Let L be
a smooth per-example loss function, b ∈ {1, . . . , n} be the batch size, and ϵ > 0. If the number
of parameters m is large enough, and the learning rate is small enough, then, with high prob-
ability over the randomness of the initialization and the mini-batches, Algorithm 1 (without
importance sampling) guarantees ∥∇θ(R ◦L ◦ h)(θ)∥ ≤ ϵ after a finite number of iterations.

A detailed description of the assumption for this theorem is described in Appendix 12 and
its proof can be found in Appendix I.4. Our proof does not cover the case where importance
sampling is used. However, our empirical results suggest that convergence guarantees still
hold with importance sampling.

3.3.2 Link between Hardness Weighted Sampling and Hard Example Mining

In this section, we discuss the relationship between the proposed hardness weighted sampling
for DRO and Hard Example Mining. The following result shows that using the proposed
hardness weighted sampler the hard training examples, those training examples with relatively
high values of the loss, are sampled with higher probability.

Theorem 7 Let a ϕ-divergence that satisfies Definition 2, and L = (Li)
n
i=1 ∈ Rn a vector

of loss values for the examples {x1, . . . ,xn}. The proposed hardness weighted sampling
probabilities vector p̄ (L) = (p̄i (L))ni=1 defined as in (9) verifies:

1. For all i ∈ {1, . . . , n}, p̄i is an increasing function of Li.

2. For all i ∈ {1, . . . , n}, p̄i is an non-increasing function of any Lj for j ̸= i.

See Appendix G for the proof. The second part of Theorem 7 implies that as the loss of an
example diminishes, the sampling probabilities of all the other examples increase. As a result,
the proposed SGD with hardness weighted sampling balances exploitation (i.e. sampling the
identified hard examples) and exploration (i.e. sampling any example to keep the record
of hard examples up to date). Heuristics to enforce this trade-off are often used in Hard
Example Mining methods (Berger et al., 2018; Harwood et al., 2017; Wu et al., 2017).

3.3.3 Link between DRO and the Minimization of a Loss Percentile

In this section, we show that the DRO problem (3) using the KL divergence is equivalent
to a relaxation of the minimization of the per-example loss percentile shown thereafter in
equation (13).

Instead of the average per-example loss (1), for robustness, one might be more interested
in minimizing the percentile lα at α (e.g. 5%) of the per-example loss function. Formally,
this corresponds to the minimization problem

min
θ, lα

lα such that ptrain (L (h(x;θ),y) ≥ lα) ≤ α (13)

11
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where ptrain is the empirical distribution defined by the training dataset. In other words, if
α = 0.05, the optimal l∗α(θ) of (13) for a given value set of parameters θ is the value of the
loss such that the per-example loss function is worse than l∗α(θ) 5% of the time. As a result,
training the deep neural network using (13) corresponds to minimizing the percentile of the
per-example loss function l∗α(θ).

Unfortunately, the minimization problem (13) cannot be solved directly using stochastic
gradient descent to train a deep neural network. We now propose a tractable upper bound for
l∗α(θ) and show that it can be solved in practice using distributionally robust optimization.

The Chernoff bound (Chernoff et al., 1952) applied to the per-example loss function and
the empirical training data distribution states that for all lα and β > 0

ptrain (L (h(x;θ),y) ≥ lα) ≤
exp (−βlα)

n

n∑
i=1

exp (β L (h(xi;θ),yi)) (14)

To link this inequality to the minimization problem (13), we set β > 0 and

l̂α(θ) =
1

β
log

(
1

αn

n∑
i=1

exp (β L (h(xi;θ),yi))

)
(15)

In this case, we have

ptrain

(
L (h(x;θ),y) ≥ l̂α(θ)

)
≤ α =

exp
(
−βl̂α(θ)

)
n

n∑
i=1

exp (β L (h(xi;θ),yi)) (16)

l̂α(θ) is therefore an upper bound for the optimal l∗α(θ) in equation (13), independently to
the value of θ. Equation (13) can therefore be relaxed by

min
θ

1

β
log

(
n∑

i=1

exp (β L (h(xi;θ),yi))

)
(17)

where β > 0 is a hyperparameter, and where the term 1
β log

(
1
αn

)
was dropped as being

independent of θ. While in (17), α does not appear in the optimization problem directly
anymore, β essentially acts as a substitute for α. The higher the value of β, the higher
weights the per-example losses with a high value will have in (17).

We give a proof in Appendix H that (17) is equivalent to solving the following DRO
problem

min
θ

max
q∈∆n

(
n∑

i=1

qi L (h(xi;θ),yi)−
1

β
DKL

(
q

∥∥∥∥ptrain

))
(18)

This is a special case of the DRO problem (3) where ϕ is chosen as the KL-divergence and it
corresponds to the setting of Algorithm 1.

4. Experiments

In this section, we experiments with the proposed hardness weighted sampler for DRO as
implemented in the proposed Algorithm 1. In the subsection 4.1, we give a toy example with
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the task of automatic classification of digits in the case where the digit 3 is underrepresented
in the training dataset. And in subsection 4.2, we report the results of our experiments on
two medical image segmentation tasks: fetal brain segmentation using 3D MRI, and brain
tumor segmentation using 3D MRI.

4.1 Toy Example: MNIST Classification with a Class Imbalance

The goal of this subsection is to illustrate key benefits of training a deep neural network using
DRO in comparison to ERM when a part of the sample distribution is underrepresented
in the training dataset. We take the MNIST dataset (LeCun, 1998) as a toy example, in
which the task is to automatically classify images representing digits between 0 and 9. In
addition, we verify the ability of our Algorithm 1 to train a deep neural network for DRO
and illustrates the behaviour of SGD with hardness weighted sampling for different values of
β.

Material: We create a bias between training and testing data distribution of MNIST (Le-
Cun, 1998) by keeping only 1% of the digits 3 in the training dataset, while the testing
dataset remains unchanged.

For our experiments on MNIST, we used a Wide Residual Network (WRN) (Zagoruyko
and Komodakis, 2016). The family of WRN models has proved to be very efficient and
flexible, achieving state-of-the-art accuracy on several dataset. More specifically, we used
WRN-16-1 (Zagoruyko and Komodakis, 2016, section 2.3). For the optimization we used a
learning rate of 0.01. No momentum or weight decay were used. No data augmentation was
used. For DRO no importance sampling was used. We used a GPU NVIDIA GeForce GTX
1070 with 8GB of memory for the experiments on MNIST.

Results: Our experiment suggests that DRO and ERM lead to different optima. Indeed,
DRO for β = 10 outperforms ERM by more than 15% of accuracy on the underrepresented
class, as illustrated in Figure 2. This suggests that DRO is more robust than ERM to domain
gaps between the training and the testing dataset. In addition, Figure 2 suggests that DRO
with our SGD with hardness weighted sampling can converge faster than ERM with SGD.

Furthermore, the variations of learning curves with β shown in Figure 2 are consistent
with our theoretical insight. As β decreases to 0, the learning curve of DRO with our
Algorithm 1 converges to the learning curve of ERM with SGD.

For large values of β (here β ≥ 10), instabilities appear before convergence in the testing
learning curves, as illustrated in the top panels of Figure 2. However, the bottom left
panel of Figure 2 shows that the training loss curves for β ≥ 10 were stable there. We also
observe that during iterations where instabilities appear on the testing set, the standard
deviation of the per-example loss on the training set is relatively high (i.e. the hardness
weighted probability is further away from the uniform distribution). This suggests that the
apparent instabilities on the testing set are related to differences between the distributionally
robust loss and the mean loss.

4.2 Medical Image Segmentation

In this section, we illustrate the application of Algorithm 1 to improve the robustness of
deep learning methods for medical image segmentation. We first discuss the specificities
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Figure 2: Experiments on MNIST. We compare the learning curves at testing (top
panels) and at training (bottom panels) for ERM with SGD (blue) and DRO with our SGD
with hardness weighted sampling for different values of β (β = 0.1, β = 1, β = 10, β = 100).
The models are trained on an imbalanced MNIST dataset (only 1% of the digits 3 kept for
training) and evaluated on the original MNIST testing dataset.

of applying the proposed hardness weighted sampling to medical image segmentation in
relation to the use of patch-based sampling. We evaluated the proposed method on two
applications: fetal brain 3D MRI segmentation using the FeTA dataset and a private dataset,
and brain tumor multi-sequence MRI segmentation using the BraTS 2019 dataset (Bakas
et al., 2017a,b).

4.2.1 Hardness Weighted Sampler with Large Images

In medical image segmentation, the image used as input of the deep neural network are
typically large 3D volumes. For this reason, state-of-the-art deep learning pipelines use
patch-based sampling rather than full-volume sampling during training with ERM (Isensee
et al., 2021) as described in subsection 4.2.2.
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Table 1: Training and Testing Fetal Drain 3D MRI Dataset Details. Other Abn:
brain structural abnormalities other than spina bifida. There is no overlap of subjects
between training and testing.

Train/Test Origin Condition Volumes Gestational age
(in weeks)

Training Atlas Control 18 [21, 38]
Training FeTA Control 5 [22, 28]
Training UHL Control 116 [20, 35]
Training UHL Spina Bifida 28 [22, 34]
Training UHL Other Abn 10 [23, 35]

Testing FeTA Control 31 [20, 34]
Testing FeTA Spina Bifida 38 [21, 31]
Testing FeTA Other Abn 16 [20, 34]
Testing UHL Control 76 [22, 37]
Testing UHL and MUV Spina Bifida 74 [19, 35]
Testing UHL Other Abn 25 [21, 40]

This raised the question of what is the training distribution ptrain in the ERM (1) and
DRO (3) optimization problems. Here, since the patches are large enough to cover most
of the brains, we consider that patches are good approximation of the whole volumes and
ptrain is the distribution of the full volumes. Therefore, in the hardness weighted sampler of
Algorithm 1, we have only one weight per full volume.

In the case the full volumes are too large to be well covered by the patches, one can
divide each full volume into a finite number of subvolumes prior to training. For example,
for chest CT, one can divide the volumes into left and right lungs (Tilborghs et al., 2020).

4.2.2 Material

Fetal Brain Dataset. A total of 177 (resp. 260) fetal brain 3D MRIs were used for
training (resp. testing). Origin, condition, and gestational ages for the training and testing
datasets are summarized in Table 1.

We used the 18 control fetal brain 3D MRIs of the spatio-temporal fetal brain at-
las1 (Gholipour et al., 2017) for gestational ages ranging from 21 weeks to 38 weeks. We also
used 80 volumes from the publicly available FeTA MICCAI challenge dataset2 (Payette et al.,
2021, 2022) and the 10 3D MRIs from the testing set of the first release of the FeTA dataset
for which manual segmentations are not publicly available. For those 3D MRIs, manual
segmentations and corrections of the segmentations were performed by authors MA and LF
to reduce the variability against the published segmentation guidelines that was released
with the FeTA dataset (Payette et al., 2021). Part of those corrections were performed as
part of our previous work (Fidon et al., 2021a,c) and are publicly available3. Brain masks

1. http://crl.med.harvard.edu/research/fetal_brain_atlas/
2. DOI: 10.7303/syn25649159
3. DOI: 10.5281/zenodo.5148611
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for the FeTA data were obtained via affine registration using two fetal brain atlases4 (Fidon
et al., 2021d; Gholipour et al., 2017).

In addition, we used 329 3D MRIs from a private dataset. All images in the private
dataset were part of routine clinical care and were acquired at University Hospital Leuven
(UHL) and Medical University of Vienna (MUW) due to congenital malformations seen on
ultrasound. In total, 102 cases with spina bifida aperta, 35 cases with other central nervous
system pathologies, and 192 cases with other malformations, though with normal brain, and
referred as controls, were included. The gestational age at MRI ranged from 19 weeks to
40 weeks. Some of those 3D MRIs and their manual segmentations were used in previous
studies (Emam et al., 2021; Fidon et al., 2021d,a; Mufti et al., 2021). We have started to
make fetal brain T2w 3D MRIs publicly available5. For each study, at least three orthogonal
T2-weighted HASTE series of the fetal brain were collected on a 1.5T scanner using an
echo time of 133ms, a repetition time of 1000ms, with no slice overlap nor gap, pixel size
0.39mm to 1.48mm, and slice thickness 2.50mm to 4.40mm. A radiologist attended all the
acquisitions for quality control.

The reconstructed fetal brain 3D MRIs were obtained using NiftyMIC (Ebner et al.,
2020) a state-of-the-art super resolution and reconstruction algorithm. The volumes were
all reconstructed to a resolution of 0.8 mm isotropic and registered to a fetal brain at-
las (Gholipour et al., 2017). The 2D MRIs were also corrected for image intensity bias field as
implemented in NiftyMIC. Our pre-processing improves the resolution, and removes motion
between neighboring slices and motion artefacts present in the original 2D slices (Ebner
et al., 2020). It also facilitates the manual delineation of the fetal brain structures compared
to the original 2D slices. We used volumetric brain masks to mask the tissues outside the
fetal brain. Those brain masks were obtained using the automatic segmentation methods
described in (Ebner et al., 2020; Ranzini et al., 2021).

The labelling protocol used for white matter, intra-axial CSF, and cerebellum is the
same as in (Payette et al., 2021). We use the term intra-axial CSF rather than ventricular
system because in addition to the lateral ventricles, third ventricle, and forth ventricle, it
also contains the cavum septum pellucidum and the cavum vergae that are not part of
the ventricular system (Tubbs et al., 2011). The three tissue types were segmented for our
private dataset by DE, EVE, FG, LF, MA, NM, and TD under the supervision of MA a
paediatric radiologist specialized in fetal brain anatomy, who quality controlled and corrected
all manual segmentations.

Brain Tumor Dataset. We have used the BraTS 2019 dataset because it is the last edition
of the BraTS challenge for which information about the image acquisition center is available
at the time of writing. The dataset contains the same four MRI sequences (T1, ceT1, T2,
and FLAIR) for 448 cases, corresponding to patients with either a high-grade Gliomas or a
low-grade Gliomas. All the cases were manually segmented for peritumoral edema, enhancing
tumor, and non-enhancing tumor core using the same labeling protocol (Menze et al., 2014;
Bakas et al., 2018, 2017c). We split the 323 cases of the BraTS 2019 training dataset into
268 for training and 67 for validation. In addition, the BraTS 2019 validation dataset that
contains 125 cases was used for testing.

4. DOI: 10.7303/syn25887675
5. https://www.cir.meduniwien.ac.at/research/fetal/
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Ground-truth segmentation nnU-Net-ERM nnU-Net-DRO (ours)
a

b

Ground-truth segmentation nnU-Net nnU-Net-DRO (ours)
c

d

e

f

g

Figure 3: Qualitative Results for Fetal Brain 3D MRI Segmentation using DRO.
We have highlighted in white areas with severe violation of the anatomy by nnU-Net-ERM.
Most of them are avoided by our nnU-Net-DRO. nnU-Net-ERM and nnU-Net-DRO differ only
by the use of the hardness weighted sampler for the latter. a) Fetus with aqueductal stenosis
(34 weeks). b) Fetus with spina bifida aperta (27 weeks). c) Fetus with Blake’s pouch cyst
(29 weeks). d) Fetus with tuberous sclerosis complex (34 weeks). e) Fetus with spina bifida
aperta (22 weeks). f) Fetus with spina bifida aperta (31 weeks). g) Fetus with spina bifida
aperta (28 weeks). For cases a) and b), nnU-Net-ERM (Isensee et al., 2021) misses completely
the cerebellum and achieves poor segmentation for the white matter and the ventricles. For
case c), a large part of the Blake’s pouch cyst is wrongly included in the ventricular system
segmentation by nnU-Net-ERM. This is not the case for the proposed nnU-Net-DRO. For
case d), nnU-Net-ERM fails to segment the cerebellum correctly and a large part of the
cerebellum is segmented as part of the white matter. In contrast, our nnU-Net-DRO correctly
segment cerebellum and white matter for this case. For cases e) f) and g), nnU-Net-ERM
wrongly included parts of the brainstem in the cerebellum segmentation. nnU-Net-DRO
does not make this mistake. We emphasise that the segmentation of the cerebellum for spina
bifida aperta is essential for studying and evaluating the effect of surgery in-utero.
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Deep Learning Pipeline. The deep learning pipeline used was based on nnU-Net (Isensee
et al., 2021), which is a generic deep learning pipeline for medical image segmentation, that
has been shown to outperform other deep learning pipelines on 23 public datasets without the
need to manually tune the loss function or the deep neural network architecture. Specifically,
we used nnU-Net version 2 in 3D-full-resolution mode which is the recommended mode for
isotropic 3D MRI data and the code is publicly available at https://github.com/MIC-DKFZ/
nnUNet.

Like most deep learning pipelines in the literature, nnU-Net is based on ERM. For clarity,
in the following we will sometimes refer to the unmodified nnU-Net as nnU-Net-ERM.

The meta-parameters used for the deep learning pipeline used were determined auto-
matically using the heuristics developed in nnU-Net (Isensee et al., 2021). The 3D CNN
selected for the brain tumor data is based on 3D U-Net (Çiçek et al., 2016) with 5 (resp. 6)
levels for fetal brain segmentation (resp. brain tumor segmentation) and 32 features after the
first convolution that are multiplied by 2 at each level with a maximum set at 320. The 3D
CNN uses leaky ReLU activation, instance normalization (Ulyanov et al., 2016), max-pooling
downsampling operations and linear upsampling with learnable parameters. In addition,
the network is trained using the addition of the mean Dice loss and the cross entropy, and
deep supervision (Lee et al., 2015). The default optimization step is SGD with a momentum
of 0.99 and Nesterov update, a batch size of 4 (resp. 2) for fetal brain segmentation (resp.
brain tumor segmentation), and a decreasing learning rate defined for each epoch t as

ηt = 0.01×
(
1− t

tmax

)0.9

where tmax is the maximum number of epochs fixed as 1000. Note that in nnU-Net, one epoch
is defined as equal to 250 batches, irrespective of the size of the training dataset. A patch
size of 96× 112× 96 (resp. 128× 192× 128) was selected for fetal brain segmentation (resp.
brain tumor segmentation), which is not sufficient to fit the whole brain of all the cases. As a
result, a patch-based approach is used as often in medical image segmentation applications. A
large number of data augmentation methods are used: random cropping of a patch, random
zoom, gamma intensity augmentation, multiplicative brightness, random rotations, random
mirroring along all axes, contrast augmentation, additive Gaussian noise, Gaussian blurring
and simulation of low resolution. nnU-Net automatically splits the training data into 5 folds
80% training/20% validation. For the experiments on brain tumor segmentation, only the
networks corresponding to the first fold were trained. For the experiments on fetal brain
segmentation, 5 models were trained, one for each fold, and the predicted class probability
maps of the 5 models are averaged at inference to improve robustness (Isensee et al., 2021).
GPUs NVIDIA Tesla V100-SXM2 with 16GB of memory were used for the experiments.
Training each network took from 4 to 6 days.

Our only modifications of the nnU-Net pipeline is the addition of our hardness weighted
sampling when "DRO" is indicated and for some experiments we modified the optimization
update rule as indicated in Table 2. Our implementation of the nnU-Net-DRO training proce-
dure is publicly available at https://github.com/LucasFidon/HardnessWeightedSampler.
If "ERM" is indicated and nothing is indicated about the optimization update rule, it means
that nnU-Net (Isensee et al., 2021) is used without any modification.
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Table 2: Evaluation of Distribution Robustness with Respect to the Pathology
(260 3D MRIs). nnU-Net-ERM is the unmodified nnU-Net pipeline (Isensee et al., 2021)
in which Empirical Risk Minimization (ERM) is used. nnU-Net-DRO is the nnU-Net
pipeline modified to use the proposed hardness weighted sampler and in which Distributionally
Robust Optimization (DRO) is therefore used. WM: White matter, In-CSF: Intra-axial
CSF, Cer: Cerebellum. IQR: interquartile range, pX : Xth percentile of the Dice score
distribution in percentage. Best values are in bold and improvements of at least 5 points of
percentage are highlighted.

Dice Score (%)

CNS Method ROI Mean Median IQR p25 p10 p5

Controls nnU-Net-ERM WM 94.4 95.2 2.8 93.3 91.5 90.6
(107 volumes) (baseline) In-CSF 90.3 92.4 6.4 87.8 80.7 79.0

Cer 95.7 97.0 3.4 94.2 91.3 90.4

nnU-Net-DRO WM 94.4 95.3 3.0 93.2 91.1 90.1
(ours) In-CSF 90.4 92.7 6.2 87.9 81.7 79.1

Cer 95.7 97.1 3.3 94.2 91.4 90.1

Spina Bifida nnU-Net-ERM WM 89.6 92.1 4.1 89.5 80.6 73.8
(112 volumes) (baseline) In-CSF 91.4 93.9 6.4 89.6 86.9 83.7

Cer 76.8 87.8 11.1 80.4 15.8 0.0

nnU-Net-DRO WM 90.1 92.2 4.0 89.9 81.6 74.8
(ours) In-CSF 91.6 94.1 6.4 90.0 86.7 83.6

Cer 77.8 87.9 9.7 82.0 43.3 0.0

Other Abn. nnU-Net-ERM WM 90.3 92.6 4.6 90.1 88.0 71.6
(41 volumes) (baseline) In-CSF 87.4 87.9 10.4 82.7 77.7 75.9

Cer 90.4 92.8 5.4 90.7 87.5 81.4

nnU-Net-DRO WM 90.4 92.6 4.7 90.2 88.2 73.5
(ours) In-CSF 87.9 88.1 9.5 83.3 80.4 77.7

Cer 91.3 93.0 5.5 90.7 87.5 82.7

Hyper-parameters of the Hardness Weighted Sampler. For brain tumor segmenta-
tion, we tried the values {10, 100, 1000} of β with or without importance sampling. Using
β = 100 with importance sampling lead to the best mean dice score on the validation split of
the training dataset. For fetal brain segmentation, we tried only β = 100 with importance
sampling. When importance sampling is used, the clipping values wmin = 0.1 and wmax = 10
are always used. No other values of wmax and wmin have been tested.

Metrics. We evaluate the quality of the automatic segmentations using the Dice score (Dice,
1945; Fidon et al., 2017). We are particularly interested in measuring the statistical risk of
the results as a way to evaluate the robustness of the different methods.

In the BraTS challenge, this is usually measured using the interquartile range (IQR) which
is the difference between the percentiles at 75% and 25% of the the metric values (Bakas
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Table 3: Dice Score Evaluation on the BraTS 2019 Online Validation Set (125
cases). Metrics were computed using the BraTS online evaluation platform (https:
//ipp.cbica.upenn.edu/). ERM: Empirical Risk Minimization, DRO: Distributionally
Robust Optimization, SGD: plain SGD (no momentum used), Nesterov: SGD with Nesterov
momentum, IQR: Interquartile range. The best values overall are in bold and improvements
of at least 5 points of percentage when comparing ERM and DRO for the same optimizer
are highlighted.

Optim. Optim. Enhancing Tumor Whole Tumor Tumor Core

problem update Mean Median IQR Mean Median IQR Mean Median IQR

ERM SGD 71.3 86.0 20.9 90.4 92.3 6.1 80.5 88.8 17.5

DRO SGD 72.3 87.2 19.1 90.5 92.6 6.0 82.1 89.7 15.2

ERM Nesterov 73.0 87.1 15.6 90.7 92.6 5.4 83.9 90.5 14.3

DRO Nesterov 74.5 87.3 13.8 90.6 92.6 5.9 84.1 90.0 12.5

et al., 2018). We therefore reported the mean, the median and the IQR of the Dice score in
Table 3. For fetal brain segmentation, in addition to the mean, median, and IQR, we also
report the percentiles of the Dice score at 25%, 10%, and 5%. In Table 2, we report those
quantities for the Dice scores of the three tissue types white matter, intra-axial CSF, and
cerebellum.

For each method, nnU-Net is trained 5 times using different train/validation splits and
different random initializations. The 5 same splits, computed randomly, are used for the two
methods. The results for fetal brain 3D MRI segmentation in Table 2 are for the ensemble of
the 5 3D U-Nets. Ensembling is known to increase the robustness of deep learning methods
for segmentation (Isensee et al., 2021). It also makes the evaluation less sensitive to the
random initialization and to the stochastic optimization.

Results. The quantitative comparison of nnU-Net-ERM and nnU-Net-DRO on fetal brain
3D MRI segmentation for the three different central nervous system conditions control, spina
bifida, and other abnormalities can be found in Table 2.

For spina bifida and other brain abnormalities, the proposed nnU-Net-DRO achieves same
or higher mean Dice scores than nnU-Net-ERM (Isensee et al., 2021) with +0.5 percentage
points (pp) for white matter and +1pp for the cerebellum of spina bifida cases and +0.9pp for
the cerebellum for other abnormalities. In addition, nnU-Net-DRO achieves comparable (at
most 0.1pp of difference) or lower IQR than nnU-Net-ERM with −1.4pp for the cerebellum of
spina bifida cases and −0.9pp for the intra-axial CSF of cases with other abnormalities. For
controls, the mean, median, and IQR of the Dice scores of nnU-Net-DRO and nnU-Net-ERM
differ by less than 0.2pp for the three tissue types. This suggests that nnU-Net-DRO is more
robust to anatomical variabilities associated with abnormal brains, while retaining the same
segmentation performance on neurotypical cases.

In terms of median Dice score, nnU-Net-DRO and nnU-Net-ERM differ by less than
0.3pp for all tissue types and conditions. Therefore the differences in terms of mean Dice
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Figure 4: Dice scores distribution on the BraTS 2019 validation dataset for cases
from a center of TCIA (76 cases) and cases from other centers (49 cases). This
shows that the lower interquartile range of DRO for the enhancing tumor comes specifically
from a lower number of poor segmentations on cases coming from The Cancer Imaging
Archive (TCIA). This suggests that DRO can deal with some of the confounding biases
present in the training dataset, and lead to a model that is more fair.

scores mentioned above are not due to improved segmentation in the middle of the Dice
score performance distribution.

The comparison of the percentiles at 25%, 10%, and 5% of the Dice score allows us to
compare methods at the tail of the Dice scores distribution where segmentation methods
reach their worst-case performance. For spina bifida, nnU-Net-DRO achieves higher values
of percentiles than nnU-Net-ERM for the white matter (+1.0pp for p10 and +1.0pp for
p5), and for the cerebellum (+1.6pp for p25 and +27.5pp for p10). And for other brain
abnormalities, nnU-Net-DRO achieves higher values of percentiles than nnU-Net-ERM for the
white matter (+1.9pp for p5), for the intra-axial CSF (+0.6pp for p25, +2.3pp for p10 and
+1.8pp for p5), and for the cerebellum (+1.3pp for p5). All the other percentile values differ
by less than 0.5pp of Dice score between the two methods. This suggests that nnU-Net-DRO
achieves better worst case performance than nnU-Net-ERM for abnormal cases. However,
both methods have a percentile at 5% of the Dice score equal to 0 for the cerebellum of spina
bifida cases. This indicates that both methods completely miss the cerebellum for spina
bifida cases in 5% of the cases.

As can be seen in the qualitative results of Figure 3, there are cases for which nnU-Net-
ERM predicts an empty cerebellum segmentation while nnU-Net-DRO achieves satisfactory
cerebellum segmentation. There were no cases for which the converse was true. However,
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there were also spina bifida cases for which both methods failed to predict the cerebellum.
Robust segmentation of the cerebellum for spina bifida is particularly relevant for the
evaluation of fetal brain surgery for spina bifida aperta (Aertsen et al., 2019; Danzer et al.,
2020; Sacco et al., 2019). All the spina bifida 3D MRIs with missing cerebellum in the
automatic segmentations were 3D MRIs from the FeTA dataset Payette et al. (2021) and
represented brains of fetuses with spina bifida before they were operated on. The cerebellum
is more difficult to detect using MRI before surgery as compared to early or late after
surgery (Aertsen et al., 2019; Danzer et al., 2007). No 3D MRI with the combination of those
two factors were present in the training dataset (Table. 1). This might explain why DRO did
not help improving the segmentation quality for those cases. DRO aims at improving the
performance on subgroups that were underrepresented in the training dataset, not subgroups
that were not represented at all.

In Table 2, it is worth noting that overall the Dice score values decrease for the white
matter and the cerebellum between controls and spina bifida and abnormal cases. It was
expected due to the higher anatomical variability in pathological cases. However, the Dice
score values for the ventricular system tend to be higher for spina bifida cases than for
controls. This can be attributed to the large proportion of spina bifida cases with enlarged
ventricles because the Dice score values tend to be higher for larger regions of interest.

For our experiments on brain tumor segmentation, Table 3 summarizes the performance
of training nnU-Net using ERM or using DRO. Here, we experiment with two SGD-based
optimizers. For both ERM and DRO, the optimization update rule used was either plain SGD
without momentum (SGD), or SGD with a Nesterov momentum equal to 0.99 (Nesterov).
Especially, for the latter, this implies that step 12 of Algorithm 1 is modified to use SGD
with Nesterov momentum. It was also the case for our experiments on fetal brain 3D MRI
segmentation. For DRO, the results presented here are for β = 100 and using importance
sampling (step 6 of Algorithm 1).

As illustrated in Table 3, for both ERM and DRO, the use of SGD with Nesterov
momentum outperforms plain-SGD for all metrics and all regions of interest. This result was
expected for ERM, for which it is common practice in the deep learning literature to use
SGD with a momentum. Our results here suggest that the benefit of using a momentum
with SGD is retained for DRO.

For both optimizers, DRO outperforms ERM in terms of IQR for the enhancing tumor
and the tumor core by approximately 2pp of Dice score, and in terms of mean Dice score for
the enhancing tumor by 1pp for the plain-SGD and 1.5pp for SGD with Nesterov momentum.
For plain-SGD, DRO also outpermforms ERM in terms of mean Dice score for the tumor
core by 1.6pp. The IQR is the global statistic used in the BraTS challenge to measure the
level of robustness of a method (Bakas et al., 2018). In addition, Figure 4 shows that the
lower IQR of DRO for the enhancing tumor comes specifically from a lower number of poor
segmentations on cases coming from The Cancer Imaging Archive (TCIA). This suggests
that DRO can deal with some of the confounding biases present in the training dataset, and
lead to a model that is more fair with respect to the acquisition center of the MRI.

Since the same improvements are observed independently of the optimization update rule
used. This suggests that in practice Algorithm 1 still converges when a momentum is used,
even if Theorem 6 was only demonstrated to hold for plain-SGD.
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Table 4: Estimated Computational Time and Memory Overhead of the hardness
weighted sampler in Algorithm 1. The times (in seconds) are estimated using a batch size
of 2 and β = 100 and by taking the average sampling time over 10, 000 sampling operations
for each number of samples. It is worth noting that the sampling operations are computed on
the CPUs as in most deep learning pipeline. The time and memory overhead of the proposed
hardness weighted sampler is negligible for training datasets with up to 1 million samples.

# Samples 102 103 104 105 106 107

Time (in sec) 1.3×10−4 1.5×10−4 2.6×10−4 2.4×10−3 2.1×10−2 1.8×10−1

Memory (in MB) 7.6×10−4 7.6×10−3 7.6×10−2 7.6×10−1 7.6 76.3

The value β = 100 and the use of importance sampling was selected based on the mean
Dice score on the validation split of the training dataset. Results for β ∈ {10, 100, 1000} with
Nesterov momentum and with or without importance sampling can be found in Appendix B
Table 5. The tendency described previously still holds true for the enhancing tumor for β
equal to 10 or 100 with and without importance sampling. The mean Dice score is improved
by 0.4pp to 2.3pp and the IQR is reduced by 1.3pp to 2.3pp for the four DRO models as
compared to the ERM model. For the tumor core with β = 100 mean and IQR are improved
over ERM with and without importance sampling. However, for β = 10 with importance
sampling there was a loss of performance as compared to ERM for the whole tumor. This
problem was not observed with β = 10 without importance sampling. For the other models
with β equal to 10 or 100 similar Dice score performance similar to the one ERM was observed
for the whole tumor. This suggests that overall the use of ERM or DRO does not affect the
segmentation performance of the whole tumor. One possible explanation of this is that Dice
scores for the whole tumor are already high for almost all cases when ERM is used with
a low IQR. In addition, DRO and the hardness weighted sampler are sensitive to the loss
function, here the mean-class Dice loss plus cross entropy loss. In the case of brain tumor
segmentation, we hypothesise that the loss function is more sensitive to the segmentation
performance for the tumor core and the enhancing tumor than for the whole tumor.

When β becomes too large (β = 1000) a decrease of the mean and median Dice score for all
regions is observed as compared to ERM. In this case, DRO tends towards the maximization
of the worst-case example only which appears to be unstable using our Algorithm 1. For
all values of β the use of importance sampling, as described in steps 6-8 of Algorithm 1,
improves the IQR of the Dice scores for the enhancing tumor and the tumor core. We
therefore recommend to use Algorithm 1 with importance sampling.

4.3 Computational Time and Memory Overhead of Algorithm 1

The main additional computational cost in Algorithm 1 is due to the hardness weighted
sampling in steps 4 and 5 that is dependent on the number n of training examples. In Table 4,
we have computed the computational time and memory overhead of the hardness weighted
sampler for different sizes of the training dataset. We have computed that additional time
required is less than 0.5 second and the additional memory less than 100 MB for up to
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n = 107 using a batch size of 2 and the function random.choice of Numpy version 1.21.1.
The times were estimated using 12 Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. The
additional time and memory that occurs due to the proposed hardness weighted sampling
is therefore negligible for all the datasets used in practice in medical image segmentation.
For our brain tumor segmentation training set of n=268 volumes and a batch size of 2, the
additional memory usage of Algorithm 1 is only 2144 bytes of memory (one float array of
size n) and the additional computational time is approximately 10−4 seconds per iteration
using the Python library numpy, i.e. approximately 0.005% of the total duration of an
iteration. The size of the training dataset for fetal brain 3D MRI segmentation being lower,
the additional memory usage and the additional computational time are even lower than for
brain tumor segmentation. We have made available a python script in our GitHub repository
that allows to easily compute the additional time and memory occurring because of the
hardness weighted sampler for any number of samples and batch size.
5. Discussion and Conclusion

In this paper, we have shown that efficient training of deep neural networks with Distribu-
tionally Robust Optimization (DRO) with a ϕ-divergence is possible.

The proposed hardness weighted sampler for training a deep neural network with Stochastic
Gradient Descent (SGD) for DRO is as straightforward to implement, and as computationally
efficient as SGD for Empirical Risk Minimization (ERM). It can be used for deep neural
networks with any activation function (including ReLU), and with any per-example loss
function. We have shown that the proposed approach can formally be described as a principled
Hard Example Mining strategy (Theorem 7) and is related to minimizing the percentile of the
per-example loss distribution (13). In addition, we prove the convergence of our method for
over-parameterized deep neural networks (Theorem 6). Thereby, extending the convergence
theory of deep learning of Allen-Zhu et al. (2019a). This is, to the best of our knowledge,
the first convergence result for training a deep neural network based on DRO.

In practice, we have shown that our hardness weighted sampling method can be easily
integrated in a state-of-the-art deep learning framework for medical image segmentation.
Interestingly, the proposed algorithm remains stable when SGD with momentum is used.
The hardness weighted sampling has one hyperparameter β > 0. Our experiments suggest
that similar values of β lead to improve robustness in different applications. We hypothesize
that good values of β are of the order of the inverse of the standard deviation of the vector
of per-volume (stale) losses during the training epochs that precede convergence.

The high anatomical variability of the developing fetal brain across gestational ages
and pathologies hampers the robustness of deep neural networks trained by maximizing the
average per-volume performance. Specifically, it limits the generalization of deep neural
networks to abnormal cases for which few cases are available during training. In this paper,
we propose to mitigate this problem by training deep neural networks using Distributionally
Robust Optimization (DRO) with the proposed hardness weighted sampling. We have
validated the proposed training method on a multi-centric dataset of 437 fetal brain T2w 3D
MRIs with various diagnostics. nnU-Net trained with DRO achieved improved segmentation
results for pathological cases as compared to the unmodified nnU-Net, while achieving similar
segmentation performance for the neurotypical cases. Those results suggest that nnU-Net
trained with DRO is more robust to anatomical variabilities than the original nnU-Net
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that is trained with ERM. In addition, we have performed experiments on the open-source
multiclass brain tumor segmentation dataset BraTS (Bakas et al., 2018). Our results on
BraTS suggests that DRO can help improving the robustness of deep neural network for
segmentation to variations in the acquisition protocol of the images.

However, we have also found in our experiments that all deep learning models, either
trained with ERM or DRO, failed in some cases. For example, the models evaluated all
missed the cerebellum in at least 5% of the spina bifida aperta cases. As a result, while our
results do suggest that DRO with our method can improve the robustness of deep neural
networks for segmentation, they also show that DRO alone with our method does not provide
a guarantee of robustness. DRO with a ϕ-divergence reweights the examples in the training
dataset but cannot account for subsets of the true distribution that are not represented at
all in the training dataset. We investigate this problem in our following work (Fidon et al.,
2022).

We have shown that the additional computational cost of the proposed hardness weighted
sampling is small enough to be negligible in practice and requires less than one second for
up to n = 108 examples. The proposed Algorithm 1 is therefore as computationally efficient
as state-of-the-art deep learning pipeline for medical image segmentation. However, when
data augmentation is used, an infinite number of training examples is virtually available. We
mitigate this problem using importance sampling and only one probability per non-augmented
example. We found that importance sampling led to improved segmentation results.

We have also illustrated in our experiments that reporting the mean and standard
deviation of the Dice score is not enough to evaluate the robustness of deep neural networks
for medical image segmentation. A stratification of the evaluation is required to assess for
which subgroups of the population and for which image protocols a deep learning model for
segmentation can be safely used. In addition, not all improvements of the mean and standard
deviation of the Dice score are equally relevant as they can result from improvements of either
the best or the worst segmentation cases. Regarding the robustness of automatic segmentation
methods across various conditions, one is interested in improvements of segmentation metrics
in the tail of the distribution that corresponds to the worst segmentation cases. To this end,
one can report the interquartile range (IQR) and measures of risk such as percentiles.
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Appendix A. Summary of the Notations used in the Proofs

For the ease of reading the proofs we first summarize our notations.

A.1 Probability Theory Notations

• ∆n = {(pi)ni=1 ∈ [0, 1]n,
∑

i pi = 1}

• Let q = (qi) ∈ ∆n, and f a function, we denote Eq[f(x)] :=
∑n

i=1 qif(xi).

• Let q ∈ ∆n, and f a function, we denote Vq[f(x)] :=
∑n

i=1 qi ∥f(xi)− Eq[f(x)]∥2.

• ptrain is the uniform training data distribution, i.e. ptrain =
(
1
n

)n
i=1
∈ ∆n.

A.2 Machine Learning Notations

• n is the number of training examples.

• d is the dimension of the output.

• d is the dimension of the input.

• m is the number of nodes in each layer.

• Training data: {(xi,yi)}ni=1, where for all i ∈ {1, . . . , n}, xi ∈ Rd and yi ∈ Rd.

• h : x 7→ y is the predictor (deep neural network).

• θ is the set of parameters of the predictor.

• For all i, hi : θ 7→ h(xi;θ) is the output of the network for example i as a function of
θ.

• L is the per-example loss function.

• Li : v 7→ L(v,yi) is the per-example loss function for example i.

• We denote by L the vector-valued function L : (vi)
n
i=1 7→ (Li(vi))ni=1.

• b ∈ {1, . . . , n} is the batch size.

• η > 0 is the learning rate.

• ERM is short for Empirical Risk Minimization.

A.3 Distributionally Robust Optimisation Notations

• Forall θ, R(L(h(θ))) = maxq∈∆n Eq [L (h(x;θ),y)]− 1
βDϕ(q∥ptrain) is the Distribu-

tionally Robust Loss evaluated at θ, where β > 0 is the parameter that adjusts
the distributionally robustness. For short, we also used the terms distributionally
robust loss or just robust loss for R(L(h(θ))).

• DRO is short for Distributionally Robust Optimisation.
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A.4 Miscellaneous

By abuse of notation, and similarly to (Allen-Zhu et al., 2019a), we use the Bachmann-Landau
notations to hide constants that do not depend on our main hyper-parameters. Let f and g
be two scalar functions, we note:


f ≤ O(g) ⇐⇒ ∃c > 0 s.t. f ≤ cg
f ≥ Ω(g) ⇐⇒ ∃c > 0 s.t. f ≥ cg
f = Θ(g) ⇐⇒ ∃c1 > 0 and ∃c2 > c1 s.t. c1g ≤ f ≤ c2g

Appendix B. Evaluation of the Influence of β on the Segmentation
Performance for BraTS

Table 5: Detailed evaluation on the BraTS 2019 online validation set (125 cases).
All the models in this table were trained using the default SGD with Nesterov momentum
of nnU-Net (Isensee et al., 2021). Dice scores were computed using the BraTS online plateform
for evaluation https://ipp.cbica.upenn.edu/. ERM: Empirical Risk Minimization, DRO:
Distributionally Robust Optimization, IS: Importance Sampling is used, IQR: Interquartile
range. The best values are in bold.

Optimization Enhancing Tumor Whole Tumor Tumor Core

problem Mean Median IQR Mean Median IQR Mean Median IQR

ERM 73.0 87.1 15.6 90.7 92.6 5.4 83.9 90.5 14.3

DRO β = 10 74.6 86.8 14.1 90.8 93.0 5.9 83.4 90.7 14.5

DRO β = 10 IS 75.3 86.0 13.3 90.0 91.9 7.0 82.8 89.1 14.3

DRO β = 100 73.4 86.7 14.3 90.6 92.6 6.2 84.5 90.9 13.7

DRO β = 100 IS 74.5 87.3 13.8 90.6 92.6 5.9 84.1 90.0 12.5

DRO β = 1000 74.5 84.2 33.0 89.5 91.8 5.9 71.1 87.2 41.1

DRO β = 1000 IS 72.2 85.7 15.0 90.3 92.2 6.3 81.1 89.4 15.1

Appendix C. Importance Sampling Approximation in Algorithm 1

In this section, we give additional details about the approximation made in the computation
of the importance weights (step 9 of Algorithm 1).

Let θ be the parameters of the neural network h, L = (Li)
n
i=1 be the stale per-example

loss vector, and let i be an index in the current batch I.

We start from the definition of the importance weight wi for example i and use the
formula for the hardness weighted sampling probabilities of Example 1.
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wi =
pnewi

poldi

=
exp (βLnew

i )

exp (βLnew
i ) +

∑
j ̸=i exp

(
βLold

j

) × ∑n
j=1 exp

(
βLold

j

)
exp

(
βLold

i

)
≈ exp

(
β(Lnew

i − Lold
i )
)

(19)

where we have assumed that the two sums of exponentials are approximately equal.

Appendix D. Proof of Example 1: Formula of the Sampling Probabilities
for the KL Divergence

We give here a simple proof of the formula of the sampling probabilities for the KL divergence
as ϕ-divergence (i.e. ϕ : z 7→ z log(z)− z + 1)

∀θ, p̄(L(h(θ))) = softmax (βL(h(θ)))

Proof: For any θ, the distributionally robust loss for the KL divergence at θ is given by

R ◦L ◦ h(θ) = max
q∈∆n

(
n∑

i=1

qiLi ◦ hi(θ)−
1

β

n∑
i=1

qi log (nqi)

)

= max
q∈∆n

n∑
i=1

(
qiLi ◦ hi(θ)−

1

β
qi log (nqi)

)

where we have used that 1
ptrain,i

= n inside the log function. To simplify the notations, let us
denote v = (vi)

n
i=1 := (Li ◦ hi(θ))ni=1, and p̄ = (p̄i)

n
i=1 := p̄(L(h(θ))). Thus p̄(L(h(θ))) is,

by definition, solution of the optimization problem

maxq∈∆n

n∑
i=1

(
qivi −

1

β
qi log (nqi)

)
(20)

First, let us remark that the function q 7→
∑n

i=1 qi log (nqi) is strictly convex on the non
empty closed convex set ∆n as a sum of strictly convex functions. This implies that the
optimization (20) has a unique solution and as a result p̄(L(h(θ))) is well defined.

We now reformulate the optimization problem (20) as a convex smooth constrained
optimization problem by writing the condition q ∈ ∆n as constraints.

maxq∈Rn
+

n∑
i=1

(
qivi −

1

β
qi log (nqi)

)

s.t.
n∑

i=1

qi = 1

(21)
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There exists a Lagrange multiplier λ ∈ R, such that the solution p̄ of (21) is characterized
by 

∀i ∈ {1, . . . , n}, vi −
1

β
(log (np̄i) + 1) + λ = 0

n∑
i=1

p̄i = 1
(22)

Which we can rewrite as
∀i ∈ {1, . . . , n}, p̄i =

1

n
exp (β (vi + λ)− 1)

1

n

n∑
i=1

exp (β (vi + λ)− 1) = 1
(23)

The last equality gives

exp (βλ− 1) =
n∑n

i=1 exp (βvi)

And by replacing in the formula of the p̄i

∀i ∈ {1, . . . , n}, p̄i =
1

n
exp (βvi) exp (βλ− 1)

=
exp (βvi)∑n
j=1 exp (βvj)

Which corresponds to p̄ = softmax (βv) ■

Appendix E. Proof of Lemma 4: Regularity Properties of R

For the ease of reading, let us first recall that given a ϕ-divergence Dϕ that satisfies Definition 2,
we have defined in (3)

R : Rn → R

v 7→ max
q∈∆n

∑
i

qivi −
1

β
Dϕ(q∥ptrain)

(24)

And in (4)
G : Rn → R

p 7→ 1

β
Dϕ(p∥ptrain) + δ∆n(p)

(25)

where δ∆n is the characteristic function of the to the n-simplex ∆n which is a closed convex
set, i.e.

∀p ∈ Rn, δ∆n(p) =

{
0 if p ∈ ∆n

+∞ otherwise (26)

We now prove Lemma 4 on the regularity of R.
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Lemma 8 (Regularity of R – Restated from Lemma 4) Let ϕ that satisfies Defini-
tion 2, G and R satisfy

G is
(
nρ

β

)
-strongly convex (27)

R(L(h(θ))) = max
q∈Rn

(⟨L(h(θ)), q⟩ −G(q)) = G∗ (L(h(θ))) (28)

R is
(

β

nρ

)
-gradient Lipschitz continuous. (29)

Proof: ϕ is ρ-strongly convex on [0, n] so

∀x, y ∈ [0, n]2,∀λ ∈ [0, 1], ϕ (λx+ (1− λ)y) ≤ λϕ(x)+(1−λ)ϕ(y)− ρλ(1− λ)

2
|y−x|2 (30)

Let p = (pi)
n
i=1, q = (qi)

n
i=1 ∈ ∆n, and λ ∈ [0, 1], using (30) and the convexity of δ∆n , we

obtain:

G (λp+ (1− λ)q) =
1

βn

n∑
i=1

ϕ (nλpi + n(1− λ)qi) + δ∆n (λp+ (1− λ)q)

≤ λG(p) + (1− λ)G(q)− 1

βn

n∑
i=1

ρλ(1− λ)

2
|npi − nqi|2

≤ λG(p) + (1− λ)G(q)− nρ

β

λ(1− λ)

2
∥p− q∥2

(31)

This proves that G is nρ
β -strongly convex.

R = G∗ is convex, and since G is closed and convex, R∗ = (G∗)∗ = G (Hiriart-Urruty
and Lemaréchal, 2013). We obtain (28) using Definition 3.

We now show that R is Frechet differentiable on Rn. Let v ∈ Rn.
G is strongly-convex, so in particular G is strictly convex. This implies that the following

optimization problem has a unique solution that we denote p̂(v).

p̂(v) := argmax
q∈Rn

(⟨v, q⟩ −G(q)) (32)

In addition, using the notion of subderivative of convex functions (Hiriart-Urruty and
Lemaréchal, 2013, Definition 4.1.5 p.39), we have

p̂ ∈ ∆n solution of (32) ⇐⇒ 0 ∈ v − ∂G(p̂)

⇐⇒ v ∈ ∂G(p̂)

⇐⇒ p̂ ∈ ∂G∗(v)

⇐⇒ p̂ ∈ ∂R(v)

where we have used (Hiriart-Urruty and Lemaréchal, 2013, Proposition 6.1.2 p.39) for the
third equivalence, and (28) for the last equivalence.
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As a result, ∂R(v) = {p̂(v)}. This implies that R admit a gradient at v, and

∇vR(v) = p̂(v) (33)

Since this holds for any v ∈ Rn, we deduce that R is Fréchet differentiable on Rn. ■
We are now ready to show that R is β

nρ -gradient Lipchitz continuous by using the following
lemma (Hiriart-Urruty and Lemaréchal, 2013, Theorem 6.1.2 p.280).

Lemma 9 A necessary and sufficient condition for a convex function f : Rn → R to be
c-strongly convex on a convex set C is that for all x1, x2 ∈ C

⟨s2 − s1, x2 − x1⟩ ≥ c ∥x2 − x1∥2 for all si ∈ ∂f(xi), i = 1, 2.

Using this lemma for f = G, c = nρ
β , and C = ∆n, we obtain:

For all p1,p2 ∈ ∆n, for all v1 ∈ ∂G(p1), v2 ∈ ∂G(p2),

⟨v2 − v1,p2 − p1⟩ ≥
nρ

β
∥p2 − p1∥2

In addition, for i ∈ {1, 2}, vi ∈ ∂G(pi)⇐⇒ pi ∈ ∂R(vi) = {∇vR(vi)}.
And using Cauchy Schwarz inequality

∥v2 − v1∥ ∥p2 − p1∥ ≥ ⟨v2 − v1,p2 − p1⟩

We conclude that
nρ

β
∥∇vR(v2)−∇vR(v1)∥ ≤ ∥v2 − v1∥

Which implies that R is β
nρ -gradient Lipchitz continuous. ■

Appendix F. Proof of Lemma 5: Formula of the Distributionally Robust
Loss Gradient

We prove Lemma 5 that we restate here for the ease of reading.

Lemma 10 (Stochastic Gradient of the DRO Loss – Restated from Lemma 5) For
all θ, we have

p̄(L(h(θ))) = ∇vR(L(h(θ))) (34)

∇θ(R ◦L ◦ h)(θ) = Ep̄(L(h(θ))) [∇θ L (h(x;θ), y)] (35)

where ∇vR is the gradient of R with respect to its input.

Proof: For a given θ, equality (34) is a special case of (33) for v = L(h(θ)).
Then using the chain rule and (34),

∇θ(R ◦L ◦ h)(θ) =
n∑

i=1

∂R

∂vi
(L ◦ h(θ)))∇θ(Li ◦ hi)(θ)

=

n∑
i=1

p̄i(L(h(θ)))∇θ(Li ◦ hi)(θ)

= Ep̄(L(h(θ))) [∇θ L (h(x;θ), y)]

Which concludes the proof. ■
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Appendix G. Proof of Theorem 7: Distributionally Robust Optimization
as Principled Hard Example Mining

In this section, we demonstrate that the proposed hardness weighted sampling can be
interpreted as a principled hard example mining method.

Let Dϕ an ϕ-divergence satisfying Definition 2, and v = (vi)
n
i=1 ∈ Rn. v will play the

role of a generic loss vector.
ϕ is strongly convex, and ∆n is closed and convex, so the following optimization problem

has one and only one solution

max
p=(pi)

n
i=1∈∆n

⟨v,p⟩ − 1

βn

n∑
i=1

ϕ(npi) (36)

Making the constraints associated with p ∈ ∆n explicit, this can be rewritten as

max
p=(pi)

n
i=1∈Rn

⟨v,p⟩ − 1

βn

n∑
i=1

ϕ(npi)

s.t. ∀i ∈ {1, . . . , n}, pi ≥ 0

s.t.
n∑

i=1

pi = 1

(37)

There exists KKT multipliers λ ∈ R and ∀i, µi ≥ 0 such that the solution p̄ = (p̄i)
n
i=1 satisfies

∀i ∈ {1, . . . , n}, vi −
1

β
ϕ′(np̄i) + λ− µi = 0

∀i ∈ {1, . . . , n}, µipi = 0

∀i ∈ {1, . . . , n}, pi ≥ 0
n∑

i=1

p̄i = 1

(38)

Since ϕ is continuously differentiable and strongly convex, we have (ϕ′)−1 = (ϕ∗)′, where ϕ∗

is the Fenchel conjugate of ϕ (see Hiriart-Urruty and Lemaréchal, 2013, Proposition 6.1.2).
As a result, (38) can be rewritten as

∀i ∈ {1, . . . , n}, p̄i =
1

n
(ϕ∗)′ (β(vi + λ− µi))

∀i ∈ {1, . . . , n}, µipi = 0

∀i ∈ {1, . . . , n}, pi ≥ 0

1

n

n∑
i=1

(ϕ∗)′ (β(vi + λ− µi)) = 1

(39)

We now show that the KKT multipliers are uniquely defined.
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The µi’s are uniquely defined by v and λ:
Since ∀i ∈ {1, . . . , n}, µipi = 0, pi ≥ 0 and µi ≥ 0, for all ∀i ∈ {1, . . . , n}, either pi = 0 or
µi = 0. In the case pi = 0 and using (39) it comes (ϕ∗)′ (β(vi + λ− µi)) = 0.

According to Definition 2, ϕ is strongly convex and continuously differentiable, so ϕ′ and
(ϕ∗)′ = (ϕ′)−1 are continuous and strictly increasing functions. As a result, it exists a unique
µi (dependent to v and λ) such that:

(ϕ∗)′ (β(vi + λ− µi)) = 0

And (39) can be rewritten as
∀i ∈ {1, . . . , n}, p̄i = ReLU

(
1

n
(ϕ∗)′ (β(vi + λ))

)
=

1

n
ReLU

(
(ϕ∗)′ (β(vi + λ))

)
1

n

n∑
i=1

ReLU
(
(ϕ∗)′ (β(vi + λ))

)
= 1

(40)

The KKT multiplier λ is uniquely defined by v and a continuous function of v:
Let λ ∈ R that satisfies (40). We have 1

n

∑n
i=1ReLU

(
(ϕ∗)′ (β(vi + λ))

)
= 1. So there exists

at least one index i0 such that

ReLU
(
(ϕ∗)′ (β(vi0 + λ))

)
= (ϕ∗)′ (β(vi0 + λ)) ≥ 1

Since (ϕ∗)−1 is continuous and striclty increasing, λ′ 7→ ReLU
(
(ϕ∗)′ (β(vi0 + λ′))

)
is con-

tinuous and strictly increasing on a neighborhood of λ. In addition ReLU is continuous
and increasing, so for all i ∈ {1, . . . , n}, λ′ 7→ ReLU

(
(ϕ∗)′ (β(vi + λ′))

)
is a continuous and

increasing function.
As a result, λ′ 7→ 1

n

∑n
i=1ReLU

(
(ϕ∗)′ (β(vi + λ′))

)
is a continuous function that is

increasing on R, and strictly increasing on a neighborhood of λ. This implies that λ is
uniquely defined by v, and that v 7→ λ(v) is continuous.

G.1 Link between Hard Weighted Sampling and Hard Example Mining

For any pseudo loss vector v = (vi)
n
i=1 ∈ Rn, there exists a unique KKT multiplier λ and a

unique p̄ that satisfies (40), so we can define the mapping:

p̄ : Rn → ∆n

v 7→ p̄(v;λ(v))
(41)

where for all v, λ(v) is the unique λ ∈ R satisfying (40).
We will now demonstrate that each p̄i0(v) for i0 ∈ {1, . . . , n} is an increasing function of

vi and a decreasing function of the vi for i ̸= i0. Without loss of generality we assume i0 = 1.
Let v = (vi)

n
i=1 ∈ Rn, and ϵ > 0. Let us define v′ = (v′i)

n
i=1 ∈ Rn, such that v′1 = v1 + ϵ

and ∀i ∈ {2, . . . , n}, v′i = vi. Similarly as in the proof of the uniqueness of λ above, we can
show that there exists η > 0 such that the function

F : λ′ 7→ 1

n

n∑
i=1

ReLU
(
(ϕ∗)′

(
β(vi + λ′)

))
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is continuous and strictly increasing on [λ(v)− η, λ(v) + η], and F (λ(v)) = 1.
v 7→ λ(v) is continuous, so for ϵ small enough λ(v′) ∈ [λ(v)− η, λ(v) + η].
Let us now prove by contradiction that λ(v′) ≤ λ(v). Therefore, let us assume that

λ(v′) > λ(v). Then, as ReLU ◦ (ϕ∗)′ is an increasing function and F is strictly increasing on
[λ(v)− η, λ(v) + η], and ϵ > 0 we obtain

1 =
1

n

n∑
i=1

ReLU
(
(ϕ∗)′

(
β(v′i + λ(v′))

))
≥ 1

n

n∑
i=1

ReLU
(
(ϕ∗)′

(
β(vi + λ(v′))

))
≥ F (λ(v′))

> F (λ(v))

> 1

which is a contradiction. As a result

λ(v′) ≤ λ(v) (42)

Using equations (40) and (42), and the fact that ReLU ◦ (ϕ∗)′ is an increasing function,
we obtain for all i ∈ {2, . . . , n}

p̄i(v
′) =

1

n
ReLU

(
(ϕ∗)′

(
β(v′i + λ(v′))

))
=

1

n
ReLU

(
(ϕ∗)′

(
β(vi + λ(v′))

))
≤ 1

n
ReLU

(
(ϕ∗)′ (β(vi + λ(v)))

)
≤ p̄i(v)

(43)

In addition
n∑

i=1

p̄i(v
′) = 1 =

n∑
i=1

p̄i(v)

So necessarily
p̄i0(v

′) ≥ p̄i0(v) (44)

This holds for any i0 and any v, which concludes the proof. ■

Appendix H. Proof of Equivalence between (17) and (18): Link between
DRO and Percentile Loss

In the DRO optimization problem of equation (18), the optimal q for any θ has the closed-form
formula as shown in Appendix D

∀θ, q∗ (θ) = softmax ((β L (h(xi;θ),yi))
n
i=1)
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By injecting this in equation (18), we obtain

min
θ

max
q∈∆n

(
n∑

i=1

qi L (h(xi;θ),yi)−
1

β
DKL

(
q

∥∥∥∥ 1

n
1

))

= min
θ

(
n∑

i=1

q∗i (θ)L (h(xi;θ),yi)−
1

β

n∑
i=1

q∗i (θ) log

(
exp (β L (h(xi;θ),yi))

1
n

∑n
j=1 exp (β L (h(xj ;θ),yj))

))

= min
θ

(
n∑

i=1

q∗i (θ)L (h(xi;θ),yi)−
n∑

i=1

q∗i (θ)
1

β
log (exp (β L (h(xi;θ),yi)))

+
1

β

(
n∑

i=1

q∗i (θ)

)
× log

 1

n

n∑
j=1

exp (β L (h(xj ;θ),yj))



Since the first two terms cancel each other and
∑n

i=1 q
∗
i (θ) = 1, we obtain

min
θ

max
q∈∆n

(
n∑

i=1

qi L (h(xi;θ),yi)−
1

β
DKL

(
q

∥∥∥∥ 1

n
1

))

= min
θ

1

β
log

 n∑
j=1

exp (β L (h(xj ;θ),yj))

− 1

β
log (n)

= min
θ

1

β
log

 n∑
j=1

exp (β L (h(xj ;θ),yj))


which is equivalent to the optimization problem (17) because the term 1

β log (n) above and
the term 1

β log (αn) in (17) are independent of θ ■

Appendix I. Proof of Theorem 6: convergence of SGD with Hardness
Weighted Sampling for Over-parameterized Deep Neural Networks with
ReLU

In this section, we provide the proof of Theorem 6. This generalizes the convergence of SGD
for empirical risk minimization in (Allen-Zhu et al., 2019a, Theorem 2) to the convergence of
SGD and our proposed hardness weighted sampler for distributionally robust optimization.

We start by describing in details the assumptions made for our convergence result in
Section I.1.

In Section I.2, we restate Theorem 6 using the assumptions and notations previously
introduced in Section A.

In Section I.3, we give the proof of the convergence theorem. We focus on providing
theoretical tools that could be used to generalize any convergence result for ERM using SGD
to DRO using SGD with hardness weighted sampling as described in Algorithm 1.
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I.1 Assumptions

Our analysis is based on the results developed in (Allen-Zhu et al., 2019a) which is a
simplified version of (Allen-Zhu et al., 2019b). Improving on those theoretical results would
automatically improve our results as well.

In the following we state our assumptions on the neural network h, and the per-example
loss function L.

Assumption I.1 (Deep Neural Network) In this section, we use the following notations
and assumptions similar to (Allen-Zhu et al., 2019a):

• h is a fully connected neural network with L+ 2 layers, ReLU as activation functions,
and m nodes in each hidden layer

• For all i ∈ {1, . . . , n}, we denote hi : θ 7→ hi(xi;θ) the d-dimensional output scores of
h applied to example xi of dimension d.

• For all i ∈ {1, . . . , n}, we denote Li : h 7→ L (h, yi) where yi is the ground truth
associated to example i.

• θ = (θl)
L+1
l=0 is the set of parameters of the neural network h, where θl is the set of

weights for layer l with θ0 ∈ Rd×m, θL+1 ∈ Rm×d, and θl ∈ Rm×m for any other l.

• (Data separation) It exists δ > 0 such that for all i, j ∈ {1, . . . , n}, if i ̸= j, ∥xi − xj∥ ≥
δ.

• We assume m ≥ Ω(d × poly(n,L, δ−1)) for some sufficiently large polynomial poly,
and δ ≥ O

(
1
L

)
. We refer the reader to (Allen-Zhu et al., 2019a) for details about the

polynomial poly.

• The parameters θ = (θl)
L+1
l=0 are initialized at random such that:

– [θ0]i,j ∼ N
(
0, 2

m

)
for every (i, j) ∈ {1, . . . ,m} × {1, . . . , d}

– [θl]i,j ∼ N
(
0, 2

m

)
for every (i, j) ∈ {1, . . . ,m}2 and l ∈ {1, . . . , L}

– [θL+1]i,j ∼ N
(
0, 1d
)

for every (i, j) ∈ {1, . . . , d} × {1, . . . ,m}

Assumption I.2 (Regularity of L) There exists C(∇L) > 0 and C(L) > 0 such that for
all i, Li is a C(∇L)-gradient Lipschitz continuous, C(L)-Lipschitz continuous, and bounded
(potentially non-convex) function. When the optimization is performed on a closed convex
set, the existence of C(∇L) implies that there exists a constant A(∇L) > 0 that bounds the
gradients of Li for all i.

I.2 Convergence theorem (restated)

In this section, we restate the convergence Theorem 6 for SGD with hardness weighted
sampling and stale per-example loss vector.

As an intermediate step, we will first generalize the convergence of SGD in (Allen-Zhu
et al., 2019a, Theorem 2) to the minimization of the distributionally robust loss using SGD
and an exact hardness weighted sampling (10), i.e. with an exact per-example loss vector.
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Theorem 11 (Convergence with exact per-example loss vector) Let batch size 1 ≤
b ≤ n, and ϵ > 0. Under assumption I.1 and assumption I.2, suppose there exists constants
C1, C2, C3 > 0 such that the number of hidden units satisfies m ≥ C1(dϵ

−1×poly(n,L, δ−1)),
δ ≥

(
C2
L

)
, and the learning rate be ηexact = C3

(
min

(
1, αn2ρ

βC(L)2+2nρC(∇L)

)
× bδd

poly(n,L)m log2(m)

)
.

There exists constants C4, C5 > 0 such that with probability at least 1− exp
(
−C4(log

2(m))
)

over the randomness of the initialization and the mini-batches, SGD with hardness weighted
sampling and exact per-example loss vector guarantees ∥∇θ(R ◦L ◦ h)(θ)∥ ≤ ϵ after T =

C5

(
Ln3

ηexactδϵ2

)
iterations.

The proof can be found in Appendix I.3.4.
α = minθ mini p̄i(L(θ)) is a lower bound on the sampling probabilities. For the Kullback-

Leibler ϕ-divergence, and for any ϕ-divergence satisfying Definition 2 with a robustness
parameter β small enough, we have α > 0. We refer the reader to (Allen-Zhu et al., 2019a,
Theorem 2) for the values of the constants C1, C2, C3, C4, C5 and the definitions of the
polynomials.

Compared to (Allen-Zhu et al., 2019a, Theorem 2) only the learning rate differs. The
min(1, . ) operation in the formula for ηexact allows us to guarantee that ηexact ≤ η′ where η′

is the learning rate of (Allen-Zhu et al., 2019a, Theorem 2).
It is worth noting that for the KL ϕ-divergence, ρ = 1

n . In addition, in the limit β → 0,
which corresponds to ERM, we have α→ 1

n . As a result, we recover exactly Theorem 2 of
(Allen-Zhu et al., 2019a) as extended in their Appendix A for any smooth loss function L
that satisfies assumption I.2 with C(∇L) = 1.

We now restate the convergence of SGD with hardness weighted sampling and a stale
per-example loss vector as in Algorithm 1.

Theorem 12 (Convergence with a stale per-example loss vector) Let batch size 1 ≤
b ≤ n, and ϵ > 0. Under the conditions of Theorem 11, the same notations, and with the

learning rate ηstale = C6min

(
1,

αρd3/2δb log( 1
1−α)

βC(L)A(∇L)Lm3/2n3/2 log2(m)

)
× ηexact for a constant C6 > 0.

With probability at least 1 − exp
(
−C4(log

2(m))
)

over the randomness of the initialization
and the mini-batches, SGD with hardness weighted sampling and stale per-example loss vector
guarantees ∥∇θ(R ◦L ◦ h)(θ)∥ ≤ ϵ after T = C5

(
Ln3

ηstaleδϵ2

)
iterations.

The proof can be found in Appendix I.4.
C(L) > 0 is a constant such that L is C(L)-Lipschitz continuous, and A(∇L) > 0 is

a constant that bounds the gradient of L with respect to its input. C(L) and A(∇L) are
guaranteed to exist under assumptions I.1.

Compared to Theorem 11 only the learning rate differs. Similarly to Theorem 11, when
β tends to zero we recover Theorem 2 of (Allen-Zhu et al., 2019a).

It is worth noting that when β increases,
αρd3/2δb log( 1

1−α)
βC(L)A(∇L)Lm3/2n3/2 log2(m)

decreases. This
implies that ηstale decreases faster than ηexact when β increases. This was to be expected
since the error that is made by using the stale per-example loss vector instead of the exact
loss increases when β increases.
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I.3 Proofs of convergence

In this section, we prove the results of Therem 11 and 12.

For the ease of reading the proof, we remind here the chain rules for the distributionally
robust loss that we are going to use intensively in the following proofs.

Chain rule for the derivative of R ◦L with respect to the network outputs h:

∇h(R ◦L)(h(θ)) = (∇hi
(R ◦L)(h(θ)))ni=1

∀i ∈ {1, . . . n}, ∇hi
(R ◦L)(h(θ)) =

n∑
j=1

∂R

∂vj
(L(h(θ)))∇hi

Lj(hj(θ))

= p̄i(L(h(θ)))∇hi
Li(hi(θ))

(45)

Chain rule for the derivative of R ◦L ◦ h with respect to the network parameters
θ:

∇θ(R ◦L ◦ h)(θ) =
n∑

i=1

∇θhi(θ)∇hi
(R ◦L)(h(θ))

=
n∑

i=1

p̄i(L(h(θ)))∇θhi(θ)∇hi
Li(hi(θ))

=
n∑

i=1

p̄i(L(h(θ))∇θ(Li ◦ hi)(θ))

(46)

where for all i ∈ {1, . . . n}, ∇θhi(θ) is the transpose of the Jacobian matrix of hi as a function
of θ.

I.3.1 Proof that R o L is one-sided gradient Lipchitz

This property that R ◦L is one-sided gradient Lipschitz is a key element for the proof of the
semi-smoothness theorem for the distributionally robust loss Theorem 13.

Under Definition 2 for the ϕ-divergence, we have shown that R is β
nρ -gradient Lipchitz

continuous (Lemma 4). And under assumption I.2, for all i, Li is C(L)-Lipschitz continuous
and C(∇L)-gradient Lipschitz continuous.

Let z = (zi)
n
i=1, z

′ = (z′
i)
n
i=1 ∈ Rdn.

We want to show that R ◦L is one-sided gradient Lipschitz, i.e. we want to prove the
existence of a constant C > 0, independent to z and z′, such that:

⟨∇z(R ◦L)(z)−∇z(R ◦L)(z′), z − z′⟩ ≤ C
∥∥z − z′∥∥2
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We have

⟨∇z(R ◦L)(z)−∇z(R ◦L)(z′), z − z′⟩

=
n∑

i=1

⟨∇zi(R ◦L)(z)−∇zi(R ◦L)(z′), zi − z′
i⟩

=
n∑

i=1

⟨p̄i(L(z))∇ziLi(zi)− p̄i(L(z′))∇ziLi(z′
i), zi − z′

i⟩

=
n∑

i=1

p̄i(L(z))⟨∇ziLi(zi)−∇ziLi(z′
i), zi − z′

i⟩

+
n∑

i=1

(
p̄i(L(z))− p̄i(L(z′))

)
⟨∇ziLi(z′

i), zi − z′
i⟩

(47)

Where for all i ∈ {1, . . . , n} we have used the chain rule

∇zi(R ◦L)(z) =

n∑
j=1

∂R

∂vj
(L(z))∇ziLj(zj) = p̄i(L(z))∇ziLi(zi)

Let

A =

∣∣∣∣∣
n∑

i=1

p̄i(L(z))⟨∇ziLi(zi)−∇ziLi(z′
i), zi − z′

i⟩

∣∣∣∣∣
For all i, Li is C(∇L)-gradient Lipchitz continuous, so using Cauchy-Schwarz inequality

A ≤
n∑

i=1

C(∇L)
∥∥zi − z′

i

∥∥2 = C(∇L)
∥∥z − z′∥∥2 (48)

Let

B =

∣∣∣∣∣
n∑

i=1

(
p̄i(L(z))− p̄i(L(z′))

)
⟨∇ziLi(z′

i), zi − z′
i⟩

∣∣∣∣∣
Using the triangular inequality:

B ≤

∣∣∣∣∣
n∑

i=1

(
p̄i(L(z))− p̄i(L(z′))

)
(Li(zi)− Li(z′

i)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

(
p̄i(L(z))− p̄i(L(z′))

)
(Li(z′

i) + ⟨∇ziLi(z′
i), zi − z′

i⟩ − Li(zi)

∣∣∣∣∣
≤
〈
∇vR(L(z))−∇vR(L(z′)),L(z)− L(z′)

〉
+ 2

n∑
i=1

∣∣∣∣Li(z′
i) + ⟨∇ziLi(z′

i), zi − z′
i⟩ − L

i
(zi)

∣∣∣∣
≤ β

nρ

∥∥L(z)−L(z′)
∥∥2 + 2

C(∇L)
2

∥∥z − z′∥∥2
≤
(
βC(L)2

nρ
+ C(∇L)

)∥∥z − z′∥∥2

(49)
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Combining equations (47), (48) and (49) we finally obtain

⟨∇z(R ◦L)(z)−∇z(R ◦L)(z′), z − z′⟩ ≤
(
βC(L)2

nρ
+ 2C(∇L)

)∥∥z − z′∥∥2 (50)

From there, we can obtain the following inequality that will be used for the proof of the
semi-smoothness property in Theorem 13

R(L(z′))−R(L(z))− ⟨∇z(R ◦L)(z), z′ − z⟩

=

∫ 1

t=0
⟨∇z(R ◦L)

(
z + t(z′ − z)

)
−∇z(R ◦L)(z), z′ − z⟩dt

≤ 1

2

(
βC(L)2

nρ
+ 2C(∇L)

)∥∥z − z′∥∥2
(51)

I.3.2 Semi-smoothness property of the distributionally robust loss

We prove the following lemma which is a generalization of Theorem 4 in (Allen-Zhu et al.,
2019a) for the distributionally robust loss.

Theorem 13 (Semi-smoothness of the distributionally robust loss)
Let ω ∈

[
Ω
(

d3/2

m3/2L3/2 log3/2(m)

)
, O
(

1
L4.5 log3(m)

)]
, and the θ(0) being initialized randomly

as described in assumption I.1. With probability as least 1 − exp (−Ω(mω3/2L)) over the
initialization, we have for all θ,θ′ ∈ (Rm×m)

L with
∥∥θ − θ(0)

∥∥
2
≤ ω, and ∥θ − θ′∥2 ≤ ω

R(L(h(θ′)) ≤ R(L(h(θ)) + ⟨∇θ(R ◦L ◦ h)(θ),θ′ − θ⟩

+ ∥∇h(R ◦L)(h(θ))∥2,1O

(
L2ω1/3

√
m log(m)√
d

)∥∥θ′ − θ
∥∥
2,∞

+O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)∥∥θ′ − θ
∥∥2
2,∞

(52)

where for all layer l ∈ {1, . . . , L}, θl is the vector of parameters for layer l, and∥∥θ′ − θ
∥∥
2,∞ = max

l

∥∥θ′
l − θl

∥∥
2∥∥θ′ − θ

∥∥2
2,∞ =

(
max

l

∥∥θ′
l − θl

∥∥2
2

)2

= max
l

∥∥θ′
l − θl

∥∥2
2

∥∇h(R ◦L)(h(θ))∥2,1 =
n∑

i=1

∥∇hi
(R ◦L)(h(θ))∥2

=

n∑
i=1

∥p̄i(L(h(θ)))∇hi
Li(hi(θ))∥2 (chain rule (45))

To compare this semi-smoothness result to the one in (Allen-Zhu et al., 2019a, Theorem
4), let us first remark that

∥∇h(R ◦L)(h(θ))∥2,1 ≤
√
n ∥∇h(R ◦L)(h(θ))∥2,2
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As a result, our result is analogous to (Allen-Zhu et al., 2019a, Theorem 4), up to an
additional multiplicative factor

(
βC(L)2

nρ + 2C(∇L)
)

in the last term of the right-hand side.
It is worth noting that there is also implicitly an additional multiplicative factor C(∇L) in
Theorem 3 of (Allen-Zhu et al., 2019a) since (Allen-Zhu et al., 2019a) make the assumption
that C(∇L) = 1 (see Allen-Zhu et al., 2019a, Appendix A).

Let θ,θ′ ∈ (Rm×m)
L verifying the conditions of Theorem 13.

Let A = R(L(h(θ′))−R(L(h(θ))− ⟨∇θ(R ◦L ◦ h)(θ),θ′ − θ⟩ , the quantity we want to
bound.

Using (51) for z = h(θ) and z′ = h(θ′), we obtain

A ≤ 1

2

(
βC(L)2

nρ
+ 2C(∇L)

)∥∥h(θ′)− h(θ)
∥∥2
2

+ ⟨∇h(R ◦L)(h(θ)), h(θ′)− h(θ)⟩
− ⟨∇θ(R ◦L ◦ h)(θ),θ′ − θ⟩

(53)

Then using the chain rule (46)

A ≤ 1

2

(
βC(L)2

nρ
+ 2C(∇L)

)∥∥h(θ′)− h(θ)
∥∥2
2

+
n∑

i=1

⟨∇hi
(R ◦L)(h(θ)), hi(θ

′)− hi(θ)− (∇θhi(θ))
T (θ′ − θ)⟩

(54)

For all i ∈ {1, . . . , n}, let us denote ˘lossi := ∇hi
(R ◦ L)(h(θ)) to match the notations

used in (Allen-Zhu et al., 2019a) for the derivative of the loss with respect to the output of
the network for example i of the training set.

With this notation, we obtain exactly equation (11.3) in (Allen-Zhu et al., 2019a) up to
the multiplicative factor

(
βC(L)2

nρ + 2C(∇L)
)

for the distributionally robust loss.

From there the proof of Theorem 4 in (Allen-Zhu et al., 2019a) being independent to
the formula for ˘lossi, we can conclude the proof of our Theorem 13 as in (Allen-Zhu et al.,
2019a, Appendix A).

I.3.3 Gradient bounds for the distributionally robust loss

We prove the following lemma which is a generalization of Theorem 3 in (Allen-Zhu et al.,
2019a) for the distributionally robust loss.

Theorem 14 (Gradient Bounds for the Distributionally Robust Loss)
Let ω ∈ O

(
δ3/2

n9/2L6 log3(m)

)
, and θ(0) being initialized randomly as described in assumption I.1.

With probability as least 1 − exp (−Ω(mω3/2L)) over the initialization, we have for all
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θ ∈ (Rm×m)
L with

∥∥θ − θ(0)
∥∥
2
≤ ω

∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , L}, ∀L̂ ∈ Rn∥∥∥p̄i(L̂)∇θl(Li ◦ hi)(θ)
∥∥∥2
2
≤ O

(
m

d

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

)
∀l ∈ {1, . . . , L}, ∀L̂ ∈ Rn∥∥∥∥∥

n∑
i=1

p̄i(L̂)∇θl(Li ◦ hi)(θ)

∥∥∥∥∥
2

2

≤ O

(
mn

d

n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

)
∥∥∥∥∥

n∑
i=1

p̄i(L̂)∇θL(Li ◦ hi)(θ)

∥∥∥∥∥
2

2

≥ Ω

(
mδ

dn2

n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

)
(55)

It is worth noting that the loss vector L̂ used for computing the robust probabilities
p̄(L̂) =

(
p̄i(L̂)

)n
i=1

does not have to be equal to L(h(θ)).
We will use this for the proof of the Robust SGD with stale per-example loss vector.
The adaptation of the proof of Theorem 3 in (Allen-Zhu et al., 2019a) is straightforward.
Let θ ∈ (Rm×m)

L satisfying the conditions of Theorem 14, and L̂ ∈ Rn.
Let us denote v :=

(
p̄i(L̂)∇hi

Li(hi(θ))
)n
i=1

, applying the proof of Theorem 3 in (Allen-
Zhu et al., 2019a) to our v gives:

∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , L},∥∥∥p̄i(L̂)∇θl(Li ◦ hi)(θ)
∥∥∥2
2
≤ O

(
m

d

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

)
∀l ∈ {1, . . . , L}, ∀L̂ ∈ Rn∥∥∥∥∥

n∑
i=1

p̄i(L̂)∇θl(Li ◦ hi)(θ)

∥∥∥∥∥
2

2

≤ O

(
mn

d

n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

)
∥∥∥∥∥

n∑
i=1

p̄i(L̂)∇θL(Li ◦ hi)(θ)

∥∥∥∥∥
2

2

≥ Ω

(
mδ

dn
max

i

(∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

))
In addition

max
i

(∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

)
≥ 1

n

n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

This allows us to conclude the proof of our Theorem 14. ■

I.3.4 Convergence of SGD with Hardness Weighted Sampling and exact
per-example loss vector

We can now prove Theorem 11.
Similarly to the proof of the convergence of SGD for the mean loss (Theorem 2 in (Allen-

Zhu et al., 2019a)), the convergence of SGD for the distributionally robust loss will mainly
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rely on the semi-smoothness property (Theorem 13) and the gradient bound (Theorem 14)
that we have proved previously for the distributionally robust loss.

Let θ ∈ (Rm×m)
L satisfying the conditions of Theorem 11, and L̂ be the exact per-example

loss vector at θ, i.e.
L̂ = (Li(hi(θ)))ni=1 (56)

For the batch size b ∈ {1, . . . , n}, let S = {ij}bj=1 a batch of indices drawn from p̄(L̂) without
replacement, i.e.

∀j ∈ {1, . . . b}, ij
i.i.d.∼ p̄(L̂) (57)

Let θ′ ∈ (Rm×m)
L be the values of the parameters after a stochastic gradient descent

step at θ for the batch S, i.e.

θ′ = θ − η
1

b

∑
i∈S
∇θ(Li ◦ hi)(θ) (58)

where η > 0 is the learning rate.
Assuming that θ and θ′ satisfies the conditions of Theorem 13, we obtain

R(L(h(θ′)) ≤R(L(h(θ))− η⟨∇θ(R ◦L ◦ h)(θ),
1

b

∑
i∈S
∇θ(Li ◦ hi)(θ)⟩

+ η
√
n ∥∇h(R ◦L)(h(θ))∥2,2O

(
L2ω1/3

√
m log(m)√
d

)∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ)

∥∥∥∥∥
2,∞

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ)

∥∥∥∥∥
2

2,∞
(59)

where we refer to (46) for the form of ∇θ(R ◦L ◦ h)(θ) and to (45) for the form of ∇h(R ◦
L)(h(θ)).

In addition, we make the assumption that for the set of values of θ considered the
hardness weighted sampling probabilities admit an upper-bound

α = min
θ

min
i

p̄i(L(θ)) > 0 (60)

Which is always satisfied under assumption I.2 for Kullback-Leibler ϕ-divergence, and for
any ϕ-divergence satisfying Definition 2 with a robustness parameter β small enough.

Let ES be the expectation with respect to S. Applying ES to (59), we obtain

ES

[
R(L(h(θ′))

]
≤R(L(h(θ))− η ∥∇θ(R ◦L ◦ h)(θ)∥22,2

+ η ∥∇h(R ◦L)(h(θ))∥2,2O

(
nL2ω1/3

√
m log(m)√
d

)√√√√ n∑
i=1

max
l

∥∥∥p̄i(L̂)∇θl(Li ◦ hi)(θ)
∥∥∥2

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
1

α

n∑
i=1

max
l

∥∥∥p̄i(L̂)∇θl(Li ◦ hi)(θ)
∥∥∥2

(61)
where we have used the following results:
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• For any integer k ≥ 1, and all (ai)
n
i=1 ∈

(
Rk
)n, we have (see the proof in I.3.5)

ES

[
1

b

∑
i∈S

ai

]
= Ep̄(L̂) [ai] (62)

• Using (62) for (ai)
n
i=1 = (∇θ(Li ◦hi)(θ))ni=1, and the chain rule (46)

ES

[
1

b

∑
i∈S
∇θ(Li ◦ hi)(θ)

]
=

n∑
i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ) = ∇θ(R ◦L ◦ h)(θ) (63)

• Using the triangular inequality∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ)

∥∥∥∥∥
2,∞

≤ 1

b

∑
i∈S
∥∇θ(Li ◦ hi)(θ)∥2,∞ (64)

And using (62) for (ai)
n
i=1 =

(
∥∇θ(Li ◦hi)(θ)∥2,∞

)n
i=1

,

ES

∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ)

∥∥∥∥∥
2,∞

 ≤ n∑
i=1

p̄i(L̂) ∥∇θ(Li ◦ hi)(θ)∥2,∞

≤
n∑

i=1

max
l

∥∥∥∇θl(p̄i(L̂)Li ◦ hi)(θ)
∥∥∥
2

≤
√
n

√√√√ n∑
i=1

max
l

∥∥∥∇θl(p̄i(L̂)Li ◦ hi)(θ)
∥∥∥2
2

(65)

where we have used Cauchy-Schwarz inequality for the last inequality.

• Using (64) and the convexity of the function x 7→ x2∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ)

∥∥∥∥∥
2

2,∞

≤ 1

b

∑
i∈S
∥∇θ(Li ◦ hi)(θ)∥22,∞ (66)

And using (62) for (ai)
n
i=1 =

(
∥∇θ(Li ◦hi)(θ)∥22,∞

)n
i=1

,

ES

∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ)

∥∥∥∥∥
2

2,∞

 ≤ n∑
i=1

p̄i(L̂) ∥∇θ(Li ◦ hi)(θ)∥22,∞

≤
n∑

i=1

1

p̄i(L̂)
max

l

∥∥∥∇θl(p̄i(L̂)Li ◦ hi)(θ)
∥∥∥2
2

≤ 1

α

n∑
i=1

max
l

∥∥∥∇θl(p̄i(L̂)Li ◦ hi)(θ)
∥∥∥2
2

(67)
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Important Remark: It is worth noting in (67) the apparition of α defined in (60). If we
were using a uniform sampling as for ERM (i.e. for DRO in the limit β → 0), we would have
α = 1

n . So although our inequality (67) may seem crude, it is consistent with equation (13.2)
in (Allen-Zhu et al., 2019a) and the corresponding inequality in the case of ERM.

The rest of the proof of convergence will consist in proving that η ∥∇θ(R ◦L ◦ h)(θ)∥22,2
dominates the two last terms in (59). As a result, we can already state that either the
robustness parameter β, or the learning rate η will have to be small enough to control α.

Indeed, combining (59) with the chain rule (46), and the gradient bound Theorem 14
where we use our L̂ defined in (56)

ES

[
R(L(h(θ′))

]
≤ R(L(h(θ))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

+ ηO

(
nL2ω1/3

√
m log(m)√
d

)
O

(√
m

d

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
O
(m

dα

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

≤ R(L(h(θ))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

+O

(
ηnL2mω1/3

√
log(m)

d
+K

η2(n/α)L2m2

d2

)
n∑

i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

(68)
where we have used

K :=
βC(L)2

nρ
+ 2C(∇L) (69)

There are only two differences compared to equation (13.2) in (Allen-Zhu et al., 2019a):

• in the last fraction we have n/α instead of n2 (see remark I.3.4 for more details), and
an additional multiplicative term K. So in total, this term differs by a multiplicative
factor αn

K from the analogous term in the proof of (Allen-Zhu et al., 2019a).

• we have
∑n

i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ))

∥∥∥2
2

instead of F (W(t)). In fact they are analogous

since in equation (13.2) in (Allen-Zhu et al., 2019a), F (W(t)) is the squared norm of
the mean loss for the L2 loss. We don’t make such a strong assumption on the choice of
L (see assumption I.2). It is worth noting that the same analogy is used in (Allen-Zhu
et al., 2019a, Appendix A) where they extend their result to the mean loss with other
objective function than the L2 loss.
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Our choice of learning rate in Theorem 12 can be rewritten as

ηexact = Θ

(
αn2ρ

βC(L)2 + 2nρC(∇L)
× bδd

poly(n,L)m log2(m)

)
= Θ

(
αn

K
× bδd

poly(n,L)m log2(m)

)
≤ αn

K
× η′

(70)

And we also have
ηexact ≤ η′ (71)

where η′ is the learning rate chosen in the proof of Theorem 2 in (Allen-Zhu et al., 2019a).
We refer the reader to (Allen-Zhu et al., 2019a) for the details of the constant in "Θ" and
the exact form of the polynomial poly(n,L).

As a result, for η = ηexact, the term Ω
(
ηmδ
dn2

)
dominates the other term of the right-hand

side of inequality (68) as in the proof of Theorem 2 in (Allen-Zhu et al., 2019a).
This implies that the conditions of Theorem 14 are satisfied for all θ(t), and that we have

for all iteration t > 0

ESt

[
R(L(h(θ(t+1)))

]
≤ R(L(h(θ(t)))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ(t)))

∥∥∥2
2

(72)

And using a result in Appendix A of (Allen-Zhu et al., 2019a), since under assumption
I.2 the distributionally robust loss is non-convex and bounded, we obtain for all ϵ′ > 0∥∥∥∇h(R ◦L)(h(θ(T )))

∥∥∥
2,2
≤ ϵ′ if T = O

(
dn2

ηδmϵ′2

)
(73)

where according to (45)∥∥∥∇h(R ◦L)(h(θ(T )))
∥∥∥
2,2

=

n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ(t)))

∥∥∥2
2

(74)

However, we are interested in a bound on
∥∥∇θ(R ◦L ◦ h)(θ(T ))

∥∥
2,2

, rather than a bound on∥∥∇h(R ◦L)(h(θ(T )))
∥∥
2,2

. Using the gradient bound of Theorem 14 and the chain rules (46)
and (45) ∥∥∥∇θ(R ◦L ◦ h)(θ(T ))

∥∥∥
2,2
≤ c1

√
Lmn

d

∥∥∥∇h(R ◦L)(h(θ(T )))
∥∥∥
2,2

(75)

where c1 > 0 is the constant hidden in O

(√
Lmn
d

)
.

So with ϵ′ = 1
c1

√
d

Lmnϵ, we finally obtain∥∥∥∇θ(R ◦L ◦ h)(θ(T ))
∥∥∥
2,2
≤ c1

√
Lmn

d

∥∥∥∇h(R ◦L)(h(θ(T )))
∥∥∥
2,2

≤ c1

√
Lmn

d
ϵ′

≤ ϵ

(76)
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If

T = O

(
dn2

ηδmϵ′2

)
= O

(
dn2

ηδm

Lmn

dϵ2

)
= O

(
Ln3

ηδϵ2

)
(77)

which concludes the proof. ■

I.3.5 Proof of technical lemma 1

For any integer k ≥ 1, and all (ai)
n
i=1 ∈

(
Rk
)n, we have

ES

[
1

b

∑
i∈S

ai

]
=

∑
1≤i1,...,ib≤n

( n∏
k=1

p̄ik(L̂)

)
1

b

b∑
j=1

aij



=
1

b

∑
1≤i1,...,ib≤n

 b∑
j=1

p̄ij (L̂)aij

 n∏
k=1
k ̸=j

p̄ik(L̂)




=
1

b

b∑
j=1

 ∑
1≤i1,...,ib≤n

p̄ij (L̂)aij

 n∏
k=1
k ̸=j

p̄ik(L̂)




=
1

b

b∑
j=1


 n∑

ij=1

p̄ij (L̂)aij

 n∏
k=1
k ̸=j

 n∑
ik=1

p̄ik(L̂)




=
1

b

b∑
j=1

(
n∑

i=1

p̄i(L̂)ai

)

=

n∑
i=1

p̄i(L̂)ai

= Ep̄(L̂) [ai]

(78)

I.4 Convergence of SGD with Hardness Weighted Sampling and stale
per-example loss vector

The proof of the convergence of Algorithm 1 under the conditions of Theorem 12 follows the
same structure as the proof of the convergence of Robust SGD with exact per-example loss
vector I.3.4. We will reuse the intermediate results of I.3.4 when possible and focus on the
differences between the two proofs due to the inexactness of the per-example loss vector.

Let t be the iteration number, and let θ(t) ∈ (Rm×m)
L be the parameters of the deep

neural network at iteration t. We define the stale per-example loss vector at iteration t as

L̂ =
(
Li(hi(θ(ti(t))))

)n
i=1

(79)
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where for all i, ti(t) < t corresponds to the latest iteration before t at which the per-example
loss value for example i has been updated. Or equivalently, it corresponds to the last iteration
before t when example i was drawn to be part of a mini-batch.

We also define the exact per-example loss vector that is unknown in Algorithm 1, as

L̆ =
(
Li(hi(θ(t)))

)n
i=1

(80)

Similarly to (58) we define

θ(t+1) = θ(t) − η
1

b

∑
i∈S
∇θ(Li ◦ hi)(θ(t)) (81)

and using Theorem 13, similarly to (59), we obtain

R(L(h(θ(t+1))) ≤R(L(h(θ(t)))− η⟨∇θ(R ◦L ◦ h)(θ(t)),
1

b

∑
i∈S
∇θ(Li ◦ hi)(θ(t))⟩

+ η
∥∥∥∇h(R ◦L)(h(θ(t)))

∥∥∥
1,2

O

(
L2ω1/3

√
m log(m)√
d

)∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ(t))

∥∥∥∥∥
2,∞

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)∥∥∥∥∥1b∑
i∈S
∇θ(Li ◦ hi)(θ(t))

∥∥∥∥∥
2

2,∞
(82)

We can still define α as in (60)

α = min
θ

min
i

p̄i(L(θ)) > 0 (83)

where we are guaranteed that α > 0 under assumptions I.1.
Since Theorem 14 is independent to the choice of L̂, taking the expectation with respect

to S, similarly to (68), we obtain

ES

[
R(L(h(θ(t+1)))

]
≤ R(L(h(θ(t)))− η⟨∇θ(R ◦L ◦ h)(θ(t)),

n∑
i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))⟩

+ η
∥∥∥∇h(R ◦L)(h(θ(t)))

∥∥∥
1,2

O
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L2ω1/3

√
nm log(m)√
d

)√√√√ n∑
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∥∥∥p̄i(L̂)∇hi
Li(hi(θ(t)))

∥∥∥2
2

+ η2O

((
βC(L)2

nρ
+ 2C(∇L)

)
nL2m

d

)
O
(m

dα

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ(t)))

∥∥∥2
2

(84)
where the differences with respect to (68) comes from the fact that L̂ is not the exact
per-example loss vector here, i.e. L̂ ̸= L̆, which leads to

∇θ(R ◦L ◦ h)(θ(t)) =
n∑

i=1

p̂i(L̆)∇θ(Li ◦ hi)(θ(t)))

̸=
n∑

i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))

(85)
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and ∥∥∥∇h(R ◦L)(h(θ(t)))
∥∥∥
1,2

=

n∑
i=1

∥∥∥p̂i(L̆)∇hi
Li(hi(θ(t))))

∥∥∥
2

̸=
n∑

i=1

∥∥∥p̂i(L̂)∇hi
Li(hi(θ(t))))

∥∥∥
2

(86)

Let

K ′ = C(L)A(∇L)O

 βLm3/2 log2(m)

αn1/2ρd3/2b log
(

1
1−α

)
 (87)

Where C(L) > 0 is a constant such that L is C(L)-Lipschitz continuous, and A(∇L) > 0 is
a constant that bound the gradient of L with respect to its input. C(L) and A(∇L) are
guaranteed to exist under assumptions I.1.

We can prove that, with probability at least 1− exp
(
−Ω

(
log2(m)

))
,

• according to lemma I.4.1

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2
=

√√√√ n∑
i=1

(
p̂i(L̂)− p̂i(L̆)

)2
≤ ηαK ′ (88)

• according to lemma I.4.2∣∣∣∣∣⟨∇θ(R ◦L ◦ h)(θ(t))−
n∑

i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t))),

n∑
i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))⟩

∣∣∣∣∣
≤ η

m

d
K ′

n∑
i=1

∥∥∥p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))
∥∥∥2
2

(89)

• according to lemma I.4.3

∥∥∥∇h(R ◦L)(h(θ(t)))
∥∥∥
1,2
≤
(√

n+ ηK ′)√√√√ n∑
i=1

∥∥∥p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))
∥∥∥2
2

(90)

Combining those three inequalities with (84) we obtain
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[
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]
−R(L(h(θ(t))) ≤

η
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(
mδ
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)
+O

(
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√
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Li(hi(θ(t)))

∥∥∥2
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η2O
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)
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(91)
One can see that compared to (68), there is only the additional term

(
1 + m

d

)
K ′.
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Using our choice of η,

η = ηstale ≤ O

(
δ

n2K ′ ηexact

)
(92)

where ηexact is the learning rate of Theorem 11, we have

Ω

(
ηmδ

dn2

)
≥ O

(
η2
(
1 +

m

d

)
K ′
)

(93)

As a result, η2
(
1 + m

d

)
K ′ is dominated by the term Ω

(
ηmδ
dn2

)
In addition, since ηstale ≤ ηexact, Ω

(
ηmδ
dn2

)
still dominates also the ther terms as in the

proof of Theorem 11.
As a consequence, we obtain as in (72) that for any iteration t > 0

ESt

[
R(L(h(θ(t+1)))

]
≤ R(L(h(θ(t)))− Ω

(
ηmδ

dn2

) n∑
i=1

∥∥∥p̄i(L̂)∇hi
Li(hi(θ(t)))

∥∥∥2
2

(94)

This concludes the proof using the same arguments as in the end of the proof of Theorem 11
starting from (72). ■

I.4.1 Proof of technical lemma 2

Using Lemma 5 and Lemma 4 we obtain∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2
=
∥∥∥∇vR(L̂)−∇vR(L̆)

∥∥∥
2

≤ β

nρ

∥∥∥L̂− L̆
∥∥∥
2

(95)

Using assumptions I.2 and (Allen-Zhu et al., 2019a, Claim 11.2)

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2
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nρ
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≤ β
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C(L)C(h)

√√√√ n∑
i=1
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∥∥2
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(96)

Where C(L) is the constant of Lipschitz continuity of the per-example loss L (see assump-
tions I.2) and C(h) is the constant of Lipschitz continuity of the deep neural network h with
respect to its parameters θ.
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By developing the recurrence formula of θ(t) (81), we obtain

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
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Let A(∇L) a bound on the gradient of the per-example loss function. Using Theorem 14
and the chain rule

∀j, ∀τ
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And using the triangle inequality∥∥∥∥∥∥
t−1∑

τ=ti(t)

1
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d

)
(t− ti(t))

(98)

As a result, we obtain

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2
≤ ηC(L)A(∇L)O
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For all i and for any τ the probability that the sample i is not in batch Sτ is lesser than
(1− α)b.

Therefore, for any k ≥ 1 and for any t,

P (t− ti(t) ≥ k) ≤ (1− α)kb (100)

For k ≥ 1
bΩ
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log2(m)
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)
, we have (1− α)kb ≤ exp
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,
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)
 (101)
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As a result, we finally obtain that with probability at least 1− exp
(
−Ω

(
log2(m)

))
,

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2
≤ ηC(L)A(∇L)O

(
βLm3/2

nρd3/2

)
√
nO

 log2(m)

b log
(

1
1−α

)


≤ ηαO

 βLm3/2 log2(m)

αn1/2ρd3/2b log
(

1
1−α

)


≤ ηαK ′

(102)

I.4.2 Proof of technical lemma 3

Let us first denote

A =

∣∣∣∣∣⟨∇θ(R ◦L ◦ h)(θ(t))−
n∑

i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t))),
n∑

i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨
n∑

i=1

(
p̄i(L̆)− p̄i(L̂)

)
∇θ(Li ◦ hi)(θ(t))),

n∑
i=1

p̄i(L̂)∇θ(Li ◦ hi)(θ(t)))⟩

∣∣∣∣∣
(103)

Using Cauchy-Schwarz inequality

A =

∣∣∣∣∣∣
n∑

i=1

(
p̄i(L̆)− p̄i(L̂)

)
⟨∇θ(Li ◦ hi)(θ(t))),

n∑
j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))⟩

∣∣∣∣∣∣
≤
∥∥∥p̂(L̂)− p̂(L̆)

∥∥∥
2

√√√√√ n∑
i=1

⟨∇θ(Li ◦ hi)(θ(t))),

n∑
j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))⟩

2
(104)

Let

B = ⟨∇θ(Li ◦ hi)(θ(t))),

n∑
j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))⟩ (105)

Using again Cauchy-Schwarz inequality

B ≤
∥∥∥∇θ(Li ◦ hi)(θ(t)))

∥∥∥
2,2

∥∥∥∥∥∥
n∑

j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))

∥∥∥∥∥∥
2,2

(106)
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As a result, A becomes

A ≤
∥∥∥p̂(L̂)− p̂(L̆)

∥∥∥
2

∥∥∥∥∥∥
n∑

j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))

∥∥∥∥∥∥
2,2

√√√√ n∑
i=1

∥∥∇θ(Li ◦ hi)(θ(t)))
∥∥2
2,2

≤
∥∥∥p̂(L̂)− p̂(L̆)

∥∥∥
2

∥∥∥∥∥∥
n∑

j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))

∥∥∥∥∥∥
2,2

√√√√ n∑
i=1

1

α2

∥∥∥p̄j(L̂)∇θ(Li ◦ hi)(θ(t)))
∥∥∥2
2,2

≤ 1

α

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2

∥∥∥∥∥∥
n∑

j=1

p̄j(L̂)∇θ(Lj ◦ hj)(θ(t)))

∥∥∥∥∥∥
2

2,2

(107)
Using the triangular inequality, Theorem 14, and Lemma I.4.1, we finally obtain

A ≤ m

αd

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2

n∑
j=1

∥∥∥p̄j(L̂)∇hj
Lj(hj(θ(t)))

∥∥∥2
2,2

≤ η
m

d
K ′

n∑
j=1

∥∥∥p̄j(L̂)∇hj
Lj(hj(θ(t)))

∥∥∥2
2,2

(108)

I.4.3 Proof of technical lemma 4

We have∥∥∥∇h(R ◦L)(h(θ(t)))
∥∥∥
1,2

=

n∑
j=1

p̄j(L̆)
∥∥∥∇hj

Lj(hj(θ(t)))
∥∥∥
2,2

=
n∑

j=1

p̄j(L̂)
∥∥∥∇hj

Lj(hj(θ(t)))
∥∥∥
2,2

+
n∑

j=1

(
p̄j(L̆)− p̄j(L̂)

p̄j(L̂)

)
p̄j(L̂)

∥∥∥∇hj
Lj(hj(θ(t)))

∥∥∥
2,2

(109)

Using Cauchy-Schwarz inequality

∥∥∥∇h(R ◦L)(h(θ(t)))
∥∥∥
1,2
≤

√n+

√√√√ n∑
j=1

(
p̄j(L̆)− p̄j(L̂)

p̄j(L̂)

)2
√√√√ n∑

j=1

∥∥∥p̄j(L̂)∇hj
Lj(hj(θ(t)))

∥∥∥2
2,2

(110)
Using Lemma I.4.1

n∑
j=1

(
p̄j(L̆)− p̄j(L̂)

p̄j(L̂)

)2

≤ 1

α

∥∥∥p̂(L̂)− p̂(L̆)
∥∥∥
2

≤ ηK ′

(111)
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Therefore, we finally obtain

∥∥∥∇h(R ◦L)(h(θ(t)))
∥∥∥
1,2
≤
(√

n+ ηK ′)√√√√ n∑
j=1

∥∥∥p̄j(L̂)∇hj
Lj(hj(θ(t)))

∥∥∥2
2,2

(112)
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