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Generalization is an important attribute of machine learning models, particularly for those
that are to be deployed in a medical context, where unreliable predictions can have real
world consequences. While the failure of models to generalize across datasets is typically
attributed to a mismatch in the data distributions, performance gaps are often a conse-
quence of biases in the “ground-truth” label annotations. This is particularly important in
the context of medical image segmentation of pathological structures (e.g. lesions), where
the annotation process is much more subjective, and affected by a number underlying
factors, including the annotation protocol, rater education/experience, and clinical aims,
among others. In this paper, we show that modeling annotation biases, rather than ignor-
ing them, poses a promising way of accounting for differences in annotation style across
datasets. To this end, we propose a generalized conditioning framework to (1) learn and
account for different annotation styles across multiple datasets using a single model, (2)
identify similar annotation styles across different datasets in order to permit their effective
aggregation, and (3) fine-tune a fully trained model to a new annotation style with just a
few samples. Next, we present an image-conditioning approach to model annotation styles
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that correlate with specific image features, potentially enabling detection biases to be more
easily identified.

Keywords: Deep Learning, Medical Image Segmentation, Multiple Sclerosis, Label Bias,
Annotation Bias, Cohort Bias, Detection Bias, Observer Bias, Annotation Style, General-
ization

1. Introduction

Supervised deep learning medical image segmentation models rely heavily on annotations.
However, in the context of segmentation of focal pathologies (e.g. lesions, tumours) from
medical images, obtaining absolute “ground truth” annotations is not possible due to lim-
itations in acquisition sequences, partial volume effects (Angel Gonzdlez Ballester et al.,
2002), ambiguity in diseased tissue boundaries, among other factors. As a result, annota-
tions are subjective, even when produced by the most skilled expert raters, and result in
high inter-rater variability. Establishing a fixed annotation process can help reduce inter-
rater variability, but also introduces biases that are embedded into the annotation process
itself. These biases may include the automated method used to generate the initial annota-
tions (if any) before expert correction, the objectives of the study (e.g. diagnosis, counting
lesions, volumetric measurements), or the instructions provided to raters. Since perfor-
mance metrics are computed with respect to these “ground truth” annotations, they must
be interpreted with some care, particularly when generalization performance is measured
on held-out datasets which may be subject to completely different annotation biases.

To illustrate how annotation biases arise in practice, consider an example where Hospital
A is measuring lesion counts in multiple sclerosis (MS) patients, and where Hospital B is
measuring lesion volumes in MS patients, as depicted in Figure 1a. Both tasks involve lesion
segmentation, but the resulting “ground-truth” annotations are quite different. Hospital
A’s annotation style results in more, but smaller lesions, while Hospital B’s annotation
style results in larger and fewer lesions. In this example, a model trained on either dataset
would see a performance drop on the other, not necessarily due to a distribution shift in
the image-space (e.g. scanner, image protocol, etc.), but due to a distribution shift in the
label-space. Although there have been a number of publications addressing distribution
shifts in the image-space (Biberacher et al., 2016; Karani et al., 2018; Van Opbroek et al.,
2014; Havaei et al., 2016; Shen and Gao, 2019), this work primarily focuses on the open
problem of addressing distribution shifts in the label-space.

There are many inter-related factors that can have an impact on the annotation style
of any given dataset. For instance, many medical image pathology segmentation datasets
include semi-manual annotations !, where differences in the underlying automated method
used, or even the degree of expert correction can have a significant influence on the final
annotation. Semi-manual methods are typically used when there is a need to prioritize
consistency in the labelling, for example in order to measure changes in lesion load across
subsequent scans. Indeed, Hospital B (as depicted in Figure la) may have opted for a
semi-manual approach if there was a need to evaluate the effect of treatment on changes in
lesion volume over time. On the other hand, Hospital A may have opted for a fully manual

1. Semi-manual annotation is a process by which trained experts make corrections to the output of an
automatic method.
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Figure 1: Illustration of the sources of label bias in aggregated datasets.

approach in order to best characterize the distribution of lesion counts across the popula-
tion. While both sets of annotations would be entirely valid for the particular downstream
clinical task of interest, they would result in completely different annotation styles. More-
over, several papers have identified annotation biases that result from different annotation
styles across raters, even in contexts where labels are derived manually using a consistent
annotation protocol (Chotzoglou and Kainz, 2019; Vincent et al., 2021; Jungo et al., 2018;
Shwartzman et al., 2019). Even if all the aforementioned factors could be completely con-
trolled for, it is impossible to completely eliminate detection biases (i.e. biases that result
from a systematic difference with respect to how outcomes are measured or assessed across
identifiable groups).
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Given that annotation styles may differ across datasets, the perceived generalization
performance of any method will be affected as a result. Recent domain-invariant meth-
ods (Kamnitsas et al., 2017; Lafarge et al., 2019; Ilse et al., 2020; Sun and Saenko, 2016)
are incredibly useful in learning robust feature extraction from the images. However, anno-
tation style differences are impossible for these methods to overcome. Furthermore, given
that the labels are dependent on the circumstances of their collection, the final labels used
to evaluate the ability of the approach to generalize will inherently be domain-dependent.
Due to this complication, being completely invariant to the source domain will ignore in-
formation regarding annotation style differences that can affect the final results (Bui et al.,
2021; Wang et al., 2022). Utilising information relevant to the source domain’s annota-
tion style within automated algorithms can therefore help researchers perform informed
evaluations and help them obtain the labels desired for their task. This can be seen by
revisiting the example scenario with Hospital A and Hospital B once again. A reasonable
scenario would be to attempt to pool the two datasets together in order to obtain a larger
dataset on which to train an automated algorithm. Being domain invariant means desiring
a model independent of the source of the dataset, which may result in labels that do not
reflect each institution’s respective goals. Therefore, in order to aggregate the two datasets
and learn from the additional data while still generating the desired annotation style for
both hospitals, meta-information regarding the annotation process will be required. If an-
other institution, Hospital C, had a similar annotation process to Hospital A, identifying
this similarity would be a key piece of information, as it would notify researchers that
data from Hospital A and Hospital C could potentially be considered a single annotation
style. Given that identifying similar annotation styles is not particularly straightforward
due to the complexity of the annotation process, data-driven techniques that would en-
able similar annotation styles to be identified would be very useful. The overall benefit
of considering auxiliary information relevant to the annotation style is that the model can
more strategically leverage data from multiple sources, while accommodating each source’s
unique requirements and performing a fair evaluation.

In this work, we examine the relationship between annotation biases and conventional
notions of generalization in the context of medical image pathology segmentation. We show
that modelling annotation biases, rather than ignoring them, poses a promising way to ac-
count for annotation style differences across datasets. To this end, we propose a generalized
conditioning framework to (1) learn and account for differences in annotation style across
multiple datasets using a single model, (2) identify similar annotation styles across datasets
in order to permit their effective aggregation, and (3) fine-tune a fully trained model to a
new annotation style with just a few samples. Lastly, we present a novel image-conditioning
approach to model annotation styles that correlate with specific image features, potentially
enabling detection biases to be more easily identified. We evaluate our approach using
six different MS clinical trial datasets and provide an in-depth analysis of the challenges
that different annotation styles can present to supervised medical image segmentation ap-
proaches, both in terms of aggregating multiple independent datasets together, and in terms
of evaluating the generalization performance of segmentation models more broadly.

This paper extends our previously published paper Nichyporuk et al. (2021) with a
number of additional contributions: First, we present additional experiments and a more
in-depth analysis of the proposed generalized conditioning framework, using a total of six
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clinical trial datasets compared to the three clinical trial datasets used in our original publi-
cation. Second, we propose a new similarity analysis method to identify similar annotation
styles across datasets and demonstrate how it could be used in practice. Third, we pro-
pose an image conditioning approach to model annotation styles that correlate with specific
image features, potentially enabling detection biases to be more easily identified.

2. Background and Related Work

In this section, we summarize related work detailing how annotation biases arise, and review
research aiming to correct or account for these biases. We then briefly touch upon related
work on adaptive normalisation methods.

Sources of Annotation Biases in Aggregated Datasets Other researchers have no-
ticed challenges in aggregating different datasets for automatic methods for a variety of
reasons. Most research is geared at identifying and addressing variations across human
raters. Liao et al. (2021) showed that inter-rater biases can be problematic for automated
methods. They noted that stochastic rater errors are more easily solved, and that consis-
tent rater biases are the primary issue. This finding was also presented by Landman et al.
(2012), where they concluded that for collaborative labelling efforts or datasets to be suc-
cessful, unbiased labellers are required. However, the subjectivity involved in attempting to
model ”ground truth” in medical pathology segmentation tasks result in substantial rater
variability (Cohen et al., 2020). For instance, Altay et al. (2013) have noted that lesion
segmentation in multiple sclerosis (MS), especially new and enlarging lesion segmentation,
can result in high variability among expert raters. The fact that the border between MS
lesions and their surrounding healthy tissues represents a continuous (rather than discrete)
transition in voxel intensity, coupled with inherent inconsistencies within a given lesion’s
intensity profile, makes it particularly challenging for different human raters to reach the
same conclusion as to the exact border location from visual inspection alone. Depending on
the display contrast when a rater is viewing an MRI for manual segmentation, the lesion size
may appear slightly larger or smaller than for another rater who might be viewing under
different display conditions. The ambiguity of MS lesion borders is further amplified by
the existence of an intermediate, pre-lesional abnormality called diffusely abnormal white
matter (DAWM) (Dadar et al., 2021). Because there is no universally accepted definition
for DAWM, some raters might include more DAWM within their lesion masks than others,
leading to arbitrarily different annotation styles. Lastly, detection and observer bias are an
important source of inter-rater variability that can be implicit and therefore poses a chal-
lenge in terms of explainability. Hrébjartsson et al. (2013) conducted a study across many
different clinical trials and found a significant difference in labels from raters that were fully
blinded (to the intervention), compared to non-blinded raters. Blinding is often thought of
as useful for eliminating confounding factors. However, in the case of segmentation, Free-
man et al. (2021) remarked that some annotators that are blinded to medical history may
produce potentially ”unacceptable” annotations as compared to raters with access to full
medical records. These factors can lead to cohort biases 2, in which the annotations are
influenced by demographic or clinical information of the cohort being labelled.

2. A cohort is a group of people who share a common defining characteristic.
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In addition to human factors, the label generation process itself can be a major con-
tributor to annotation style (Shinohara et al., 2017). Freeman et al. (2021) noted that the
guidelines provided to raters had an impact on quality and annotation outcome. Vrenken
et al. (2021) also found that differences in labelling protocols can degrade algorithm per-
formance, as well as limit to what extent performance can be validated. Oakden-Rayner
(2020) recommend that labelling rules and other data generation procedures be made avail-
able to users due to their impact on testing results. Cohen et al. (2020) further discuss
the impact of the use of semi-automated labelling software in the label generation process
and resulting labels. The problem of differences in the annotation process has even been
noted in natural imaging tasks, which require less expertise and are significantly less sub-
jective (Recht et al., 2019). Overall, many factors combine to influence the annotation style
across different datasets. Although many researchers have identified these problems, most
attempts at addressing and/or accounting for sources of annotation style are primarily fo-
cused on situations where individual biases can be isolated, such as when a single sample is
given to two or more raters to annotate. However, there are no studies that we are aware
of that directly address the much more complex biases that can arise across datasets as a
consequence of the label generation process as a whole in medical image analysis (e.g. goal
of the study, rater experience/education, instructions provided to raters, etc.).

Accounting for Inter-Rater Bias As previously mentioned, several studies have focused
on addressing the impact of inter-rater biases on the resulting annotation style. These
studies primarily use datasets where multiple raters are each given the same dataset to
segment. In these cases, differences in labels can be directly associated with the raters’
opinion or style, experience level, or the uncertainty of the target pathology (Heller et al.,
2018; Warfield et al., 2004; Joskowicz et al., 2019; Jungo et al., 2018; Vincent et al., 2021).
Other researchers refer to the problem of inter-rater bias as a source of “label noise” (Ji et al.,
2021; Zhang et al., 2020; Karimi et al., 2020). These approaches operate on the assumption
that the variability in labels can be attributed to rater biases, and that differences between
raters reflect a noisy variation around the real “ground truth”. While this assumption
may be adequate for the segmentation of healthy tissues, “ground truth” for pathology
segmentation tasks can be incredibly arbitrary, with multiple possible variants of ground
truth considered equally valid. In contrast, we deal with the task of aggregating multiple
datasets where the entire labelling process may differ, and where only a single annotation
(from one of multiple possible raters) is given for each sample, making individual biases
difficult to disentangle. Indeed, in this paper, each dataset has its own individual annotation
style that results from the label generation process of each dataset.

Adaptive Normalization-Based Methods For completeness, we briefly touch on the
use of adaptive normalization methods, which have proven useful in previous bias adapta-
tion and style transfer tasks (Chen et al., 2021; Nam and Kim, 2018; Karani et al., 2018;
Komatsu and Gonsalves, 2022; Kim et al., 2020; Ruta et al., 2021; Jacenkéw et al., 2020).
Several papers focus on natural imaging problems, such as artistic style transfer and image
denoising (Chen et al., 2021; Nam and Kim, 2018; Komatsu and Gonsalves, 2022; Kim
et al., 2020; Ruta et al., 2021). Researchers have also applied conditional normalization
methods to model imaging biases (Karani et al., 2018), or to leverage relevant clinical
information (Jacenkéw et al., 2020).
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3. Methodology
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Figure 2: System overview. (Top) Training module: Training on multiple datasets with
auxiliary information to learn the associated bias for each dataset. (Bottom) Testing mod-
ule: Auxiliary information used to generate multiple lesion segmentation maps, each with
a different annotation style, for the input test image.

In this paper, we propose using Conditioned Instance Normalization (CIN) to pool
multiple datasets while learning each dataset’s associated annotation style (Nichyporuk
et al., 2021). To do this, we provide the input images alongside auxiliary information to
condition on, which allows the model to learn the associated annotation styles. An overview
of the general approach is shown in Figure 2.

The approach utilises the conditional instance normalization (CIN) layer proposed by
Vincent et al. (2017) to learn dataset-specific biases using a set of scale and shift parameters
unique to each dataset. This layer allows for dataset biases to be modelled while simultane-
ously performing the target task. The auxiliary information was provided to the model in
the form of a categorical variable, which identifies which set of scale and shift parameters
to use for a given input image. In this paper, we focus on modelling dataset biases that
lead to unique annotation styles. The approach can potentially be used in any network
architecture where Instance Normalization is traditionally applied. Thus the approach is
flexible and could potentially be applied for any target task, such as detection, classification,
or regression. In this paper, we use CIN in an nn-UNet based architecture for MS lesion
segmentation as shown in Figure 3.
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Figure 3: Left: Overview of modified nnUNet (Isensee et al. (2018)) architecture used to
segment MS T2 lesions. Right: Detail of a conv block. It consists of a series of 3D 3x3x3
Convolution Layer, CIN layer, and a LeakyReLU activation layer.

The approach works by scaling and shifting the normalized activations of each layer
using a dataset-specific set of affine parameters during the forward pass. The CIN layer is
represented by the following equation:

z — pu(z)
CIN(z) =, (a(z)) + B

where v, and 3, are the conditional affine parameters and where ;(z) and o(z) represent the
per-channel mean and standard deviation, respectively. The affine parameters correspond to
a specific dataset, s. The dataset-specific affine parameters are learned only from samples
from the corresponding dataset. The dataset-specific scale and shift parameters are all
initialized at 1 and O respectively. This initialization ensures that the model learns to
apply scale and shift as needed, from a no-scale and no-shift starting point. Other than
the dataset-specific affine parameters in each CIN layer, all other network parameters are
learned from all samples regardless of dataset identity. This allows the approach to leverage
multiple datasets to learn common features while still taking into account dataset-specific
annotation styles. A full system overview can be found in Figure 2.

3.1 Subgroup Discovery with CIN Parameter Analysis

We now explore how the learned dataset-specific scale and shift parameters of the fully-
trained network can be used to identify relationships between annotation styles across dif-
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ferent datasets. Understanding these relationships would not only improve data collection
methods and make for more fair performance evaluations, but would enable strategic pool-
ing of compatible styles. This type of strategic pooling is especially important for research
projects with limited datasets where each style may only have a few labelled samples.

To identify relationships, we calculate the cosine similarity (normalized dot product) of
the parameters between all datasets for all CIN layers in the network in order to determine
the relevant relationships and where they occur within the network. Specifically, the cosine
similarity between two sources, s and §, is computed as follows:

(’Yns - 1) : (’7715 - 1)
|7ns 71||’7ng 71|
IBHS Bng

Cosine Similarity gp,;f,, (1) B, 118,
where n is the specific CIN layer in the network, and s and § represent different sources
By analysing the cosine similarity between dataset-specific parameters, we can quantify
high dimensional direction-based relationships between the scale and shift parameter vectors
of the different datasets. An additional analysis, that considers magnitude, is performed by
comparing the euclidean norm of these vectors. We attempt to look at the norms to detect
any noticeable clusters or trends that may go undetected in the cosine similarity analysis.

Cosine Similarity ., .(n) =

3

3.2 Modeling Synthetic Detection Biases Using Image Conditioning

Beyond modeling dataset-specific biases, we propose an image conditioning mechanism to
model image-related detection biases. To do so, we propose an image conditioning mecha-
nism based on FiLM Perez et al. (2018) consisting of two key components: (1) An image
encoder to generate a latent representation of the image; (2) A linear layer for each CIN
layer to transform the latent representation of the image into a set of affine instance nor-
malization parameters (per channel scale and shift). By doing this, the model is able to
adapt the style of the output segmentation based on (global) image characteristic(s). The
full architecture can be found in Figure 9.

4. Implementation Details

4.1 Network Architecture and Training Parameters

We train a modified nnUNet (Isensee et al., 2018) for the task of multiple sclerosis (MS) T2-
weighted lesion segmentation. The primary modifications include the addition of dropout,
and replacing the standard Instance Normalization layer in each convolutional block with
a CIN layer. This architecture is shown in detail in Figure 3. All models in this paper
are trained using Binary Cross Entropy (BCE) Loss and Adam optimizer (Kingma and Ba,
2014). Random affine and random contrast augmentations are also used to prevent over
fitting.

3. Since the scale parameters are initialized at 1, and a scale of 1 is representative of the parameter having
no effect on the activation, we subtract 1 from all scale vectors before performing the cosine similarity
calculation. This effectively relocates the origin to the initialization point of all scale parameters allowing
for a more fair evaluation of the parameter changes that occurred during training.
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4.2 Data Sources

In this work, we leverage a large, proprietary dataset consisting of images acquired from
MS patients from six different multi-centre, multi-scanner clinical trials. In this context,
each trial serves as a different dataset. Each trial contains multi-modal MR sequences of
patients with one of three different MS subtypes: Secondary-Progressive (SPMS), Primary-
Progressive (PPMS), or Relapsing Remitting (RRMS). RRMS patients suffer from recurrent
attacks of neurological dysfunction, usually followed by at least partial recovery (Hurwitz,
2009). SPMS may eventually develop in patients with RRMS. SPMS is characterized by
progressive clinical disability in the absence of relapses. The transition from RRMS to
SPMS is gradual and not clearly defined. PPMS is characterized progression in the absence
of relapses from the onset of the disease, i.e., without a relapsing remitting stage. SPMS and
PPMS subjects are about 10 years older than RRMS patients on average. SPMS patients
have larger lesion volumes than RRMS and PPMS patients (Lublin et al., 2014).

For all trials, each patient sample consists of 5 MR sequences acquired at Imm x lmm X
3mm resolution: T1-weighted, T1-weighted with gadolinium contrast, T2-weighted, Fluid
Attenuated Inverse Recovery (FLAIR), and Proton Density. In each trial, images were
collected across multiple different sites, and multiple different scanners (~80 per trial),
therefore there were no consistent acquisition differences between trials. T2 lesion labels
were generated at the end of each clinical trial, and were produced by an external company,
where trained expert annotators manually corrected the output of a proprietary automated
segmentation method. Since the trials were completed at different times, labels may have
been generated with different versions of the automated segmentation method. Although
different expert raters corrected the labels, there was overlap between raters across trials
and all raters were trained to follow a similar labelling protocol. Each image has one asso-
ciated label (i.e. one label style, unlike in inter-rater bias studies). Furthermore, within one
trial, the same labelling process was followed in order to keep the labels within the trial con-
sistent. All imaging data was re-processed using a single pre-processing pipeline, resulting
in nearly indistinguishable intensity distributions across trials. While image-based biases
were effectively normalized out after re-processing, the image effects would have influenced
the labels during the original labelling process through the semi-automated algorithm. In
this study, the need to model trial-specific biases stems primarily from subtle differences
that accumulate throughout the labelling process. How these differences translate into the
resulting annotation styles has not been extensively studied, despite the impact this can
have on research into related problems (e.g. domain adaptation).

4.3 Evaluation Metrics

Automatic T2 lesion segmentation methods are evaluated with voxel-level segmentation
metrics. To evaluate performance, we use DICE (Segmentation F1 score) (Powers (2008)).4
We also present Precision Recall Area Under Curve (PR-AUC) for all experiments in the
Appendix to provide results independent of threshold selection. For relevant experiments,
detection F1 is also provided. Detection F1 is obtained by performing a connected compo-
nent analysis on the segmentation mask to group lesion voxels in an 18-connected neigh-
bourhood to identify individual lesions Nair et al. (2020).

4. Operating point (threshold) is chosen based on the best segmentation DICE.

10
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5. Experiments and Results

Several sets of experiments were performed to demonstrate the issue of annotation style
and the ability of CIN to model it. In the first set of experiments, a trial-conditioned CIN
model is compared to naive-pooling and single-trial baselines to show the importance of
considering and accounting for annotation style. A detailed analysis of the trial-specific
CIN parameters from the trained model is then performed in order to explore patterns or
groupings between the learned annotation styles. Another series of conditioning experiments
are performed in order to confirm the power of grouping based on the discovered subgroups.
Next, we fine-tune CIN parameters on a held-out trial to show how CIN can be used to
quickly adapt an existing model to a new annotation style. We then test the proposed
framework on a single-trial dataset where we induce a synthetic bias in half of the samples
to study the ability of CIN to model annotation styles that are impossible to infer from the
image. Lastly, we propose an image-conditioning mechanism to model annotation styles
that correlate with specific image features, potentially enabling detection biases to be more
easily identified.

5.1 Learning Annotation Styles

Table 1: DICE performance on test sets for the Trial-Conditioned model, Naive-Pooling
model, and Single-Trial models.

(a) Performance on test sets: experiments on Single-trial models.

Model Training Test Performance (DICE)
Set RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
1 | Single-Trial RRMS-A 0.784 0.779 0.776 0.681 0.647 0.646
2 | Single-Trial RRMS-B 0.775 0.779 0.766 0.678 0.638 0.646
3 | Single-Trial SPMS-A 0.778 0.785 0.782 0.679 0.645 0.647
4 | Single-Trial SPMS-B 0.691 0.689 0.686 0.730 0.709 0.693
5 | Single-Trial PPMS-A 0.697 0.699 0.690 0.731 0.699 0.681
6 | Single-Trial PPMS-B 0.669 0.671 0.663 0.682 0.646 0.742

(b) Performance on test sets: experiments on Single-Trial, Naive-Pooling, Trial-Conditioned models.

Model Training Testing Set (DICE)
Set RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
1 | Single-Trial RRMS-A 0.784 - - - - -
2 | Single-Trial RRMS-B - 0.779 - - - -
3 | Single-Trial SPMS-A - - 0.782 - - -
4 | Single-Trial SPMS-B - - - 0.730 - -
5 | Single-Trial PPMS-A - - - - 0.699 -
6 | Single-Trial PPMS-B - - - - - 0.742
7 | Naive-Pooling All 0.766 0.754 0.756 0.722 0.700 0.738
8 | Trial-Conditioned All 0.787 0.789 0.788 0.737 0.709 0.744

In this section, experiments are conducted to examine the CIN model and its benefits in
situations with variable annotation styles. This series of experiments is conducted with the
described 6 clinical trial datasets. To maintain balance, an equal number of patients were
taken from each clinical trial, resulting in 390 patients per trial, totalling 2340 patients in
the aggregated dataset. This dataset was then then divided (on a per-trial basis) into non-

11
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overlapping training (60%), validation (20%), and testing (20%) sets. In these experiments,
the CIN model is conditioned on the trial, termed the trial-conditioned model. We also train
single-trial models where only one dataset is used in training, and a naive-pooling model
where all datasets are used but the model is blind to the source of the data. Each model
is individually hyperparameter tuned to optimize performance on the validation sets, thus
the naive-pooling, single-trial, and conditioned models are all tuned separately to enable
fair comparisons.

Table la demonstrates the problem of different annotation styles learned by single-
trial models (see Appendix A for more results). These models show a clear performance
degradation of up to 10% when applied to different trial test sets. This explicitly shows
the issue of comparing models trained on one annotation style to ground truths generated
in a conflicting annotation style. Since we only have one annotation style per trial, it is
essentially impossible to accurately and fairly evaluate a single-trial model on another trial
with a different annotation style.

Comparisons of the DICE segmentation scores for the single-trial models, naive-pooling
model, and the proposed trial-conditioned model are shown in Table 1b. The lower overall
performance of the naive-pooling model (as is common practice) demonstrates another
consequence of variable annotation styles. Specifically, despite a 500% increase in the size
of the training set, the naive-pooling model under performs the single trial baselines in
nearly all cases, effectively eliminating the expected benefit of using more data. This is
likely because the naive-pooling model has no information regarding the annotation style
that is expected for any given sample and when tested on each trial, is unable produce a
label in the required style.. On the other hand, provided with context on the source of each
patient sample, the trial-conditioned model shows performance on par with the single-trial
models, illustrating CIN’s ability to learn trial-specific annotation styles. The final trial-
conditioned model is also capable of producing any annotation style for any input, thus
providing researchers with multiple “opinions” on a given sample, as shown in Figure 4.

Figure 4: RRMS-B FLAIR example image segmented with the Trial-Conditioned model
using different conditioning styles. Green is true positive, red is false positive, and blue is
false negative with respect to the RRMS-B “ground truth” label.

Figure 4 shows the results for a test sample from one trial (RRMS-B) as segmented
by the trial-conditioning model using CIN parameters from several different trials. The
results clearly demonstrate unique segmentation styles across trials. One observation that
can be made is that conditioning on the SPMS-B, PPMS-A and PPMS-B trials results in a
noticeable relative over-segmentation on some of the larger lesions in all three cases. Using
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Table 2: DICE performance on test sets for the Trial-Conditioned model with different
conditioning styles.

Conditioning Testing Set (DICE)
Style RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
1 | RRMS-A 0.787 0.789 0.786 0.684 0.650 0.667
2 | RRMS-B 0.786 0.789 0.787 0.683 0.652 0.671
3 | SPMS-A 0.784 0.789 0.788 0.682 0.650 0.669
4 | SPMS-B 0.708 0.703 0.697 0.737 0.712 0.703
5 | PPMS-A 0.718 0.716 0.707 0.737 0.709 0.693
6 | PPMS-B 0.694 0.699 0.690 0.702 0.664 0.744

these three label styles also results in completely missing the lesion in the posterior part of
the white matter tract located in the brain’s midline. The similarity in the results across the
SPMS-B, PPMS-B, and PPMS-A segmentation maps suggests that they form a potential
annotation style subgroup. On the other hand, the RRMS-A and SPMS-A segmentation
styles are similar to that of RRMS-B and therefore result in very accurate results according
to the RRMS-B label. This suggests that these three styles make up another subgroup.
While these groupings are noticeable in the qualitative results, we will show later in Section
5.2 that these groupings are also revealed by our CIN parameter analysis.

In addition to qualitative results, the relationship between these sets of trials (SPMS-
B, PPMS-B, PPMS-A) and (RRMS-A, SPMS-A, RRMS-B) is also demonstrated in the
quantitative results presented in Table 2. This table shows the DICE performance on the
test set for the conditioned model using the different trial styles. These results show that
the best SPMS-B performance is obtained not only by the SPMS-B style, but also by the
PPMS-A style. The PPMS-B style results in a SPMS-B performance that is intermediate
between that of the SPMS-B/PPMS-A style and the RRMS-A/RRMS-B/SPMS-A style,
suggesting that the PPMS-B style could be considered somewhat unique, depending on how
the groupings are defined. The best RRMS-B performance is achieved by the RRMS-B,
SPMS-A, and RRMS-A styles. The best PPMS-A performance is achieved by the SPMS-
B style. These results further confirm a strong relationship between the trial labelling
processes. The differences between the labelling processes are distinct but complex, and
despite this, the scaling/shifting achieved by CIN parameters are able to capture these
unique styles.

5.2 Discovering Subgroupings in Aggregated Datasets with CIN Parameter
Analysis

We further explore and identify relationships between the trial styles by exploiting relation-
ships in the learned CIN parameters (the trial-conditioned parameters in the CIN layer)
from the trained trial-conditioned model discussed in Section 5.1. Recall that there are a set
of learned CIN parameters for each trial in the training set. The CIN parameters consist of
a scale and shift parameter, each of size [1, channels, 1, 1, 1], and there are two CIN layers
per block in the network, rendering analysis challenging. In order to effectively evaluate
relationships between high dimensional per-trial parameters, we take two approaches: 1)
cosine similarity analysis, and 2) euclidean norm analysis.
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Figure 5: CIN parameter cosine similarity values between SPMS-A and all other trials for
all CIN layers in the nnUNet.

In the cosine similarity analysis, we calculate the metric as described in Section 3.1. This
analysis allows us to identify similarities between the directions of the CIN parameters,
with +1 indicating the vectors are in the same direction in high dimensional space and
—1 meaning they are in the opposite direction. This method allows us to gauge similarities
between scales and shifts per layer, between each pair of trials. For the vector norm analysis,
we plot the euclidean norm of the scale against the euclidean norm of the shift parameter
on one plot for each layer, per-trial. This analysis results in 14 scatter plots where each
point is the euclidean norm of the (scale, shift) for a different trial. This qualitative analysis
allows for visualization of the different relationships considering both magnitudes. For the
purpose of brevity, only one scatter plot per section of the network (encoder, center, decoder)
is provided.

Figure 5 provides a visualization of the (pairwise) cosine similarity analysis for SPMS-A
with respect to all other trials. This result reveals the subgroup trends noted in Section 5.1,
where SPMS-A shows distinct similarity in annotation style with RRMS-A and RRMS-B.
The analysis results for all other trials are shown in Appendix A. The same relationships are
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confirmed in all other trial comparisons, where two distinct style subgroups are discovered:
(1) SPMS-B, PPMS-A, and PPMS-B, and (2) RRMS-A, RRMS-B, and SPMS-A. The main
commonality between the groups is that the trials were labelled using different versions of
the label generation pipeline, indicating that the label generation pipeline was the main
contributor to annotation bias between these particular trials. This relationship is further
shown in the scatter plots in Figure 6 where the two groups form visible clusters. Figure 6
shows proximity between the PPMS-A/PPMS-B/SPMS-B group with some distance from
the cluster formed by the RRMS-A/RRMS-B/SPMS-A group.

Other than the annotation style group identification, the cosine similarity analysis also
uncovered other trends. Interestingly, the shifts are more similar across all trial comparisons
than the scales, suggesting high discriminatory importance of the scale parameter in the
CIN formula. The center layers were more similar across trials relative to the rest of the
network layers, especially in the bias parameters. This could mean that there may not be
a huge distinction between trials when they are encoded into a (high-level) latent space.

Lastly, the PPMS-B trial results in Figure 13 shows very little strong relation or op-
position to most of the trials. Although the similarity with PPMS-A and SPMS-B still
noticeable, it is much less extreme than the similarity between just PPMS-A and SPMS-B.
Figure 6 also shows that the PPMS-B point strays further from PPMS-A and SPMS-B.
Figure 6 b) especially shows PPMS-B very astray from all other trial parameters. This
trial’s unique annotation could be due to a number of reasons, including unique changes or
updates to the labelling or preprocessing pipeline, or a specific labelling protocol required
for a particular study. These possible changes could all result in PPMS-B’s unique CIN
parameters. Although similar to SPMS-B and PPMS-A| these trends lead us to believe the
PPMS-B trial could be considered its own group.

These identified groupings contradict some of the clinical similarities between trials,
specifically the disease subtype. While one might think that naively pooling trials of the
same disease type would be appropriate, our analysis shows the importance of considering
other factors in the labelling process. In the case of this study, the likely cause of the
differences between trials was a difference in the overall labelling process and in particular,
the corresponding semi-automated labelling algorithm. The significant difference in the
labelling process highlights the underlying ambiguity in MS lesion boarders. As previously
noted, the non-lesional DAWM which can be found adjacent to both focal lesions and
healthy tissue makes delineating lesion boarders or identifying smaller lesions somewhat
subjective. The intensity distribution between DAWM and the focal lesions overlap, thus
forcing both annotation software and human raters to decide on an arbitrary threshold
to discretize what is in fact a continuous healthy-to-pathology transition (Seewann et al.,
2009). Making assumptions about annotation styles due to prior knowledge may therefore
mislead researchers and result in unfair analyses or comparisons between different datasets.

5.3 Using Group Discoveries from CIN Parameter Analysis

The previous section outlined a strategy to explore annotation style relationships between
trials by analysing similarities in the CIN parameters. The experimental results of the CIN
parameter analysis indicated a strong relationship between the RRMS-A, RRMS-B, and
SPMS-A trials. SPMS-B and PPMS-A also showed high CIN parameter similarities, and
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Figure 6: Scatter plots where each point shows the euclidean norm of scale and shift per trial
for different layers. One example scatter plot is provided for each portion of the network
(Encoder, Center, Decoder).

PPMS-B was identified as unique. To validate the conclusions obtained from this method,
another series of experiments using the identified groups are conducted in this section. Here,
a single model is trained on each identified group ( Group-pooling) without any conditioning.
Another model is trained with conditioning on the identified trial groupings. This Group-
Conditioned model was designed such that the trials within an identified group all share
CIN parameters through the entire network during training. This results in one set of
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CIN parameters for SPMS-A, RRMS-A, and RRMS-B, and another set of parameters for
SPMS-B and PPMS-A, and lastly a set for PPMS-B.

Table 3: DICE performance on test sets for the group-based experiments.

(a) Performance on test sets for Group-Pooling models, Group-Conditioning model, and the Trial-
Conditioned model.

Model Training Testing Set (DICE)
ode Set RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B

1 . Group 1: RRMS-A,

Group-Pooling RRMS-B, SPMS-A 0.792 0.794 0.792 0.677 0.640 0.644

. Group 2: SPMS-B, . .

2 | Group-Pooling PPMS-A 0.705 0.704 0.693 0.735 0.714 0.696
3 | Group-Pooling Group 3: PPMS-B 0.669 0.671 0.663 0.669 0.646 0.742
4 | Trial-Conditioned All 0.787 0.789 0.788 0.737 0.709 0.744
5 | Group-Conditioned All 0.788 0.786 0.784 0.737 0.715 0.746

(b) Performance on test sets for the Group-Conditioned model using all conditioning styles.

Conditioning Testing Performance (DICE)
Style RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
Group 1: RRMS-A,

1 RRMS-B, SPMS-A 0.788 0.786 0.784 0.689 0.658 0.677
Group 2: SPMS-B,

2 PPMS.A 0.709 0.705 0.694 0.737 0.715 0.701

3 | Group 3:PPMS-B 0.693 0.695 0.684 0.7 0.663 0.746

When naively pooling trials within the same identified group (group-pooling), the model
does not suffer from the same performance degradation previously demonstrated in the all-
trial naive-pooling experiments. In Table 3a, the resulting performance on the Group-Pooled
model trained on SPMS-A, RRMS-A, RRMS-B group matches and slightly outperforms
their single-trial baselines (see Table 1a). The same is true for the SPMS-B and PPMS-
A group-pooled model. These results confirm that the groups identified from the CIN
parameter analysis do in fact have significant similarities between their annotation styles.
The group-conditioned model also matches performance of the trial-conditioned model,
further confirming the groups identified from the parameter analysis. These annotation
style groups are especially beneficial for cases where each dataset is very small such that
training on each independent dataset does not yield adequate performance in the desired
annotation style.

Table 3b also demonstrates that the grouped-conditioned model is successfully able to
learn distinct styles even though several trials share CIN parameter sets. When using dif-
ferent annotation styles (conditioning on the “wrong” group), DICE scores suffer up to 5%
performance degradation. This performance degradation further stresses the importance
of understanding sources of annotation styles and their relationships. If researchers make
assumptions about the sources of annotation styles, for example if they assume a disease-
subtype cohort bias is the main cause of the annotation style, they can make incorrect
groupings and combine datasets with incompatible annotation styles. For example, in this
case, SPMS-B and PPMS-A are not the same disease subtype, but they have compatible
annotation styles. Contrarily, PPMS-B is the same subtype as PPMS-A, but as shown in
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Table 4: Segmentation DICE and small lesion detection F1 scores shown on SPMS-A (Trial-
Orig) test set using models trained on different combinations of the original dataset (Trial-
Orig, 150 training patients) and the dataset with missing small lesions (Trial-MSL, 150
training patients).

Model Train Set Conditioned On Test Performance
Trial-Orig | Trial-MSL | Trial-Orig | Trial-MSL | Sm Lesion F1 | Voxel Dice
1 Single-Trial v - 0.795 0.844
2 Single-Trial v - 0.419 0.837
3 Naive-Pooling v v - 0.790 0.797
g Trial-Conditioned v v v v gzgg 8223

Table 3b, they have somewhat incompatible annotation styles resulting in the aforemen-
tioned performance degradation.

These experiments also further argue the point that evaluating on subjective annotation
styles is not truly fair. Although there is notable performance degradation when using the
wrong conditioning/style, the model is clearly adequate as it is capable of performing well
when it instructed to generate the desired annotation style. This finding emphasizes the
importance of reconsidering how supervised models are evaluated in new settings.

5.4 Accounting for Variable Annotation Styles in a Single-Source Dataset -
Missing Small Lesions

This set of experiments examines whether CIN is able to learn an isolated non-linear anno-
tation style within a single dataset. In this experiment, we ensured that the source biases
arose solely from different labelling protocols, while keeping all other factors, including dis-
ease stage, patient cohort, and time of collection, constant. To that end, only the SPMS-A
dataset was used. For this experiment, the dataset consisted of 500 SPMS-A patient images.
Half of the dataset was modified by changing the segmentation labels such that all small
lesions (10 voxels or less) were set to the background class, essentially removing them from
the label. This can be thought of as being equivalent to a labeling protocol that purposefully
ignores small lesions for clinical purposes (Trial-MSL). The labels of the remaining half of
the dataset were not modified in any way (Trial-Orig). These datasets were then each split
into non-overlapping training (60%), validation (20%), and testing (20%) sets. Similarly to
the previous experiments, we train Single-Trial models, a Naive-Pooling model, and a CIN
Trial-Conditioned model.

Table 4 shows the test results for this set of experiments on a non-modified Trial-C
test set (Trial-Orig). We show detection results specific to small lesion detection in order
to demonstrate CINs ability to learn an annotation style that ignores small lesions. Re-
sults show that the Single Trial-MSL model, which is trained on data with a significantly
different annotation style than the test data, exhibits poor small lesion detection perfor-
mance. The degradation in performance is expected as Trial-MSL has small lesions labeled
as background, while the test set (Trial-Orig) has small lesions marked as lesions. The poor
detection performance is not because the trained model is “bad”, as one may conclude from
the results, but because the definition of “ground truth” is different between the training
set and the test set. The Naively-Pooled model, which is trained on both Trial-Orig and
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Trial-MSL was unable to learn the MSL style and suffered significantly in segmentation per-
formance due to its inability to accommodate two conflicting annotation styles. The model
trained using the CIN approach was able to adapt to the difference in annotation styles and
exhibit good lesion-level detection and voxel-level segmentation performance when condi-
tioned on the appropriate dataset. Looking at the Trial-conditioned model conditioned on
Trial-MSL, we see that CIN is able to learn the Trial-MSL label bias quite effectively, and is
able to ignore small lesions while maintaining voxel-level segmentation performance. This
experiment shows the importance of providing context to the model regarding the desired
annotation style in the test set.
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Figure 7: CIN parameter analysis for fine-tuning experiments.

We can also study the impact of a pure annotation-based bias on the model by examining
the CIN parameters as in Section 5.2. Figure 8 clearly shows notable differences between
the MSL and Orig trials, particularly in the scale parameter. These results demonstrate the
impact annotation styles can have on network parameters, and further show CINs capacity
to model complex differences in the label space. Interestingly, even though the bias was
only in the annotations, there are very low cosine similarity values throughout the encoder.
This is significant as it demonstrates that in order to model changes in the annotation
style, the model makes use of capacity throughout the entire network. This also indicates
that patients with different annotations styles (although potentially very similar in image
appearance) can have completely different latent representations, thus highlighting the issue
with some domain invariant methods that don’t account for annotation style differences.
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5.5 Fine-tuning to a New Annotation Style with Limited Samples

We now evaluate CINs ability to learn new annotation styles by mimicking a clinical sit-
uation where a new trial is introduced. In this experiment, we had two trials of “known”
bias, SPMS-B and RRMS-A, and we are provided with a few samples of a new “unknown”
trial, SPMS-A. We took two pre-trained models: one naively-pooling with SPMS-B and
RRMS-A, and another CIN Trial-Conditioned model trained on only SPMS-B and RRMS-
A. The affine parameters of the normalization layers were then fine-tuned using only 10
labeled samples from the SPMS-A dataset. Segmentations were done on a held-out test set
from SPMS-A. In these experiments, we used 1000 SPMS-B samples and 1000 RRMS-A
samples split into non-overlapping training (60%), validation (20%), and testing (20%) sets.
For SPMS-A, 10 samples were used for training, 100 were used for validation, and 100 for
testing.

Table 5: DICE scores shown on the SPMS-A test set from the Naive-Pooling and Trial-
Conditioned models trained on SPMS-B and RRMS-A. DICE scores are also shown for
fine-tuned versions of those models, where the IN parameters were tuned using 10 SPMS-A
samples.

Fine-Tuned Conditioning Style
Model on SPMS-A [ SPMS-B | RRMS-A | SPMS-A | Lest Performance
1 . . - 0.774
9 Naive-Pooling v ] 0.819
3 v 0.763
4 | Trial-Conditioned v 0.806
5 v v 0.834

Table 5 depicts the results from this set of experiments. The performance of the naively-
pooled model improves when the instance normalization parameters of the model are fine-
tuned compared to no fine-tuning. Furthermore, a CIN-pooled model shows good SPMS-A
performance when conditioned on RRMS-A, which makes sense given the proven relation-
ship between RRMS-A and SPMS-A. By fine-tuning the trial-specific CIN layer parameters
of this model on 10 samples of SPMS-A, we are able to then condition the model on SPMS-A
during test time. This leads to the highest performance improvement over all models. This
experiment series shows how CIN can be leveraged in the clinic to quickly learn and accom-
modate the annotation style needed for the desired task. Additionally, it shows the need
to consider annotation style in the evaluation or implementation of models, as poor results
on a test set with a different annotation style can mislead researchers, who may otherwise
assume that the performance drop stems from a difference in the image distribution (e.g.
different scanners, etc.). As previously established, the RRMS-A style is compatible with
the SPMS-A style, thus resulting in the relative good performance of the trial-conditioned
model in RRMS-A-mode. Without considering subjective annotation styles, researchers
may interpret this result as meaning the trial-conditioned model in RRMS-A-mode is bet-
ter; however, it is simply because the RRMS-A style is more similar to the SPMS-A styled
labels used in the test evaluation.
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Figure 8: CIN cosine similarity parameter analysis for fine-tuning experiments.

Figure 8 shows the CIN Cosine Similarity analysis on the fine-tuning experiments °
This analysis provides interesting insights about what CIN can learn in a few-shot fine-
tuning problem. The fine-tuned SPMS-A parameters do not show particular relationship
with either SPMS-B or RRMS-A. There are slightly more negative values in the SPMS-A
- SPMS-B Scale parameters than there are in the SPMS-A - RRMS-A Scales, but this is
not a clear cut relationship. This pattern does confirm some of the results in Table 5 as
the RRMS-A CIN parameters yield better performance on the MAESTRO test set than do
the SPMS-B. These figures may indicate that 10 samples is not enough for the algorithm to
fully learn the annotation style, but the performance results do suggest that 10 is enough
for the model to obtain reasonable performance. With only 10 samples, the algorithm is
still able to perform better than it did than with only the SPMS-B and RRMS-A training
samples. This information can come in the form of a few labelled samples in desired style,

5. Note that these experiments were done on an older version of our dataset, where the trials were prepro-
cessed differently and not normalized as vigorously, which may account for trends in the CIN parameter
analysis that do not corroborate the results presented in 5.2.
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or in the form of clinically relevant factors. A hypothetical case for the latter would be if
we knew that the RRMS-A style data was better at detection, and the SPMS-B style for
lesion volume estimation, and the task of SPMS-A was lesion volume estimation, we would
then make the call to use the style of the most relevant dataset, SPMS-B.

5.6 Modeling Detection Biases Using Image Conditioning - A Synthetic Case
Study

In previous sections, we focused on learning and analyzing trial-specific biases. These bi-
ases were primarily in the label-space, and were primarily a consequence of known changes
to the automatic segmentation method used across datasets. In this section, we examine
whether the Image Conditioning mechanism proposed in Section 3.2 can model synthetic
detection biases that can be derived from the image itself. To that end, we consider a
scenario where the goal of a hypothetical study is to evaluate the effect of a particular drug
on MS lesion activity in brain MRI. In this hypothetical scenario, we would be concerned
with two key factors in order to evaluate the effect of treatment, principally: (1) Changes in
T2 lesion volume between scans; and (2) The presence of gadolinium-enhancing lesions in
brain MRI. Typically, significant increases in lesion volume or the presence of gadolinium-
enhancing lesions indicates treatment failure Freedman et al. (2020). Practically speaking,
gadolinium-enhancing lesions can be identified in the T1C sequence at a glance and do not
require computing and comparing lesion volumes across multiple scans. In a resource con-
strained scenario, it is conceivable that a rater, if gadolinium-enhancing lesions are clearly
present, would not bother to make corrections to the T2 segmentation label produced by
the automated segmentation algorithm, as the presence of a gadolinium-enhancing lesion is
sufficient to indicate treatment failure. In this scenario, subjects that exhibit gadolinium-
enhancing lesions would exhibit a different bias in the “ground truth” T2 lesion labels than
those subjects that did not exhibit gadolinium-enhancing lesions. The patients belonging
to the gadolinium-enhancing cohort would therefore require much more careful corrections
to the T2 segmentation labels produced by the automated segmentation algorithm in or-
der to determine whether the treatment was successful in suppressing the accumulation of
additional T2 lesions. This example demonstrates a cohort-specific detection bias which,
despite being correlated with the image, cannot be easily modeled given that dependencies
are long range (Gadolinium enhancing lesion can appear anywhere in the brain).

Experimentally, to evaluate the ability of this mechanism to model synthetic detec-
tion biases, we induce a synthetic label bias to simulate the scenario we describe above.
Specifically:

e If a patient has gadolinium-enhancing lesions, we dilate the T2 lesion labels.

e If a patient does not have gadolinium-enhancing lesions, the T2 lesion labels are
untouched.

Dilation is chosen since this emulates the scenario we describe above, where the rater would
not bother to diligently delineate the edges of lesions in patients with gadolinium-enhancing

lesions®. This synthetic dataset is generated using 1000 RRMS-A samples split into non-

6. Generally, raters correct the output of an automated method by removing false positives (rather than
identifying false negatives).
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Table 6: DICE scores for T2 lesion segmentation shown on the RRMS-A test set. Results
are stratified according to whether GAD lesions are present in the image or not, with each
group having its own annotation bias.

o Test Performance

Model Conditioned On Image w/o GAD [ w/ GAD
1 Naive-Pooling - 0.659 0.761
Image-Conditioned v 0.762 0.775

overlapping training (60%), validation (20%), and testing (20%) sets. Overall, the propor-
tion of patients that had gadolinium-enhancing lesions was approximately 34%.

Table 6 depicts the results from this set of experiments. The performance of the naive-
pooling model underperforms both single-trial baselines, with performance on the w/o GAD
dataset suffering a dramatic performance hit. Clearly, the naive-pooling model is unable to
learn the relationship between the presence of Gadolinium-enhancing lesions and the dila-
tion bias while also maintaining performance on the un-altered labels for patient’s without
GAD. Indeed, the naive-pooling model’s output appears to be biased toward the dilated
dataset. Omn the other hand, the Image-Conditioned model is clearly able to learn the
relationship between the presence of Gadolinium-enhancing lesions and the label bias as
evidenced by the across the board performance gain relative to the naive-pooling model. In
particular, the image-conditioned model outperforms the naive pooling model by 15.6% on
the w/o GAD dataset and by 1.8% on the w/ GAD dataset. Notwithstanding, the image-
conditioned model does underperform the single trial baseline models, suggesting that the
image conditioning module is unable to detect GAD with perfect accuracy, which is not
completely unexpected given that GAD lesions, in many cases, are as small as 3 voxels in
size.

6. Conclusions

In this paper, we challenge traditional notions of generalization in the context of super-
vised medical image pathology segmentation models. We posit that poor generalization
performance of automated methods across datasets may partially be a consequence of dif-
fering annotation styles, rather than solely the result of scanner/site differences as is often
assumed. We point out that differing annotation styles can result from a number of fac-
tors, including the automated method used to generate the initial annotations (if any), the
goal of the study (e.g. diagnosis, counting lesions, volumetric measurements), rater experi-
ence/education, and the instructions provided to raters, among others. Most importantly,
we note that none of these factors are entirely random, but instead combine to constitute
a systematic bias in the annotation process of each dataset.

Given the myriad of factors that can influence the annotation style of any given dataset,
we contend that annotation biases are unavoidable, necessitating a candid assessment of the
inherent limits of generalizing to new datasets in a zero-shot manner. As such, we propose
that embracing annotation biases, by modelling them, rather than ignoring or attempting to
average them, poses a promising (and feasible) approach to deal with annotation differences
across datasets. To do this, we propose using Conditioned Instance Normalization (Vincent
et al., 2017) to model the biases of individual datasets in the context of dataset aggregation,
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enabling a single model to generate multiple different annotation styles for a single test case.
Next, we present an approach to identify relationships between different annotation styles,
enabling the practitioner to strategically merge datasets with similar annotations in the
low data regime. We also present a fine-tuning approach to adapt a fully trained model to
a new dataset and corresponding annotation style with very little training data. Finally,
we present an approach to model synthetic annotation biases that result from identifiable
features in the input image affecting the annotation process.
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Appendix A.

Image Conditioning

Input MRI Segmentation Max Pool
=3 Upsampling
------- » Skip Connection
3D Dropout
[ 3D 1x1x1 Conv
I Conv Block
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FiLM Layer
Conv Block mmmsssm 3D 3x3x3 Conv

Figure 9: Left: Overview of modified nnUNet (Isensee et al. (2018)) architecture used to
segment MS T2 lesions with image conditioning. Right: Detail of an image conditioning
conv block. It consists of a series of 3D 3x3x3 Convolution Layer, a FiLM layer and a linear
FiLM generator, and a LeakyReLU activation layer.

Hyperparameter Optimization

Each network was optimized separately. Values for learning rate and schedulers, epochs,
dropout, and data augmentation were varied for each network. For the single-trial baselines,
the hyperparameters that resulted in the best validation performance on the training trial
were chosen, and this model was tested against the other trial sets. For the multi-trial
models, the hyperparameters that resulted in the best overall performance across all trials
were used. The range for the hyperparameter search was as follows:

e Epochs: 150-250
e Learning Rate: le-4 to 3e-4, with le-5 weight decay
e Scheduler:

— Epochs: [25, 50, 100, 150, 200] to [200]
— Gamma: 1/3 to 1/2
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Thresholding

In this study, the threshold was selected on a per-trial basis to result in the highest F1.
Specifically, for any given model throughout the paper, the results for a test set of a certain
trial are presented at the threshold that yields the best F1 for that trial.

PR-AUC Results

Table 7: PR-AUC Performance on test sets: experiments on Single-Trial, Naive-Pooling,
Trial-Conditioned models.

Model Training Testing Set (metric PR-AUC)
Set RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
1 | Single-Trial RRMS-A 0.875 - - - - -
2 | Single-Trial RRMS-B - 0.866 - - - -
3 | Single-Trial SPMS-A - - 0.873 - - -
4 | Single-Trial SPMS-B - - - 0.818 - -
5 | Single-Trial PPMS-A - - - - 0.773 -
6 | Single-Trial PPMS-B - - - - - 0.828
7 | Naive-Pooling All 0.859 0.843 0.847 0.809 0.776 0.822
8 | Trial-Conditioned All 0.879 0.878 0.879 0.826 0.786 0.829

Table 8: PR-AUC performance on test sets for the Trial-Conditioned model with different
conditioning styles.

Conditioning Testing Set (metric PR-AUCQ)
Style RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
1 | RRMS-A 0.879 0.878 0.878 0.761 0.717 0.737
2 | RRMS-B 0.878 0.878 0.878 0.760 0.718 0.742
3 | SPMS-A 0.876 0.878 0.879 0.759 0.717 0.740
4 | SPMS-B 0.796 0.783 0.781 0.826 0.791 0.781
5 | PPMS-A 0.808 0.801 0.794 0.826 0.786 0.772
6 | PPMS-B 0.781 0.783 0.775 0.782 0.735 0.829

Table 9: PR-AUC performance on test sets for Group-Pooling models, Group-Conditioning
model, and the Trial-Conditioned model.

Model Training Testing Set (metric PR AUC)
ode Set RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B

. Group 1: RRMS-A,

1 | Group-Pooling RRMS-B, SPMS-A 0.883 0.883 0.883 0.747 0.696 0.703
. Group 1: SPMS-B, . o

2 | Group-Pooling PPMS-A 0.79 0.784 0.774 0.823 0.791 0.772

3 | Group-Pooling Group 3: PPMS-B 0.746 0.744 0.734 0.746 0.700 0.828

4 | Trial-Conditioned All 0.879 0.878 0.879 0.826 0.786 0.829

5 | Group-Conditioned All 0.881 0.876 0.876 0.826 0.792 0.833
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Table 10: PR-AUC performance on test sets for the Group-Conditioned model using all
conditioning styles

Conditioning
Style

Testing Performance (metric PR AUC)
RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B

Group 1: RRMS-A,
RRMS-B, SPMS-A
Group 1: SPMS-B,
PPMS-A

Group 3: PPMS-B

0.881 0.876 0.876 0.769 0.728 0.751
0.796 0.784 0.774 0.826 0.792 0.781
0.788 0.779 0.767 0.78 0.732 0.833

Single-Trial Baseline Results

Table 11: PR-AUC performance on test sets: experiments on Single-trial models.

Model Training Test Performance (PR-AUC)
Set RRMS-A RRMS-B SPMS-A SPMS-B PPMS-A PPMS-B
1 | Single-Trial RRMS-A 0.875 0.865 0.866 0.750 0.707 0.704
2 | Single-Trial RRMS-B 0.864 0.866 0.854 0.746 0.692 0.706
3 | Single-Trial SPMS-A 0.869 0.874 0.873 0.751 0.704 0.705
4 | Single-Trial SPMS-B 0.773 0.764 0.764 0.818 0.786 0.766
5 | Single-Trial PPMS-A 0.783 0.782 0.773 0.818 0.773 0.749
6 | Single-Trial PPMS-B 0.746 0.744 0.734 0.746 0.700 0.828
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Cosine Similarity Figures for All Trials
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Figure 10: CIN parameter Cosine Similarity values between SPMS-B and all other trials
for all CIN layers in the nnUNet.
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Figure 11: CIN parameter Cosine Similarity values between RRMS-A and all other trials
for all CIN layers in the nnUNet.
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Figure 12: CIN parameter Cosine Similarity values between RRMS-B and all other trials
for all CIN layers in the nnUNet.
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Figure 13: CIN parameter Cosine Similarity values between PPMS-B and all other trials
for all CIN layers in the nnUNet.
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Figure 14: CIN parameter Cosine Similarity values between PPMS-A and all other trials
for all CIN layers in the nnUNet.
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