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Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden
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Abstract

Unsupervised learning has made substantial progress over the last few years, especially
by means of contrastive self-supervised learning. The dominating dataset for benchmark-
ing self-supervised learning has been ImageNet, for which recent methods are approaching
the performance achieved by fully supervised training. The ImageNet dataset is how-
ever largely object-centric, and it is not clear yet what potential those methods have on
widely different datasets and tasks that are not object-centric, such as in digital pathology.
While self-supervised learning has started to be explored within this area with encourag-
ing results, there is reason to look closer at how this setting differs from natural images
and ImageNet. In this paper we make an in-depth analysis of contrastive learning for
histopathology, pin-pointing how the contrastive objective will behave differently due to
the characteristics of histopathology data. Using SimCLR and H&E stained images as a
representative setting for contrastive self-supervised learning in histopathology, we bring
forward a number of considerations, such as view generation for the contrastive objective
and hyper-parameter tuning. In a large battery of experiments, we analyze how the down-
stream performance in tissue classification will be affected by these considerations. The
results point to how contrastive learning can reduce the annotation effort within digital
pathology, but that the specific dataset characteristics need to be considered. To take full
advantage of the contrastive learning objective, different calibrations of view generation
and hyper-parameters are required. Our results pave the way for realizing the full poten-
tial of self-supervised learning for histopathology applications. Code and trained models
are available at https://github.com/k-stacke/ssl-pathology.
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1. Introduction

Deep learning has in the last decade shown great potential for medical image-analysis ap-
plications (Litjens et al., 2017). However, the transition from research results to clinically
deployed applications is slow. One of the main bottlenecks is the lack of high-quality labeled
data needed for training models with high accuracy and robustness, where annotations are
cumbersome to acquire and relies on medical expertise (Stadler et al., 2021). An active
research field has therefore been focused on reducing the dependency of labeled data. This
can, for example, be accomplished through transfer learning (Yosinski et al., 2014), where
training on a widely different dataset, such as ImageNet (Deng et al., 2009), can reduce
the amount of training data needed in a targeted downstream medical imaging applica-
tion (Truong et al., 2021). However, as ImageNet contains natural images, there is a large
discrepancy between the source and target domains in terms of colors, intensities, con-
trasts, image features, class distribution, etc. It has been shown that a closer resemblance
between the source and target datasets is preferable (Cui et al., 2018; Cole et al., 2021;
Li et al., 2020), and the usefulness of ImageNet for pre-training in medical imaging has
been questioned (Raghu et al., 2019). In addition, ImageNet pre-training has recently also
been questioned because of the biased nature of the dataset, intensifying the need to find
alternative pre-training methods that are better tailored for the target application (Birhane
and Prabhu, 2021; Yang et al., 2021a).

Self-supervised learning (SSL) has recently emerged as a viable technique for creating
pre-trained models without the need for large, annotated datasets. Instead, pre-training is
performed on unlabeled data by means of a proxy objective, for which the labels can be
automatically generated. The objective is formulated such that the model learns a gen-
eral understanding of image content. It can include predicting image rotation (Gidaris
et al., 2018), solving jigsaw puzzles (Noroozi and Favaro, 2016), re-coloring gray-scale im-
ages (Larsson et al., 2017), to mention a few. One family of SSL methods are those based on
a contrastive training objective, which is formulated to contract the representation of two
positive views, while simultaneously distracting the representations of negative views. This
training strategy has shown great promise in the last few years, and include methods such as
CPC (van den Oord et al., 2019), SimCLR (Chen et al., 2020a), CMC (Tian et al., 2020a),
and MoCo (He et al., 2020). However, successful results have primarily been presented on
ImageNet, despite the above-mentioned need for moving away from this dataset, and it is
still unclear how well the results generalize to datasets with different characteristics.

In this paper, we investigate how SimCLR (Chen et al., 2020a) can be extended to
learn representations for histopathology applications. We consider H&E stained images,
and take a holistic approach, comparing how differences between the ImageNet dataset and
histopathology data influence the SSL objective, as well as pin-pointing how the different
components of the objective contribute to the learning outcome. We show that the heuristics
that have been demonstrated to work well for natural images do not necessarily apply in
histopathology scenarios. To explore the differences, we setup a rigorous experimental study,
which includes:

• three different pathology datasets, for investigating different scenarios with in-domain
and out-of-domain histology data,

2



Learning Representations

• comparison between ImageNet pre-training and domain-specific SSL, for evaluating
the added value of unsupervised pre-training on histology data,

• evaluation of different data availability scenarios in training of the target application,
as we expect pre-training to add different value in the different scenarios,

• evaluation of the impact of different hyper-parameters, as these have been demon-
strated important for the success of contrastive SSL,

• a study of the convergence behavior of SimCLR on pathology data, for demonstrating
how well contrastive pre-training contribute to the target downstream application of
tissue classification.

Our main motive is to clarify how contrastive SSL for histopathology cannot be considered
under the same assumptions as for natural image data. Our results lead to a number of
important conclusions. For example, we show that:

• In pathology, SimCLR pre-training gives substantial benefits, if used correctly.

• Different types of positive/negative views are optimal for contrastive SSL in histopathol-
ogy compared to natural images, and the optimal views can be dataset dependent even
within the pathology domain.

• Parameter tuning, such as the batch size used for SSL, does not have the same influence
as for natural images, due to the differences in data characteristics.

• Pre-training data aligned with the target pathology sub-domain is better suited com-
pared to more diverse pathology data.

The paper is organized as follows: In Section 2, we discuss and position our work in
relation to previous work on SSL, contrastive SSL, and the aspects of SSL specific to digital
pathology. In Section 3, we briefly explain contrastive SSL, followed by a thorough discus-
sion around different aspects related to the view generation that we believe to be important
when comparing natural images to digital pathology. This discussion sets the stage for the
experimental study performed in Section 4, with results presented in Section 5. Finally,
in Section 6, we conclude with an outlook on what needs to be considered for further
improving contrastive SSL in histopathology, where we emphasize how the differences in
data characteristics require a significantly different approach to formulating the contrastive
learning objective. We believe that this work is important for broadening the understanding
of self-supervised methods, and how the intrinsic properties of the data affect the represen-
tations. Our hope is that this will be a stepping stone towards pre-trained models better
tailored for histopathology applications.

2. Related Work

A large body of literature has been devoted to unsupervised and self-supervised learning.
For self-supervised learning, multiple creative methods have been presented for defining
proxy objectives and performing self-labelling. These include, but are not limited to, col-
orization of grayscale images (Zhang et al., 2016; Larsson et al., 2017), solving of jigsaw
puzzles (Noroozi and Favaro, 2016), and prediction of rotation (Gidaris et al., 2018).
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Within self-supervised learning, significant attention has recently been given to a specific
family of methods, which performs instance discrimination (Dosovitskiy et al., 2014; Wu
et al., 2018) through contrastive learning with multiple views. Bachman et al. (2019)
presented a contrastive self-supervised method (AMDIM) based on creating multiple views
using augmentation. van den Oord et al. (2019) presented the InfoMax objective, and
showed that by minimizing it you can maximize the mutual information between views.
Building on these works, constrastive self-supervised methods such as CMC (Tian et al.,
2020a), MoCo(v2) (He et al., 2020; Chen et al., 2020b), and SimCLR (Chen et al., 2020a)
have recently shown improved results on ImageNet benchmarks, closing the gap between
supervised and unsupervised training. Falcon and Cho (2020) actually showed that many
of these methods (such as AMDIM, CPC and SimCLR) are special cases of a general
framework for contrastive SSL. As a continuation of this development, methods such as
BYOL (Grill et al., 2020) and SwAV (Caron et al., 2020) have been presented, expanding
the concept to either avoiding contrastive negatives or to doing cluster assignments instead
of instance discrimination. In this work, we use SimCLR as a representative method of the
contrastive self-supervised methodology. The choice of method is motivated by its simplicity
and high level of adoption since its introduction. We believe that the integral components of
contrastive learning can be justly studied through SimCLR, and anticipate that the results
will generalize to other state-of-the-art contrastive SSL methods.

Self-supervised methods have also been applied to medical images in general, and
histopathology in specific. A number of methods for self-supervised learning have been
presented for data such as volumetric CT and MRI, X-ray images and dermatological digi-
tal images, with application within classification, localization and segmentation (Liu et al.,
2019; Yan et al., 2020; Chaitanya et al., 2020; Xie et al., 2020; Zhou et al., 2020; Azizi et al.,
2021; Li et al., 2021a; Sowrirajan et al., 2021; You et al., 2021). Many of the works shows
that in-domain pre-training is superior to ImageNet pre-training, and that domain-specific
selections of positive and negatives views boosts performance. This motivates us to further
understand what (if any) considerations that are needed for the domain of histopathology.

Self-supervised methods developed for histopathology has been presented. For exam-
ple, incorporation of the spatial information of patches (Gildenblat and Klaiman, 2020; Li
et al., 2021b), using augmentations based on stain separation (Yang et al., 2021b), using
transformer architectures to capture global information (Wang et al., 2021), or utilizing the
multi-resolution structure of whole-slide images (Koohbanani et al., 2020; Srinidhi et al.,
2022). Furthermore, a number of previous work have evaluated contrastive SSL methods
that were designed for natural images (Lu et al., 2019; Stacke et al., 2020; Dehaene et al.,
2020; Ciga et al., 2022), all showing promising results. Among these, Ciga et al. (2022) are
the one closes to this work, as SimCLR is the method used in both studies. Complimentary
to Ciga et al. (2022)’s large battery of experiments, we deepen the understanding through
experiments regarding optimal view generation and hyper-parameters, in junction with a
in-depth discussion on the unique characteristics of histopathology datasets that impact the
learned representations.

Some works give a more rigorous theoretical background to the contrastive methods,
such as Arora et al. (2019), Tsai et al. (2021), Wu et al. (2020) and Tschannen et al. (2020).
However, much of the success of the previously mentioned methods is derived from heuristics
that are still left to be explained theoretically. It is not clear how well the performance
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showed on one domain transfers to new and different ones. As Torralba and Efros (2011)
pointed out some time ago, all datasets, ImageNet included, encompasses specific biases
that may be inherited by a model trained on the data. Purushwalkam and Gupta (2020),
for example, argued that the object-centric nature of ImageNet is the reason for why SSL
methods based on heavy scale augmentations perform well, but that this approach does not
work for object recognition tasks. Cole et al. (2021) showed that contrastive learning is less
suited for tasks requiring more fine-grained details, and that pre-training on out-of-domain
data gives little benefit. Therefore, we have reason to look closely on how contrastive
learning methods transfer to the domain of histopathology.

3. Background

This section gives an overview of contrastive multi-view learning as well as view generation,
with the goal of giving an conceptual description of how different design choices affect the
learned representation. The descriptions will facilitate the experimental design and result
analysis in Section 4-6, for identifying the differences in contrastive SSL for histopathology
compared to object-centered datasets with natural images.

3.1 Contrastive learning

The general idea of contrastive learning is that an anchor data point xi (sometimes referred
to as query) together with a positive data point xj (key) form a set of positive views of
the same object. The goal is to map these views to a shared representation space, such
that the representations contain underlying information (features) shared between them,
while simultaneously discarding other (nuisance) information. A positive view pair could
therefore share the information of depicting the same object, but may differ in view angle,
lighting conditions, or occlusion level.

For images, this shared information is high-dimensional, which makes its estimation
challenging. The views are therefore encoded to a more compact representation using a
non-linear encoder, g, {zi = g(xi), zj = g(xj)}, such that the mutual information between
zi and zj is maximized. Maximization of the mutual information can be estimated by using
a contrastive loss function (van den Oord et al., 2019), defined to be minimized by assigning
high values of positive pairs of data ({zi, zj}) and low values to all other ({zi, zk}, k ̸= {j, i}
(denoted “negatives”). A popular such loss function is the InfoNCE loss, defined as:

Li = − log
exp (zTi zj)∑
k exp (z

T
i zk)

. (1)

The choice of positives can be done either in a supervised way, where coupled data is col-
lected (such as multiple staining of the same tissue sample), or in a self-supervised manner,
where the views are automatically generated. One popular approach of the latter kind is
to create two views from the same data point, x, by applying random transformations,
{ti ∼ T, tj ∼ T, }, such that two views of the data sample are created, {x̃i, x̃j}. Negative
samples are typically taken as randomly selected samples from the training data. View
generation, that is, how the views are chosen, has a direct impact of what features the
model will learn.
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3.2 View Generation

Due to the way the contrastive objective is formulated, the choices of how positive and neg-
ative views are selected will largely impact the learned representation. If they are chosen
correctly, the learned representation will separate data in such a way that is useful for the
target downstream task. Incorrectly chosen, the model may learn nuisance features that
result in poor separation of the data with respect to the downstream task. The choice
of optimally selecting positives and negatives thus depends on the intended downstream
task, since it needs to take into account what is considered task relevant and task irrele-
vant 1 (Tian et al., 2020b). For example, color may be considered a nuisance variable in the
downstream task of tumor classification in H&E slides and should therefore not be shared
between positives, but may be an important feature if the downstream task is scoring of
immunohistochemical staining. As the SSL is task-agnostic, that is, the downstream task
is unknown with regard to the self-supervised objective, the view generation is critical for
controlling what features the model learns, such that they tailored to the downstream task.

Figure 1 shows the relationship between shared mutual information (SSL objective) and
view generation. Positive views (top) can be selected/created such that 1) no task-relevant
features are shared, resulting in that the model will use only task-irrelevant features to
solve the self-supervised objective, 2) only task-relevant features are shared, resulting in
the model learning (a subset) of these, or 3) both task-relevant and irrelevant features are
shared, increasing the risk of the model learning so called shortcut features (Geirhos et al.,
2020), often low-level features (such as color). If the views are created with augmentations
(which is what we will consider in this work), this is the result of 1) too strong, 2) just
right or 3) too little transformations. To achieve optimal performance on the downstream
task, the model should learn the minimally sufficient solution (Tsai et al., 2021), such
that two positive views share as much task-relevant information as possible, and as little
task-irrelevant information (middle column, Figure 1).

As highlighted by Arora et al. (2019), the choice of negatives (which generally are ran-
domly selected from the mini-batch) is also important for the learning outcome. In the
bottom row of Figure 1, the relationship between an anchor and negative is shown. If no
information is shared, the model does not have to learn any task-relevant features as any
feature may solve the pre-training objective (left). If too much information is shared, the
model will not learn task-relevant features as these cannot be used to distinguish between
positive and negatives (right). This is typically the case when negatives belong to the same
(latent) class as the positive, making them so called false negatives. It is important to distin-
guish between false negatives and hard negatives, where hard negatives are true negatives
which share similar features with the anchor. This is shown in the middle column, where
the shared information between target and negative is composed of substantial amount of
nuisance information, but no task related information. Hard negatives are generally bene-
ficial for the learning outcome (Robinson et al., 2021), as they hinder the model to rely on
task-irrelevant features to solve the contrastive objective.

To further illustrate the relationship between the different views and the self-supervised
objective, an example is shown in Figure 2. In this example, view generation resulted in
some features shared between the anchor and positive views, of which a subset are task-

1. the notation ”task irrelevant” and ”nuisance” features will be used interchangeably
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Figure 1: How view generation is done will affect the learning outcome. Circles represent all
learnable features for one data sample, where shaded areas denote task-relevant features.
Between anchor (xAi ) and positive (xAj ), which belong to the same class (A), sharing of
task-relevant features should be maximized, while simultaneously minimizing task-irrelevant
features. Between the anchor (xAi ) and the negative (xBk ) (not belonging to same class,
A ̸= B), the opposite should be true.

relevant. Some task-relevant features are, however, not shared, existing in only one of the
views. In addition, some features (both task-relevant and irrelevant) are also shared by a
negative view. This means that out of all available features, some exist in one, two or all
of the views. During model training, the model learns to represent each data point such
that the contrastive objective is fulfilled: the anchor-positive views are attracted, and the
anchor-negative views are repelled. The attracting features are found in the intersection
between the anchor and positive but not in the negative. The repelling features are found
in the negative, but not in the anchor. As discussed in the previous section, the region
of attracting features should therefore contain primarily task-relevant features, and the
repelling region should only contain task-irrelevant features. It should, however, be noted
that there is no guarantee that the model will learn all features in these regions, but only
the subset of features that is enough to solve the contrastive objective, as observed by Tian
et al. (2020b). In the end, as the contrastive objective is task-agnostic and completely relies
on this distinction of features over the training dataset, the degree of task relevance of the
learned representation will depend on how the views were generated.
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Figure 2: View generation results in shared features between anchor, positive and negative
views. Due to the contrastive objective, only a subset of all available features are learned
by the model. These features are either attracting features or repelling features, where view
generation is the only means of controlling to what extent these features are task-relevant.

4. Method

The goal of this paper is to better understand how contrastive self-supervised learning (SSL)
can be used for clinical applications where labeled data is scarce. We do this by evaluating
different pre-training methods for the target downstream application, i.e., classification with
varying amounts of labeled data. In doing so, it is necessary to systematically analyze and
understand the impact of different pre-training methods and training strategies, and how
this relates to the type of data used and the target task. In this section, we present the
datasets, training details and evaluation metrics.

4.1 Experiment design

By using SimCLR as a representative method for contrastive learning, we build our investi-
gation on a series of experiments where we vary the parameters and methodologies relevant
to the analysis.

• Training SimCLR models on in-domain and out-of-domain histology data. It is of
key interest to understand how pre-training from different histopathology sources
and with different augmentations, affect the resulting learned outcome. The results
from this analysis will form the basis of our discussion on self-supervised learning for
histopathology data.

• Compare domain-specific SimCLR with ImageNet pre-training and no pre-training.
Previous works often rely on transfer learning from pre-training using ImageNet. Mo-
tivated by the strong differences between pathology data and ImageNet data in terms
of e.g., image content, number of classes, and overall composition, a systematic evalua-
tion is done of whether a domain-specific pre-training using SimCLR is more beneficial
in this context and if so why.

• Evaluation of different amounts of supervised data for downstream-task training. Pre-
trained models are evaluated both with respect to linear and fine-tuning performance
with varying amounts of supervised training data.

• Batch size, learning rate and temperature scaling impact. Tuning of hyper-parameters
such as batch size, learning rate, and temperature scaling have been shown to play an
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(a) ImageNet (b) Camelyon16 (c) AIDA-LNSK (d) Multidata

Figure 3: Example images from datasets.

important role in contrastive learning using ImageNet. This experiment explores the
corresponding parameter tuning for histopathology data.

• Evaluation of performance during training. Training dynamics presents important
information on model robustness, the optimization, and overall performance. This
experiment investigates downstream task training and how the resulting models evolve
over time.

These experiments, conducted with multiple datasets, form the basis for a detailed
evaluation of contrastive self-supervised learning in general, and SimCLR in particular, in
the context of histopathology.

4.2 Datasets

For this study, three different histopathology datasets were used, from sentinel breast lymph
node tissue, skin tissue and one consisting of mixed tissues extracted as a subset from 60
different datasets. As reference dataset, ImageNet is used. Examples images are shown in
Figure 3, with further details given below, and in Appendix A.

ImageNet ILSVRC2012 (Deng et al., 2009): a dataset constructed by searching on
the internet using keywords listed in the WordNet database. A subset of the total dataset,
approximately 1.2M images, was labeled as belonging to one of 1000 classes using a crowd
sourcing technique. Despite the aim of being a representative dataset with a wide category
of objects, the nature of the collection technique and annotation strategy has resulted in
distinct characteristics and biases in the data, resulting in models trained on this dataset
may inherit the biases (Torralba and Efros, 2011). SSL methods developed and tested
on this dataset are therefore also likely to adhere to some inherit characteristics of the
data (Cole et al., 2021). Using ImageNet pre-trained weights for transfer learning is a
common approach for many medical image applications, which motivates us to use it as a
baseline method. Pre-trained models (trained supervised) were accessed though the Pytorch
library 2.

Camelyon16 (Litjens et al., 2018): 399 H&E-stained whole-slide images (WSIs) of sen-
tinel lymph node tissue, annotated for breast cancer metastases. This dataset was sampled
into smaller patches twice, to construct one dataset used for self-supervised training, and

2. Accessible here: https://pytorch.org/vision/stable/models.html
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one for supervised training. For unsupervised training, the WSIs were sampled in an un-
supervised way, i.e., no tissue annotations were used to guide sampling from the 270 slides
selected as the training slides from the official split. Patches were sampled non-overlapping
with patch size of 256x256 pixels with a resolution of 0.5 microns per pixel (mpp) (approxi-
mately 20x). Maximum 1000 samples were chosen per slide, resulting in a dataset consisted
of slightly less than 270k images.

For supervised training, a downstream task was formulated as binary tumor classification
task. For this dataset, which we denote PatchCamelyon20x, the patches were sampled in
accordance to the PatchCamelyon (Veeling et al., 2018) dataset, a pre-defined probabilistic
sampling of the Camleyon16 dataset using the pixel annotations, resulting in a class-balance
between tumor and non-tumor labels in the dataset. The original PatchCamelyon dataset
is sampled at 10x, with patch size of 96x96 pixels. In this study however, the data was
resampled to match the unsupervised dataset at the target resolution of 0.5 microns per
pixel (approx. 20x) with patch size 256x256 pixels (at the same coordinates as the original
dataset). In line with the PatchCamelyon dataset, training/validation/test samples for
PatchCamelyon20x were taken from 216/54/129 slides respectively. In addition, subsets
(possibly overlapping) of the supervised training dataset was selected as taking all patches
from 10, 20, 50, 100 random slides, respectively (the smaller subsets are subsets of the larger
ones). This was repeated five times to create five folds for each subset. For more details
about PatchCamelyon, see Veeling et al. (2018). Pre-training SimCLR models using the
unsupervised dataset is therefore considered in-domain pre-training, as the same slides are
re-sampled and used for training the supervised, downstream task.

AIDA-LNSK (Lindman et al., 2019): a dataset containing 96 WSIs from 71 unique
patients of skin tissue. The data was split into train, validation, and test on patient level,
such that 50, 6, and 15 patients were included in train, validation and test respectively.
This resulted in 65, 8, and 23 WSIs in each dataset. In analogy with Camelyon16, the
AIDA-LNSK is sampled to create two dataset, one for downstream task training, and a
corresponding in-domain dataset for pre-training.

For unsupervised training, patches were extracted from tissue regions of slides in the
training set (65 slides), found by Otsu threshold from WSI magnification 5x. From these
regions, the data was sampled without overlap. This resulted in an unsupervised dataset
size of approximately 270k patches, roughly the same size as the unsupervised Camelyon16
dataset. All patches were extracted with 0.5 (mpp) resolution at a size of 256x256 pixels.

From AIDA-LNSK, a downstream task was constructed as a five-class tissue classifi-
cation task, using available pixel-level annotations. The five classes were formed as four
classes representing healthy tissue types (dermis, epidermis, subcutaneous tissue and skin
appendage structure) and one class representing “abnormal” (containing different types of
cancer, inflammation, scaring and so on). The slides from the above mentioned split was
sampled (same size and resolution as the unsupervised dataset) such that for the supervised
training dataset, each class included at least 75’000 samples, resulting in approximately 320k
patches. The training set was thereafter subdivided, by randomly selecting all patches from
10, 20 and 50 slides from the original 65. Smaller subsets are true subsets of larger ones.
This was repeated 5 times, such that for each subset size, 5 (possibly overlapping) dataset
were created. The validation and test set were sampled from the respective slides in a class-
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balanced way. For more information about the data collection and annotations, please see
Stadler et al. (2021).

Multidata : Ciga et al. (2022) constructed a multi-data dataset, consisting of samples
from 60 publicly available datasets, originating from multiple tissue types. This pre-sampled
dataset was sampled unsupervised, and will in this study be used for self-supervised training
only. Patches were extracted with size 224x224 pixels, at the maximum available resolution
per dataset, resulting in a variation of resolution between the patches (0.25–0.5 mpp). In
this study, we use a 1% subset of this data, provided by the authors, consisting of 40k
patches. With relation to the downstream tasks of breast tumor classification and skin
tissue classification, this data is considered out-of-domain.

4.3 Training

For all experiments, the ResNet50 (He et al., 2016) model architecture was used. As self-
supervised method, SimCLR was evaluated, and if nothing else is stated, the same training
setup was used as in Chen et al. (2020a).

The SimCLR objective is to minimize the NT-Xent loss. For a positive pair this is
defined as

Li,j = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
, (2)

where (i, j) is a positive pair, and (i, k) a negative one, with the similarity function defined
as sim(u, v) = uT v/(∥u∥∥v∥) (cosine similarity). The temperature scaling, τ , was set to 0.5
for all experiments, unless otherwise stated.

In SimCLR, augmentations are used to create the positive views from the same anchor
sample. Henceforth, ”original” augmentations will refer to the augmentations defined in
the SimCLR paper (randomly applying resize and crop, horizontal flip, color jittering and
Gaussian blur) with the modification of when training with histopathology data, additional
vertical flip and random rotation of 90 degrees was added (due to the rotation invariance
of histopathology data). For examples, please see Appendix B.

Following commonly used protocol, the self-supervised pre-training was done once (due
to computational and time constraints). The resulting representation is evaluated primarly
using a linear classifier on top of the frozen weights, but also using fine-tuning (linear
classifier on top, without freezing any weights). The former method is a way of evaluating
the quality of the pre-trained representations with regard to the target data and objective,
while the latter is a more realistic use-case of the trained weights. For supervised training
cases, training was repeated 5 times with different seeds, and when subsets of the training
data is used, also different folds. All results are reported as patch-wise accuracy on class-
balanced test sets.

All training was conducted on 4 NVIDIA V100 or NVIDIA A100 GPUs. For SimCLR
training, effective batch size of 1024 was used for 200 epochs (training time approximately
24 hours). LARS (You et al., 2017) was used as optimizer, with an initial learning rate 1.2
regulated with the a cosine annealing scheduler.

For linear evaluation, models were trained in a supervised manner for 20 epochs using
Adam optimizer with an initial learning rate of 0.01. For fine-tuning, models were trained
for 50 epochs. For breast, Adam optimizer with an initial learning rate of 1e−3 was used,
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with weight decay of 1e−4. For skin, SGD optimizer with Nesterov momentum was used
with initial learning rate of 1e−4 and momentum parameter of 0.9. In addition, models
were trained in a supervised manner with random initialization (“from scratch”), using
Adam optimizer with learning rate 0.001 for 50 epochs. Common for all supervised training
was the usage of cosine annealing scheduler to reduce learning rate and weighted sampling
to mitigate effects of class imbalance. Augmentations applied during supervised training
consisted of: random resize crop with scale variance between 0.95–1.0, color jittering, and
rotation/flip.

5. Results

Below follows detailed description and results from the experiments outlined in Section 4.1.

5.1 Positive-view generation by augmentation

We here investigate the effect of different augmentations, and their ability to isolate the
task-relevant features in order to improve the correlation between the SSL objective and
the downstream performance.

SimCLR models were trained on the unsupervised datasets from either breast or skin,
and evaluated after 50 epochs on in-domain data from 50 slides, respectively. Eight differ-
ent augmentation combinations were evaluated in terms of the relative improvement over
Base augmentations (using flip, rotate, color jitter and very low scale variance, 0.95− 1.0).
As Chen et al. (2020a) found large scale variance (0.2–1.0) together with Gaussian blur
beneficial for ImageNet, these augmentations were evaluated both together and individu-
ally. Furthermore, two additional augmentations were evaluated, Grid Distort and Shuffle.
These were chosen as transformations that preserve the label of histopathology patches,
but adds perturbations of the compositions of the cells. The results are shown in Table 1.
Further details and examples of the augmentations can be found in Appendix B.

Choosing optimal augmentations for histopathology data depend on dataset and
downstream task Looking at Table 1, choosing the appropriate augmentations for view

Table 1: Relative improvement (percentage points) over using base augmentations only (ro-
tate, flip, color jitter). SimCLR model trained for 50 epochs, linear evaluation on supervised
training set from 50 slides.

Augmentations Breast Skin

Base 81.75% 68.3%

+ {Gaussian blur} + 1.26 + 0.37

+ {Scale} + 3.94 + 0.64

+ {Gaussian blur, Scale} (SimCLR Orig.) + 0.2 + 1.25

+ {Scale, Grid Distort} + 2.44 + 1.42

+ {Scale, Grid Distort, Shuffle} + 1.72 + 1.39

+ {Grid Shuffle} + 0.37 + 2.83

+ {Grid Distort, Shuffle} + 1.6 + 3.79
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generation makes it possible to boost performance with 3.94 and 3.79 percentage points for
breast and skin respectably. However, it appears as there is no common set of augmentations
which is optimal for both datasets. Furthermore, using the same augmentations that were
presented in Chen et al. (2020a) as optimal for ImageNet gives sub-optimal performance
for histology data. Using Gaussian Blur was found to be of negligible value, and scale was
only substantially beneficial for breast data, not for skin. The best set of augmentations for
breast data was to use Base + Scale, while for skin, Base + Grid Distort + Shuffle gave
the highest performance.

Thus, different sets of augmentations are optimal for different datasets and different
downstream task. This is not surprising, as the relevant information in the data depends
both on the inherited features in the dataset, as well as what the downstream task is.
Finding task- and data-specific augmentations are therefore needed.

5.2 Downstream Performance

In this section, different pre-training strategies are evaluated. By using a random initialized
model trained in a supervised way as reference, we want to understand the gain of using
a pre-trained model depending on the size of the supervised data. In Figure 4, the result
of linear evaluation (frozen pre-trained weights) for breast and skin is shown, where the
supervised reference is shown in black (solid line). For each tissue type, five different pre-
trained models are evaluated, either ImageNet Supervised (gray, solid) or four different
configurations of SimCLR, where color denotes dataset (in-domain in red, out-of-domain
in blue) and markers denote augmentations applied (original SimCLR in dashed, best set
from Table 5.1 as dotted). Table 2 shows the fine-tuning results comparing the pre-training
method giving the best performance on the linear evaluation with ImageNet pre-training

Figure 4: Patch-level performance of linear trainings of different pre-training strategies,
at varying supervised training size (number of slides). The linear models are trained on
representations learned by: ImageNet supervised pre-training (gray, solid), or using SimCLR
pre-training with different augmentations (dashed/dotted), and on different datasets (in-
domain pathology data: red, out-of-domain pathology data: blue). The reference (black,
solid) is the full ResNet50 model trained in a supervised way on the (subset) training data.
Left: breast data, right: skin data. Note different x-axes between subplots.
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and no pre-training (random initialization). From the results in the figure and table, we
can draw a number of conclusions.

In-domain pre-training boosts performance, especially in low-supervised data
scenarios. The evaluation of linear training in Figure 4 shows that the best linear separa-
tion is given by pre-training using SimCLR on in-domain data with custom augmentations
(red, dotted), exceeding ImageNet pre-training (gray, solid). These results are echoed also
in the fine-tuning case, as shown in Table 2. Notably for smaller supervised training datasets
(fewer than 65 slides), pre-training gives a substantial boost. When significantly more super-
vised training data is available (100 slides or more), the gain of using pre-trained weights is
diminished. This is especially clear for breast data when doing fine-tuning (Table 2), where
no pre-training on the full supervised dataset (216 slides) gave similar performance as using
initalization from either ImageNet or SimCLR pre-trained weights. For skin, the size of the
full supervised dataset (of 65 slides) is still small enough to make use of pre-trained weights
a good idea.

Optimal dataset and view generation depend on downstream task. For breast
data, we see in Figure 4 that the two in-domain models with different augmentations (red)
gave similar performance, while for skin, different augmentations gave larger difference. Us-
ing a custom set of augmentations compared to the original SimCLR gave a significant boost
in performance (dotted vs dashed). Furthermore, using Multidata as pre-training dataset
that is out-of-domain pathology data (blue) gave for breast data the poorest performance,
independent of augmentation, while for skin, Multidata with the original augmentations was
on par or just slightly worse than the best in-domain model (blue, dashed). This corrobo-
rates the theory discussed in Section 3.2, that the features learned during pre-training are
highly dependent on what data and how view generation was performed (i.e., what augmen-
tations were applied), and that their usefulness/relevance are dependant on the downstream
task.

Increasing diversity of pathology data is not beneficial per se. Both tissue types
were evaluated on the Multidata dataset, with two different sets of augmentations each.
These augmentations where chosen either as a general approach (SimCLR original) or a

Table 2: Fine-tuning performance (patch-level accuracy, %) using no pre-training (random
initialized weights), ImageNet pre-training or SimCLR in-domain training.

Data Pre-training Supervised size (# slides)

10 20 50 65 100 216

Breast

None 73.33± 4.82 77.81± 2.27 82.47± 0.95 − 89.33± 1.73 93.06± 0.21

ImageNet Supervised 71.62± 5.74 82.67± 3.10 89.11± 2.43 − 91.35± 0.98 93.13± 0.42

SimCLR Breast, Base

+ Scale
76.62± 6.92 84.58± 2.76 90.60± 1.81 − 91.63± 1.14 92.59± 0.36

Skin

None 61.35± 3.88 66.57± 1.77 69.58± 0.66 71.42± 0.29 − −
ImageNet Supervised 64.85± 4.22 67.64± 1.27 70.23± 0.14 70.96± 0.22 − −
SimCLR Skin, Base

+ Distort + Shuffle
66.27± 2.65 68.63± 0.95 72.65± 1.19 73.33± 0.22 − −
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Figure 5: Training loss and downstream accuracy evaluated for two different models on
breast and skin data, respectively. Loss continues to decrease continuously during training,
while the performance on the downstream application evaluated at epochs {10, 20, 50, 100,
200} is after the initial epochs almost constant.

dataset specific augmentation. The Multidata dataset is smaller than the others, but has
much larger diversity as it contains samples from a wide range of publicly available datasets.
This reduces the risk of false negatives, and could potentially create more diverse sets of
features. Looking at the linear performance in Figure 4, we see that the same model
trained on Multidata with original augmentations (blue, dashed) performed poorly on the
downstream task of breast tumor detection in sentinel lymph node tissue, but gave good
results in skin tissue classification. This means that task-relevant features were to a higher
degree extracted for skin as compared to breast. Either the dataset lack in the features
needed for successful tumor detection in lymph node tissue, or the view generation could
not isolate the relevant features. We conclude that a more diverse dataset does not guarantee
a generalizable model per se, but acknowledge that diversity could potentially be beneficial
if formulated correctly and used with the appropriate view generation strategy. That is,
having a diverse dataset may increase the chance of including relevant features, but if those
features are learned depends on the view generation.

5.3 Effects of hyper-parameters

Large batch sizes, long training times, and temperature scaling have been shown to play
an important role in contrastive self-supervised learning for ImageNet (Chen et al., 2020a).
Here, we investigate to see if this also holds true for histology data.

Longer training does not improve performance. Figure 5 shows evaluation of linear
performance at intervals during training, for two models respectively for breast and skin.
Despite continued reduction in training loss (the model is still learning to solve the SSL
objective), the performance on the downstream task is changing very little after the first
10 epochs. This indicates that the view generation fails to isolate task-relevant features,
making the model rely on task-irrelevant features to solve the SSL objective (scenario shown
in Figure 2).

Large batch sizes are not needed. The motivation of large batch sizes is that this
will form a better approximation of the true dataset distribution, wherein the separation of
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Figure 6: Performance for SimCLR trained with original augmentations for 50 epochs on
breast data, using varying batch size and learning rate. Using learning rate of 2.4 with
batch size 256 did not converge.
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Figure 7: Linear performance (patch-level accuracy over five trainings) for SimCLR trained
with best augmentations (from Table 1) for each datasets respectively, with varying tem-
perature parameter. Note the different y-axes.

the positive and negatives will better reflect the true distribution. Figure 6 shows varying
batch size for a model trained on breast data, with LARS optimizer. As long as the learning
rate is updated according to the size of the batch (approximately following the relationship
LearningRate = 0.3 · BatchSize/256 as in Chen et al. (2020a)), increased batch size did
not result in strictly better performance compared to smaller batch sizes. All batch sizes
resulted in similar performance (at different learning rates), indicating that smaller batch
sizes can be used to reach the same performance level as larger batch sizes. Similar results
have been shown for volumetric medical data (Chaitanya et al., 2020).

Optimal temperature scaling is dataset dependant. Proper temperature scaling is
important for the model to learn good representations (Ciga et al., 2022; Wang and Liu,
2021). In Figure 7, we investigate five different values of τ . The SimCLR models were
trained on breast and skin data respectively, for 50 epochs and batch size 1024, using the
best performing augmentations for each dataset (as of Table 1). Similarly as the results from
Ciga et al. (2022), the different datasets may require different optimal values. However, the
results show that the default value of 0.5 is a good compromise to achieve high levels of
performance for both datasets.
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6. Discussion

From the results in Section 5, we can make some interesting observations. Primarily, with
correctly selected augmentations, in-domain contrastive SSL is beneficial as pre-training,
especially in low-data regimes. In addition, experiments show that large batch sizes and
long training times may not be needed to create pre-trained models, making model-creation
more accessible. However, the results also raise concerns, which are discussed below.

6.1 Consequences of different dataset characteristics

The results presented in Section 5 show that the heuristics derived to be optimal for Im-
ageNet does not transfer to the other datasets. This suggests that the method is tightly
coupled with the dataset. We can identify a few important dataset characteristics that
affect the learning outcome, as shown in Table 3 . In the table, ImageNet is compared with
the histopathology datasets of breast sentinel lymph node tissue (Camelyon16) and skin
tissue (AIDA-LNSK) (presented in Section 4.2), with respect to these characteristics, and
the discussion is expanded below.

Number of classes and class balance affect the risk of false negatives. When
negatives are chosen as random samples from the dataset, the distribution of the classes
in the dataset affects the risk of getting a high number of false negatives. With many
classes and perfect balance between them, the risk of drawing negatives belonging to the
same class as the anchor data point is low. In the case of ImageNet, with 1000 classes,

Table 3: Dataset characteristics and the consequences they have for learning with con-
trastive self-supervised methods.

Dataset Dataset characteristics Consequence

Number of

classes

Class

balance

Intra-/Inter-

class

variance

Downstream-

target

isolation

ImageNet 1000 Medium/

Good

Good Good Many classes, good balance:

reduced risk of false negatives

High variance and good isolation:

easier view generation

Camelyon16 2 Low Low Low/Medium Few classes, poor balance:

higher risk of false negatives

Low variance with low/

medium isolation:

harder view generation

AIDA-LNSK 5 Medium Low Low/Medium Few classes, medium balance:

slightly higher risk of false negatives

Low variance with low/

medium isolation:

harder view generation
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drawing 1024 (or even up to 4096) random samples from the mini-batch as negatives, the
likelihood of false negatives is low. Compare this with the histology datasets with 2 and
5 classes respectively, and where the poorer class balance further increases the risk for
false negatives for the larger classes. In addition, ImageNet was collected in a supervised
manner. For both histopathology data sources, the datasets used for SSL were sampled
without knowledge of class labels, making the class distribution depend only on the natural
occurrence of the class (in contrast to stratified sampling).

Diversity in/across classes and downstream-task isolation makes view genera-
tion easier. As contrastive SSL aims to do instance discrimination, having data samples
that are distinct makes the objective easier. Variance across classes further helps the model
to learn features that separate between classes. The nature of the datasets allows ImageNet
to have higher variance both within and across classes, as attributes such as viewpoints,
backgrounds, lighting, occlusions, etc, can vary in a natural dataset. Even within subgroups
of labels, such as dogs, we have a larger variation due to more diversity of color, texture,
shape and size – all of which, to a large extent, are constant between histopathology classes.
In the ImageNet case, the augmentations applied can make use of the known variance, mak-
ing the model invariant to them. The subtleties of the difference between classes in histology
data makes it more challenging to find effective augmentations.

Downstream-target isolation relates to how isolated the downstream targets are on av-
erage in one image. ImageNet contains many object-centered images, containing only the
class object, while both histopathology datasets have images that contain multiple classes
(tissues and/or cell types). Having multiple objects in an image can introduce noise. For
example, augmentations such as scale may in cases with low downstream-target isolation
create a positive pair depicting two separate objects, instead of the same object in different
scales.

6.2 How to do contrastive learning for histology?

From what we have seen so far, the cause of the success of contrastive self-supervised
learning (SSL) methods on ImageNet has been highly dependent of intrinsic properties of
the data. The intricate interplay between method and data raises questions on both how
to adapt the method to better accommodate the data and how to better assemble datasets
that fit the method.

Current positive-view generation is not sufficient. From the results shown in Ta-
ble 1 we saw that a tailored set of augmentations gives substantial improvements in down-
stream performance. However, we also saw in Figure 5 that the representations learned
are, to a large extent, based on features not relevant for the downstream task. As optimal
augmentations depend on both dataset and task, finding a general approach that applies
to all datasets and all tasks may not be feasible. The augmentations found in this study
were sub-optimal even when tailored with a specific dataset and task in mind. Creating
augmentations that are strong enough to retain only label information and remove all other
is not trivial, and may require extensive domain knowledge. This is further exacerbated by
the fact that pathologists generally are not used to describing diagnostic criteria in terms of
features suitable to formulate as image transformations. Moreover, use of heavily tailored
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augmentations could be criticized as a step towards unwanted feature engineering, in the
sense that expert preconceptions could constrain the self-supervised deep learning approach
A different direction would be to optimally learn what augmentation to apply, such as pre-
sented by Tamkin et al. (2021). However, contrary to what Tamkin et al. (2021) suggest,
the conclusion from our results is that these augmentations need to be optimized for the
downstream task, not the SSL objective. A semi-self-supervised approach could therefore
be an interesting future research direction.

Many false-negatives gives conflicting signals Datasets with few classes and/or large
class imbalances suffers a large risk of introducing false negatives . As the mini-batch
contains many samples of the same class, negatives picked from the same class are likely
to occur. This risk also increases with larger batch sizes, as the ratio between number of
classes and batch size increases. This could be one explanation why there is little benefit
of increased batch size for histopathology data (Figure 6). Having a large portion of false
negatives has consequences for the learning outcome, as this prevents the model from using
class-specific features to discriminate between positives and negatives (as highlighted in
Figure 2). We can further investigate this by looking at the cosine distance between samples
in a mini-batch (1024 samples) of a SimCLR model trained on breast data. A significant
number of negative samples have high or very high cosine similarity (> 0.9) with the anchor
data point, an occurrence not seen for ImageNet data. Out of all negatives, 2% of the
anchor-negative pairs had a similarity higher than 0.9, while the same number of ImageNet
is 0.0003%. Minimizing the number of false negatives is an important part of getting better
performance (Chuang et al., 2020; Chaitanya et al., 2020).

Methods for completely removing negatives have been presented, such as BYOL (Grill
et al., 2020), which no longer uses the contrastive objective. Some exploratory experiments
in this direction using BYOL are shown in Appendix C, Table 9. In these experiments,
BYOL does not outperform SimCLR on either of the datasets. However, further research
is needed to fully understand the role of negatives for optimal self-supervised learning for
histopathology.

Intrinsic properties of histology datasets may be incompatible with current
methods. As discussed in Section 6.1, intrinsic properties of the datasets makes positive
view generations challenging (low inter- and intra-class variance and lower target object
isolation in individual images), and increases the risk of false-negatives (due to low number
of classes and poor class distribution). Even if these problems could be addressed with new
techniques such as better view generation and true negative sampling, questions regarding
the suitability of SSL for these types of datasets remain. The SimCLR objective optimizes
towards instance discrimination. This approach is intuitive when we have a dataset where
the intra-class variance consists of multiple ways of describing the same object. Being able
to separate each of these instance helps give a wider distribution of the possible appearances
of the object in question. In histopathology, datasets are constructed as smaller patches
from whole-slide images, and where the intra-class variance consists of images showing
multiple cells, where the cells actually are more or less clones of each other. A different
approach of constructing these datasets may be needed, such that the downstream-target
isolation becomes higher. This is indeed challenging. Taking smaller patches depicting as
little as individual cells suffers even more of false negatives, and macro structures may be
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hard to learn. Taking larger patches/reduce resolution would include larger structures, but
may include multiple tissues at once, reducing downstream-target isolation further (visual
comparison of patches sampled at different resolutions are shown in Appendix 10).

If you understand your data, then contrastive self-supervised learning can still
be useful. Despite the above mentioned limitations for contrastive SSL used on histol-
ogy data, the current setup may still bring value for specific histology applications. For
example, the reduced need for large batch sizes and long training times makes in-domain
pre-training using contrastive SSL accessible to a larger community. Furthermore, by keep-
ing the dataset characteristics from Table 3 in mind, risk factors for the dataset in question
may be early identified. By understanding the inter- and intra-variance of the (latent)
classes of the dataset, augmentations may be formulated that are better tailored to the
specific downstream application in mind, compared to naively using those optimized for
ImageNet. The risk of false negatives might be possible to mitigate during the data collec-
tion, for example by controlling the field of view by changing the resolution in which the
patches are sampled. In combination with the results shown in Table 2 that shows that in-
domain SimCLR pre-training does boost performance, contrastive self-supervised learning
can indeed be a way to reduce the need for labeled data for histopathology applications.

6.3 Limitations and Future work

This paper aims to evaluate if and how contrastive self-supervised methods can be used to
reduce the needed amount of labeled data for the target histopathology application. The
scope of the study was limited to three datasets and two classification tasks, and where
SimCLR was chosen as representative method among all contrastive self-supervised meth-
ods. Restricted by the challenges and limitations of pre-training models for one downstream
task, we did not evaluate the generalization of the SSL models by evaluating one pre-trained
model on multiple downstream tasks, with one exception (SimCLR Multidata with original
augmentations was used as pre-trained model for both downstream tasks). Despite the
restricted scope, we believe that the results may give guidance when applied to an extended
domain.

The results from this study show that contrastive self-supervised methods have the
potential, if applied correctly, to reduce the need for labeled target data. However, they
also show that the method is still sub-optimal with respect to the specific data characteristics
of histopathology. There is therefore room for improvement, but the challenges of creating
informative positives and reduce false negatives are not trivial to solve. Creating informative
positives may be easier with deepened understanding of what features should be considered
task-relevant for a given downstream task. The problem of false negatives could potentially
be solved by selecting negatives in a non-random way, potentially taking a semi-supervised
approach. We hope that this work will inspire interesting future research that take a holistic
approach, considering the interplay between dataset and method.

7. Conclusions

In this paper, we have evaluated contrastive self-supervised learning on histopathology data.
Effective contrastive self-supervised learning with respect to a particular downstream task
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requires two criteria to be fulfilled, namely that the shared information between the positive
views is high, and that the false negative rate is low. Our study shows that both these
criteria are challenging to fulfill for histopathology applications, due to the characteristics
of the datasets. Furthermore, we have shown that the explicit and implicit heuristics used
for ImageNet does not necessarily apply in the domain of histopathology. We conclude
that SSL for histopathology cannot be considered and used under the same assumptions
as for natural images, and that in-depth understanding of the data is essential for training
self-supervised models for histopathology applications.
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Appendix A. Datasets

In Table 4 the number of slides and patches are given for the different datasets. All patches
were extracted at 0.5 microns per pixel resolution with size 256x256 pixels. The unsuper-
vised dataset were sampled without overlap in a uniform grid. For breast, maximally 1000
samples per slide was randomly selected from slides in the training set, resulting in approx-
imately 270k patches. Similarly for skin, the unsupervised training set consists of samples
selected without using labels, resulting in approximately 270k patches. Potential sampling
points were found by, in tissue regions, extracting samples from a random, uniform grid.
From these candidates, 1000 samples per slide were extracted at random.

The supervised training, validation and test set for breast follows the patch coordinates
of PatchCamelyon, but was resampled at the above mentioned resolution and size. For
skin, the supervised datasets were constructed as follows. All slides were sampled in a
uniform grid with 50% overlap, resulting in total of 1.3 million candidate patches. From
these candidates, a subset where selected for each dataset, with the follow criteria. For
the training set, the large class imbalance was mitigated by selecting patches such that for
each class, the total number of patches was min(75 000, all available). This resulted in
approx. 320k patches. For validation, 700 patches from each class were randomly selected
from the slides in the validation set. Similarly, 3700 patches from each class were randomly
selected from the slides in the test set to formulate the test patches. The validation and
test sets are therefore class balanced. There is no patient overlap between the supervised
datasets.

Table 4: Number of whole-slide images (WSIs) and patches for breast and skin data.

Unsupervised Training Validation Test

Breast # WSI 270 N/A N/A

# patches 265048 N/A N/A

Skin # WSI 65 N/A N/A

# patches 271675 N/A N/A

Supervised

Breast # WSI 216 / 100 / 50 / 20 / 10 54 129

# patches 262144 / ∼120000 / ∼60000 / ∼25000 / ∼10000 32768 32768

Skin # WSI 65 / 50 / 20 / 10 8 23

# patches 317243 / ∼235000 / ∼95000 / ∼50000 3500 18500

Appendix B. Augmentations

The augmentations applied were done using Pytorch Transforms (https://pytorch.org/
vision/stable/transforms.html) or with Albumentations (Buslaev et al., 2020). The im-
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plementation of Gaussian blur was taken from: https://github.com/facebookresearch/
moco. Examples are shown in Figure 8, and implementation details in Table 5.

Table 5: List of applied augmentations, with corresponding parameters and probability of
application.

Transformation Params Probability

Base



Random Crop size: 224x224 1.0

Flip - 0.5

Rotation (fixed 90 degrees) - 0.5

Color Jitter brightness: 0.8 0.8

contrast: 0.8

saturation: 0.8

hue: 0.2

SimCLR original

{
Scale scale: {0.2, 0.95} – 1.0 1.0

Gaussian Blur sigma: 0.1–2.0 {0, 0.5}
Grid Distortion num steps: 9 {0, 0.5}

distort limit: 0.2

border mode: 2

(Grid) Shuffle grid: (3,3) {0, 0.5}

Original Flip Color Rotate

Gaussian Blur Scale Grid Distort Grid Shuffle

Figure 8: Examples of augmentations
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Appendix C. Results

Tables 6 and 7 show the results presented in Figure 4 in numerical form.

Table 6: Linear performance for patch-level PatchCamelyon, shown as accuracy (%) and
patch-level AUC

Model Supervised size (#slides)

10 20 50 100 216

Accuracy (%) Supervised 73.3 ± 4.8 77.8 ± 2.3 82.5 ± 0.9 89.3 ± 1.7 93.1 ± 0.2

ImageNet Supervised 74.9 ± 4.9 80.5 ± 3.1 84.2 ± 0.5 85.6 ± 0.4 86.1 ± 0.1

SimCLR Breast, Original 76.7 ± 3.9 77.8 ± 2.7 83.4 ± 2.6 86.5 ± 0.5 88.7 ± 0.3

SimCLR Breast, Base + Scale 78.0 ± 5.0 80.2 ± 1.8 85.5 ± 1.8 87.4 ± 0.8 89.6 ± 0.1

Multidata, Original 72.6 ± 2.9 73.6 ± 2.7 79.6 ± 2.4 82.3 ± 1.4 84.3 ± 0.1

Multidata, Base + Scale 73.2 ± 3.2 73.4 ± 3.2 79.5 ± 1.6 81.8 ± 1.6 83.1 ± 0.1

AUC Supervised 0.805 ± 0.055 0.855 ± 0.027 0.900 ± 0.010 0.960 ± 0.009 0.979 ± 0.001

ImageNet Supervised 0.838 ± 0.046 0.887 ± 0.024 0.918 ± 0.004 0.928 ± 0.002 0.935 ± 0.000

SimCLR Breast, Original 0.830 ± 0.072 0.865 ± 0.057 0.920 ± 0.032 0.947 ± 0.008 0.957 ± 0.001

SimCLR Breast, Base + Scale 0.842 ± 0.074 0.884 ± 0.031 0.929 ± 0.019 0.944 ± 0.010 0.957 ± 0.000

Multidata, Original 0.820 ± 0.041 0.837 ± 0.044 0.888 ± 0.021 0.910 ± 0.015 0.921 ± 0.001

Multidata, Base + Scale 0.827 ± 0.047 0.839 ± 0.053 0.892 ± 0.015 0.909 ± 0.012 0.909 ± 0.001

Table 7: Linear performance (patch-level accuracy (%)), AIDA-LNSK

Model Supervised size (#slides)

10 20 50 65

Accuracy (%) Supervised 61.4± 3.9 66.6± 1.8 69.6± 0.7 71.4± 0.3

ImageNet Supervised 64.2± 3.9 66.6± 1.2 68.3± 0.4 69.0± 0.2

SimCLR Skin, Original 59.9± 1.8 62.2± 1.4 65.8± 0.8 66.7± 0.6

SimCLR Skin, Base + GridDist + Shuffle 65.2± 3.0 67.3± 1.7 71.1± 1.3 72.0± 0.4

Multidata, Original 63.9± 5.1 67.4± 1.7 70.3± 0.7 71.2± 0.2

Multidata, Base + GridDist + Shuffle 62.7± 4.9 65.9± 1.5 69.0± 0.5 69.5± 0.3

Table 8 shows the results presented in Figure 6 in numerical form.

Table 8: Linear performance (patch-level accuracy (%)) of SimCLR model trained with
original augmentations on breast data for 50 epochs, evaluated on PatchCamelyon (50
slides subset).

Batch Size Learning Rate

0.3 0.6 1.2 2.4

256 0.81± 0.02 0.81± 0.02 0.80± 0.02 -

512 0.81± 0.02 0.81± 0.02 0.81± 0.02 0.82± 0.01

1024 0.82± 0.01 0.81± 0.01 0.82± 0.01 0.80± 0.02

2048 0.81± 0.01 0.80± 0.01 0.81± 0.01 0.80± 0.01
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In Table 9, results are shown comparing SimCLR model to BYOL. The models were
trained on in-domain data, with either the original SimCLR augmentations or the best
performing augmentations from Table 1. The models were trained for 200 epochs, with
batch size 1024. The SimCLR model was trained with learning rate 1.2, but BYOL was
found to be needed lower learning rate 0.2. The results are presented as the mean linear
patch-wise accuracy of the supervised subset of 50 slides, evaluted over 5 runs.

Table 9: Comparison between SimCLR method and BYOL, trained for 200 epochs, evalu-
ated on linear patch-level accuracy of the supervised subset of 50 slides.

Dataset Method Augmentation

Original Best.

Breast SimCLR 0.83± 0.03 0.85± 0.02

BYOL 0.79± 0.01 0.83± 0.00

Skin SimCLR 0.66± 0.01 0.71± 0.01

BYOL 0.48± 0.03 0.48± 0.03

Appendix D. Discussion
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(a) SimCLR trained with Original augmen-
tations on breast data.
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(b) SimCLR trained with Base + Scale aug-
mentations on breast data.
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(c) SimCLR trained with Original augmenta-
tions on skin data.
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(d) SimCLR trained with Base + Grid shuffle
+ Distort on skin data.

Figure 9: UMAP (McInnes et al., 2018) visualizations of encoder embeddings of models
trained on in-domain data for 200 epochs, evaluated on 5000 randomly selected samples
from the test sets (class balanced). Top row: breast data, bottom row: skin data.
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Resolution: 0.25 mpp

Resolution: 2.0 mpp

Figure 10: Examples neighboring of patches extracted at different resolutions, with constant
patch size. The different fields of view and level of details visible impacts what features the
contrastive model will learn.
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