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Abstract

Segmentation and spatial alignment of ultrasound imaging data acquired in the first trimester
is crucial for monitoring early human embryonic growth and development throughout this
important period of life. Current approaches are either manual or semi-automatic and are
therefore very time-consuming and prone to errors. To automate these tasks, we propose
a multi-atlas framework for automatic segmentation and spatial alignment of the embryo
using deep learning with minimal supervision. Our framework learns to register the embryo
to an atlas, which consists of the ultrasound images acquired at a range of gestational ages,
segmented and spatially aligned to a predefined standard orientation. From this, we can
derive the segmentation of the embryo and put the embryo in standard orientation. Ultra-
sound images acquired at 8+0 till 12+6 weeks gestational age were used and the ultrasound
images of eight subjects were selected as atlas. We evaluated different fusion strategies to
incorporate multiple atlases: 1) training the framework using atlases from a single subject,
2) training the framework with data of all available atlases and 3) ensembling of the frame-
works trained per subject. To evaluate the performance, we calculated the Dice score over
the test set. We found that training the framework using all available atlases outperformed
ensembling and gave similar results compared to the best of all frameworks trained on a
single subject. Furthermore, we found that selecting images from the four atlases closest in
gestational age out of all available atlases, regardless of the individual quality, gave the best
results with a median Dice score of 0.72. We conclude that our framework can accurately
segment and spatially align the embryo in first trimester 3D ultrasound images and is ro-
bust to the variation in quality that existed in the available atlases. Our code is publicly
available at: https://gitlab.com/radiology/prenatal-image-analysis/multi-atlas-seg-reg.
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1. Introduction

The periconception period, which runs from 14 weeks before conception till the end of
the first trimester, is crucial for pre- and postnatal health (Steegers-Theunissen et al.,
2013). Prenatal growth and development during this period is predominantly monitored via
ultrasound imaging, mainly by manual measurements of the crown-rump length (CRL) and
inspection of standard planes of the embryo (Salomon et al., 2013). Due to improvements in
technology, and due to the introduction of trans-vaginal high frequency ultrasound probes,
even more can be visualized already during the first trimester. This also let to the advise
of the ISUOG, encouraging first trimester neuro-ultrasonography (Paladini et al., 2021).
Besides inspection of standard planes and the measurement of the CRL, nowadays due to
3D ultrasonography it is also possible to measure the volume of the embryo during the
first trimester taking all dimensions of a human being into account, which provides more
information than just one plane. However, these measurements are time consuming and
prone to human errors, such as over- or underestimation of the volume due to manual
delineation (Carneiro et al., 2008; Blaas et al., 2006). Automating this process would lead
to less investigation time and more consistent results.

Despite its challenges, 3D first trimester ultrasound is especially suitable for learning
based methods, as the whole embryo, thanks to its limited size, can be imaged in one dataset.
Here, we propose a deep learning based framework to automatically segment and spatially
align the embryo to a standard orientation. These two tasks form the basis for automatic
monitoring of growth and development: placing the embryo in a standard orientation en-
ables derivation of the standard planes, and the segmentation of the embryo provides the
embryonic volume. The advantage of the proposed framework is that after alignment, any
standard plane and associated biometric measurements can easily be identified. Finally,
real-time automatic alignment of the embryo simplifies the acquisition of standard planes
in clinical practice, by providing probe movement guidance to visualize the plane (Droste
et al., 2020).

To achieve segmentation and spatial alignment simultaneously, we take an atlas-based
registration approach using deep learning. We register all data to an atlas in which the
embryo has been segmented and put in a standard orientation. To make our framework
applicable to data acquired between the 8th and 12th week of pregnancy and to increase its
robustness to variations in appearance of the embryo across pregnancies, we take a multi-
atlas approach by using data of multiple subjects with longitudinally acquired ultrasound
images during pregnancy. To address how to combine data from multiple subjects we
compared three strategies, namely: 1) training the framework using atlases from a single
subject, 2) training the framework with data of all available atlases and 3) ensembling of
the frameworks trained per subject.

By taking an atlas-based registration approach we circumvent the need for ground truth
segmentations during training, as atlas-based registration can be fully unsupervised. Man-
ual segmentations of the embryo are laborious to obtain and typically not available, since in
clinical practice mainly the length of the embryo and various diameters are used (Salomon
et al., 2013). Due to the rapid development of the embryo in the first trimester and wide
variation in spatial position and orientation of the embryo and presence of other structures
such as placenta, umbilical cord and uterine wall, we choose to add supervision using land-
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marks to our framework. We proposed to use the crown and rump landmarks of the embryo
as supervision during training, since the CRL measurement is relatively easy to obtain and a
standard measure in clinical practice (Rousian et al., 2018). During inference, the proposed
method is fully automatic and does not rely on the crown and rump landmarks.

The main contributions of the research presented in this paper are:

1. we propose the first automated method to segment and simultaneously spatially align
the embryo in 3D ultrasound images acquired during the first trimester;

2. we compare different strategies to incorporate data of multiple atlases and address
the question how many atlas images to select;

3. we circumvent the need for manual segmentations for training of our framework by
relying only on minimal supervision based on two landmarks.

2. Related work

2.1 Automatic analysis of first trimester ultrasound

In literature there is little research available on automatic analysis of first trimester ultra-
sound in human pregnancies. Two studies focus on performing segmentation of the embryo
in first trimester 3D ultrasound (Yang et al., 2018; Looney et al., 2021). Both approaches
use a fully convolutional neural network, combined with transfer learning and either label
refinement using a recurrent neural network (Yang et al., 2018) or a two-pathway architec-
ture (Looney et al., 2021). They achieve mean Dice score of 0.876 (104 3D volumes, 10-14
weeks GA) and 0.880 (2393 volumes, 11-14 weeks GA) respectively. Carneiro et al. (2008)
studied automatic extraction of the biparietal diameter, head circumference, abdominal cir-
cumference, femur length, humerus length, and CRL in first trimester ultrasound using a
constrained probabilistic boosting tree classifier. Finally, three studies focused on obtaining
the head circumference using publicly available data, which consists of 2D ultrasound scans
of the trans-thalamic plane (van den Heuvel et al., 2018; Al-Bander et al., 2019; Li et al.,
2020).

Limitation of the aforementioned studies is that they focus on extracting individual
measurements or segmentations, whereas we propose to align the embryo to a predefined
standard space. This is beneficial since alignment to a standard space allows for straightfor-
ward extraction of various biometric and volumetric measurements in a unified framework.

2.2 Joint segmentation and spatial alignment of prenatal ultrasound

Most published studies focus on performing spatial alignment and segmentation separately;
for a comprehensive overview see Torrents-Barrena et al. (2019). When both spatial align-
ment and segmentation are of interest performing them sequentially raises the question
of the optimal order of operations. Especially since some studies focusing on performing
segmentation require prior knowledge about spatial orientation of the embryo (Gutiérrez-
Becker et al., 2013; Yaqub et al., 2013) and some studies focusing on standard plane de-
tection require the segmentation or detection of structures within the embryo (Ryou et al.,
2016; Yaqub et al., 2015). To circumvent this, a few studies perform both tasks at once
(Chen et al., 2012; Kuklisova-Murgasova et al., 2013; Namburete et al., 2018).
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Chen et al. (2012) achieved both tasks for the fetal head using spatial features from eye
detection and image registration techniques, for ultrasound images acquired at 19-22 weeks
GA. However, the eye is not always clearly detectable in 3D first trimester ultrasound,
making this method not applicable in our case.

Kuklisova-Murgasova et al. (2013) achieved both tasks for the fetal brain, using a mag-
netic resonance imaging (MRI) atlas and block matching using image registration tech-
niques, for ultrasound images acquired at 23-28 weeks GA. However, such an atlas or refer-
ence MRI image is not available for the first trimester (Oishi et al., 2019).

Namburete et al. (2018) achieved both alignment and segmentation of the fetal head
with a supervised multi-task deep learning approach, using slice-wise annotations containing
a priori knowledge of the orientation of the head, and manual segmentations, for ultrasound
images acquired at 22-30 weeks GA. However, this method assumes that during acquisition
the ultrasound probe is positioned such that the head is imaged axially, which is not always
the case for 3D first trimester ultrasound.

Although none of the studies are applicable to first trimester ultrasound, they all em-
ploy image registration techniques to perform segmentation and spatial alignment simulta-
neously. In line with this, we take an image registration approach and tailor our method to
be applicable to first trimester ultrasound.

2.3 Deep learning for image registration

Recently, deep learning methods for image registration have been developed and show
promising results in many areas; for an extensive overview see Boveiri et al. (2020). The
common assumption for most of the deep learning approaches for image registration is that
the data is already affinely registered. However, due to the rapid development of the em-
bryo and the wide variation in position and spatial orientation the affine registration is
challenging to obtain and therefore has to be incorporated in the framework.

There are a few studies focusing on achieving both affine and nonrigid registration. For
example, de Vos et al. (2019), proposed a multi-stage framework, dedicating the first network
to learning the affine transformation and the second network to learning the voxelwise
displacement field. These networks are trained in stages. Zhengyang et al. (2019) proposed
a similar approach where the main difference is that they used a diffeomorphic model for
the nonrigid deformation. We also take a multi-stage approach with a dedicated network for
the affine and nonrigid deformation. We based the design of both networks on Voxelmorph
by Balakrishnan et al. (2019), which is developed for deep learning-based nonrigid image
registration and is publicly available.

2.4 Multi-atlas segmentation with deep learning

Using multiple atlases is a common and successful technique for biomedical image segmen-
tation. Adding data of multiple atlases gives in general better and more robust results
and is widely used in classical not learning-based methods (Iglesias and Sabuncu, 2015).
However, learning-based methods can also benefit from using multiple atlases (Ding et al.,
2019; Fang et al., 2019; Lee et al., 2019).

Fang et al. (2019) omits the registration step by directly guiding the training of a
segmentation network using multiple atlases as ground truth. Ding et al. (2019) and Lee
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et al. (2019) both employ deep learning for the image registration step, but they use different
strategies for training. Ding et al. (2019) trained a network that warps all available atlas
to the target image at once. On the other hand, Lee et al. (2019) trains the network by
giving at every epoch a random atlas to the network to register to the target image.

Both approaches train the network to be able to register all available atlases to all target
images. In our case, the set of atlases consists of ultrasound images from different subjects
acquired in every week GA. Due to the rapid development of the embryo, only atlases
acquired at approximately the same GA as the image are useful for registration. Hence, we
compared different fusion strategies that take this into account.

2.5 Extension of preliminary results

Preliminary results of this framework were published in Bastiaansen et al. (2020a) and
Bastiaansen et al. (2020b). In Bastiaansen et al. (2020a) we proposed a fully unsupervised
atlas-based registration framework using deep learning for the alignment of the embryonic
brain acquired at 9 weeks GA. We showed that having a separate network for the affine and
nonrigid deformations improved the results. Subsequently, in Bastiaansen et al. (2020b)
our previous work was extended by adding minimal supervision using the crown and rump
landmarks to align and segment the embryo.

Here, we substantially extend our previous work by making it applicable to data acquired
between the 8th and 12th week of pregnancy. We achieve this by taking a multi-atlas
approach with atlases consisting of longitudinally acquired ultrasound images from multiple
pregnancies. We compare different fusion strategies to combine data from multiple subjects
and address the influence of differences in image quality of the atlas.

Compared to our previous work, we performed a more in-depth hyperparameter search
for our deep learning framework and improved the division of the data in training, valida-
tion and test set taking into account the distribution of GA and available information used
for evaluation, such as embryonic volume. Furthermore, we compared our best model to
the 3D nn-UNet (Isensee et al., 2021), which is a current state-of-the-art fully supervised
segmentation method. Finally, to obtain the segmentation of the embryo, in the proposed
model the inverse of the nonrigid deformation is needed. To make our deformations invert-
ible, we adopt a diffeomorphic deformation model as proposed by Dalca et al. (2019), using
the stationary velocity field.

3. Method

3.1 Overview

We present a deep learning framework to simultaneously segment and spatially align the
embryo in image I. We propose to achieve this by registering every image I to an atlas via
deformation ϕ:

A(x) ≈ I (ϕ(x)) ∀x ∈ Ω, (1)

with Ω the 3D domain of A, I. We assume that the atlas A is in a predefined standard
orientation and the segmentation SA is available. Now, I ◦ ϕ is in standard orientation and

5



Bastiaansen et al.

the segmentation of image I is given by:

SI := SA ◦ ϕ−1. (2)

The deep learning framework learns to estimate deformation ϕ given atlas A and the image
I. We propose to use a multi-atlas approach by registering every image to the M atlases
that are closest in GA. In Fig. 1 a detailed overview of our framework can be found; all
components are explained in the remainder of this section.

3.1.1 Learning to estimate the deformation ϕ

Firstly, note that our framework consists of two networks, one dedicated to learning an
affine transformation and the other to learning a nonrigid deformation. In previous work
we showed that separating these tasks was needed due to the wide variety in positions and
orientation of the embryo (Bastiaansen et al., 2020a). Therefore, the deformation ϕ consists
of an affine transformation ϕa and a nonrigid deformation ϕd, such that:

ϕ := ϕa ◦ ϕd. (3)

The affine network, to estimate ϕa, is trained in two stages, the first stage uses the crown
and rump landmarks for supervision, while in the second stage the network is trained in an

Figure 1: Overview of our framework to register image I to atlas Ai,j . Atlas Ai,j corresponds
to subject i with an ultrasound image taken in week j of pregnancy. The network learns the
affine and nonrigid deformations ϕa and ϕdi,j . Using the inverse deformations and majority
voting we obtain the segmented images SI . I ◦ϕa gives the image I in standard orientation.
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Figure 2: From left to right: example of an atlas at 8, 9, 10, 11 and 12 weeks GA, with
their crown and rump landmarks. The outline shows the mask in which the similarity loss
in (11) is calculated. This mask is obtained by dilating the union of all atlas segmentations
using a ball with radius 1.

unsupervised way. The nonrigid network to estimate ϕd is trained in a fully unsupervised
way. ϕa and ϕd are obtained by two convolutional neural networks (CNN), which model the
functions gθaffine

: (ϕa, I ◦ ϕa) = gθaffine
(I), with θaffine the network parameters and gθnonrigid :

(ϕd, Iϕa ◦ ϕd) = gθnonrigid(Iϕa , A), with Iϕa = I ◦ ϕa, and θnonrigid the network parameters.

3.1.2 The atlas A

To deal with the rapid growth and variation in appearance of the embryo we propose to use
a multi-atlas approach. We define Ai,j to be an atlas, with i = 1, ..., np, where np represents
the number of subjects and j ∈ W , with W the set of the weeks of pregnancy in which an
ultrasound image is available. For example, atlas A1,8 represent the ultrasound image of
subject 1 acquired at 8 weeks GA. Define A := {Ai,j |i = 1, ..., np,∀j ∈ W} to be the set of
all available atlases.

We manually rigidly aligned every atlas Ai,j to the same standard orientation. Sub-
sequently, all atlases, were scaled to the same size by matching the annotated crown and
rump landmarks, as shown in Fig. 2. Aligning the crown and rump landmarks for every
atlas has two benefits for training the neural network: 1) regardless of the GA the embryo
always fills the same field of view, and 2) we only need to learn one affine transformation
that aligns the images to every atlas.

We define the coordinates of the crown and rump landmarks in the standard orientation
as xAc and xAr . Finally, the segmentation SAi,j was obtained manually.

3.1.3 Atlas selection and fusion strategies

For every image I the M atlases closest in GA are selected from the set of available atlases
A. Furthermore, from every subject maximally one atlas image is selected, therefore we
have: M ≤ np. We define three different atlas fusion strategies:

Single-subject strategy The framework uses atlases from a single subject k:

As
k := {Ai,j |i = k, j ∈ W} (4)

with M ≤ np = 1.
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Multi-subject strategy The framework uses atlases from multiple subjects:

Am := {Ai,j |i = 1, ..., np, j ∈ W}. (5)

with M ≤ np

Ensemble strategy The results of np single-subject strategies are ensembled, hence
M = np. We call this strategy Ae.

The set of available atlases and the M selected atlases are the same during training and
inference.

3.1.4 Output of framework

The framework outputs the segmentation of the embryo and the embryo in standard ori-
entation. The segmentation SI is defined as the voxelwise majority vote over Si,j

i . Where

Si,j
i is defined as:

Si,j
I := SAi,j ◦ (ϕ

−1
di,j

◦ ϕ−1
a ). (6)

and SI as:

SI(x) :=

{
1 if

∑M
i=1 S

i,j
I (x) > M

2

0 else,
(7)

for all M selected atlases.
The deformation to put the embryo in standard orientation is given by ϕa and the image

in standard orientation is given by:

Iϕa := I ◦ ϕa (8)

3.2 Affine registration network

The input of the affine registration network is the image I. The affine registration network
gives as output the estimated affine transformation ϕa and the corresponding affinely reg-
istered image I ◦ ϕa. Recall that we affinely registered every atlas to the same standard
orientation. Hence, the affine transformation ϕa registers the image I to all atlases in A.
Furthermore, this allowed us to directly compare the image similarity of I ◦ ϕa and all se-
lected atlas images in the loss function. Hence, as shown by the arrows in Fig. 1, in contrast
to the nonrigid network, the atlas image Ai,j is not given as input to the network.

3.2.1 Network architecture

The affine registration network consists of an encoder, followed by a global average pooling
layer. The encoder consists of convolutional layers with a stride of 2, where the images
are down-sampled. The numbers of filters (f1, f2) are hyperparameters. The global average
pooling layer gives as output one feature per feature map, which forces the network to encode
position and orientation globally. The pooling layer is followed by four fully connected
layers with 1000 neurons and ReLu activation. The output layer consists of the affine
transformation ϕa and is defined as a 12-dimensional vector containing the coefficients of
part of the affine transformation matrix T ∈ R4×4.
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3.2.2 Loss function

The loss function for the first training stage of the affine registration network is defined as:

L
(
A, I, ϕa, x

A, xI
)
=

1

M

∑
i,j

δi,jLsim (Ai,j , I ◦ ϕa)

+λlLlandmark

(
ϕa

(
xA

)
, xI

)
,

(9)

with δi,j defined as:

δi,j =

{
1 if Ai,j selected

0 else.
(10)

The first term of the loss function promotes similarity between the image I after alignment
and the atlas. The similarity loss is only calculated within a mask Ω̃, since there are other
objects in the 3D ultrasound images besides the embryo. Mask Ω̃ is obtained by dilating the
union of all segmentations SAi,j∀i, j using a ball with radius 1. Lsim(A, I ◦ ϕa) is chosen as
the negative masked local (squared) normalized cross-correlation (NCC), which is defined
as follows for the masked images U, V :

NCC (U, V ) =
1

|Ω̃|

∑
p∈Ω̃

(∑
q[U(q)− Ū(p)][V (q)− V̄ (p)]

)2(∑
q[U(q)− Ū(p)]2

)(∑
q[V (q)− V̄ (p)]2

) (11)

where Ū (and similarly for V̄ ) denotes: Ū(p) = 1
j3

∑
q U(q), and where q iterates over a

j3 volume around p ∈ Ω with j = 9 as in Balakrishnan et al. (2019). The second term
in Eq. (9) minimizes the mean Euclidean distance in voxels between the landmarks after
registration and is defined as:

Llandmark

(
ϕa

(
xA

)
, xI

)
=

1

nl

nl∑
i=1

∥∥xIi − ϕa

(
xAi

)∥∥
2
, (12)

with nl the number of annotated landmarks, with nl = 2 in our case.
During the second stage of training the weights θaffine learned in the first stage are used

as initialization of the network. The loss function for the second training stage of the affine
registration network is defined as:

L(A, I, ϕa) =
1

M

∑
i,j

δi,jLsim (Ai,j , I ◦ ϕa)

+ λsLscaling (ϕa) ,

(13)

When objects in the background are present, penalizing extreme zooming is beneficial, as
was showed in Bastiaansen et al. (2020a). Hence, Lscaling is defined as:

Lscaling (ϕa) =

3∑
i=1

log(si)
2, (14)

following Ashburner et al. (1999), with si the scaling factors of ϕa obtained using the singular
value decomposition.
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3.3 Nonrigid registration network

The input of the nonrigid registration network is an affinely registered image Iϕa := I ◦ ϕa

together with a selected atlas Ai,j . During training we provide as input to the network the
image I and one randomly chosen selected atlas Ai,j . During inference we give as input to
the network all the possible pairs of image and selected atlas. The output of the network
consists of ϕdi,j , along with the registered images Iϕa ◦ ϕdi,j .

To obtain the segmentation in Eq. 6, the deformation ϕdi,j must be inverted. To ensure
invertibility, we adopt diffeomorphic deformation for ϕdi,j . Following Dalca et al. (2019),
we use a stationary velocity field (SVF) representation, meaning that ϕdi,j is obtained by

integrating the velocity field ν (Ashburner, 2007). Now, ϕ−1
di

is obtained by integrating the
velocity field using −ν.

3.3.1 Network architecture

For the nonrigid registration network we used the architecture of Voxelmorph proposed by
Balakrishnan et al. (2019). Voxelmorph consists of an encoder, with convolutional layers
with a stride of 2, a decoder with convolutional layers with a stride of 1, skip-connections,
and an up-sampling layer. This is followed by convolutional layers at full resolution, to
refine the velocity field ν. The numbers of filters (f3, f4) are hyperparameters. The velocity
field ν is integrated in the integration layer to give the dense displacement field. In both
networks, all convolutional layers have a kernel size of 3 and have a LeakyReLU activation
with parameter 0.2.

3.3.2 Loss function

The loss function for the nonrigid registration network is:

L(Ai,j , Iϕa , ϕdi,j ) = Lsim

(
A, Iϕa ◦ ϕdi,j

)
+ λdLdiffusion

(
ϕdi,j

)
, (15)

where Iϕa(x) := I ◦ ϕa is the output of the affine network. Lsim is again defined as the NCC
in Eq. 11. ϕdi,j is regularized by:

Ldiffusion

(
ϕdi,j

)
=

1

|Ω̃|

∑
p∈Ω̃

∥∇di,j(p)∥2, (16)

This loss term penalizes local spatial variations in ϕdi,j to promote smooth local deforma-
tions (Balakrishnan et al., 2019).

3.4 Implementation details

For training the ADAM optimizer was used with a learning rate of 10−4, as in Balakrishnan
et al. (2019). For the second training stage of the affine registration network, we lower the
learning rate to 10−5, since the network has already largely converged in the first stage. We
trained each part of the network for 300 epochs with a batch size of one. In the first training
stage of the affine network data augmentation was applied. Each scan in the training set
was either randomly flipped along one of the axes or rotated 90, 180 or 270 degrees. For the
second stage and nonrigid network preliminary experiments showed that data augmentation
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did not improve the results. The framework is implemented using Keras (Chollet and et al.,
2015) with Tensorflow as backend (Abadi et al., 2016). The code is publicly available at:
https://gitlab.com/radiology/prenatal-image-analysis/multi-atlas-seg-reg

4. Experiments

4.1 The Rotterdam Periconceptional Cohort

The Rotterdam Periconceptional Cohort (Predict study) is a large hospital-based cohort
study conducted at the Erasmus MC, University Medical Center Rotterdam, the Nether-
lands. This prospective cohort focuses on the relationships between periconceptional mater-
nal and paternal health and embryonic and fetal growth and development (Rousian et al.,
2021; Steegers-Theunissen et al., 2016). 3D ultrasound scans are acquired at multiple points
in time during the first trimester. Ultrasound examinations were performed on a Voluson
E8 or E10 (GE Healthcare, Austria) ultrasound machine. Furthermore, maternal and pa-
ternal food questionnaires are taken and other relevant data such as weight, height and
bloodsamples are collected.

4.1.1 In- and exclusion criteria

Women are eligible to participate in the Rotterdam Periconceptional Cohort if they were at
least 18 years of age, with an ongoing singleton pregnancy less then 10 weeks of GA. Preg-
nancies were only included if the GA could be determined reliably and GA was calculated
according to the first day of the last menstrual period (LMP), and in cases with an irregular
menstrual cycle, unknown LMP or a discrepancy of more then seven days, GA was deter-
mined by the CRL measurements performed in the first trimester. In case of conception by
means of in vitro fertilisation or intra-cytoplasmic sperm injection, the conception date was
used to calculate the GA. We included pregnancies regardless of the mode of conception.
The distribution of the pregnancy outcome was as follows: 83.3% no adverse pregnancy
outcome, 2.5% congenital malformation, 0.7% postpartum death, 0.6% intra-uterine fetal
death, 0.2% termination of pregnancy, 0.1% stillbirth and 12.6% unknown.

We included images that had sufficient quality to manually annotate the crown and
rump landmarks. We included subjects with ultrasound images acquired between 8+0 and
12+6 weeks GA. This range was selected, since previous research by Rousian et al. (2013)
showed that firstly the crown and rump landmarks could be reliably determined up until
and including the 12th week of pregnancy, and secondly that other relevant measurements
which are relevant for more in-depth insight in growth and development, such as head
circumference, trans-cerebellar diameter, biparietal diameter and abdominal circumference
can be measured reliable starting at a GA of 7+4.

4.1.2 Manual annotations and image pre-processing

In the Rotterdam Periconceptional cohort the embryonic volume (EV) is semi-automatically
measured using Virtual Reality (VR) techniques and a region-growing segmentation algo-
rithm that has been implemented specifically for this measurement (Rousian et al., 2009).
The embryonic volume was measured by various experienced researchers from the cohort
over the years (2009-2018). Evaluation of this measurement showed that inter-observer
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variability between an experienced and inexperienced rater is 0.999 (95%CI : 0.997−0.999)
and intra-observer variability was 0.999 (95%CI : 0.998− 0.999) (Rousian et al., 2010). We
choose to use the available EV measurements for evaluation and refer to them as EVgt.
Additionally, for 186 images corresponding segmentations were saved. We used these seg-
mentation, referred to as Sgt

I , for evaluation as well.

The included images have isotropic voxel sizes varying between 0.06 mm and 0.75 mm.
The resolution varied between 121 and 328 voxels in the first dimension, between 83 and
257 voxels in the second dimension and 109 and 307 voxels in the third dimension. To
speed up training all images were down-sampled to 64 × 64 × 64 voxels. To achieve this
while keeping isotropic voxel sizing, all images were padded with zeros to a square shape
and subsequently re-scaled to the right size.

4.1.3 Atlas, training, validation and test set

We included data of 1282 subjects collected between December 2009 and August 2018.
Eight subjects were used to create the atlases, the remaining 1274 subjects were divided as
follows over the training set (874, 68%), independent test set (200, 16%) and validation set
(200, 16%) for hyperparameter optimization and fusion strategy comparison.

The eight subjects that formed the atlases were selected because they had weekly ul-
trasound images and had the highest overall image quality rating, this rating was assigned
during the measurement in VR (Rousian et al., 2013). We choose to use eight atlases since

Figure 3: Overview of all atlases Ai,j with i = 1, ..., 8 the number of the subject and
J = 8, 9, 10, 11, 12 the week of pregnancy the ultrasound image was made. Below each
image the GA is given along with the quality rating. The quality is rating given during the
measurements by the rater, distinguishing three categories: ++: excellent image quality,
+: sufficient quality, -: low quality to perform measurements.
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Table 1: Characteristics of the splitting of the data. Per gestational week the number of
unique subjects (subj), ultrasound images (img), ultrasound images with embryonic volume
measurement (EV) and ultrasound images with a ground truth segmentation (seg) is given.
Note that per subject, in one or more weeks GA, one or more ultrasound images were
available.

Training Validation Test
week subj img EV seg subj img EV seg subj img EV seg

8 252 457 373 64 142 130 63 156 130
9 605 1333 1112 195 404 394 34 193 396 394 34
10 237 551 376 81 150 140 83 156 150
11 463 1190 865 193 420 387 56 194 428 408 60
12 185 407 193 68 122 121 67 113 113

all 874 3938 2919 200 1238 1172 90 200 1249 1205 94

adding more did not lead to improved performance in preliminary experiments. The choice
to consider only subjects with weekly ultrasound images was made to ensure that we would
have a good representation of every week GA among the atlases. In Fig. 3 a visualization of
all atlases along with their GA in days and quality score can be found. We divided subjects
over the train, validation and test set by following the rules below in the given order:

1. all segmentations Sgt
I must be divided equally over the validation and test set;

2. all data of a subject should be in the same set;

3. the majority of the EV measurements should correspond to ultrasound images in the
validation or test set.

4. within every week GA the division of unique subjects is approximately 60 % - 20% -
20% over train, validation and test set.

In Tab. 1 the characteristics of the final split can be found.

4.2 Evaluation metrics

The following four metrics were used to evaluate the results. Firstly, we report the relative
error between the volume calculated from estimated segmentation SI , referred to as EV (I),
and the ground truth embryonic volume EVgt(I):

EVerror(I) :=
|EV (I)− EVgt(I)|

EVgt(I)
. (17)

Secondly, we calculate the target registration error (TRE) in millimeters (mm) for the
crown and rump landmarks as defined in the loss function in Eq. 12, to evaluate the accuracy
of the affine alignment. The TRE is not calculated to evaluate the accuracy of the non-rigid
alignment, since the TRE is only calculated in two landmarks, which is too limited.

Thirdly, we report the Dice similarity coefficient and the mean surface distance (MSD)
in mm between the available manual segmentations Sgt

I and the estimated segmentation SI

of the image I (Dice and Lee, 1945).
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To compare the results of different experiments, we performed the two-sided Wilcoxon
signed-rank test with a significance level of 0.05, we report the p-values for the following
three metrics as pEV and pDice and pMSD. We excluded the TRE from the statistical
analysis, since the TRE only measures the alignment in two points, and therefore a lower
TRE does not by definition means better alignment.

4.3 Experiments

We performed the following seven experiments.

Experiment 1: sensitivity metrics
In literature there are no comparable studies available, to get insight in the performance of
the presented framework we addressed the sensitivity to perturbations of the used evalua-
tion metrics. We performed 4 operations on the 184 available ground truth segmentations:
1) dilation using a ball with radius of one voxel: Sgt ⊕ B1; 2) erosion using a ball with a
radius of one voxel: Sgt ⊖B1; 3) dilation using a ball with a radius of two voxels: Sgt ⊕B2;
4) erosion using a ball with a radius of two voxels: Sgt ⊖ B2. We calculated for the four
obtained segmentations the EVerror and Dice score with respect to Sgt and report the mean
and standard deviation per operation.

Experiment 2: influence of hyperparameters and second affine training stage
Using the single-subject strategy As

1 we performed a hyperparameter search on the vali-
dation set for λl ∈ {0.01, 1, 100} in Eq. 9, λs ∈ {0, 0.005, 0.05, 0.5, 5} in Eq. 13 and λd ∈
{1, 10, 100} in Eq. 15 and the number of filters (f1, f2) with f2 = 2f1 and f1 ∈ {16, 32, 64}
in the encoder of the affine network and (f3, f4) with f4 = 2f3 and f3 ∈ {1, 2, 4, 8, 16} in
the encoder and decoder of the nonrigid network. Furthermore, we took out training stage
2 of the affine network to evaluate its necessity. We call this strategy As

1[no stage 2].

Experiment 3: single-subject strategy
We used the best hyperparameters from experiment 2 to train As

k for k = 2, 3, ..., 8 and
compare the results on the validation set to the results for As

1, to evaluate whether the
choice of subject k influences the results. Finally, we applied As

k for best performing sub-
ject k to the test set.

Experiment 4: comparison of the multi-subject and ensemble strategy
To evaluate what is the best approach to combine data of multiple subjects we compared
the results on the validation set of the multi-subject strategy Am for M = 1, M = 2, M = 4
and M = 8 to the ensemble strategy Ae.

Experiment 5: influence of atlas quality
We investigated the influence of the quality of the ultrasound images on the results by
excluding subject i = 8, since this subject had the lowest image quality score (see Fig. 3).
We repeated experiment 4 without subject i = 8 on the validation set and compared the
results to the original results in experiment 4.
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Experiment 6: comparison of the best models
We compared the best strategy using data of multiple subjects to the best single-subject
strategy on the test set. This was done to investigate whether utilizing data of multiple
subjects improves the results. In addition, for the best performing model, we compared the
results to the 3D nn-UNet (Isensee et al., 2021). The nn-UNet was trained using: 1) the
available ground truth segmentations of all atlases, and 2) additionally using the ground
truth segmentations available from the validation set. This resulted in a training set of 40
and respectively 130 images. The nn-UNet was trained using the default parameters.

Experiment 7: analysis of best model
In the last experiment we evaluated the best performing strategy for the proposed method
in more detail. Recall from Tab. 1 that in our dataset, for every subject at one or more
weeks GA, one or more ultrasound images were acquired. These images vary in quality,
and in orientation and position of the embryo. In clinical practice, only one of the acquired
images is used for the measurement, hence the algorithm has to work for at least one of
the available ultrasound images. Firstly, we visually scored the affine alignment for every
ultrasound image as follows: 0: poor, 1: landmarks aligned, 2: acceptable, 3: excellent. For
the further analysis we took per subject and week GA the best score. Secondly, we plotted
for cases with scores 2 and 3 the obtained embryonic volume against the ground truth em-
bryonic volume, to compare their distribution and calculate the correlation between them.
Thirdly, we show a visualization of the resulting mid-sagittal after alignment and the ob-
tained segmentation. Fourthly, to gain more insight into reasons why our framework might
fail, we visually inspected all images in the test set with a score of 0.
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Table 2: Mean EVerror and Dice score for the four operations. Standard deviation is given
between brackets. The radius of the ball is given in voxels.

(a) EVerror

Radius Dilation Erosion

1 0.37 (0.06) 0.31 (0.05)
2 0.83 (0.17) 0.55 (0.07)

(b) Dice

Radius Dilation Erosion

1 0.84 (0.02) 0.81 (0.03)
2 0.71 (0.04) 0.61 (0.07)

5. Results

5.1 Experiment 1: sensitivity metrics

We performed four operations (Sgt ⊕B1, Sgt ⊖B1, Sgt ⊕B2, Sgt ⊖B2) on the 184 available
ground truth segmentations to investigate the sensitivity to perturbations. From Tab. 2 we
conclude that an under- of overestimation of one voxel around the edge results in a Dice
score between 0.81 and 0.84 on average and a EVerror between 0.31 and 0.37 on average.
An over- or underestimation of two voxels around the edge results in a Dice score between
0.61 and 0.71 and an EVerror between 0.55 and 0.83. In the remaining experiments, these
values serve as a reference for the residual errors.

5.2 Experiment 2: influence of hyperparameters and second affine training
stage

In Fig. 4 the mean EVerror, Dice score, TRE and MSD can be found for the validation set
for different hyperparameters. For the first stage of the affine registration network, the best
results were found for λl = 1 and (f1, f2) = (32, 64). Setting λl = 0.01 gave worse results,
since the the supervision by landmarks was neglected. For λl = 100 the results are worse,
since in this case the image similarity term in Eq. (9) is neglected in the optimization.

Furthermore, Fig. 4 shows that after applying the second training stage of the affine
network in general the results improved. Only for λs = 5 the results deteriorate, which is
caused by penalizing scaling too much. The best results were found for λs = 0.05. Note that
the TRE increased a bit during the second training stage, which was to be expected, since the
manually annotated landmarks have a limited precision and only measure alignment at two
positions. Furthermore, we took λs = 0.05 as optimal value, although for λs = {0, 0.005}
the TRE is lower. This choice was made since the other metrics are optimal for λs = 0.05,
which indicates that the alignment in the two landmarks can be better with more scaling,
but the overall quality deteriorates.

Regarding the results of training the nonrigid registration network, Fig. 4 shows that
setting λd = 100 results in low flexibility of the deformation field, which leads to no improve-
ments of the results after nonrigid registration. Setting λd = 1 resulted in more irregular
deformation fields, which led to less improvement of the metrics compared to λd = 10. The
best results were found for λd = 10 and (f3, f4) = (8, 16).

Finally, we compared using the results of stage 2 (As
1) or the results of stage 1

(As
1[no stage 2]) as input for the nonrigid registration network. Comparing the results for

As
1 and As

1[no stage 2] in Fig. 5 shows that the results are better for all metrics for As
1. The

statistical test confirmed these observations (pEV < 0.001, pDice < 0.001, pMSD < 0.001).
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Figure 4: The mean EVerror (a), mean Dice score (b), mean TRE (c) and mean MSD (d)
for the validation set for different values of λl in Eq. (9), λs in Eq. (13), λd in Eq. (15) and
the number of filters (f1, 2f1) in the affine network and (f3, 2f3) in the nonrigid network.
The result for the chosen combination of hyperparameters is underlined. Hyperparameter
combinations where the metrics became infinite are blank.

5.3 Experiment 3: single-subject strategy

Using the best hyperparameters determined in experiment 2, we trained the framework using
the single-subject strategy for every subject k = 1, ..., 8.Fig. 5 shows for the validation set
that for As

k, for k = 1, .., 8 the results improved between the stages of the affine network and
after nonrigid registration in terms of the EVerror, Dice score and MSD. For the TRE we
observed again in general a slight increase after the second training stage. Furthermore, a
wide spread is observed in the results, which comes from cases where the affine registration
fails and this can not be compensated for by the subsequent nonrigid registration network.

In general our approach gives similar results independent of the choice of subject. How-
ever, there are differences in results between the different subjects, which are consistent
with the variation in atlas image quality, since for example subject 8 had the least overall
quality. The atlas image quality is given in Fig. 3.

We applied the framework on the test set using the best hyperparameters found and
the best single-subject strategy. Fig. 5 shows that As

4 performs the best in terms of Dice
score and TRE and comparable in terms of EVerror and MSD. When applying this model
to the test set we found that the results in Fig. 5 for As

4[test] are comparable to those on
the validation set (As

4).
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Figure 5: Results for all eight single-subject strategies evaluated over the validation set.
As

1[no stage 2] refers to the single-subject strategy where stage 2 of the affine network is
omitted. The dotted line represents the mean. As

4[test] refers to the results of evaluating
As

4 on the test set.
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5.4 Experiment 4: comparison of the multi-subject and ensemble strategy

In experiment 4 we compared the multi-subject strategy Am, for different values of M ,
with the ensemble strategy Ae. Fig. 6a shows that for the EVerror using the multi-subject
strategy Am gave for all tested values of M better results than taking the ensemble strategy
Ae. This is confirmed by the statistical tests, with the p-values in Tab. 3.

For the Dice score and MSD the ensemble strategy gave comparable results for the best
multi-subject strategies with M = {4, 8}.

For the TRE we observe in Fig. 6a that the results for the ensemble strategy Ae are
better than for the multi-atlas strategy Am. This was to be expected since the mean of
np = 8 affine transformations is taken, which reduces the error in the alignment. However,
despite the better affine alignment, the segmentation did not improve. Hence, we conclude
that the multi-subject strategy performs better.

Regarding the value of M for the multi-subject strategy, we found that the results for
M = {4, 8} significantly outperformed the results for M = {1, 2} for at least one metric.
When comparing M = 4 to M = 8, we found that M = 4 had a lower median value for
the EVerror (0.31 versus 0.33) and MSD (1.61 versus 1.69), and higher median value for
the Dice score (0.73 versus 0.70). Hence we conclude that the multi-subject approach with
M = 4 is the best strategy to include data from multiple subject.

Table 3: P-values of the two-sided Wilcoxon signed-rank test for the metrics on the valida-
tion set in experiment 4. Statistically significant results are boldface.

EVerror Am,M = 1 Am,M = 2 Am,M = 4 Am,M = 8 Ae

Am,M = 1
Am,M = 2 < 0.001
Am,M = 4 < 0.001 0.780
Am,M = 8 0.064 0.005 0.51

Ae < 0.001 < 0.001 < 0.001 < 0.001

Dice Am,M = 1 Am,M = 2 Am,M = 4 Am,M = 8 Ae

Am,M = 1
Am,M = 2 0.001
Am,M = 4 < 0.001 0.016
Am,M = 8 < 0.001 0.147 0.304

Ae < 0.001 0.006 0.471 0.052

MSD Am,M = 1 Am,M = 2 Am,M = 4 Am,M = 8 Ae

Am,M = 1
Am,M = 2 < 0.001
Am,M = 4 < 0.001 0.031
Am,M = 8 < 0.001 0.812 0.071

Ae < 0.001 0.004 0.510 < 0.017
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Figure 6: (a) Results for the validation set in experiment 4, where multi-subject strategy
Am for different values of M is compared to the ensemble strategy Ae. (b) Results for the
validation set in experiment 5, where experiment 4 is repeated without the data of subject
i = 8 (which had the lowest image quality).
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5.5 Experiment 5: influence of quality atlas images

After excluding subject i = 8 with the lowest image quality, experiment 4 was repeated for
the other np = 7 subjects. Fig. 6b shows that for multi-pregnancy strategy Am with M = 1
and the ensemble strategy Ae the results are significantly better when excluding the subject
with lowest image quality (Am, M = 1: pEV = 0.001, pDice < 0.001, pMSD < 0.001, Ae:
pEV < 0.001, pDice < 0.001, pMSD < 0.001). This can be explained by the fact that if fewer
atlases are taken into account, atlases with worse quality will have more influence.

When comparing the multi-subject strategy Am with M = 7 against the multi-subject
strategy Am with M = 8, the EVerror, and was significantly better for M = 7 (pEV = 0.011,
pDice = 0.434, PMSD = 0.510). For the multi-subject strategy with M = 2 and M = 4 the
results were not significantly different for any metric (M = 2: pEV = 0.229, pDice = 0.121,
pMSD = 0.291, M = 4: pEV = 0.404, pDice = 0.445, pMSD = 0.741).

Therefor, since the multi-subject strategy was not harmed by the inclusion of the 8th
atlas subject with the worst quality, we conclude that the multi-subject strategy Am, with
M = 2 or M = 4 is more robust to choice of atlas.

5.6 Experiment 6: comparison of the best models

The results for the best single-subject strategy As
4 and best multi-subject strategy Am with

M = 4 were compared on the test set and no significant differences were found (pEV = 0.75,
pDice = 0.71, pMSD = 0.86). From the results we conclude that the multi-subject strategy
with M = 4 gives the best model, since this strategy omits choosing the right subjects as
atlas. Furthermore, in experiment 5 we saw that the results are not affected by the presence
of atlases with lower image quality. Finally, on the test set we find a median EVerror of 0.29,
Dice score of 0.72 and MSD of 1.58 mm.

Fig. 7 shows the results of the comparison with the 3D nn-UNet. The nn-UNet is
trained on 1) the atlas subjects, 2) the atlas subjects plus images with a ground truth
from the validation set. For every week GA, the nn-UNet outperformed our approach for
segmentation.

Figure 7: Result for comparison between the multi-subject strategy with M = 4 and the full
resolution 3D nn-UNet Isensee et al. (2021) per week GA over the test set. The nn-UNet is
trained on 1) the atlas subjects, 2) the atlas subjects plus images with a ground truth from
the validation set.
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5.7 Experiment 7: analysis of the best model

We analyzed the results using the multi-subject strategy Am with M = 4 in more detail for
the test set. Measuring the embryonic volume semi-automatically in VR takes between 5
and 10 minutes (Rousian et al., 2013) per 3D image, the proposed framework takes on an
Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz 16 seconds to process one 3D image. Hence,
we conclude that with appropriate hard- and software optimization our method can be used
real-time in clinical practice.

In Tab. 4 the results for the visual scoring are given. Overall, we found the following
distribution: 0 (poor): 0.13 %, 1 (landmarks aligned): 26 %, 2 (acceptable): 39%, 3
(excellent): 21%. In Fig. 9 examples for every score are given.

Next, we analyzed the metrics per score in Fig. 8. For each metric we observed that
in general a better visual score corresponds to a lower EVerror, TRE, MSD, and a higher
Dice score. Furthermore, we observe that the wide spread in the results for all metrics is
many caused by failed affine alignment (score 0 and 1), and that in cases with successful
alignment (score 2 and 3) the spread for the TRE, MSD and Dice score is smaller. For the
EVerror for scores 2 and 3 there is a wide spread, however this spread is comparable to the
values found in experiment 1 and for the nn-UNet in experiment 6.

Furthermore, we observed that all metrics are in the same range regardless of the week
GA. Except for the EVerror in week 8 and TRE in week 12. From the visual scoring in Tab.
4 we found that week 8 has relative the most poorly aligned (score 0) cases, and this was
reflected in the EVerror. For week 12 the TRE became the largest in case of poor alignment,
which can be explained by the the larger size of the embryo in week 12.

Next, we plotted in Fig. 10a, for cases with scores 2 and 3, the obtained embryonic
volume against the ground truth. When performing linear regression on this data we found
y = 0.95x+ 0.04 and a correlation of 0.90. This shows that despite the wide spread for the
EVerror in Fig. 8, we obtain accurate segmentations if the alignment is correct. Furthermore,
fig. 10b shows for every gestational week the mid-sagittal plane of an image from the test
set. GA, EVerror and Dice score are given per image.

Week 8 Week 9 Week 10 Week 11 Week 12 Total

0 22 (29%) 28 (15%) 0 (0%) 17 (9%) 7 (13%) 74 (13%)
1 23 (31%) 46 (25%) 23 (37%) 45 (25%) 13 (23%) 150 (26%)
2 23 (31%) 74 (40%) 27 (37%) 72 (39%) 28 (51%) 224 (39%)
3 7 (9%) 36 (20%) 23 (32%) 49 (27%) 7 (13%) 122 (21%)

total 75 184 73 183 55 570

Table 4: Visual alignment score per week GA, with 0: poor, 1: landmarks aligned, 2:
acceptable, 3: excellent. In the test set in there were 200 subjects with in one or more week
GA, one or more ultrasound images taken. We took per subject and week GA the image
with the highest score, this resulted over 200 subject in 570 ultrasound images.
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Finally, we visually inspected all images in the test set with a visual alignment score
of 0. We observed that in 8% of the images the embryo was lying against the border of
the image, in 47% of the images the embryo was lying against the uterine wall, in 34% the
image quality was very low, and in 11% of the images there was no apparent visual cue why
the affine registration failed. Fig. 11 shows some examples.

Figure 8: Results for visual alignment score for multi-subject strategy with M = 4 per week
GA for each metric.

Figure 9: Examples of slices extracted at the mid-sagittal plane. (a,b) example for score 0:
poor. (c,d) example for score 1: landmarks aligned. (e) example for score 2: acceptable.
(f) example for score 3: excellent.
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Figure 10: a) Joint plot for the EV and EVgt in cm3 for cases with a visual alignment score
of 2 (acceptable) or 3 (excellent), for the multi-subject strategy Am with M = 4 for the
test set. The dotted line represents y = x, the solid line is the result of linear regression:
y = 0.95x+ 0.04. We found a correlation coefficient of 0.90. b) Results of multi-pregnancy
strategy Am with M = 4 for the test set. For every week GA the mid-sagittal plane of an
image from the test set is shown. The same slice is shown for every 3D volume.

Figure 11: Examples of the original image for which the the affine registration network
failed. (a) example of an image where the embryo lies in the image border. (b,c) examples
of images where the embryo lies against the uterine wall and there is no clear distinction
between embryo and uterine wall. (d,e) examples of images with low quality.
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6. Discussion and conclusion

Monitoring first trimester embryonic growth and development using ultrasound is of crucial
importance for the current and future health of the fetus. A first key step in automating
this monitoring, is achieving automatic segmentation and spatial alignment of the embryo.
Automation of those tasks will result in less investigation time and more consistent results
(Carneiro et al., 2008; Blaas et al., 2006). Here, we present the first framework to perform
both tasks simultaneously for first trimester 3D ultrasound images. We have developed an
multi-atlas segmentation framework and showed that we could segment and spatially align
the embryo captured between 8+0 and 12+6 weeks GA.

We evaluated three atlas fusion strategies for deep learning based multi-atlas segmenta-
tion, namely: 1) single-subject strategy: training the framework using atlas images from a
single subject, 2) multi-subject strategy: training the framework with data of all available
atlas images and 3) ensemble strategy: ensembling of the frameworks trained per subject.
The multi-subject strategy significantly outperformed the ensembling strategy and the best
results on were found when taking the M = 4 atlases closest in gestational age in account.
The best single-subject strategy and the best multi-subject strategy did not significantly
outperform each other. However, the multi-subject strategy circumvents the need for se-
lecting the most suitable subject to create atlases and is therefore a more robust method.

We took a deep learning approach for image registration. Our framework consist of two
networks, the first one dedicated to learning the affine transformation and the second one
to learning a nonrigid registration. The affine network is trained in two stages: the first
stage is trained supervised using the crown and rump landmarks and subsequently in the
second stage the results is refined in an unsupervised manner. In our experiments using the
single-subject strategy we showed that this second stage significantly improves, as expected,
the final result over skipping this stage.

Furthermore, in the single-subject experiment we found that, regardless of the subject
used, the result improves after each training step, but atlases with a higher image quality
gave better results. From this we conclude that the choice of atlas subjects matters for the
results.

When using multiple subjects, this choice is circumvented. Here, we found that the
multi-subject strategy outperformed the ensemble strategy significantly in terms of the
EVerror. For the Dice score and MSD both strategies performed similarly. Note that in
terms of the TRE, the ensemble strategy gave the best results. However, this improvement
in alignment is not reflected in the significantly inferior segmentation results. Furthermore,
when excluding the subject that gave the worst results as single-subject strategy, we found
that for the ensemble strategy the result, for all metrics, significantly improved. For the
multi-subject strategy this was not the case. Hence, we conclude that taking a multi-subject
strategy is more robust.

The robustness for choice of atlas subject of the multi-subject strategy can be explained
by the fact that one network is trained using all available subjects. This has two benefits:
firstly, the network can use the variation among atlases to model the variation present in
the data, and secondly similarity to the atlas after registration is considered for all subjects,
which reduces the influence of individual quality of atlas images. For the ensemble strategy
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the network is only trained on one subject, which does not allow for modelling variation
among atlases.

In the experiments we evaluated for the multi-subject strategy how many M atlases
should be used for registration. The best results were found for M = 4, this is explained
by the fact that taking M < 4 may not present enough variation to model the appearance
of every image I. Surprisingly, taking M > 4 did not improve the results. This could be
explained by the fact that the subjects chosen as atlas were selected based on quality and
on covering almost every day between 8 and 12 weeks gestation, see Fig. 3. When taking
M > 4, this leads to a comparison with atlases covering a wider age range. This can be
problematic for alignment, since these atlases may show different stages of development.

Finally, we analyzed in-depth the best model. Firstly, we compared the proposed method
to the 3D nn-UNet (Isensee et al., 2021), and we found that nn-UNet outperformed our
method. The main difference between nn-UNet and our method is that we predict the
deformation field to registers the image to a standard orientation, and from there derive the
segmentation. The main limitation of our work is that when the affine registration fails, the
nonrigid network cannot correct for this. This resulted in a wide spread in the results that
was propagated from the affine to the nonrigid network for all metrics, and all atlas fusion
strategies. To overcome this limitation, a good direction for further research to improve the
alignment results are to either add additional landmarks, add the embryonic volume error
to the loss, or incorporate the segmentations obtained by nn-UNet to improve the alignment
results. These segmentations can be incorporated either a priori by segmenting the embryo
before alignment, or can be added to the loss as supervision. Although it is shown in
literature that including supervision using segmentations improve the results for nonrigid
registration in general (Balakrishnan et al., 2019), due to wide variation in position and
orientation of the embryo, the affine registration might remain challenging to find despite
having the segmentation available.

We visually scored the alignment quality, and we found that overall for 39% of the test
cases the result was acceptable and for 21% excellent. Furthermore, for the acceptable to
excellent cases we found a correlation between the obtained EV and ground truth EV of
0.90, indicating a strong correlation. Hence we conclude that when the alignment of the
embryo is successful, we can accurately obtain the segmentation. Furthermore, we observed
the cases where the alignment failed, that there was a clear visual explanation for the failing
of the registration: either the embryo lying on the image border, against the uterine wall
or the image had low quality.

The main strength of our work is that besides segmentation of the embryonic volume,
we spatially align the embryo to a predefined standard orientation. Within this standard
space any standard plane with there corresponding biometric measurement can easily be
extracted. In future work, we aim to evaluate the proposed method for other measurements
done within the Rotterdam Periconceptional cohort, for example the head volume, biparietal
diameter and occipital-frontal diameter (Rousian et al., 2018).

A point for discussion is the usage of an affine transform for alignment to the standard
space, where a rigid or similarity transform could be more appropriate to define a standard
space. We initially choose to use an affine transformation to have the best input for the
subsequent nonrigid deformation network, since we observed in previous work that the
nonrigid network was not able to capture this (Bastiaansen et al., 2020a).

26



Multi-Atlas Segmentation and Spatial Alignment

Regarding the pre-processing of the data, we chose to down-sample all data to 64x64x64
voxels to speed up the training. However, this may have resulted in loss of information that
might have influenced the results. We did not evaluate if using images at a higher resolution
gave better results.

In our experiments we chose to train separate networks per atlas subject. However,
another interesting approach could be to train separate networks per week GA. We did
not investigate this, since our aim was to develop one framework for the whole GA range.
Furthermore, dividing the images per week GA might negatively influence the results of the
images with a GA of for example 8+6, where the atlases for week 9 might be more similar
then the ones for week 8.

The extension to non-singleton pregnancies is an interesting topic for further research,
which was not considered here. For our framework, this implies that it should be able to
deal with the presence of another (partial) embryo, or the possibility to align them both
independently. We did not include this case in the current work, because non-singleton
pregnancies are excluded from the Rotterdam Periconceptional cohort.

The proposed framework can also be used to support growth and development modelling,
both for normal development and in the case of adverse outcomes, such as miscarriage,
intra-uterine fetal death or postpartum death. Here, we did not further investigate this
since only 52 (4%) of the pregnancies had an adverse outcome. However, we used the
proposed framework to segment and spatially align the embryonic brain for the development
of a spatio-temporal model that can be used to explore correlations between maternal
periconceptional health and brain growth and development (Bastiaansen et al., 2022).

Finally, another interesting topic for further research is applying our framework to other
problems. We created a flexible framework that easily can be adapted to work with or
without landmarks and with or without multiple atlas images. Furthermore, these atlases
could be longitudinal, like presented here, but the framework can also be applied to cross-
sectional atlases. The atlas selection is currently based on GA, but could be based on any
other relevant meta-data.

We conclude that the presented multi-atlas segmentation and alignment framework en-
ables the first key steps towards automatic analysis of first trimester 3D ultrasound. Au-
tomated segmentation and spatial alignment pave the way for automated biometry and
volumetry, standard plane detection, abnormality detection and spatio-temporal modelling
of growth and development. This will allow for more accurate and less time-consuming
early monitoring of growth and development in this crucial period of life.
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