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Abstract

Cell detection in histopathology images is of great interest to clinical practice and research,
and convolutional neural networks (CNNs) have achieved remarkable cell detection results.
Typically, to train CNN-based cell detection models, every positive instance in the training
images needs to be annotated, and instances that are not labeled as positive are considered
negative samples. However, manual cell annotation is complicated due to the large number
and diversity of cells, and it can be difficult to ensure the annotation of every positive
instance. In many cases, only incomplete annotations are available, where some of the
positive instances are annotated and the others are not, and the classification loss term for
negative samples in typical network training becomes incorrect. In this work, to address this
problem of incomplete annotations, we propose to reformulate the training of the detection
network as a positive-unlabeled learning problem. Since the instances in unannotated
regions can be either positive or negative, they have unknown labels. Using the samples
with unknown labels and the positively labeled samples, we first derive an approximation of
the classification loss term corresponding to negative samples for binary cell detection, and
based on this approximation we further extend the proposed framework to multi-class cell
detection. For evaluation, experiments were performed on four publicly available datasets.
The experimental results show that our method improves the performance of cell detection
in histopathology images given incomplete annotations for network training.

Keywords: Cell detection, histopathology image analysis, incomplete annotation, positive-
unlabeled learning

1. Introduction

With the continuous breakthrough of biological microscopic imaging technology, a large
number of histopathology images have been produced to assist clinical practice and re-
search. Quantitative, objective, and effective cell analysis based on histopathology images
has become an important research direction (Gurcan et al., 2009; Veta et al., 2014). Patholo-
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gists usually use information such as the number, density, and distribution of cells in a given
area in histopathology images to assess the degree of tissue damage and make a diagno-
sis (Fusi et al., 2013). Such analysis relies on the detection of the cells of interest. However,
manual cell detection performed by pathologists can be time-consuming and error-prone
(Wang et al., 2022; van der Laak et al., 2021), especially in areas of high cell density, and
automated cell detection methods are needed.

In recent years, deep learning techniques have been successfully applied to various image
processing tasks, and they have been increasingly used to analyze histopathology images
as well (Lu et al., 2021; Noorbakhsh et al., 2020; Srinidhi et al., 2021; He et al., 2021;
van der Laak et al., 2021; Marostica et al., 2021). In particular, convolutional neural net-
works (CNNs) have been applied to perform automated cell detection in histopathology
images. For example, Xu et al. (2016) propose stacked sparse autoencoder for efficient nu-
clei detection in high-resolution histopathology images of breast cancer; Sirinukunwattana
et al. (2016) propose a spatially constrained CNN to perform nuclei detection in routine
colon cancer histopathology images. More advanced networks that are originally devel-
oped for generic object detection are later used or adapted for cell detection. In these
methods, cells of interest are localized by bounding boxes. For example, Cai et al. (2019)
have modified Faster R-CNN (Ren et al., 2017) for automatic mitosis detection in breast
histopathology images; Sun et al. (2020) use the region proposal network (Ren et al., 2017),
Faster R-CNN, and RetinaNet (Lin et al., 2017), as well as their adapted versions that
enable similarity learning, for signet ring cell detection in histopathology images.

To train advanced CNN-based cell detection models, usually every cell of interest in the
training images should be annotated (e.g., with a bounding box and the identification of
its type), and instances in unannotated regions1 are considered negative training samples.
However, due to the complexity and large number of cells in histopathology images, com-
pletely annotating every cell of interest in the training images can be challenging. It is more
practical to perform incomplete annotation, where only a fraction of the cells of interest
are annotated and the unannotated areas may also contain positive instances (i.e., cells of
interest) (Li et al., 2019). The annotations may even be sparse with only a few annotated
cells in a training image to reduce the annotation load (Li et al., 2020). Since the instances
in unannotated areas are not necessarily true negative samples when the annotations are
incomplete, typical network training procedures designed for complete annotations can be
problematic for incomplete annotations and degrade the detection performance.

Li et al. (2020) propose to solve the problem of incomplete annotations for cell de-
tection in histopathology images by calibrating the loss function during network training.
Specifically, it is observed that the density of the detection boxes associated with positive in-
stances is much greater than the box density associated with negative instances. Therefore,
the Boxes Density Energy (BDE) is developed in Li et al. (2020) to calibrate the loss terms
associated with the training samples in unannotated areas, where the samples with higher
box density are calibrated to have smaller weights, as they are less likely to be truly nega-
tive. It is shown in Li et al. (2020), as well as in its extended journal version Li et al. (2021),
that when the annotations are incomplete, the detection performance is improved with the

1. Usually large whole-slide images are acquired for histopathology image analysis, and they are cropped
into patches for cell annotation or detection. Here, the unannotated regions refer to the regions without
annotated cells in image patches that are annotated.
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BDE loss calibration compared with the typical training strategy that treats all instances in
unannotated areas as negative. To the best of our knowledge, this is the only existing work
that addresses the problem of incomplete annotations for cell detection in histopathology
images2, and the development of methods that may better solve this problem is still desired.

In this work, we continue to explore the problem of incomplete annotations for CNN-
based cell detection in histopathology images. Since unannotated areas in incomplete anno-
tations may include both positive and negative samples, i.e., the labels of the instances in
these regions are unknown, whereas annotated samples are all positive, we propose to ad-
dress the problem of incomplete annotations with a positive-unlabeled (PU) learning frame-
work (Elkan and Noto, 2008; Kiryo et al., 2017). We integrate our method with advanced
object detectors, where a classification loss and a box regression loss are combined for net-
work training, and reformulate the classification loss with PU learning. Specifically, the
classification loss terms associated with negative samples are revised, so that they can be
approximated with positively labeled instances and instances with unknown labels. We first
derive the approximation for the case of binary cell detection, where only one type of cell
is of interest. Then, the approximation is extended to the case of multi-class cell detec-
tion, where more than one types of cells are to be identified given incomplete annotations.
To evaluate the proposed method, we performed experiments on four publicly available
datasets of histopathology images, and for demonstration, Faster R-CNN (Ren et al., 2017)
was used as our backbone detection network, as it has previously achieved excellent cell
detection results (Sun et al., 2020; Cai et al., 2019). The experimental results on the four
datasets show that the proposed method leads to improved cell detection performance given
incomplete annotations for training.

This manuscript is an extension of our conference paper (Zhao et al., 2021) presented
at MICCAI 2021. In the current manuscript, we have substantially extended our work in
terms of both methodology and evaluation. Specifically, we have extended the proposed
framework from the binary cell detection problem considered in Zhao et al. (2021) to multi-
class cell detection, where the corresponding approximation of loss terms is derived and
the strategy of hyperparameter selection is determined; in addition, we have evaluated
our method more comprehensively with three additional publicly available datasets under
various experimental settings. The code of the proposed method is available at https:

//github.com/zipeizhao/PU-learning-for-cell-detection.

We organize the remaining of the paper as follows. Section 2 presents the proposed
approach to cell detection in histopathology images given incomplete annotations. In Sec-
tion 3, we describe the cell detection results on the publicly available datasets. Section 4
discusses the results and future works. Finally, Section 5 summarizes the proposed work.

2. Methods

In this section, we first introduce how CNN-based cell detection methods are conventionally
trained given completely annotated training data. Then, we present the proposed approach
that adapts PU learning to address the problem of incomplete annotations for cell detection
in histopathology images. Finally, the implementation details are given.

2. The work in Li et al. (2019) requires the annotated mask of each instance in addition to the bounding
box, and thus it addresses a different problem.
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2.1 Background: cell detection with complete annotations for training

CNN-based methods have greatly improved the performance of object detection. These
methods have also been applied to cell detection and have achieved promising results. For
a typical modern CNN-based object detector, e.g., Faster R-CNN (Ren et al., 2017), con-
volutional layers are used to extract feature maps from input images, and the extracted
feature maps are then fed into subsequent layers to predict the location and class of the
objects of interest. Most commonly, a bounding box3 x is generated to indicate the posi-
tion of an object of interest, which is produced by the regression head of the detector. For
convenience, the predicted position of the bounding box x is denoted by v = (X,Y,W,H),
where X, Y , W , and H represent the coordinate in the horizontal direction, coordinate in
the vertical direction, width, and height of the bounding box, respectively. The class of
the object is simultaneously predicted by the classification head of the detector, where the
likelihood of the instance belonging to a certain category is indicated. For simplicity, here
we discuss binary cell detection, where the detection of a specific type of cell is of interest,
but its extension to multi-class cell detection—i.e., the detection of multiple types of cells—
is straightforward. In binary cell detection, the ground truth label z of a bounding box x
is binary: z ∈ {0, 1}, where z = 1 represents that the bounding box contains the cell of
interest, and the probability c of the bounding box x being positive—i.e., z ̸= 0—predicted
by the detector is between zero and one: c ∈ [0, 1].

Conventionally, to train a CNN-based cell detector, all positive instances should be an-
notated for the training images, and using the training data the network learns to locate and
classify the cells by minimizing a loss function that sums the localization and classification
errors. The localization loss Lloc measures the difference between the predicted location v
and the ground truth location b = (Xb, Yb,Wb, Hb) of the positive training samples, where
Xb, Yb, Wb, and Hb represent the coordinate in the horizontal direction, coordinate in the
vertical direction, width, and height of the ground truth, respectively. A typical choice
of Lloc is the smooth L1 loss function (Ren et al., 2017). The classification loss Lcls is
computed from the predicted classification probability and the corresponding ground truth
label as

Lcls =
1

Nn +Np

 Nn∑
j=1

H(cjn, 0) +

Np∑
i=1

H(cip, 1)

 . (1)

Here, i and Np are the index and the total number of positive training samples (samples
that have a large overlap with the labeled positive instances), respectively; j and Nn are the
index and the total number of negative training samples (samples that have no overlap with
the labeled positive instances or an overlap below a threshold); cip and cjn are the predicted

classification probability for the positive samples xip and negative samples xjn, respectively;
H(·, ·) measures the difference between the ground truth label and the classification result
given by the network, and it is usually a cross entropy loss. With the complete annotations
where every positive instance in the training images is labeled, the sum of the two loss terms
Lloc and Lcls is minimized to learn the weights of the detection network.

3. Depending on the object detector, the bounding box can be defined differently. For the commonly used
Faster R-CNN, it is produced by the detection network based on each anchor. For a more detailed
description of the bounding box and anchor, we refer readers to Ren et al. (2017).
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2.2 PU learning for cell detection with incomplete annotations

Because there are usually a large number of cells with various appearances in histopathology
images, it is challenging to annotate every positive instance. Experts may only ensure that
the annotated cells are truly positive (Li et al., 2019), and the annotated cells may even
appear sparse in the image to reduce the annotation load (Li et al., 2020). In this case, the
annotated training set is incomplete and only contains a subset of the positive instances.
In other words, in an incompletely annotated dataset, there are positive instances that are
not annotated, and the regions with no instances labeled as positive are not necessarily all
truly negative. Given such incomplete annotations, training the detection network with the
classification loss designed for complete annotations—e.g., Eq. (1) for binary cell detection—
is no longer accurate and could degrade the detection performance.

Since the regions that are not labeled as positive may comprise both positive and neg-
ative samples, the instances in these regions can be considered unlabeled. This means that
the incompletely annotated training dataset contains both positively labeled and unlabeled
training samples. Therefore, to address the problem of incomplete annotations for cell detec-
tion in histopathology images, we propose to exploit PU learning, so that the classification
loss that is originally computed with complete annotations can be approximated with in-
complete annotations. We first present the derivation of the approximation for the simpler
case of binary cell detection. Then, we show how this approximation can be extended to
multi-class cell detection.

2.2.1 Binary cell detection

Based on the formulation in Section 2.1, we first derive the approximation of the classi-
fication loss for binary cell detection. Lcls is an approximation (empirical mean) of the
expectation E(x,z)[H(c, z)], which measures the classification inaccuracy of c with respect
to the ground truth label z, and we reformulate the computation of E(x,z)[H(c, z)] as

E(x,z)[H(c, z)]

= Pr(z = 0)

∫
p(x|z = 0)H(c, 0)dx+ Pr(z = 1)

∫
p(x|z = 1)H(c, 1)dx

= (1− π)Ex|z=0[H(c, 0)] + πEx|z=1[H(c, 1)]. (2)

Here, we use p(·) to represent a probability density function, and we denote the positive
class prior Pr(z = 1) by π, which is assumed to be known.

In incomplete annotations, positive training samples are available, whereas negative
training samples cannot be determined. Therefore, the second term in Eq. (2) can be
directly approximated with the incompletely annotated training samples but not the first
term. However, the first term can be approximated with both positive and unlabeled
training samples via PU learning (Kiryo et al., 2017). Specifically, as p(x) = Pr(z =
0)p(x|z = 0) + Pr(z = 1)p(x|z = 1), we have

Pr(z = 0)p(x|z = 0) = p(x)− Pr(z = 1)p(x|z = 1), (3)
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and the first term (1− π)Ex|z=0[H(c, 0)] in Eq. (2) can be rewritten as

(1− π)Ex|z=0[H(c, 0)]

= Pr(z = 0)

∫
p(x|z = 0)H(c, 0)dx

=

∫
p(x)H(c, 0)dx− Pr(z = 1)

∫
p(x|z = 1)H(c, 0)dx

= Ex[H(c, 0)]− πEx|z=1[H(c, 0)]. (4)

Then, based on Eqs. (2) and (4), E(x,z)[H(c, z)] can be rewritten as

E(x,z)[H(c, z)] = Ex[H(c, 0)]− πEx|z=1[H(c, 0)] + πEx|z=1[H(c, 1)]. (5)

With this derivation, the second and third terms (πEx|z=1[H(c, 0)] and πEx|z=1[H(c, 1)],
respectively) on the right hand side of Eq. (5) can be approximated with positive training
samples, and we still need to approximate the first term Ex[H(c, 0)].

The original PU learning framework developed for classification problems assumes that
the distribution of the unlabeled data xu is identical to the distribution of x, and thus
Ex[H(c, 0)] can be approximated by Exu [H(c, 0)]. For convenience, this approximation
developed for classification instead of object detection is referred to as the naive approxi-
mation hereafter. The naive approximation has been directly applied to object detection
problems (Yang et al., 2020). However, since in detection problems the unlabeled samples
and positively labeled samples are drawn from the same images, the assumption that the
distribution of xu is identical to the distribution of x in the naive approximation can be
problematic, where some positive samples are excluded from the distribution of xu, lead-
ing to a biased approximation of Ex[H(c, 0)]. To better approximate Ex[H(c, 0)] for cell
detection, we combine the positively labeled and unlabeled samples in the same images,
and the combined samples can represent samples drawn from the distribution of x. Then,
Ex[H(c, 0)] can be approximated as

Ex[H(c, 0)] ≈ 1

Nu +Np

 Nu∑
k=1

H(cku, 0) +

Np∑
i=1

H(cip, 0)

 . (6)

Here, Np becomes the number of samples associated with the annotated cells in the incom-
plete annotations, Nu represents the number of unlabeled samples that are not associated
with any annotated cells in the incomplete annotations, k is the index of the unlabeled
training samples, and cku is the predicted classification probability of the k-th unlabeled
sample xku. Now, all three terms on the right hand side of Eq. (5) can be approximated
with the incompletely annotated training samples.

Note that as shown in Kiryo et al. (2017), when (1− π)Ex|z=0[H(c, 0)] = Ex[H(c, 0)]−
πEx|z=1[H(c, 0)] is approximated by an expressive CNN, negative values can be produced
due to overfitting. This can adversely affect the computation of E(x,z)[H(c, z)] with Eq. (5).
Thus, like Kiryo et al. (2017) we use the following nonnegative approximation of (1 −
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π)Ex|z=0[H(c, 0)]:

Ex[H(c, 0)]− πEx|z=1[H(c, 0)]

≈ max

{
0,

1

Nu +Np

(
Nu∑
k=1

H(cku, 0) +

Np∑
i=1

H(cip, 0)

)
− π

Np

Np∑
i=1

H(cip, 0)

}
. (7)

To summarize, the derivation steps described above give us the revised classification loss
Lpu
cls that approximates E(x,z)[H(c, z)] with the PU learning framework, and it is computed

as

Lpu
cls = max

{
0,

1

Nu +Np

(
Nu∑
k=1

H(cku, 0) +

Np∑
i=1

H(cip, 0)

)
−

π

Np

Np∑
i=1

H(cip, 0)

}
+

π

Np

Np∑
i=1

H(cip, 1). (8)

With Lpu
cls, when only incomplete annotations are available for binary cell detection, the

overall loss function to minimize for network training becomes

L = Lloc + Lpu
cls. (9)

2.2.2 Extension to multi-class cell detection

Based on the derivation in Section 2.2.1 for binary cell detection, we further derive the
approximation of the classification loss for multi-class cell detection, where the positive
samples are annotated incompletely for each positive class. Mathematically, suppose that
there areM classes in total, which compriseM−1 positive classes (cell types of interest) and
one background negative class; then the ground truth label z of a bounding box x becomes
z ∈ {0, . . . ,M − 1}, where z = 0 still represents the negative class and z ∈ {1, . . . ,M − 1}
represents the positive classes. The expectation E(x,z)[H(c, z)] in Eq. (2) that is associated
with the classification loss now becomes

E(x,z)[H(c, z)] = (1−
M−1∑
m=1

πm)Ex|z=0[H(c, 0)] +

M−1∑
m=1

πmEx|z=m[H(c,m)], (10)

where m ∈ {1, . . . ,M − 1} is the positive class index and πm = Pr(z = m) is the class prior
(assumed to be known) for the m-th positive class. Note that here for multi-class detection,
c is a vector that comprises the predicted probabilities of all classes, andH(·, ·) computes the
categorical cross entropy. Due to the incomplete annotations, (1−

∑M−1
m=1 πm)Ex|z=0[H(c, 0)]

in Eq. (10) cannot be directly approximated.
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Similar to Eqs. (3) and (4), when there are M − 1 positive classes, because Pr(z =
0)p(x|z = 0) = p(x)−

∑M−1
m=1 Pr(z = m)p(x|z = m), we have

(1−
M−1∑
m=1

πm)Ex|z=0[H(c, 0)]

= Pr(z = 0)

∫
p(x|z = 0)H(c, 0)dx

=

∫
p(x)H(c, 0)dx−

M−1∑
m=1

Pr(z = m)

∫
p(x|z = m)H(c, 0)dx

= Ex[H(c, 0)]−
M−1∑
m=1

πmEx|z=m[H(c, 0)], (11)

and Eq. (10) becomes

E(x,z)[H(c, z)] = Ex[H(c, 0)]−
M−1∑
m=1

πmEx|z=m[H(c, 0)] +

M−1∑
m=1

πmEx|z=m[H(c,m)]. (12)

Like in the binary case, the first term Ex[H(c, 0)] in Eq. (12) still needs to be determined,
whereas the other terms can be computed with the labeled instances of each positive class.

As discussed in Section 2.2.1, the distribution of x can be approximated with the com-
bination of all positive and unlabeled samples. Thus, we approximate Ex[H(c, 0)] as

Ex[H(c, 0)] ≈ 1

Nu +
M−1∑
m=1

Nm
p

 Nu∑
k=1

H(cku, 0) +

M−1∑
m=1

Nm
p∑

i=1

H(cm,i
p , 0)

 , (13)

where Nm
p represents the number of annotated samples for the m-th positive class and cm,i

p

represents the prediction probability for the i-th positive sample xm,i
p that belongs to classm.

With Eq. (13), we can approximate E(x,z)[H(c, z)] using the incomplete annotations based on

Eq. (12). Note that again a nonnegative approximation of (1−
∑M−1

m=1 πm)Ex|z=0[H(c, 0)] =

Ex[H(c, 0)]−
∑M−1

m=1 πmEx|z=m[H(c, 0)] is used to avoid overfitting, which leads to

Ex[H(c, 0)]−
M−1∑
m=1

πmEx|z=m[H(c, 0)]

≈ max

{
0,

1

Nu +
M−1∑
m=1

Nm
p

 Nu∑
k=1

H(cku, 0) +

M−1∑
m=1

Nm
p∑

i=1

H(cm,i
p , 0)

−

M−1∑
m=1

πm
Nm

p

Nm
p∑

i=1

H(cm,i
p , 0)

}
. (14)
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Now, we have the classification loss Lmpu
cls for multi-class cell detection:

Lmpu
cls = max

{
0,

1

Nu +
M−1∑
m=1

Nm
p

 Nu∑
k=1

H(cku, 0) +

M−1∑
m=1

Nm
p∑

i=1

H(cm,i
p , 0)

−

M−1∑
m=1

πm
Nm

p

Nm
p∑

i=1

H(cm,i
p , 0)

}
+

M−1∑
m=1

πm
Nm

p

Nm
p∑

i=1

H(cm,i
p ,m).

(15)

Lmpu
cls is used together with the localization loss (extended to multi-class detection by con-

sidering instances of all positive classes) for network training when multiple types of cells
are to be detected given incomplete annotations.

2.3 Implementation details

Since in detection problems it is difficult to directly estimate the class prior (π in the binary
case or πm’s in the case of multi-class detection) using incompletely annotated training
samples, we use a validation set, which is generally available during network training, to
determine the class prior. The detailed procedure is described below for the binary case
and the multi-class case separately.

For the binary case, we consider the class prior π a hyperparameter and search its
value within a certain range. Because not all positive samples are labeled in incomplete
annotations, the precision value computed from the validation set is no longer meaningful,
and thus the value of π is selected according to the best average recall computed from the
validation set.

For the case of multi-class cell detection, there are multiple class priors πm (m ∈
{1, . . . ,M − 1}) to be determined. A grid search for each combination of the priors does
not scale with the number of classes. Therefore, we propose a more practical way of deter-
mining the class priors. Without loss of generality, we let π1 be the class prior associated
with the cell type that has the largest number of annotated instances. π1 is considered a
hyperparameter that is selected from a set of candidate values, and the other priors are
determined from π1. More specifically, during network training, each batch is first fed into
the current detector, and the number of detected cells is denoted by Nm for each class m.
Each πm (m ̸= 1) is updated from the fixed π1 as πm = π1

Nm
N1

, and then with the current
πm’s (m ∈ {1, . . . ,M−1}) this batch is used to compute the gradient to update the network
weights. This procedure is repeated for each batch until network training is complete. The
value of π1 that achieves the best average recall on the validation set is selected.

Our approach can be integrated with different state-of-the-art backbone detection net-
works that are based on the combination of localization and classification losses. For demon-
stration, we selected Faster R-CNN (Ren et al., 2017) (with VGG16 (Simonyan and Zisser-
man, 2015)) as the backbone network, which is widely applied to object detection problems
including cell detection (Sun et al., 2020). For a detailed description of Faster R-CNN,
we refer readers to Ren et al. (2017). Intensity normalization was performed with the de-
fault normalization in Faster R-CNN, where the input image was normalized to the range

9



Zhao and Pang et al.

of [−1, 1]. Data augmentation was also performed according to the default operation in
Faster R-CNN, where horizontal flipping was used. The Faster R-CNN was pretrained on
ImageNet (Deng et al., 2009) for a better initialization of network weights. The Adam op-
timizer (Kingma and Ba, 2014) was used for minimizing the loss function, where the initial
learning rate was set to 10−3. The batch size was set to 8 according to the default setting
of Faster R-CNN. To ensure training convergence, the detection network was trained with
2580 iterations. The model corresponding to the last iteration was selected, as we empiri-
cally observed that model selection based on the validation set did not lead to substantially
different results.

Like in Faster R-CNN, in our work the prediction and ground truth were matched
based on the intersection over union (IoU) between the anchors and ground truth boxes.
Specifically, when the maximum IoU between an anchor and any ground truth box was
higher than 0.7 or lower than 0.3, the anchor was considered to represent a positive or
unlabeled sample, respectively; when the maximum IoU was between 0.3 and 0.7, the
anchor was not used during network training.

3. Results

In this section, we present the evaluation of the proposed approach, where experiments were
performed on multiple datasets under various experimental settings. The data description
and experimental settings are first given, and then the results on each dataset are described.
All experiments were performed with an NVIDIA GeForce GTX 1080 Ti GPU.

3.1 Data description and experimental settings

Four publicly available datasets developed for cell detection in histopathology images were
considered to evaluate the proposed method, which are the MITOS-ATYPIA-14 dataset (Roux
et al., 2013), the CRCHistoPhenotypes dataset (Sirinukunwattana et al., 2016), the TU-
PAC dataset (Veta et al., 2019), and the NuCLS dataset (Amgad et al., 2021). The detailed
description of each dataset and the experimental settings is given below.

3.1.1 The MITOS-ATYPIA-14 dataset

The MITOS-ATYPIA-14 dataset (Roux et al., 2013) aims to detect mitosis in breast cancer
cells. It comprises 393 images belonging to 11 slides at ×40 magnification. The slides
were stained with standard Hematoxylin & Eosin (H&E) dyes, and they were imaged with
an Aperio Scanscope XT scanner. The image size is about 1539×1376, and the image
resolution is 0.2455 µm/pixel. Each mitosis in this dataset was annotated with a key point
by experienced pathologists, and 749 cells have been annotated. Following Li et al. (2020),
for each annotated cell we generated a 32×32 bounding box centered around the key point.
The 11 slides were split into training, validation, and test sets, and the images belonging to
these slides were split accordingly for our experiment. The ratio of the number of images in
the training, validation, and test sets was about 4:1:1. We performed 5-fold cross-validation
for evaluation. In each fold, the validation set was fixed, and we regrouped the training and
test sets.
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Due to the large image size of the MITOS-ATYPIA-14 dataset, we cropped the original
images into 500× 500 patches, where an overlap of 100 pixels between adjacent patches in
the horizontal and vertical directions was used. To simulate incomplete annotations, like Li
et al. (2020) we randomly deleted the annotations in the training and validation sets until
only one annotated cell per patch was kept. Since the total number of annotated cells in
the complete annotations is not large on each image patch, about 73% of the annotated
cells were kept in the training and validation sets after deletion. Note that the deletion
was performed before network training for this experiment and all other experiments as
well. Since the detection is binary for the MITOS-ATYPIA-14 dataset, network training
was performed according to Section 2.2.1. The annotations in the test set were intact, and
they were only used for the evaluation purpose.

For test images, we first detected the cells on each 500× 500 patch, and the prediction
boxes on the image patches were merged to produce the final prediction, where the coordi-
nates of these boxes were mapped back into the image and duplicate bounding boxes were
removed with non-maximum suppression (NMS) (Neubeck and Van Gool, 2006).

The results on the MITOS-ATYPIA-14 dataset will be presented in Section 3.2. First,
the detection performance of the proposed method is given in Section 3.2.1. In addition, to
confirm the benefit of the approximation proposed in Eq. (6) for cell detection, we have used
the MITOS-ATYPIA-14 dataset to compare the proposed approximation with the naive
approximation in PU learning originally developed for classification problems (described
in Section 2.2.1). The comparison of the approximation strategies will be reported in
Section 3.2.2.

Moreover, we used the MITOS-ATYPIA-14 dataset to investigate the impact of de-
tection backbones. Specifically, besides the VGG16 backbone (Simonyan and Zisserman,
2015), we considered the ResNet50 and ResNet101 backbones (He et al., 2016), which are
also commonly used for objection detection with Faster R-CNN. These backbones were in-
tegrated with the proposed method to detect cells of interest in histopathology images. The
results achieved with these backbones will be reported in Section 3.2.3.

Finally, in addition to the random deletion strategy described above for generating
incomplete annotations, as information about the agreement on the annotations between
pathologists was available in the MITOS-ATYPIA-14 dataset, we considered another sce-
nario where pathologists choose to annotate the more confident cells. These cells are likely
to be those that are easy to annotate. Specifically, the annotated cell with the highest
agreement was kept on each image patch in the training or validation set. The other exper-
imental settings were not changed. The results achieved with this deletion strategy will be
presented in Section 3.2.4.

3.1.2 The CRCHistoPhenotypes dataset

To show that the proposed method is applicable to different datasets, we evaluated the
detection performance of the proposed method on the publicly available CRCHistoPheno-
types dataset (Sirinukunwattana et al., 2016). The CRCHistoPhenotypes dataset targets
the detection of cell nuclei in colorectal adenocarcinomas. It comprises 100 H&E stained
images. All images have the same size of 500×500 pixels, and they were cropped from
non-overlapping areas of whole-slide images at a resolution of 0.55 µm/pixel. The whole-
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slide images were obtained with an Omnyx VL120 scanner. A total number of 29756 nuclei
were marked by experts at the center of each nucleus for detection purposes. We followed
Sirinukunwattana et al. (2016) and generated a 12×12 bounding box centered around each
annotated nucleus. We also performed 5-fold cross-validation for this dataset, where the
images were split into training, validation, and test sets with a ratio of about 4:1:1. Like in
Section 3.1.1 the validation set was fixed, and the training and test sets were regrouped in
each fold.

We cropped the images into 250× 250 patches with an overlap of 50 pixels horizontally
and vertically between adjacent patches. To simulate the scenario of incomplete annota-
tions, we considered three different cases, where the annotations were deleted at random
until there was only one annotation, two annotations, or five annotations on each image
patch in the training or validation set, and about 2%, 4%, and 9% of the annotated cells were
kept in the training and validation sets, respectively. Network training was performed with
the incomplete annotations according to Section 2.2.1, as only one type of cell is of interest
for this dataset. The annotations in the test set were complete and used for evaluation only.

For test images, we generated prediction boxes for each 250 × 250 patch. These boxes
were then mapped back into the image with NMS to produce the final prediction on each test
image. The detection performance of the proposed method on the CRCHistoPhenotypes
dataset will be presented in Section 3.3.

3.1.3 The TUPAC dataset

The TUPAC dataset (Veta et al., 2019) with the alternative labels given by Bertram et al.
(2020) was also included for evaluation. We selected the first auxiliary dataset of the
TUPAC dataset, which aims to detect mitosis in breast cancer. The dataset consists of
H&E images acquired at three centers, and we used the 23 cases from the first center. The
23 cases were split into training, validation, and test sets with a ratio of about 4:1:1. Each
case is associated with an image, the size of which is about 20000 × 20000. The images
were acquired on an Aperio ScanScope XT scanner at ×40 magnification with a resolution
of 0.25 µm/pixel.

Due to the large image size of this dataset, we cropped the images into 500×500 patches
(without overlap), and patches without cells of interest were discarded. The dataset pro-
vides both complete and incomplete annotations for the images. However, the difference in
the number of annotated cells between the complete and incomplete annotations is small
(1359 vs 1273 for the 23 cases). Therefore, based on the original incomplete annotations,
we further randomly deleted the annotations in the training and validation sets until there
was only one annotated cell per patch. This led to new incomplete annotations that com-
prised about 63% of all annotated cells in the training and validation sets. Like for the
MITOS-ATYPIA-14 dataset, for each annotated mitosis we generated a 32× 32 bounding
box centered around it, and network training was performed with the new incomplete an-
notations according to Section 2.2.1. The annotations in the test set were complete and
only used for evaluation.

Since the size of the original image is large, evaluation was performed directly on the
image patches. The detection performance of the proposed method on the TUPAC dataset
will be presented in Section 3.4.
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3.1.4 The NuCLS dataset

To demonstrate the applicability of the proposed method to multi-class cell detection, we
performed experiments on the NuCLS dataset (Amgad et al., 2021). The dataset provides
labeled nuclei of seven classes of cells in breast cancer images from The Cancer Genome
Atlas (TCGA) (Tomczak et al., 2015). Note that the NuCLS dataset provides annota-
tions (bounding boxes) of different quality, and we used the subset of the images associated
with the high-quality cell annotations for evaluation, where initial annotations have been
manually corrected by study coordinators based on the feedback from a senior pathologist.
This subset comprises 1744 images, and the image size is about 400 × 400. The images are
from the scanned diagnostic H&E slides (mostly at ×20–40 magnification) generated by the
TCGA Research Network and were accessed with the Digital Slide Archive repository. Since
not all seven cell types have a large number of annotated instances, for our experiment, we
selected three types of cells for which a large number of annotations were made on these
images, and they are the tumor class (with 21067 annotated nuclei), the lymphocyte class
(with 13630 annotated nuclei), and the stromal class (with 9132 annotated nuclei).

The images were split into training, validation, and test sets with a ratio of about
4:1:1, and they were directly used for training and testing without cropping. To simulate
the scenario of incomplete annotations, for each cell type, if there were more than ten
annotated instances in an image in the training or validation set, we randomly deleted the
annotations until only ten annotations remained. After deletion 50%, 60%, and 71% of the
annotated tumor, lymphocyte, and stromal cells were kept in the training and validation
sets, respectively. Since multiple types of cells were of interest here, network training was
performed with the incomplete annotations according to Section 2.2.2. The annotations
in the test set were complete, and they were only used for evaluation. The detection
performance of the proposed method on the NuCLS dataset will be presented in Section 3.5.

3.1.5 Competing methods and upper bound performance

In the experiment, the proposed method was compared with two competing methods, which,
for fair comparison, used the same backbone Faster R-CNN detection network. The first one
is the baseline Faster R-CNN model (also pretrained on the ImageNet dataset as described
in Section 2.3), which neglected that the annotations were incomplete and simply considered
the unlabeled regions truly negative. Note that here the baseline Faster R-CNN was trained
with the standard cross entropy loss. Although it is also possible to use other losses that
address imbalanced samples, such as the weighted cross entropy loss or focal loss (Lin et al.,
2017), we have empirically observed that they led to worse performance, and thus they were
not considered.4 The second one is the BDE method (Li et al., 2020, 2021) that addresses
the problem of incomplete annotations for cell detection with a calibrated loss function, and
it was integrated with the Faster R-CNN architecture with network weights initialized on
ImageNet.

In addition to these competing methods, we have also computed the upper bound per-
formance that was achieved with the complete annotations for training. Specifically, the
original complete annotations without deletion were used in the training and validation sets,

4. The performance achieved with these alternative losses is discussed in Appendix A.
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Figure 1: Examples of representative detection results on test patches for the MITOS-
ATYPIA-14 dataset. The gold standard full annotations and the numbers of
annotated cells in the full annotations are also shown for reference. TP and
FP represent the numbers of true positive and false positive detection results on
the patch, respectively. Note the regions highlighted by arrows for comparison.
The black arrows indicate examples of true positive cases given by the proposed
method but missed by the competing methods, whereas the blue arrows indicate
examples of true negative cases given by the proposed method but labeled as
positive by BDE.

and Faster R-CNN was trained with these training and validation sets with the standard
training procedure, as no PU learning was needed for complete annotations.

14



PU learning for cell detection in histopathology images with incomplete annotations

Table 1: The average recall and average precision of the detection results on the test set for
each fold for the MITOS-ATYPIA-14 dataset when incomplete annotations were
obtained with random deletion. The best results are highlighted in bold. The
upper bound performance is also shown for reference.

Method
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

Baseline 0.602 0.412 0.504 0.401 0.642 0.357 0.460 0.372 0.643 0.473
BDE 0.634 0.438 0.532 0.421 0.659 0.368 0.482 0.418 0.682 0.489

Proposed 0.645 0.441 0.538 0.445 0.667 0.381 0.492 0.429 0.698 0.501

Upper Bound 0.639 0.479 0.552 0.456 0.678 0.389 0.502 0.441 0.692 0.541

3.2 Results on the MITOS-ATYPIA-14 dataset

3.2.1 Detection performance

We first present the detection results of the proposed method on the MITOS-ATYPIA-14
dataset when incomplete annotations were obtained with random deletion. As described in
Section 2.3, the class prior π was determined based on the validation set. The candidate
values of π ranged from 0.025 to 0.050 with an increment of 0.005. Note that π was selected
for each fold independently, and the selected value was consistent (0.035 to 0.045) across
the folds.5

Examples of the detection results of the proposed and competing methods are shown in
Fig. 1, where the bounding boxes predicted by each method on representative test patches
are displayed. For reference, the gold standard full annotations on the test patches are
also shown, and the numbers of true positive and false positive detection results on a patch
are indicated for each method. In these cases, our method compares favorably with the
competing methods by either producing more true positive boxes without increasing the
number of false positive boxes or reducing the number of false positive boxes with preserved
true positive boxes.

For quantitative evaluation, we computed the average recall, average precision, and av-
erage F1-score of the detection results on the test set for each method and each fold, as well
as the upper bound performance achieved with the complete annotation for training, and
they are shown in Tables 1 and 2.6 Compared with the competing methods, the proposed
method has higher recall, precision, and F1-score, which indicate the better detection ac-
curacy of our method, and this improvement is consistent across the folds. In addition, the
F1-score of our method is closer to the upper bound than the competing methods. We also
computed the means and standard deviations of the average recall, average precision, and
average F1-score of the five folds, and compared the proposed method with the competing
methods using paired Student’s t-tests. These results are shown in Table 3. Consistent
with Tables 1 and 2, the proposed method has higher recall, precision, and F1-score, and
the improvement of our method is statistically significant.

5. A detailed analysis of the sensitivity to the class prior π is given in Appendix B.
6. To investigate the impact of random effects, we further repeated the experiment with multiple indepen-

dent runs for the proposed and competing methods, and these results are reported in Appendix C.
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Table 2: The average F1-score of the detection results on the test set for each fold for
the MITOS-ATYPIA-14 dataset when incomplete annotations were obtained with
random deletion. The best results are highlighted in bold. The upper bound
performance is also shown for reference.

Method
F1-score

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Baseline 0.490 0.446 0.458 0.411 0.545
BDE 0.519 0.470 0.472 0.448 0.570

Proposed 0.524 0.487 0.484 0.457 0.583

Upper Bound 0.546 0.499 0.494 0.469 0.607

Table 3: The means and standard deviations (stds) of the average recall, average precision,
and average F1-score of the five folds for the MITOS-ATYPIA-14 dataset when
incomplete annotations were obtained with random deletion. The best results
are highlighted in bold. The upper bound performance is also shown for refer-
ence. Asterisks indicate that the difference between the proposed method and the
competing method is significant using a paired Student’s t-test after Benjamini-
Hochberg correction for multiple comparisons. (∗p < 0.05, ∗∗p < 0.01)

Method
Recall Precision F1-score

mean std p mean std p mean std p

Baseline 0.570 0.075 ** 0.403 0.040 ** 0.470 0.045 **
BDE 0.598 0.077 ** 0.427 0.039 * 0.496 0.044 **

Proposed 0.608 0.079 - 0.439 0.038 - 0.507 0.044 -

Upper Bound 0.613 0.074 - 0.461 0.049 - 0.523 0.048 -

3.2.2 Comparison with the naive approximation

We then performed experiments to confirm the benefit of the approximation developed in
Eq. (6) for detection problems. As described in Section 3.1.1, cell detection with incom-
pletely annotated training data was performed with the naive approximation used in PU
learning for classification problems on the MITOS-ATYPIA-14 dataset.

The average recall, average precision, and average F1-score of each fold achieved with
the naive approximation are listed in Table 4, as well as their mean values and standard
deviations. By comparing Table 4 with Table 2, we can see that for each fold the F1-
score of the naive approximation is worse than the result of the proposed method, and it is
even worse than the BDE result for the first fold. These results indicate the benefit of the
proposed approximation.

3.2.3 Impact of different backbones

Next, we investigated the applicability of the proposed method to different detection back-
bones with the MITOS-ATYPIA-14 dataset as described in Section 3.1.1, where ResNet50
and ResNet101 (He et al., 2016) were considered for Faster R-CNN. The competing meth-
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Table 4: The average recall, average precision, and average F1-score of the detection re-
sults achieved with the naive approximation on the test set for each fold for the
MITOS-ATYPIA-14 dataset. (Incomplete annotations were obtained with ran-
dom deletion.) The means and standard deviations (stds) of these results are also
shown.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 mean std

Recall 0.656 0.532 0.681 0.487 0.715 0.614 0.089
Precision 0.423 0.435 0.370 0.420 0.484 0.426 0.036
F1-score 0.514 0.477 0.479 0.451 0.577 0.500 0.044

Table 5: The means and standard deviations (stds) of the average recall, average precision,
and average F1-score of the five folds for the MITOS-ATYPIA-14 dataset with dif-
ferent detection backbones. (Incomplete annotations were obtained with random
deletion.) The best results are highlighted in bold. The upper bound performance
is also shown for reference. Asterisks indicate that the difference between the pro-
posed method and the competing method is significant using a paired Student’s
t-test after Benjamini-Hochberg correction for multiple comparisons. (∗p < 0.05,
∗∗p < 0.01)

Backbone Method
Recall Precision F1-score

mean std p mean std p mean std p

ResNet50

Baseline 0.571 0.067 ** 0.396 0.047 ** 0.463 0.051 **
BDE 0.601 0.071 ** 0.422 0.051 * 0.495 0.054 **

Proposed 0.619 0.072 - 0.441 0.049 - 0.513 0.055 -

Upper Bound 0.627 0.070 - 0.458 0.062 - 0.526 0.061 -

ResNet101

Baseline 0.580 0.070 ** 0.379 0.043 ** 0.459 0.046 **
BDE 0.611 0.072 ** 0.391 0.044 * 0.478 0.045 *

Proposed 0.632 0.071 - 0.403 0.042 - 0.490 0.045 -

Upper Bound 0.636 0.070 - 0.440 0.052 - 0.517 0.052 -

ods were also integrated with these backbones, and they were compared with the proposed
method.

The results are summarized in Table 5 (together with the upper bound computed with
the different backbones), where the means and standard deviations of the average recall,
average precision, and average F1-score of the five folds are listed. The proposed method
is also compared with the competing methods using paired Student’s t-tests in Table 5.
With these different backbones, the proposed method still has higher recall, precision, and
F1-score than the competing methods, and the improvement is statistically significant.

3.2.4 Impact of annotation strategies

We then performed experiments with the other annotation strategy, where incomplete an-
notations were generated based on the agreement on the annotations between pathologists
as described in Section 3.1.1. The quantitative results are summarized in Table 6, where the
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Table 6: The means and standard deviations (stds) of the average recall, average precision,
and average F1-score of the five folds for the MITOS-ATYPIA-14 dataset when
incomplete annotations were obtained based on the agreement between patholo-
gists. The best results are highlighted in bold. Asterisks indicate that the dif-
ference between the proposed method and the competing method is significant
using a paired Student’s t-test after Benjamini-Hochberg correction for multiple
comparisons. (∗∗p < 0.01)

Method
Recall Precision F1-score

mean std p mean std p mean std p

Baseline 0.575 0.072 ** 0.404 0.041 ** 0.473 0.045 **
BDE 0.598 0.077 ** 0.427 0.041 ** 0.497 0.044 **

Proposed 0.608 0.077 - 0.443 0.041 - 0.512 0.045 -

means and standard deviations of the average recall, average precision, and average F1-score
of the five folds are listed. The proposed method is also compared with the competing meth-
ods using paired Student’s t-tests. The proposed method still has higher recall, precision,
and F1-score than the two competing approaches, and the improvement is significant.

3.3 Results on the CRCHistoPhenotypes dataset

We further present the detection results on the CRCHistoPhenotypes dataset. As described
in Section 3.1.2, different cases were considered, where the number of annotated cells in the
incompletely annotated dataset varied (one, two, and five per patch, respectively). The
candidate values of the class prior π ranged from 0.1 to 0.4 with an increment of 0.05, and
for each case of annotated cells, the selected value (0.3 or 0.35) based on the validation set
was consistent across the folds.

Examples of the detection results of each method on a representative test patch are
shown in Fig. 2 for the different cases of annotated cells for training. The complete annota-
tions on the test patch are also shown for reference. Note that since there are a large number
of instances in the patch, for the visualization purpose, only the centers of the bounding
boxes are shown in Fig. 2 as dots. The numbers of true positive and false positive detection
results on the patch are indicated for each method and each case. The baseline method only
detected a very small fraction of the cells of interest, which are much fewer than the results
of BDE and the proposed method. Compared with the BDE results, the detection results
given by the proposed method better match the gold standard full annotations, and the
proposed method produced more true positives and fewer false positives for the examples.

Quantitatively, for each fold we computed the average recall, average precision, and
average F1-score of the detection results on the test set, and we also computed the corre-
sponding upper bound performance. These results are shown in Tables 7 and 8 for each
method and each case of annotated cells. In all cases, the proposed method has higher
recall, precision, and F1-score than the two competing approaches, and the results of our
method are closer to the upper bound. The means and standard deviations of the average
recall, average precision, and average F1-score of the five folds were also computed and
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Figure 2: Examples of representative detection results on a test patch for the CRCHistoPhe-
notypes dataset when one, two, or five annotated cells were available in each train-
ing patch. The gold standard full annotations and the numbers of annotated cells
in the full annotations are also shown for the test patch for reference. TP and
FP represent the numbers of true positive and false positive detection results on
the patch, respectively. Note the regions highlighted by arrows for comparison.
The black arrows indicate examples of true positive cases given by the proposed
method but missed by the competing methods, whereas the blue arrows indicate
examples of true negative cases given by the proposed method but labeled as
positive by BDE. Note that the same test patch is used for the different numbers
of annotated cells for training, but the highlighted regions are different for these
cases.

are summarized in Table 9, where the proposed method is compared with the competing
methods using paired Student’s t-tests. In most cases, the proposed method statistically
significantly outperforms the competing methods.
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Table 7: The average recall and average precision of the detection results on the test set for
each fold for the CRCHistoPhenotypes dataset when different numbers of anno-
tated cells were available in each training patch. The best results are highlighted
in bold. The upper bound performance is also shown for reference.

Number of
Method

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Annotations Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

1
Baseline 0.112 0.101 0.115 0.098 0.103 0.096 0.098 0.091 0.112 0.091
BDE 0.524 0.462 0.501 0.421 0.574 0.471 0.620 0.554 0.521 0.464

Proposed 0.545 0.470 0.530 0.463 0.599 0.471 0.625 0.559 0.537 0.473

2
Baseline 0.120 0.105 0.131 0.101 0.092 0.101 0.147 0.091 0.146 0.098
BDE 0.534 0.475 0.527 0.462 0.574 0.473 0.606 0.551 0.536 0.474

Proposed 0.557 0.484 0.554 0.478 0.605 0.539 0.628 0.557 0.551 0.487

5
Baseline 0.204 0.198 0.213 0.241 0.265 0.256 0.274 0.260 0.208 0.253
BDE 0.556 0.483 0.577 0.471 0.631 0.522 0.654 0.560 0.581 0.485

Proposed 0.562 0.488 0.598 0.486 0.638 0.532 0.667 0.566 0.592 0.489

- Upper Bound 0.671 0.601 0.682 0.612 0.696 0.629 0.701 0.639 0.689 0.605

Table 8: The average F1-score of the detection results on the test set for each fold for
the CRCHistoPhenotypes dataset when different numbers of annotated cells were
available in each training patch. The best results are highlighted in bold. The
upper bound performance is also shown for reference.

Number of
Method

F1-score

Annotations Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1
Baseline 0.101 0.112 0.105 0.095 0.096
BDE 0.489 0.451 0.521 0.582 0.483

Proposed 0.501 0.490 0.530 0.591 0.497

2
Baseline 0.115 0.116 0.103 0.108 0.112
BDE 0.507 0.487 0.512 0.571 0.502

Proposed 0.513 0.508 0.564 0.596 0.519

5
Baseline 0.205 0.221 0.257 0.269 0.228
BDE 0.517 0.519 0.581 0.606 0.523

Proposed 0.524 0.532 0.587 0.614 0.530

- Upper Bound 0.634 0.645 0.661 0.669 0.644

3.4 Results on the TUPAC dataset

We then present the detection results on the TUPAC dataset. As described in Section 3.1.3,
the detection model was trained on the training and validation sets with the generated
incomplete annotations. The candidate values of the class prior π ranged from 0.02 to 0.07
with an increment of 0.01, and π = 0.05 was selected based on the validation set.

An example of the detection results of the proposed and competing methods is shown
in Fig. 3. The bounding boxes predicted by each method are displayed, together with
the complete annotations for reference. The numbers of true positive and false positive
detection results on the patch are indicated for each method. Our method performs better
than the competing methods with fewer false positives or more true positive boxes.
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Table 9: The means and standard deviations (stds) of the average recall, average precision,
and average F1-score of the five folds for the CRCHistoPhenotypes dataset when
different numbers of annotated cells were available in each training patch. The best
results are highlighted in bold. The upper bound performance is also shown for
reference. Asterisks indicate that the difference between the proposed method and
the competing method is significant using a paired Student’s t-test after Benjamini-
Hochberg correction for multiple comparisons. (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <
0.001, n.s. p > 0.05)

Number of
Method

Recall Precision F1-score

Annotations mean std p mean std p mean std p

1
Baseline 0.108 0.044 *** 0.095 0.047 *** 0.102 0.006 ***
BDE 0.548 0.055 * 0.474 0.052 n.s. 0.505 0.044 *

Proposed 0.567 0.060 - 0.487 0.048 - 0.522 0.037 -

2
Baseline 0.127 0.020 *** 0.099 0.004 *** 0.111 0.005 ***
BDE 0.556 0.030 ** 0.487 0.032 n.s. 0.515 0.029 *

Proposed 0.579 0.031 - 0.509 0.032 - 0.540 0.034 -

5
Baseline 0.233 0.030 *** 0.242 0.023 *** 0.236 0.024 ***
BDE 0.600 0.037 * 0.504 0.033 * 0.549 0.037 **

Proposed 0.611 0.037 - 0.512 0.032 - 0.558 0.036 -

- Upper Bound 0.688 0.011 - 0.617 0.015 - 0.651 0.013 -

Figure 3: An example of detection results on a test image patch for the TUPAC dataset.
The gold standard full annotations and the number of annotated cells in the
full annotations are also shown for the test image patch for reference. TP and
FP represent the numbers of true positive and false positive detection results on
the patch, respectively. Note the regions highlighted by arrows for comparison.
The cyan arrows indicate examples of true negative cases given by the proposed
method but labeled as positive by BDE.

For quantitative evaluation, we computed the means and standard deviations of the
recall, precision, and F1-score of the detection results on the test set for each method. Also,
the upper bound performance achieved with the complete annotations for training was
computed. These results are shown in Table 10. Compared with the competing methods,
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Table 10: The means and standard deviations (stds) of the recall, precision, and F1-score
of the detection results on the test set for the TUPAC dataset. The best results
are highlighted in bold. The upper bound performance is also shown for refer-
ence. Asterisks indicate that the difference between the proposed method and the
competing method is significant using a paired Student’s t-test after Benjamini-
Hochberg correction for multiple comparisons. (∗p < 0.05, ∗∗p < 0.01)

Method
Recall Precision F1-score

mean std p mean std p mean std p

Baseline 0.732 0.075 ** 0.552 0.063 * 0.623 0.067 *
BDE 0.748 0.079 * 0.578 0.072 * 0.652 0.068 *

Proposed 0.760 0.082 - 0.596 0.068 - 0.667 0.064 -

Upper Bound 0.775 0.056 - 0.654 0.061 - 0.708 0.057 -

the proposed method has higher recall, precision, and F1-score, and the results of our
method are closer to the upper bound. In addition, in Table 10 the results of the proposed
and competing methods are compared using paired Student’s t-tests, and the improvement
of our method is statistically significant. These observations indicate the better detection
performance of the proposed method.

3.5 Results on the NuCLS dataset

Finally, we present the results of multi-class cell detection on the NuCLS dataset. The
candidate values of the class prior π1 (for the tumor class) ranged from 0.2 to 0.4 with an
increment of 0.05, and π1 = 0.3 was selected based on the validation set.

Examples of the detection results of each method on a representative test image are
shown in Fig. 4, where the complete annotations are also shown for reference. Because of
the large number of instances of each cell type, here the results are shown for each type
separately. The numbers of true positive and false positive detection results on the image are
indicated for each method. In the given examples, compared with the competing methods,
for each cell type our method either produced more true positive boxes without increasing
the number of false positives or produced fewer false positive boxes without decreasing the
number of true positives.

For quantitative evaluation, we computed the means and standard deviations of the
recall, precision, and F1-score of the detection results on the test set for each cell type. The
results are shown in Table 11, and the upper bound performance is also given for reference.
For all three cell types, the proposed method has higher recall, precision, and F1-score than
the two competing approaches. In addition, in Table 11 the proposed method is compared
with the competing methods using paired Student’s t-tests. In most cases, the recall of the
proposed method is significantly better than those of the competing methods; also, for the
tumor cells the improvement of the proposed method is significant in most cases.
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Figure 4: Examples of representative detection results on a test image for the NuCLS
dataset. The results are shown for each cell type separately. The gold stan-
dard full annotations and the numbers of annotated cells in the full annotations
are also shown for the test image for reference. TP and FP represent the num-
bers of true positive and false positive detection results on the image, respectively.
Note the regions highlighted by arrows for comparison. The black arrows indicate
examples of true positive cases given by the proposed method but missed by the
competing methods, whereas the blue arrows indicate examples of true negative
cases given by the proposed method but labeled as positive by BDE.

4. Discussion

Compared with the BDE method developed in Li et al. (2020) and its extended journal
version (Li et al., 2021), our approach addresses the problem of incomplete annotations for
cell detection in histopathology images with a principled PU learning framework, and this
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Table 11: The means and standard deviations (stds) of the recall, precision, and F1-score
of the detection results on the test set for the NuCLS dataset. The best re-
sults are highlighted in bold. The upper bound performance is also shown for
reference. Asterisks indicate that the difference between the proposed method
and the competing method is significant using a paired Student’s t-test after
Benjamini-Hochberg correction for multiple comparisons. (∗p < 0.05, ∗∗p < 0.01,
n.s. p > 0.05)

Cell Type Method
Recall Precision F1-score

mean std p mean std p mean std p

Tumor

Baseline 0.636 0.041 ** 0.511 0.046 n.s. 0.566 0.044 *
BDE 0.650 0.058 ** 0.529 0.066 * 0.583 0.063 **

Proposed 0.689 0.043 - 0.538 0.058 - 0.605 0.053 -

Upper Bound 0.710 0.041 - 0.622 0.040 - 0.664 0.041 -

Lymphocyte

Baesline 0.526 0.087 * 0.379 0.067 n.s. 0.440 0.064 n.s.
BDE 0.540 0.084 n.s. 0.370 0.049 n.s. 0.438 0.055 n.s.

Proposed 0.545 0.077 - 0.389 0.046 - 0.454 0.051 -

Upper Bound 0.560 0.062 - 0.401 0.038 - 0.467 0.045 -

Stromal

Basleine 0.388 0.046 * 0.291 0.047 n.s. 0.331 0.046 n.s.
BDE 0.409 0.041 ** 0.280 0.025 n.s. 0.333 0.028 n.s.

Proposed 0.436 0.045 - 0.293 0.044 - 0.350 0.042 -

Upper Bound 0.412 0.043 - 0.319 0.031 - 0.359 0.026 -

PU learning framework has led to improved detection performance. Note that our method
and the BDE method could be complementary. Based on the density of bounding boxes, it
is possible to identify additional negative samples from the unlabeled samples, which may
further benefit the training of the detector, and future work could explore the integration
of PU learning with the BDE method.

Because in detection problems positively labeled samples and unlabeled samples origi-
nate from the same images, in the proposed method the classification loss is approximated
differently from the approximation in PU learning for classification problems. The results
reported in Section 3.2.2 confirm the benefit of the approximation we have designed for
detection problems and support our discussion in Section 2.2.1.

The proposed PU learning strategy was integrated with Faster R-CNN (Ren et al., 2017)
for demonstration, because it is a popular CNN-based object detector for cell detection
problems (Srinidhi et al., 2021). In addition, we have shown that the proposed method can
be applied to different backbones of Faster R-CNN, including the VGG16, ResNet50, and
ResNet101 backbones. Since the proposed method is agnostic to the architecture of the
detection network, it may also be integrated with more advanced detection networks (Cai
and Vasconcelos, 2021; Zhu et al., 2021) that are recently developed, and it would be
interesting to investigate in future work whether such integration can lead to improved
performance.

In addition to PU learning for binary cell detection, we have extended the proposed
framework to multi-class cell detection. Multi-class PU learning has also been investigated
before for classification (Xu et al., 2017; Shu et al., 2020), but not for cell detection. The
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experimental results on the NuCLS dataset show that our method allows improved multi-
class cell detection given incomplete annotations.

The problem of incomplete annotations considered in the proposed work is related to
but different from semi-supervised learning. For both semi-supervised learning and the
proposed work, not all cells of interest are annotated on the training images. However, they
are different in terms of how the training data is obtained. In semi-supervised learning every
cell of interest should be annotated for the labeled data. For detection problems, this can
be more challenging than incomplete annotations, because it requires that experts carefully
examine the annotation results to ensure that no cells of interest are left unannotated in
the labeled data, whereas for incomplete annotations no such burden is required.

5. Conclusion

We have proposed to apply PU learning to address the problem of network training with
incomplete annotations for cell detection in histopathology images. In our method, the clas-
sification loss is more appropriately computed from the incompletely annotated data during
network training for both binary and multi-class cell detection. The experimental results
on four publicly available datasets show that our method can improve the performance of
cell detection in histopathology images given incomplete annotations.
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Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum
Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck,
Paul J. van Diest, and Josien P.W. Pluim. Predicting breast tumor proliferation from
whole-slide images: The TUPAC16 challenge. Medical Image Analysis, 54:111–121, 2019.

Ching-Wei Wang, Sheng-Chuan Huang, Yu-Ching Lee, Yu-Jie Shen, Shwu-Ing Meng, and
Jeff L. Gaol. Deep learning for bone marrow cell detection and classification on whole-slide
images. Medical Image Analysis, 75:102270, 2022.

Jun Xu, Lei Xiang, Qingshan Liu, Hannah Gilmore, Jianzhong Wu, Jinghai Tang, and
Anant Madabhushi. Stacked sparse autoencoder (SSAE) for nuclei detection on breast
cancer histopathology images. IEEE Transactions on Medical Imaging, 35(1):119–130,
2016.

Yixing Xu, Chang Xu, Chao Xu, and Dacheng Tao. Multi-positive and unlabeled learning.
In International Joint Conference on Artificial Intelligence, pages 3182–3188, 2017.

Yuewei Yang, Kevin J Liang, and Lawrence Carin. Object detection as a positive-unlabeled
problem. In British Machine Vision Conference, 2020.

28



PU learning for cell detection in histopathology images with incomplete annotations

Zipei Zhao, Fengqian Pang, Zhiwen Liu, and Chuyang Ye. Positive-unlabeled learning for
cell detection in histopathology images with incomplete annotations. In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pages
509–518, 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable
DETR: Deformable transformers for end-to-end object detection. In International Con-
ference on Learning Representations, 2021.

Appendix A. Baseline performance achieved with the weighted cross
entropy loss or focal loss

In this appendix, we present the results of the baseline method achieved with the weighted
cross entropy loss and the focal loss (Lin et al., 2017) for the experiment on the MITOS-
ATYPIA-14 dataset with the experimental settings specified for Section 3.2.1. The weighted
cross entropy loss HwCE(c, z) and the focal loss Hfocal(c, z) are defined as

HwCE(c, z) = −wz log(c)− (1− z) log(1− c), (16)

Hfocal(c, z) = −αz(1− c)γ log(c)− (1− α)(1− z)cγ log(1− c). (17)

Here, w is a weight for the positive class in the weighted cross entropy loss HwCE(c, z) that
alleviates the problem of class imbalance, and we set w = π−1; α and γ are the parameters
for the focal loss Hfocal(c, z) that balance the importance of positive/negative samples and
easy/hard samples, respectively, and we set α = 0.25 and γ = 2 according to Lin et al.
(2017).

The detection performance achieved with the weighted cross entropy loss and focal loss
is summarized in Table A1, where the means and standard deviations of the average recall,
average precision, and average F1-score of the five folds are listed. Compared with the
baseline results achieved with the standard cross entropy loss in Table 3, the use of the two
alternative losses did not lead to improved detection performance (the F1-score is reduced).

Table A1: The means and standard deviations (stds) (mean±std) of the average recall, av-
erage precision, and average F1-score of the five folds for the MITOS-ATYPIA-14
dataset with the experimental settings specified for Section 3.2.1 when different
losses were used for the baseline method.

Loss Recall Precision F1-score

Weighted Cross Entropy 0.603±0.079 0.356±0.026 0.445±0.034
Focal 0.562±0.091 0.394±0.032 0.461±0.048

Appendix B. Sensitivity to the class prior π

The evaluation of the sensitivity of the detection performance to the class prior π is provided
in this appendix. We computed the F1-score corresponding to each candidate π on the
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Table B1: The average F1-score of the detection results corresponding to each π on the
MITOS-ATYPIA-14 dataset (with the experimental settings specified for Sec-
tion 3.2.1). The result associated with the π value selected based on the valida-
tion set is highlighted in bold.

π
F1-score

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

0.025 0.508 0.465 0.460 0.431 0.549
0.030 0.517 0.480 0.471 0.447 0.560
0.035 0.523 0.487 0.470 0.456 0.572
0.040 0.524 0.485 0.488 0.457 0.587
0.045 0.514 0.475 0.484 0.443 0.583
0.050 0.507 0.468 0.473 0.445 0.580

Table C1: The means and standard deviations (stds) (mean±std) of the recall, precision,
and F1-score results of five independent runs achieved on the MITOS-ATYPIA-
14 dataset (with the experimental settings specified for Section 3.2.1 and the
first fold).

Method Recall Precision F1-score

Baseline 0.605±0.006 0.412±0.005 0.491±0.002
BDE 0.639±0.003 0.431±0.006 0.515±0.004

Proposed 0.642±0.006 0.441±0.006 0.525±0.005

test set for the MITOS-ATYPIA-14 dataset with the experimental settings specified for
Section 3.2.1, and the results are shown in Table B1 for each fold. The difference between
the best and second best results achieved with different π values is small, and both of them
are better than the BDE results in Table 2.

Appendix C. The impact of random effects

During network training, random effects such as batch selection can lead to different learned
network weights. Therefore, we investigated the impact of random effects on the detec-
tion performance for the proposed and competing methods using the MITOS-ATYPIA-14
dataset with the experimental settings specified for Section 3.2.1. The baseline method,
BDE method, and proposed method were repeated independently five times with the first
fold (including the results presented in Section 3.2.1). The means and standard deviations
of the recall, precision, and F1-score results of the five runs are shown in Table C1. The
standard deviations are relatively small compared with the means, indicating that all meth-
ods are robust to random effects, and our method is better than the competing methods
with higher recall, precision, and F1-score.
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