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Abstract

Generative adversarial networks (GANs) are able to model accurately the distribution
of complex, high-dimensional datasets, for example images. This characteristic makes high-
quality GANs useful for unsupervised anomaly detection in medical imaging. However,
differences in training datasets such as output image dimensionality and appearance of
semantically meaningful features mean that GAN models from the natural image processing
domain may not work ‘out-of-the-box’ for medical imaging applications, necessitating re-
implementation and re-evaluation. In this work we adapt and evaluate three GAN models
to the application of modelling 3D healthy image patches for pulmonary CT. To the best
of our knowledge, this is the first time that such a detailed evaluation has been performed.
The deep convolutional GAN (DCGAN), styleGAN and the bigGAN architectures were
selected for investigation due to their ubiquity and high performance in natural image
processing. We train different variants of these methods and assess their performance using
the widely used Fréchet Inception Distance (FID). In addition, the quality of the generated
images was evaluated by a human observer study, the ability of the networks to model 3D
domain-specific features was investigated, and the structure of the GAN latent spaces was
analysed. Results show that the 3D styleGAN approaches produce realistic-looking images
with meaningful 3D structure, but suffer from mode collapse which must be explicitly
addressed during training to obtain diversity in the samples. Conversely, the 3D DCGAN
models show a greater capacity for image variability, but at the cost of poor-quality images.
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The 3D bigGAN models provide an intermediate level of image quality, but most accurately
model the distribution of selected semantically meaningful features. The results suggest
that future development is required to realise a 3D GAN with sufficient representational
capacity for patch-based lung CT anomaly detection and we offer recommendations for
future areas of research, such as experimenting with other architectures and incorporation
of position-encoding.

Keywords: Pulmonary CT, Generative modelling, GANs

1. Introduction

Generative modelling of complex datasets (e.g. images) has advanced greatly in recent years
with the advent and development of generative adversarial networks (GANs) (Goodfellow
et al., 2014). GANs are a class of deep learning methods that in general pit two networks
against each other in a ‘game’ wherein the goal of one network (the discriminator) is to
distinguish between real samples and the output from the other network (the generator),
while the goal of the generator is to produce samples that are difficult for the discriminator to
correctly identify as real or not. By training the two networks in an adversarial fashion, the
generator can learn to produce realistic random outputs for even complex data distributions.

GANs have primarily been developed in natural image processing due to the availability
of large public datasets, and in that domain they have found particular application in image
manipulation, whereby conditioning on an input image allows for non-linear image filtering,
scene modification, and attribute switching (Perarnau et al., 2016; Lample et al., 2017; Zhu
et al., 2017; Isola et al., 2017).

GANs have also been widely applied in medical imaging, across a range of tasks such
as image-to-image translation (including segmentation) (Emami et al., 2018; Dong et al.,
2019), advanced data augmentation, (Liu et al., 2018; Frid-Adar et al., 2018; Bu et al., 2021;
Barile et al., 2021), image reconstruction and restoration (Reader et al., 2020; Ravishankar
et al., 2020; Montalt-Tordera et al., 2021), and anomaly detection (Schlegl et al., 2019). See
Yi et al. (2019) for a recent review of GANs in medical imaging.

These latter two problems, anomaly detection (Schlegl et al., 2019) and image recon-
struction/restoration (Reader et al., 2020; Ravishankar et al., 2020; Montalt-Tordera et al.,
2021), serve as the motivation for this work. For anomaly detection, an accurate model
of the entire distribution of healthy images is required to reliably identify new query im-
ages as within- or out-of-distribution relative to healthy samples, i.e. to identify them as
anomalous or not. For image reconstruction, while GANs are most commonly used in an
image-to-image fashion (e.g. for denoising image estimates while preserving realism), they
also present the opportunity to learn the entire distribution of valid images, information
which can be used as data-driven regularisation (Reader et al., 2020).

Given the potential uses for GAN models that approximate the entire distribution of
tissue appearance, adapting them for different applications (e.g. tissue/modality combina-
tions) is of great interest. See Quiros et al. (2021) for an example of the development of a
high-quality GAN model in histology imaging.

To summarise, to our knowledge this work is the first to train and evaluate GANmethods
to model the appearance of healthy lung tissue in CT images in a fully 3D manner. Due to
the extensive research required to produce and evaluate well-performing 3D GAN models
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that match the training data distribution both in appearance and in semantic features,
we leave the evaluation of downstream tasks for future work. In the spirit of open-source
biomedical research supporting code for this project is available online1.

The specific contributions of this work are:

1. we adapt GAN models from the literature to allow 3D output, and investigate their
performance on the CT lung patch generation task with the commonly used Fréchet
inception distance (FID) metric and an observer study;

2. we propose to use a minibatch discrimination technique (MDmin) and a method of
increasing the effective batch size to improve performance over baseline methods;

3. we perform 3D, domain-specific analysis of the generated patches, and relate the 3D
structure of output images to the latent space of GAN models; and

4. these results provide baseline performance metric values for the lung CT patch gen-
eration task, serving as a reference for future work in this area.

The structure of the rest of this paper is as follows: In Section 2, the principles of GANs
are described, along with the details of the specific GAN methods that were employed in
this study. Section 3 outlines the experimental set-up, including the data sampling, training
process, and the evaluations that were performed. Sections 4 and 5 describe and discuss
the results of the experiments and Section 6 summarises the conclusions of this work.

2. Methods

In this work we adapt three GAN generator architectures to the 3D lung CT patch modelling
problem: the widely investigated DCGAN (Radford et al., 2016) representing a baseline ap-
proach, and styleGAN (Karras et al., 2019) and bigGAN (Brock et al., 2019) approaches
which are more representative of the state-of-the-art in generator architectures. It is impor-
tant to emphasise that these methods could not be used ‘out-of-the-box’ and modification
was required to allow 3D patch output. Therefore, we denote the methods investigated in
this study as DCGAN3D, styleGAN3D, and bigGAN3D respectively.

In general, a GAN model consists of a generator G(·) and a discriminator network D(·).
The generator takes as input samples z from the prior distribution Pz (usually a normal
distribution), and outputs fake images xf so that xf = G(z) with xf ∼ Q. The discriminator
takes as input a minibatch of images x from either (or both) the real and fake distributions,
with real images denoted by xr, and returns some per-sample value D(x) which provides
feedback on the ‘realism’ of x. The distribution of real images is denoted P and the aim of
GAN training is for Q → P throughout the training process.

2.1 DCGAN3D generator

The deep convolutional GAN (DCGAN, Radford et al. (2016)) architecture was developed to
be able to incorporate convolutions into a GAN model, since the original GAN of Goodfellow
et al. (2014) used only fully-connected layers, which limited the size of the output images.
The DCGAN3D generator used in this work is described in Appendix A, adapted from the
publicly available 2D PyTorch implementation2. The total number of parameters was ∼ 24

1. https://github.com/S-Ellis/healthy-lungCT-GANs
2. https://github.com/pytorch/examples/blob/master/dcgan/main.py, accessed Feb 2020
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million. In summary, the latent code is expanded to a 4 × 4 × 4 volume via convolution,
and then this volume is progressively upsampled with transposed convolution layers until
reaching the output size of 32× 64× 64. Each transposed convolution operation is followed
by a 3D batchnorm (Ioffe and Szegedy, 2015) and a ReLU activation, except the last layer
which has a tanh activation to bound the generated image in [−1, 1].

2.2 styleGAN3D generator

StyleGAN improves on other GAN techniques by using style-based image generation (Kar-
ras et al., 2019). The latent code is processed by a set of fully-connected layers and fed
into a convolutional generator at multiple resolution scales to control the statistics of the
activation maps using adaptive instance normalisation (Huang and Belongie, 2017). This is
a more powerful method of altering overall image appearance than learning across multiple
convolutional-only layers.

The styleGAN generator also incorporates a mapping network which maps z to a an-
other, warped space, which has distribution Pw. The aim is to allow the network to learn
a more natural latent space, such that the w vectors are better structured according to
semantic image features (Karras et al., 2019).

Figure 1 shows schematically the architecture of the 3D styleGAN (styleGAN3D) patch
generator implemented in this work, and Appendix B describes the details of the latent map-
ping and synthesis networks. The total number of trainable parameters was ∼ 18 million.
Note that in this work the noise injection channels of the original styleGAN architecture
were omitted since we would wish to retain control of all relevant details of the generated
images for the potential downstream tasks of anomaly detection and image reconstruction.

Latent mapping
network

Synthesis networkConst.Generator

Fully connected + leaky ReLU

AdaIN

Conv 3  3  3 + leaky ReLU

Fully connected

Upsample   2

x x

x

Figure 1: Architecture of the styleGAN3D generator investigated in this work, based on the
original implementation of Karras et al. (2019). z and w are 512-element vectors,
Const. is a constant image of size 1× 2× 2, similar to that used in Karras et al.
(2019), and xf is a 32 × 64 × 64 vox3 image patch. AdaIN is adaptive instance
normalisation, as described in (Huang and Belongie, 2017; Karras et al., 2018).
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2.3 bigGAN3D generator

bigGAN is a competing high-quality GAN model first described by Brock et al. (2019). By
combining various architectural components that had previously been shown to aid GAN
training, and systematically optimising the resulting architectures, bigGAN was demon-
strated to allow stable training for high-resolution natural images. In particular, bigGAN
inherits spectral normalisation Miyato et al. (2018) and self-attention layers Zhang et al.
(2019) from previous GAN models. We adapted the publicly available bigGAN implemen-
tation3 to 3D, with the full architecture listed in Appendix C. Note that due to memory
constraints the bigGAN3D architecture had only ∼ 4 million trainable parameters.

2.4 Discriminator

We used a simple convolutional feed-forward network as the discriminator backbone for
all methods, as is common in both older and more recent GAN models (Radford et al.,
2016; Karras et al., 2018, 2019). We also used minibatch discrimination (MD) to increase
variability of GAN output. MD refers to a family of techniques which can be employed to
avoid mode collapse (where many xf are similar) by allowing the discriminator to make
comparisons between samples in a minibatch (Salimans et al., 2016). MD is particularly
useful when the discriminator architecture is shallow, since shallow networks are intrinsically
less able to detect mode collapse.

In this work we use a minimum-based MD method, denoted MDmin. Full details are
given in Appendix D, but in summary the minimum perceptual difference between samples
in a minibatch is provided to the discriminator to facilitate inclusion of whole-batch infor-
mation. When mode-collapse has occurred for a generator model, this measure is small,
allowing the discriminator to more easily detect that the minibatch is fake, providing a
strong signal to the generator to diversify its samples.

The details of the discriminator architecture, including the location of the MDmin layer
are given in Table 1. The number of trainable parameters was ∼ 11.0 million. Note that the
MDmin layer is placed just before the final convolutional layer to allow the discriminator
to quickly detect the MD signal in cases of mode collapse.

We also note that the effectiveness of minibatch discrimination is limited by the max-
imum batch size that is computationally feasible. For this reason we use a heuristic trick
to increase the effective batch size by pre-selecting the k most similar (according to the
MDmin) samples from a larger batch of N samples, thereby allowing the discriminator
to reliably see the most mode-collapsed samples for a particular model. We denote this
training heuristic largeEBS (large effective batch size), and a full description is provided in
Appendix D.

2.5 Loss functions

The original seminal work on GANs introduced by Goodfellow et al. (2014) proposed an
intuitive approach where the discriminator aims to correctly classify real and fake images,
while the generator aims to force the discriminator to misclassify fake images as real. Con-
cretely, the losses for the two networks are:

3. https://github.com/ajbrock/BigGAN-PyTorch, accessed Mar 2022

5

https://github.com/ajbrock/BigGAN-PyTorch


Ellis et al

Discriminator

Input: x ∈ R32×64×64

Conv3d 2× 4× 4, stride 2, pad 0× 1× 1, no bias, 1→64

Leaky ReLU 0.2

Conv3d 4× 4× 4, stride 2, pad 1, no bias, 64→128

Leaky ReLU 0.2

Conv3d 4× 4× 4, stride 2, pad 1, no bias, 128→256

Leaky ReLU 0.2

Conv3d 4× 4× 4, stride 2, pad 1, no bias, 256→512

Leaky ReLU 0.2

(Optional: MDmin)

Conv3d 2× 4× 4, stride 1, pad 0, no bias, 512/513→1

Output: D(x) ∈ R

Table 1: Architecture of the 3D discriminator used in this investigation. Note that the
MDmin layer (see text and Appendix D for description) was optional, and therefore
the number of input channels to the subsequent layer is variable (512 without
MDmin, 513 with).

LD = −Exr∼P [log (σ(D(xr)))]− Exf∼Q [log (1− σ(D(xf )))] (1)

and
LG = −Exf∼Q [log (σ(D(xf )))] (2)

where σ(·) denotes the sigmoid function. Note that expectation values E[·] are defined over
the entirety of the distributions, but in practice these losses are calculatated batch-wise as
an approximation.

There are many alternative losses that have been proposed for training GANs, including
Wasserstein distance (Arjovsky et al., 2017; Gulrajani et al., 2017), least-squares (Mao et al.,
2017), Hinge loss (Lim and Ye, 2017), etc. Evaluating all such loss functions for a given
application is a time-consuming exercise that we leave for future work. In this work we focus
on one of the relativistic losses of Jolicoeur-Martineau (2019), which has been incorporated
successfully into large-scale GAN models of medical images (Quiros et al., 2021). The
equations for the relativistic losses are:

LD = −Exr∼P

[
log

(
σ(D̃(xr))

)]
− Exf∼Q

[
log

(
1− σ(D̃(xf ))

)]
(3)

and

LG = −Exf∼Q

[
log

(
σ(D̃(xf ))

)]
− Exr∼P

[
log

(
1− σ(D̃(xr))

)]
(4)
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Method abbreviation
Generator

type
MDmin

Increased effective
batch size

DCGAN3D-base DCGAN ✗ ✗

DCGAN3D-MDmin DCGAN ✓ ✗

DCGAN3D-MDmin-largeEBS DCGAN ✓ ✓

styleGAN3D-base styleGAN ✗ ✗

styleGAN3D-MDmin styleGAN ✓ ✗

styleGAN3D-MDmin-largeEBS styleGAN ✓ ✓

bigGAN3D-base bigGAN ✗ ✗

bigGAN3D-MDmin bigGAN ✓ ✗

bigGAN3D-MDmin-largeEBS bigGAN ✓ ✓

Table 2: Summary of GAN methods compared in this study, and their constituent parts.

where:

D̃(xr) = D(xr)− Exf∼Q [D(xf )]

D̃(xf ) = D(xf )− Exr∼P [D(xr)] (5)

Intuitively, these relativistic losses reframe the task of the discriminator and generator
so that the discriminator now aims to assign higher output to real images than for fake
ones. The generator then aims to ‘fool’ the discriminator to do the opposite. Note that in
this case the generator learns directly from both the fake and real images, whereas for the
standard GAN losses (Equations 1 and 2), the generator only receives direct feedback from
the discriminator on the fake images.

3. Experiments

3.1 Dataset

We used the publicly available LUNA16 lung CT dataset (Setio et al., 2017), comprising
888 lung CT images, annotated by four radiologists. These annotations include malignancy
scores and segmentations for nodules ≥ 3mm diameter. We chose to exclude nodules and
pathological images from the present study to approximate the training of a GAN for a
downstream anomaly detection task.

First, we exclude nodules by selectively rejecting sampled patches that contain any
ground truth nodule voxels. Second, we considered all scans that had any single nodule
with a median malignancy score (across radiologists) ≥ 4 as diseased, excluding the whole
CT volume from further use. Removing these malignant scans left 636 scans which were
split into 509 training scans and 127 held out for future testing.

3.2 Comparative Methods

Using various combinations of the above GAN components results in a number of overall
comparison methods for training our GAN. Table 2 summarises the combinations we chose
to compare in this work.

7



Ellis et al

3.3 Model Training

The training of GAN model involves sampling from the real image distribution, as well as
generating fake images using the generator. As shown above, the GAN output was of size
32 × 64 × 64 vox3. Therefore patches sampled from the real CT images were also of this
size. Patches were sampled from within the lung using the LUNA16 provided lung masks,
excluding all voxels annotated as nodules as described above. Figure 2 show a sample of real
patches (centre slice only), highlighting the high variability in lung wall position and vessel
structure. Note that resampling to a standard voxel size and other data augmentations
(translation, rotation, etc) were not performed.

Figure 2: Example real samples from the training dataset (central slices only). Note the
high variability in terms of features such as lung wall placement and vessel struc-
ture.

Unless stated otherwise, for a given CT image, 672 patches were sampled at a time,
windowed to [−1000, 400] HU, and then rescaled to [−1, 1]. These patches were then used
to create minibatches of size 48, with 14 minibatches per image. For each update of the
discriminator, this batch of 48 real images is passed through to obtain D(xr), followed by
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a batch of 48 fake images to get D(xf ). A similar sampling process is followed for the
generator updates. A single pass through all 509 training CT scans (i.e. 7126 iterations) is
considered an epoch of training. For each epoch, patches are sampled separately, ensuring
that with high probability no single patch is repeated during the training.

For all GAN models, the generator and discriminator learning rates were set the same at
0.0001, using the Adam optimiser (Kingma and Ba, 2015) with β1 = 0.5. The discriminator
and generator were each updated once per iteration. Training was run for 20 epochs using
either an NVIDIA GeForce GTX 1080 Ti or an NVIDIA TITAN Xp GPU.

Finally, for the styleGAN3D approach, so-called style-mixing regularisation was used
(Karras et al., 2019) which swaps two latent codes w1 and w2 at a random depth in the
convolutional generator. Since the GAN training process still encourages the output to
be realistic, the effect is to decouple the effect of the latent code at different scales (see
Karras et al. (2019) for further details). Note that in comparison to the standard 2D
styleGAN method of Karras et al. (2019), progressive growing of images was not found to
be necessary for styleGAN3D due to the small relative size of the output patches compared
to the convolutional kernel sizes.

3.4 Automatic Model Evaluation with FID

GAN models were evaluated throughout training with the commonly-used Fréchet inception
distance (FID) which was proposed and explained in detail by Heusel et al. (2017). In brief,
the FID aims to measure the similarity between the distributions of real training images
(P) and fake, GAN produced images (Q). To do this, a large number (∼ 5000–10000) of
images from each distribution is sampled. These images are passed through a pre-trained
network to obtain the activations at a deep layer, which can be assumed to be Gaussian
in distribution. Measuring the Fréchet distance between these two distributions provides
a measure of similarity between the original distributions. The FID provides a measure of
both average image quality (i.e. ‘realism’) and variability, and so it is sensitive to mode
collapse.

As mentioned, FID uses a pre-trained network to provide higher-level representations
of the input images. In common practice, this network is an Inception network pre-trained
on a natural image task (Heusel et al., 2017), which presents two considerations for use in
the current investigation.Firstly, the pre-trained network accepts only 2D input. Therefore,
when calculating FID for our 3D GANs, we use only the central slices of generated images.
Secondly, since the data domain is different (natural images vs lung CT patches), the trans-
ferability of the standard Inception network to lung CT could be questionable. However, we
note that calculating the FID between two random sets of real images produces a low FID
value of ≤ 4, suggesting that producing a low FID score is a valid target for GAN models
of lung CT patches.

We used FID to measure GAN performance throughout training, with five training runs
performed for each method listed in Table 2. For each method we selected the lowest-FID
model from across the five training runs as the best. These lowest FIDs were then compared
between architectures, and the corresponding models were retained for further investigation
and characterisation.
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3.5 Observer Study

To complement the results of the automated model evaluation, we also performed a human
observer study on the best performing 3D GAN models. One human observer (SE) was pro-
vided 200 2D image slices per model, split 50:50 into real and fake. The task was to classify
real and fake images, and this was repeated three times to assess intra-observer variability.
Receiver operating characteristic (ROC) analysis of the results was then performed.

3.6 3D Domain-Specific Analysis

The analyses and model selection described above were performed only in 2D due to the
reliance of the standard FID on a 2D Inception network, and the infeasibility of performing
large observer studies with 3D patches. To investigate the 3D, domain-specific structure of
the generated patches, additional analysis was performed.

Firstly, although the conventional FID measurement uses a trained 2D Inception net-
work, there has been research proposing the use of a 3D network to enable a 3D FID score
(Sun et al., 2020). In this case the network from which activations are retrieved is a 3D
ResNet pre-trained on different medical imaging segmentation datasets (Chen et al., 2019).
Transfer learning experiments showed that the learnt features in such a network were ben-
eficial for a range of tasks, including segmentation of lung tissue in CT images (Chen et al.,
2019). We use one model provided by Chen et al. (2019) to calculate a 3D FID (FID3D) for
our lung tissue GANs. Specifically, we use a pre-trained ResNet-10 model, and obtain the
output activation maps, which have dimensions of 512×4×8×8 when given 1×32×64×64
input. To avoid excessive memory usage we spatially average these maps to obtain a 512
element feature per input patch. Processing ∼ 10000 real and fake images allows the Fréchet
distance to be measured between real and fake datasets as for standard 2D FID.

Secondly, we note that if the distributions of real and fake images are close, then we
expect that the distributions of any quantity derived from those images should also be
close, i.e. comparing the distributions of any characteristic of real and fake images is valid.
Beyond this, using a quantity relevant for the task at hand is preferable. To the best of our
knowledge, little research has been performed on the expected appearance of healthy lung
tissue in CT image patches. Therefore we opted to analyse the appearance of a prominent
feature of healthy lung tissue patches: the vasculature. Specifically we chose to model the
complexity of the vasculature by finding the number of branch points in an automated
fashion. 3D patches were skeletonised using standard python scikit-image library functions
in order to provide a sparse representation of the 3D structure. These 3D skeletons were
visually assessed using 3D rotating maximum intensity projections (MIPs). The number
of branch points was automatically detected, and the distribution of branch points across
∼10k images was recorded. Figure 3 shows an example skeletonisation of a generated patch,
with automatically detected branch-points highlighted.

Finally, the relationship between the latent space and the distribution of branch points
was investigated using the UMAP dimensionality reduction technique (McInnes et al., 2020).
Using the freely available implementation of UMAP4, the 512-dimensional latent spaces for
each method (z for DCGAN3D and bigGAN3D, w for styleGAN3D) were transformed into a
two-dimensional embedded space. The embedded space was calculated using 50000 random

4. https://umap-learn.readthedocs.io/en/latest/index.html, accessed Oct 2021
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View angle increasing

Figure 3: Example 3D skeleton MIPs and branch points extracted from a single image
patch. Multiple viewing angles are displayed for clarity, and detected branch
points are highlighted in red.

samples to mediate the curse of dimensionality. For 1000 of these samples, the original
latent vectors were passed through the corresponding GAN model to produce fake images
which could then be analysed as above to find the number of branch points. Latent space
structure could then be visualised by labelling each point in the embedded latent space with
its corresponding number of branch points.

4. Results

4.1 Model Selection

Table 3 shows the minimum observed FIDs for each model, as well as the average and
standard deviation (SD) of the minimum over multiple runs. The SD of the minimum
FID over the five runs provides a measure of training stability, since it reflects the ability
of the method to provide similar results under different initialisations and sequences of
training images. The significance of the effects of the MDmin and larger effective batch size
techniques was established by performing Welch’s t-test on the minimum FID in the five
training runs for pairs of methods using the same generator architecture (Figure 4). FID
values and network losses throughout the training are provided in Appendix E.

For the DCGAN3D method, including the MDmin layer provides a small, non-significant
(p = 0.64) improvement, reducing the minimum FID from 89.0 to 80.3 and the average
minimum FID only from 93.1± 3.1 to 91.0± 9.0. The increased SD over five runs suggests
that the modest performance improvement comes at the cost of reduced training stability.
In addition, we found that the performance of DCGAN3D-base was not significantly affected
by batch size (Appendix E).

On the other hand, MDmin was observed to have a significant effect for the styleGAN3D
architecture. Without the MDmin layer, the minimum FID observed was 122.3, with an
average minimum of 136.9±10.7. Including the MDmin layer reduced this to a minimum of
41.0 with an average of 44.8±4.2 (p << 0.05); a reduction in both mean and SD representing
improved training stability. For the bigGAN3D architecture, the use of MDmin reduced
FID from 93.8± 5.4 to 58.4± 5.8 which was a significant improvement (p << 0.05).

The heuristic method to increase the effective batch size (largeEBS) provided non-
significant improvements for the DCGAN3D and bigGAN3D architectures, although for
the styleGAN3D architecture, the minimum FID reduced from 41.0 with just the MDmin
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Minimum
FID

Average minimum
FID over five runs

DCGAN3D-base 89.0 93.1±3.1
DCGAN3D-MDmin 80.3 91.0±9.0
DCGAN3D-MDmin-largeEBS 80.5 86.8±5.1
styleGAN3D-base 122.3 136.9±10.7
styleGAN3D-MDmin 41.0 44.8±4.2
styleGAN3D-MDmin-largeEBS 35.3 38.5±4.3
bigGAN-base 86.5 93.8±5.4
bigGAN-MDmin 52.4 58.4±5.8
bigGAN-MDmin-largeEBS 51.6 57.4±6.3

Table 3: Minimum FIDs for each GAN model listed in Table 2. Both the minimum across
five runs, and the mean±SD are provided.

layer to 35.3 when using the increased effective batch size, reflecting a significant reduction
in mean minimum FID (p < 0.05).

Figure 5 shows some samples for the minimum FID models for each of the GAN methods.
The DCGAN3D-base method shows a variety of images, but the image quality is poor, with
periodic artefacts visible. On the other hand, the styleGAN3D-base and bigGAN3D-base
methods produce high-quality images, but with severe mode collapse. The DCGAN3D-
MDmin and DCGAN3D-MDmin-largeEBS methods improve on image quality compared to
DCGAN3D-base, but some mode collapse has arisen. This seems to contradict the purpose
of the MDmin and largeEBS techniques, though it should be noted that the minimum
FID for the best DCGAN3D-base training run occurred early in training, whereas the
DCGAN3D-MDmin method reached a minimum at a later point. Because of this, a direct
comparison of the variability of the two methods is not appropriate, since mode collapse
usually occurs later in training.

In contrast to DCGAN3D, the styleGAN3D-MDmin model reduces mode collapse while
retaining image quality compared to the styleGAN-base method. For bigGAN3D, the MD-
min did not visibly reduce mode collapse to the same extent as for styleGAN, despite the
significant drop in FID recorded in Table 3. However, image quality seems to be qualita-
tively improved, with more structure visible within the lung parenchyma. Similarly to the
DCGAN3D methods, this is likely due to the early occurrence of the minimum FID for the
bigGAN3D-base method, before image quality was stable. Using the largeEBS trick seems
to further reduce mode collapse for the styleGAN architecture, whereas for the bigGAN3D
architecture the effect was negligible.

Finally, Figure 6 shows interpolations between two randomly sampled latent codes for
each of the minimum FID models. Note that DCGAN3D and bigGAN3D methods were
spherically interpolated in z-space, whereas styleGAN methods were linearly interpolated
in w-space, as described in the original description of the method (Karras et al., 2019).
A smooth latent space is a desirable quality of GAN models, which should be reflected
by smooth transitions between sampled images. The DCGAN3D methods provide smooth
transitions despite their poor image quality. The bigGAN3D methods also exhibit smooth-

12



3D GANs for Lung Tissue Modelling in Pulmonary CT

DCGAN3D-base

DCGAN3D-M
Dmin

DCGAN3D-M
Dmin-la

rgeEBS

sty
leGAN3D-base

sty
leGAN3D-M

Dmin

sty
leGAN3D-M

Dmin-la
rgeEBS

BigGAN3D-base

BigGAN3D-M
Dmin

BigGAN3D-M
Dmin-la

rgeEBS

M
in

im
u
m

 F
ID

0

20

40

60

80

100

120

140

160

180

p = 0.64

p = 0.40

p = 0.053 p < 0.05

p < 0.05

p < 0.05

p < 0.05

p = 0.81

p < 0.05

Figure 4: The minimum FID across five runs for each method, along with p-values measured
for pairwise comparisons within each architecture using the Welch’s t-test.

ness, with a superior image quality. In general the styleGAN3D interpolations in w-space
are smooth, although some discontinuities/non-smooth regions are present, possibly due to
interpolations traversing low-density regions of w-space.

4.2 Observer Study

Figure 7 shows the results of the observer study. The DCGAN3D methods, suffering from
periodic artefacts and poor image quality, were easily distinguishable from the real im-
ages, with FPR < 0.025 and TPR > 0.88 for all models. Slightly improved performance
was observed using the bigGAN3D models, with FPR = 0.04 and TPR = 0.93 for the
bigGAN3D-MDmin method, but some remaining convolution artefacts made the fake im-
ages conspicious compared to real samples. The styleGAN3D-base method performed better
than all the DCGAN3D and bigGAN methods, but the mean observer performance was still
high at FPR = 0.14 and TPR = 0.89. When including the MDmin layer, observer perfor-
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DCGAN3D-base

DCGAN3D-MDmin

styleGAN3D-base

styleGAN3D-MDmin-largeEBS

styleGAN3D-MDmin

DCGAN3D-MDmin-largeEBS

bigGAN3D-base

bigGAN3D-MDmin

bigGAN3D-MDmin-largeEBS

Figure 5: Uncurated samples from each of the GAN methods in Table 2, corresponding
to the minimum FID models in Table 3. Example mode-collapsed images are
highlighted with red squares. Note that the images shown are the central slices
from the 3D GAN output.
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Figure 6: Latent space interpolation for each minimium FID model. In each case two inde-
pendent interpolations are shown. Note that the DCGAN and bigGAN interpola-
tions consisted of a spherical interpolation in the z-space, whereas for styleGAN
methods linear interpolation was performed in w-space.

mance dropped to FPR = 0.29 and TPR = 0.66, representing improved model performance.
The large effective batch size heuristic worsened styleGAN3D performance slightly, yielding
FPR = 0.22 TPR = 0.69.

4.3 3D Analysis

The FID3D score for each of the models is shown in Table 4. Similarly to the conventional
2D FID scores in Table 3, the best performing method overall is the styleGAN3D-MDmin-
largeEBS model which produced a value of 0.57 for the FID3D metric. Interestingly, the
effect of the largeEBS method is different in 2D FID compared to 3D FID. For example, the
largeEBS reduces 2D FID for the bigGAN3D, compared to using MDmin alone, whereas in
terms of FID3D, it rises considerably. We hypothesise that this is because the bigGAN3D
architecture has fewer trainable parameters, which means that the MDmin method alone
may be fully utilising network capacity. Pushing further with the largeEBS method may
cause the training to become more unstable, resulting in worse 3D structure. We leave a
full comparison of 2D and 3D FID metrics for future work.
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Figure 7: Observer study ROC graph. Since good generative models should produce sam-
ples indistinguishable from real samples, GAN performance increases closer to the
TPR=FPR line, and worsens towards TPR= 1, FPR=0 (a) The average perfor-
mances over three experiments are represented by solid markers for each method,
with individual experiments shown with unfilled markers. (b) A zoomed version
is also provided to more clearly show the low-FPR, high-TPR area of ROC space.
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FID3D

DCGAN3D-base 4.40
DCGAN3D-MDmin 4.40
DCGAN3D-MDmin-largeEBS 1.30
styleGAN3D-base 3.97
styleGAN3D-MDmin 2.90
styleGAN3D-MDmin-largeEBS 0.57
bigGAN3D-base 4.24
bigGAN3D-MDmin 1.88
bigGAN3D-MDmin-largeEBS 6.05

Table 4: The FID3D scores for each GAN model investigated. Note that these scores cor-
respond to the models used elsewhere, i.e. the lowest FID obtained throughout
training over five independent runs.

Figure 8 shows some example skeletons calculated from random outputs of each GAN
model. The DCGAN3D models provide noisy skeleton images, due to the poor quality
of the generated samples. In contrast the styleGAN3D and bigGAN3D outputs produce
cleaner skeletons with clearer structure, more closely resembling real images.

To analyse the distributions of 3D branch points in real and fake images, ROC curves
were produced for each method by varying a threshold number of branch points and record-
ing the true and false positive rates (TPR and FPR) of the resulting binary classification.
Methods that generate fake images with a similar distribution of branch points to the real
data will produce areas under the ROC curve (AUCs) closer to 0.5, and vice versa. Fig-
ure 9 shows the ROC curves each of the methods. The DCGAN methods provide AUCs
of 0.750 ± 0.003 (DCGAN-base), 0.693 ± 0.004 (DCGAN3D-MDmin), and 0.784 ± 0.003
(DCGAN3D-MDmin-largeEBS), demonstrating that the DCGAN architecture is unable to
produce a realistic distribution of branch points. In contrast, the styleGAN3D architecture
produces distributions of branch points closer to the real one, reflected by AUC values of
0.535±0.004 for styleGAN3D-base, 0.671±0.004 for styleGAN3D-MDmin, and 0.608±0.004
for styleGAN3D-MDmin-largeEBS. Overall, the bigGAN3D methods provided the best per-
formance, with a lowest AUC of 0.524± 0.004.

The UMAP visualisation of the latent spaces, and their relationship to the number
of branch points are shown in Figure 10. For the DCGAN3D and bigGAN3D methods,
the UMAP-embedded space shows no structure since the z-space is by design distributed
normally. Furthermore, no correspondence is apparent between the position of a point
in the embedded space and the number of branch points in the corresponding generated
image. Conversely, the styleGAN3D methods show both structure in the shape of the w-
space, and a correspondence between position and number of branch points. This suggests
that higher level concepts are contributing to the structure of the full latent space, agreeing
with previous literature on the use of styleGAN for medical image generation (Quiros et al.,
2021). This is an interesting result, opening the possibility for further investigation into
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Figure 8: Visualisation of 3D structure of generated samples with 3D skeletons. Each
method shows two separate 3D skeletons at 10 view angles. The DCGAN3D
methods produce noisy skeletons, whereas the styleGAN3D methods produce
cleaner skeletons with a clearer structure.

the structure of the latent space with respect to other semantically meaningful features in
future work.

It is also important to emphasise that the lack of correspondence between UMAP em-
beddings and the number of branch points for the bigGAN3D and DCGAN3D methods
does not suggest that the full 512-dimensional latent spaces for these methods are not or-
dered with respect to the number of branch points, just that any such correspondence is not
preserved under the UMAP transformation. Additional analysis to explore whether such
correspondence exists for the DCGAN3D and bigGAN3D methods remains for future work.

5. Discussion

The aim of this work was to investigate the applicability and transferability of existing 2D
GAN models for the problem of generating 3D patches to model the appearance of healthy
lung tissue in pulmonary CT images. Although there has been much research using GANs
to generate images of pulmonary nodules (Liu et al., 2018; Jin et al., 2018; Xu et al., 2019;
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Figure 9: ROC curves calculated with the distribution of 3D branch points in real and
fake images, for each of the GAN methods. Dashed lines show 95% percentile
bootstrap confidence intervals, and AUCs are displayed ± the standard deviation
of bootstrapped AUCs. The bigGAN methods provide better distributions of
branch points than the DCGAN or styleGAN methods, reflected by AUC values
closer to 0.5.

Yang et al., 2019; Bu et al., 2021; Suh et al., 2021; Wang et al., 2021), we believe we are
the first to take the next step to specifically model healthy lung tissue.

Three architectures were selected from the literature: DCGAN, styleGAN and bigGAN.
Results show that the three methods have very different characteristic behaviour. From a
visual inspection of generated images, the DCGAN3D-base model was capable of generating
a higher variety of images than the styleGAN3D and bigGAN networks (Figure 5), but at
the cost of reduced image quality reflected by poor performance in a human observer study
(Figure 7) and a higher FID (Table 3 and Figure 4). In contrast, the styleGAN3D-base
architecture produced more realistic images that performed better in the observer study
and had a more realistic 3D structure (Figures 8 and 9), but at the cost of severe mode
collapse that required a minibatch discrimination (MDmin) layer to mitigate. In terms
of the FID metric the styleGAN3D methods with MDmin performed best even taking into
account remaining mode collapse (Table 3 and Figure 4). Use of the latent mapping network
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DCGAN3D-base DCGAN3D-MDmin DCGAN3D-MDmin-largeEBS

styleGAN3D-base styleGAN3D-MDmin styleGAN3D-MDmin-largeEBS

bigGAN3D-base bigGAN3D-MDmin bigGAN3D-MDmin-largeEBS

Figure 10: Visualisation of latent space using UMAP. Colour corresponds to the number
of branch points measured by the previously described pipeline. For the DC-
GAN3D and bigGAN3D architectures the position of a sample in UMAP space
does not relate to the number of branch points in the corresponding generated
image. On the other hand, for the styleGAN3D methods images with similar
numbers of 3D branch points are clustered together. This clustering is particu-
larly strong for images containing a large number of branch points (¿ 70). This
suggests that the styleGAN3D models were able to learn latent space represen-
tations that relate to semantically meaningful quantities. Note that the colour
scale is saturated at 120 for clarity.

was crucial to the performance of the styleGAN3D methods: omitting it caused training to
become unstable and greatly increased the minimum FID (Appendix E).
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Despite the strong performance of the styleGAN3D methods in terms of FID and a
human observer study, the bigGAN methods were best at learning the distribution of a
semantically meaningful quantity (Figure 9), even with a smaller number of trainable pa-
rameters (∼ 4 million for bigGAN3D vs ∼ 18 million for styleGAN3D). These results suggest
a number of possible improvements to be made in future work: 1) training a bigGAN3D
with the same number of parameters as styleGAN3D may lead to better performance in the
other metrics while maintaining the distribution of semantically important features, and
2) combining components from styleGAN3D and bigGAN3D architectures, for example by
upgrading the bigGAN architecture to allow style-based generation, could yield a method
superior in all metrics.

Beyond the networks and architectural components investigated in this work, many more
possibilities remain, including the exploration of upgraded styleGAN approaches (Karras
et al., 2020, 2021) and autoencoder models such as the high-quality VQ-VAE family (van den
Oord et al., 2017; Razavi et al., 2019). The methodology and results presented here represent
an important baseline for such future investigations.

Another area for future research is the inclusion of positional information in the GAN
models. Currently, our models treat the generation task in a ‘bag-of-patches’ fashion, i.e.
ignoring the potentially important spatial context for each patch. By including positional
information such as in Lin et al. (2019); Dosovitskiy et al. (2021), the models could be
trained to learn the distribution of healthy tissue appearance at each position within the
lung, utilising the prior information to help training. However, these methods would need
a greater amount of training data, and would take longer to train.

In any case the use of patch-based generators as investigated in this work may hinder
application of such methods to a downstream task. Although the query image can be
decomposed into patches and then passed through the anomaly detection/reconstruction
pipeline, ensuring continuity/consistency between the overlapping output patches may be
difficult. In theory a GAN that has learnt the full data distribution should be shift-invariant
(given that translated patches remain valid patches), but sub-optimal GAN models are likely
to suffer artefacts that would need addressing in future work.

A potential solution to this issue would be to perform whole-volume image generation,
completely obviating the need to work with patches. While there has been recent research
into modelling large 3D volumes with GANs (Uzunova et al., 2020; Sun et al., 2020; Pe-
saranghader et al., 2021; Hong et al., 2021), the modelling of entire 3D volumes will require a
much larger amount of data in order to fully model the data distribution. The use of smaller
datasets has been shown to yield whole-lung GAN models suitable for a data augmenta-
tion task (Pesaranghader et al., 2021), but there is currently insufficient evidence that the
models capture well the data distribution everywhere, as would be required for an anomaly
detection or image reconstruction task. Nonetheless, these models can be evaluated under
the pipeline introduced in this work by firstly generating a number of whole-volume images,
and then breaking these into patches for subsequent analysis.

6. Conclusions

GAN models are of interest in anomaly detection and image reconstruction tasks in a variety
of medical imaging applications. However, due to variations in the underlying structure
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of datasets, GAN models must be re-adapted, re-trained, and re-assessed for each new
application, which is a non-trivial task.

In this work we adapted three GAN models from the natural image literature to the
task of 3D healthy lung CT patch generation, and evaluated their performances. Of the
three architectures investigated, the styleGAN3D approaches provided the best performance
according to FID values and observer studies, while the bigGAN3D architecture was superior
in an analysis of 3D structure. The use of minibatch discrimination was shown to be crucial
for the styleGAN3D architecture in order to avoid excessive mode collapse and inclusion
of a latent mapping network was shown to allow styleGAN3D to produce a latent space
with semantic meaning. However, despite the promising results, we conclude that none
of the investigated methods are currently suitable for the downstream tasks of anomaly
detection or image reconstruction. Future directions of research are proposed, including the
use of positional encoding or whole-volume generation, to further improve on these results.
Overall, the results and analyses presented in this work provide an important baseline for
future research into the use of generative models in 3D healthy lung CT patch modelling.
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and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/

file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf.

Andrew J. Reader, Guillaume Corda, Abolfazl Mehranian, Casper da Costa-Luis, Sam Ellis,
and Julia A. Schnabel. Deep Learning for PET Image Reconstruction. IEEE Trans.
Radiat. Plasma Med. Sci., 5(1):1–25, 2020.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved Techniques for Training GANs. arXiv, page 1606.03498v1, 2016.
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Appendix A. DCGAN3D generator architecture

DCGAN3D generator

Input: z ∈ R512 ∼ N (0, 1)

ConvTranspose3d 4× 4× 4, stride 1, pad 0, no bias, 512→512

BatchNorm3d + ReLU

ConvTranspose3d 2× 4× 4, stride 2, pad 2× 1× 1, no bias, 512→256

BatchNorm3d + ReLU

ConvTranspose3d 4× 4× 4, stride 2, pad 1, no bias, 256→128

BatchNorm3d + ReLU

ConvTranspose3d 4× 4× 4, stride 2, pad 1, no bias, 128→64

BatchNorm3d + ReLU

ConvTranspose3d 4× 4× 4, stride 2, pad 1, no bias, 64→1

Tanh

Output: xf ∈ R32×64×64 ∼ Q

Table A1: Architecture of the 3D DCGAN method used in this investigation.
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Appendix B. styleGAN3D generator architecture

styleGAN3D generator: latent mapping network

Input: z ∈ R512 ∼ N (0, 1)

FC, 512→ 512

Leaky ReLU 0.2

FC, 512→ 512

Leaky ReLU 0.2

FC 512→ 512

Leaky ReLU 0.2

FC, 512→ 512

Leaky ReLU 0.2

FC, 512→ 512

Leaky ReLU 0.2

FC, 512→ 512

Leaky ReLU 0.2

FC, 512→ 512

Leaky ReLU 0.2

FC, 512→ 512

Leaky ReLU 0.2

Output: w ∈ R512

Table A2: Architecture of the latent mapping network in the styleGAN3D generator. FC
= fully connected layer.
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styleGAN3D generator: synthesis network

Input: w ∈ R512, Const. ∈ R1×2×2

AdaIN, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 512→ 512

Leaky ReLU 0.2

AdaIN, 2× nearest-neighbour upsample, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 512→ 256

Leaky ReLU 0.2

AdaIN, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 256→ 256

Leaky ReLU 0.2

AdaIN, 2× nearest-neighbour upsample, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 256→ 128

Leaky ReLU 0.2

AdaIN, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 128→ 128

Leaky ReLU 0.2

AdaIN, 2× nearest-neighbour upsample, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 128→ 64

Leaky ReLU 0.2

AdaIN, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 64→ 64

AdaIN, 2× nearest-neighbour upsample, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 64→ 32

Leaky ReLU 0.2

AdaIN, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 32→ 32

Leaky ReLU 0.2

AdaIN, 2× nearest-neighbour upsample, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 32→ 16

Leaky ReLU 0.2

AdaIN, Conv3d 3× 3× 3, stride 1, pad 1, no bias, 16→ 1

Tanh

Output: xf ∈ R32×64×64 ∼ Q

Table A3: Architecture of the synthesis network in the styleGAN3D generator.
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Appendix C. bigGAN3D generator architecture

bigeGAN3D generator

Input: z ∈ R512 ∼ N (0, 1)

SNFC, 512 → 6144

Reshape

BatchNorm3d + ReLU

(1× 2× 2)× nearest neighbour upsample, SNConv3d 3× 3× 3, stride 1, pad 1, bias, 96 → 96

BatchNorm3d + ReLU

SNConv3d 3× 3× 3, stride 1, pad 1, bias, 96 → 96

SNConv3d 1× 1× 1, stride 1, pad 0, bias, 96 → 96

SelfAttention3D

BatchNorm3d + ReLU

2× nearest neighbour upsample, SNConv3d 3× 3× 3, stride 1, pad 1, bias, 96 → 48

BatchNorm3d + ReLU

SNConv3d 3× 3× 3, stride 1, pad 1, bias, 48 → 48

SNConv3d 1× 1× 1, stride 1, pad 0, bias, 48 → 48

BatchNorm3d + ReLU

2× nearest neighbour upsample, SNConv3d 3× 3× 3, stride 1, pad 1, bias, 48 → 24

BatchNorm3d + ReLU

SNConv3d 3× 3× 3, stride 1, pad 1, bias, 24 → 24

SNConv3d 1× 1× 1, stride 1, pad 0, bias, 24 → 24

BatchNorm3d + ReLU

2× nearest neighbour upsample, SNConv3d 3× 3× 3, stride 1, pad 1, bias, 24 → 12

BatchNorm3d + ReLU

SNConv3d 3× 3× 3, stride 1, pad 1, bias, 12 → 12

SNConv3d 1× 1× 1, stride 1, pad 0, bias, 12 → 12

BatchNorm3d + ReLU

SNConv3d 3× 3× 3, stride 1, pad 1, bias, 12 → 1

Tanh

Output: xf ∈ R32×64×64 ∼ Q

Table A4: Architecture of the 3D bigGAN generator. SNFC and SNConv refer to spec-
trally normalised fully connected and spectrally normalised convolution layers
respectively.
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Appendix D. Minibatch Discrimination and Increasing the Effective
Batch Size

Minibatch Discrimination: MDmin

The following approach to MD was adopted, calculating the L1 distance, dij , between two
images xi and xj within a minibatch as:

dij = ∥Dl (xi)−Dl (xj)∥1 (6)

where Dl (x) denotes the features of the discriminator network after layer l with x as the
input image. In the traditional minibatch discrimination approach (Salimans et al., 2016),
these distances (or some transformation of them) are then either summed or averaged over
the minibatch to get a per-image score, i.e. MDi ∝

∑N
j dij , which is used as input for the

subsequent discriminator layer.

We note that taking the sum of dij allows partial mode collapse to occur if one mode
is sufficiently far from the rest of the samples. To overcome this, we propose to take
instead the minimum within-batch distance for each image, denoted MDmin, as follows:
MDmini = minj (dij). This represents the maximum similarity between two samples in the
minibatch, providing a consistently clearer signal to the discriminator if these images are
mode-collapsed. The scalar values per image, MDmini, are then expanded to the correct
size and appended to the current feature maps, to provide an extra feature to the subsequent
layers of the discriminator.

Increased Effective Batch Size: largeEBS

The MDmin layer described above is able to reduce mode collapse by allowing the dis-
criminator to detect when a minibatch contains similar samples, and feed this information
back to the generator. However, mode collapse can clearly still occur, as long as similar
samples are unlikely to occur within a minibatch. Size the maximum batch size is bounded
by computational limitations (GPU memory), this issue cannot be solved completely by
simply increasing the batch size.

We propose to use a heuristic trick to increase the effective batch size, mitigating the
effect described above. First, a large batch of N latent codes is sampled and passed through
the generator without tracking gradients. This allows a larger batch size than would be
normally used in training, since much of the computational load of network training is in
the storing of gradients. These generated images are then passed through the discriminator
without tracking gradients, and the activation maps at depth l are calculated, similarly
as for the MDmin layer. The similarity between all pairs of samples is then calculated,
as for the MDmin layer, and the minimum for each sample is taken as a measure of how
mode-collapsed that particular sample is within the larger minibatch. The k most similar
images are noted, and the corresponding samples are then used for the subsequent training
iteration, ensuring that the networks see the most mode-collapsed samples for training
purposes. Figure A1 shows this process schematically. Note that with this method, the
upper limit to the effective batch size is no longer dependent on memory, since each pair
of images can in theory be loaded to memory as required and do not need to be stored
otherwise. Real samples are still selected entirely at random; choosing the k most similar
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samples from a larger batch of real images was seen to degrade performance. Since the
learned discriminator representations will not be relevant early in training, we train the
networks for 5 epochs as normal before increasing the effective batch size thereafter. Similar
heuristic tricks to select the most relevant/useful samples for GAN training are established
in the literature, for example in Sinha et al. (2020), although not for the specific case of
reducing mode collapse.

N samples

Generator

N images

Discriminator

N sets of 
feature maps

Calculate minimum
L1 distances

N per-image minimum 
L1 distances

Find indices of k
smallest

No gradients tracked

Prediction

k most similar 
samples

Gradients tracked

GAN training

Figure A1: The proposed large effective batch size (largeEBS) technique. A number, N ,
of latent codes z are sampled from Pz such that N would not fit in memory
for standard training purposes. Without tracking gradients, z are then passed
through the generator to produce N generated samples. To detect which im-
ages are most mode-collapsed, L1 distances between features from layer l of
the discriminator are calculated, and the minimum distances are retained as a
measure of degree of mode collapse. The k most mode-collapsed samples are
then kept and used for a subsequent training iteration, while the other N − k
samples are discarded.
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Appendix E. Additional Results
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Figure A2: The progression of FID throughout training for the 9 comparative GAN models
listed in Table 2, showing the run which provided the lowest FID score.
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Figure A3: Training losses for the lowest-FID runs of each method in Table 2. Loss values
are plotted every 14 steps, corresponding to the end of training with each CT
image (see Section 3.3 for details.)
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Figure A4: The effect of batch size on the DCGAN3D-base method. Increasing the batch
size from 48 to 224 did not result in a significant improvement in terms of FID
score, although on a single particular run the larger batch size did provide an
FID of 73.7.
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Figure A5: The effect of the latent mapping network on FID for the styleGAN3D-MDmin
method. Removing the latent mapping network resulted in highly unstable
training with a significant (p < 0.05) increase in FID.
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