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Abstract

Deep learning techniques show success in detecting objects in medical images, but still
suffer from false-positive predictions that may hinder accurate diagnosis. The estimated
uncertainty of the neural network output has been used to flag incorrect predictions. We
study the role played by features computed from neural network uncertainty estimates
and shape-based features computed from binary predictions in reducing false positives in
liver lesion detection by developing a classification-based post-processing step for different
uncertainty estimation methods. We demonstrate an improvement in the lesion detection
performance of the neural network (with respect to F1-score) for all uncertainty estimation
methods on two datasets, comprising abdominal MR and CT images, respectively. We show
that features computed from neural network uncertainty estimates tend not to contribute
much toward reducing false positives. Our results show that factors like class imbalance
(true over false positive ratio) and shape-based features extracted from uncertainty maps
play an important role in distinguishing false positive from true positive predictions. Our
code can be found at https://github.com/ishaanb92/FPCPipeline
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1. Introduction

Deep learning systems have become the go-to approach for various medical image analysis
tasks (Zhou et al., 2021; Litjens et al., 2017). However, such systems may make erroneous
predictions. These arise due to a variety of reasons, for example, the model overfitting to the
training data, presence of noise/artefacts in the image, or mismatch between the training
and clinical data distributions (Castro et al., 2020). False-positive prediction is one such
type of error and may hinder accurate diagnosis.

Lesion detection in medical imaging is usually formulated as an image segmentation
problem, where labels are assigned to each voxel in the image. The task suffers from class
imbalance, because lesions occupy a small volume in the image. The imbalance is usu-
ally corrected by re-weighting components of the loss function and/or selectively sampling
data. While this may lead to more voxels being correctly classified as lesions, the predic-
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tion algorithm may become biased toward detecting more lesions than are actually present.
False-positive reduction is accomplished via negative sampling i.e. sampling background to
reduce algorithmic bias toward finding lesions (Ciga et al., 2021), architectural modifica-
tions (Tao et al., 2019), or by using a classifier as a post-processing step (Chlebus et al.,
2018; Bhat et al., 2021).

In this paper, we extend initial work performed in Bhat et al. (2021) by developing a
system to reduce false-positive predictions using uncertainty estimations made by the neural
network. We study the effect uncertainty estimation methods have on the detection of false
positive lesions. To do so, we develop a model-agnostic post-processing pipeline that can
work with predictions made by any probabilistic classifier.

We summarize related work in Section 2. Section 3 describes the datasets used in this
paper. In Section 4 we provide background about the different uncertainty methods we
studied, and describe the false-positive classification pipeline. In Section 5 we describe the
neural network architecture and training (Section 5.1), and the different evaluation methods
used to analyse the performance of uncertainty estimation methods to reduce false positives
(Section 5.2). Results are shown in Section 6 and their implications are discussed in Section
7.

2. Related Works

The estimation of prediction uncertainty has been useful in domains such as detecting
adversarial (Smith and Gal, 2018) and out-of-distribution (Ovadia et al., 2019) examples,
robotics (Loquercio et al., 2020), autonomous driving (Hoel et al., 2020), and reinforcement
learning (Depeweg et al., 2018). Uncertainty estimation has also found numerous promising
applications in the field of medical image analysis (Ching et al., 2018).

Uncertainty estimates have been used as a proxy to determining the quality of the
predictions, with poor quality predictions being referred to an expert. Leibig et al. (2017)
showed that the detection of diabetic retinopathy improved when predictions with estimated
uncertainty above a certain threshold were referred to an expert. Seeböck et al. (2020) used
the uncertainty map to detect anomalous regions in retinal OCT images. For the task of
cardiac MR segmentation, Sander et al. (2019) referred voxels with high uncertainty to an
expert to produce segmentations with more accurate boundaries. Sedai et al. (2018) showed
the benefits of using the uncertainty map as a visual aid to clinicians for the task of retinal
layer segmentation in OCT images. Camarasa et al. (2021) show metrics derived from the
uncertainty maps can be used to evaluate the quality of multi-class segmentations of the
carotid artery. Karimi et al. (2019) used uncertainty estimation to flag poor segmentations
and used a statistical shape model to improve the result for the task of prostate segmentation
from ultrasound images. In addition to determining quality of predictions, uncertainty
estimates have also been shown to improve performance of downstream tasks within a
cascade (Mehta et al., 2019).

When it comes to segmenting structures of interest within images, such as lesions, there
is a need to quantify uncertainty at the structure level, by aggregating per-voxel uncertainty
estimates, because it is at the structure level that diagnosis is performed. Nair et al. (2020)
showed that the log-sum of voxel-wise uncertainties computed over the detected structures
can be used to filter small false positives. Similarly, Graham et al. (2019) used the mean
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uncertainty over segmented glandular structures to disregard poor quality predictions made
on colon histopathological images. Mehrtash et al. (2020) showed that for prostate, brain
lesion and cardiac segmentation, the mean uncertainty over the segmented structure had
a negative correlation with the Dice overlap and therefore the mean uncertainty could be
used as a proxy for segmentation quality. Similarly, Ng et al. (2020) and Roy et al. (2018)
developed metrics to check variations in the prediction at the structure level and showed
a negative correlation between this metric and the Dice coefficient for cardiac and brain
lesion segmentation, respectively. Eaton-Rosen et al. (2018) used uncertainty estimation to
compute well-calibrated error bars for the estimated brain lesion volumes for clinical use.

There is also a class of methods that use uncertainty estimates as an input to a second
stage that is used to predict segmentation quality or detect segmentation failures. Jungo
et al. (2020) used the task of segmenting different types of lesions from brain MR images to
show that aggregating features computed from the per-voxel uncertainty maps can predict
segmentation quality. These features correlated well with the Dice score of the prediction
and therefore could be used to a flag a poor segmentation. In a similar vein, DeVries
and Taylor (2018) used a second neural network as a regressor to predict the Jaccard
index using the per-voxel uncertainty map and binary segmentation as inputs for their
skin lesion segmentation task. Sander et al. (2020) used a second neural network to detect
local segmentation errors in a cardiac segmentation task using the uncertainty map, the
prediction, and image patches as inputs.

Most approaches use voxel-wise uncertainty estimates to detect segmentation failures,
or use them as a proxy for segmentation quality. Nair et al. (2020) showed that aggregating
voxel-wise uncertainty estimates over the predicted lesion volume using the log-sum opera-
tion can be used to filter small false positives. Jungo et al. (2020) compared different ways
to perform spatial aggregation at the subject level and concluded using radiomics features to
construct subject-level feature vectors performed best at detecting failures while segment-
ing tumours in brain MR images. Since this is a more general form of spatial aggregation,
we construct radiomics feature vectors corresponding to predicted lesion volumes from the
uncertainty map estimated by the neural network to investigate the role of uncertainty
estimates in reducing false-positive detections.

3. Data

3.1 UMC MR dataset

We used abdominal dynamic contrast enhanced (DCE) and diffusion weighted (DW) MRI
of 71 patients with liver metastases from the University Medical Center Utrecht, the Nether-
lands. This data was acquired between February 2015 and February 2018. The DCE-MR
series was acquired in six breath holds, resulting in a total of 16 3-D contrast phases per
patient. Voxel spacing for these images is 1:5mm � 1:5mm � 2mm. The liver and the
metastases within the liver were manually segmented on the DCE-MRI by a radiologist in
training and verified by a radiologist with more than 10 years of experience. The dataset
mainly included colorectal and neuroendocrine metastases, with few other types in addition
(i.e., other gastrointestinal metastases and breast metastases). Motion correction between
the different contrast phases for each DCE MR image was performed using the techniques
described in Jansen et al. (2017).
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The DW-MR images were acquired with three b-values: 10, 150, and 1000 s/mm2, using
a protocol with the following parameters: TE: 70 ms; TR: 1:660 ms; flip angle: 90 degrees.
For each patient, the DW MR image was non-linearly registered to the DCE MR image
using the elastix (Klein et al., 2010) toolbox.

We applied the manually created liver masks to the abdominal DCE and DW MR
images. All images were resized to in-place dimensions of 256 � 256, followed by z-score
normalization of the intensities. The 16 contrast phases of the DCE MR images were divided
into groups and averaged to generate a 6-channel image (Jansen et al., 2019). The contrast
phases were grouped as follows, the pre-contrast image, the early arterial phase, the late
arterial phase, the hepatic/portal-venous phase, the late portal-venous/equilibrium phase,
and the late equilibrium. The DW images were concatenated with the DCE images along
the channel axis to create a 9-channel input image for the neural network.

The data was split into 50 training patients, 5 validation patients and 16 test patients.

3.2 Liver lesion Segmentation Challenge (LiTS)

The LiTS dataset (Bilic et al., 2019)1 contains 131 abdominal CT images with reference
liver and lesion segmentations from seven hospitals and research institutes. Out of these 131
images, we excluded 13 images that had no lesions. All images in the dataset had in-plane
dimensions of 512 x 512 with variable voxel spacings. The median voxel spacing for the
dataset was 0:76 x 0:76 x 1:0 mm.

Pre-processing on the images was performed by first clipping the intensities to the range
[�100; 200] and then re-scaling the clipped intensities to the range [0; 1]. Non-liver regions
in the image were masked using the reference liver segmentation.

We divided our reduced dataset of 118 CT images into non-overlapping sets with 94
training, 6 validation and 18 test patients.

4. Materials and Methods

We have developed a classification pipeline to study the effect of uncertainty estimation
techniques on false-positive reduction. Section 4.1 provides a general framework to de-
scribe different uncertainty estimation methods. Section 4.2 explains our graph-based lesion
counting method to account for many-to-one and one-to-many correspondences between the
predicted and ground truth segmentations while evaluating lesion detection performance.
Finally, Section 4.3 describes the classification pipeline used to reduce false-positive lesion
segmentations.

4.1 Theory

Standard neural network training and inference provide point estimates for their prediction.
There has been early work on uncertainty estimation utilizing a Bayesian framework to
train neural networks that can produce a distribution instead of a point estimate (MacKay,
1992; Neal, 1996). However, neural network training and inference with these approaches
was computationally expensive. Recent approaches build upon these earlier approaches to
make them computationally efficient using variational inference techniques (Blundell et al.,

1. https://competitions.codalab.org/competitions/17094
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2015; Gal and Ghahramani, 2016; Kingma et al., 2015), the most widely adopted amongst
these being MC-Dropout (Gal and Ghahramani, 2016). In addition to these methods,
techniques such as using model ensembles (Lakshminarayanan et al., 2017) and test-time
augmentation (Wang et al., 2019) are widely used and have been described later in this
subsection.

We �rst present a general method to compute the output distribution of a neural net-
work, and then show how each of the methods mentioned before can be derived from this
general formulation. In a Bayesian framework, the output distribution of a neural network,
p(y� jx � ; X; Y ), is obtained by marginalizing over the posterior distribution of the model
parameters and image transformations:

p(y� jx � ; X; Y ) =
Z

! 2 


Z

� 2 �
p(y� jx � ; !; � )p(! jX; Y )p(� )d�d! (1)

Here x � , y� are the input and output values respectively, X and Y are the data and labels
used for training respectively, and! , � are the set of neural network parameters and input
transformations respectively. The integral in Equation 1 is approximated using a Monte-
Carlo simulation:

papprox (y� jx � ; X; Y ) =
1

NM

NX

i =1

MX

j =1

p(y� jx � ; ! i ; � j ) (2)

4.1.1 Baseline

As a baseline, we included a convolutional neural network with a softmax output producing
per-voxel point probability estimates, p(y� jx � ; ! � ), where y� , x � are the output and input
respectively, and ! � is the set of neural network parameters obtained via optimization.
Therefore, the distribution over the model parameters, p(! jX; Y ) becomes a Dirac delta
function at ! � , and the distribution over input transformations, p(� ) a Dirac delta function
at the identity transform.

4.1.2 MC-Dropout

Dropout (Srivastava et al., 2014) is a regularization technique where di�erent random subsets
of the neural network weights are set to zero during training, based on sampling masks
from a Bernoulli distribution with a �xed probability or dropout rate. Gal and Ghahramani
(2016) show that weights retained during dropout can be used as samples of the posterior
distribution over the weights, p(! jX; Y ).

Therefore, for MC-Dropout, Equation 2 reduces to:

pmcd(y� jx � ) =
1

Nmcd

NmcdX

i =1

p(y� jx � ; ! i ) (3)

Here ! i are the model parameters retained during thei th pass during inference.

4.1.3 Model Ensembles

Model ensembles (Lakshminarayanan et al., 2017) have been shown to have superior per-
formance and yield high quality uncertainty estimates as compared with a single neural
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network. Models within an ensemble are trained independently of each other, and the �nal
prediction is obtained by averaging the outputs of the di�erent models. From a Bayesian
viewpoint, this can be seen as another way to draw samples from 
. Therefore, for model
ensembles, Equation 2 becomes:

pensemble(y� jx � ; X; Y ) =
1

Nensemble

NensembleX

i =1

p(y� jx � ; ! i ) (4)

Here ! i is the set of weights belonging to thei th model in the ensemble.

4.1.4 Test-time augmentation

Test-time augmentation (TTA) (Wang et al., 2019) computes the output probability distri-
bution by marginalizing over a distribution of image transformations, p(� ), used to trans-
form the input image.

ptta (y� jx � ; ! � ) =
1

M tta

M ttaX

j =1

p(y� jx � ; ! � ; � j )) (5)

Here � j is the j th transform sampled from p(� ) and ! � is the point estimate of the model
parameters obtained via optimization.

4.1.5 Combining any method with TTA

MC-Dropout or model ensembles can be combined with test-time augmentation, as shown
in Equation 2 where ! i could either be the weights retained during i th dropout pass or
weights from the i th model in the ensemble

4.1.6 Uncertainty estimation and decoupling

The predictive uncertainty for classi�cation problems, i.e. with a discrete set of C labels as
possible output values, is quanti�ed by the entropy of the output distribution. The entropy
for such a distribution p is given by:

upredictive = H [p] = �
CX

c=1

p(y� = cjx � )log(p(y� = cjx � )) (6)

Entropy is low when all the probability mass is concentrated on a single class, and high
when it is distributed more evenly over classes.

The predictive uncertainty can be decomposed into uncertainty originating from the
model (epistemic) and uncertainty originating from the data (aleatoric) (Kiureghian and
Ditlevsen, 2009). This decomposition is possible if there is variation in the model parameters
used to generate the prediction, as is the case with MC-Dropout or model ensembles (Smith
and Gal, 2018).

Aleatoric uncertainty reects the true noise in the data and cannot be reduced by using
more data to train the model. Inherent noise in the data may be reected in a prediction
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with high entropy. Thus, the aleatoric uncertainty is the mean entropy computed over
predictions with �xed parameters:

ualeatoric =
1
T

TX

i =1

H [p(y� jx � ; ! i )] (7)

The epistemic uncertainty in the prediction is the mutual information between the model
parameters and the data (Smith and Gal, 2018). This is equivalent to the epistemic uncer-
tainty being the di�erence between the predictive uncertainty (Equation 6) and the aleatoric
uncertainty (Equation 7):

uepistemic = upredictive � ualeatoric (8)

For models that use a single �xed set of parameters (eg: TTA), Equation 7 shows
that the aleatoric uncertainty is equal to the predictive uncertainty, i.e. the predictive
uncertainty is estimated from the data only. For predictions from either MC-Dropout or
model ensembles, all three uncertainty measures may be computed.

Image segmentation can be viewed as a per-voxel classi�cation problem, and per-voxel
uncertainty estimates form an uncertainty map. As an example, we show the original image
(with the binary prediction overlaid) and uncertainty maps for a single CT image slice from
the LiTS dataset in Figure 1. The epistemic uncertainty maps for MC-Dropout and MC-
Dropout+TTA are almost completely empty. This signi�es that there is low variation in
the MC-Dropout and MC-Dropout+TTA outputs, produced by di�erent passes through
the model for a given input (See Equations 6, 7, 8). On the other hand, in Figure 1,
the rows corresponding to ensemble and ensemble+TTA, the epistemic uncertainty maps
show signal outlining the lesion boundaries, comparable to the predictive and aleatoric
uncertainty maps. Following a similar reasoning, this indicates that there is high variation
in the outputs of the di�erent models in the ensemble for a given input. This occurs
because in an ensemble of independently trained models, the outputs from each model
are less correlated as compared to MC-Dropout outputs, which are generated by sampling
subsets of weights optimized jointly (Fort et al., 2020).

4.2 Lesion detection

Lesions were detected using a neural network trained to perform image segmentation (See
Section 5.1 for details). Inference was performed on 2-D slices of the images, which were
combined to form the segmented volume. For MC-Dropout and test-time augmentation,
we used values ofNmcd = 10 and M tta = 10. Larger values of Nmcd and M tta did not
result in any change in the precision and recall metrics on the test set (shown in Table 3).
For test-time augmentation, random rotations between [� 45; 45] degrees were applied to
compute predictions. For the ensemble con�gurations, we used �ve independently trained
models (Nensemble = 5) to compute the prediction on test images. We applied a threshold
of 0:5 to convert the per-voxel probability output maps to binary lesion masks.

Post-processing was performed on the binary lesion masks using a morphological closing
with a 3 � 3 � 3 cube-shaped element followed by morphological opening with a 3� 3 � 3
cross-shaped element (Jansen et al., 2019). Within the post-processed volume, we performed
connected component analysis to identify lesion volumes.
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Figure 1: Uncertainty maps for di�erent estimation techniques. In the left-most column,
we show the CT image slice with the reference segmentation (green), predicted segmenta-
tion (red) and their overlap (yellow). Since model parameters are �xed for Baseline and
Baseline+TTA con�gurations, the epistemic uncertainty is always 0.

To quantify the e�cacy of our segmentation network at lesion detection, we used the
precision, recall and F1 metrics. However, to compute these metrics, it is necessary to
�nd correspondences between the detected lesion volumes and the lesion volumes present
in the reference segmentation. Situations could arise where many-to-one or one-to-many
correspondences between lesion volumes are found, and any method used to count the
number of detected lesions must take this into account (Oguz et al., 2018).

We tackled the problem of counting detections by constructing a directed bipartite
graph with 2 sets of nodes, i.e. the lesions in the predicted segmentation and reference
segmentation respectively. We constructed edges between the lesions from the two sets of
nodes and set the edge weight between them to be the Dice overlap between the lesion
volumes. Edge construction was done in both directions, overlap for a single volume in the
predicted segmentation was computed with each object in the reference segmentation and
vice versa.
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Once the graph edges are constructed, counting the number of true positive, false positive
and false negative predictions is straightforward. Any volume in the predicted segmentation
is considered atrue positive detection if it has at least one outgoing edge with a non-zero
weight. To account for many-to-one correspondences, we count true positives as the number
of nodes in the reference lesion partition with at least one incoming edge to avoid multiple
counting. A volume in the predicted segmentation is considered afalse positiveprediction if
it has no edges with a non-zero weight. Similarly, a volume in the reference segmentation is
considered afalse negativeif it has no incoming edges with a non-zero weight. In Figure 2,
we show an example of a correspondence graph with a many-to-one lesion correspondence.

The detection metrics are computed as follows:

precision =
true positives

true positives + false positives
(9)

recall =
true positives

true positives + false negatives
(10)

F1 =
2 � precision� recall

precision + recall
(11)

(a) Prediction (red) and reference (green)
segmentations (overlap in yellow), overlaid on
a DCE MR image. In this image slice, it can
be seen that the same predicted lesion volume
overlaps with two lesions from the reference
segmentations. In such a case, we count two
detected lesions.

(b) Graph capturing lesion correspondences
for the DCE MR image in Figure 2a in terms
of overlap. The nodes on the left in red are
lesions in the predicted segmentation, and
those on the right in green are lesions from
the reference segmentation. Edges with 0
weight have not been shown for clarity. It
can be seen that three lesions (two of which
can be seen in Figure 2a) in the reference seg-
mentation correspond to a single lesion (P0)
in the prediction.

Figure 2: Correspondences between predicted and reference segmentations
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4.3 False-positive classi�cation

The steps involved in �ltering false positive predictions from the neural network predic-
tion are shown in Figure 3. The pipeline was designed following guidelines on radiomics
workows detailed in Van Timmeren et al. (2020).

Figure 3: Pipeline to �lter false positive lesion predictions from neural network predictions
using uncertainty maps.

We used the lesion detections from the neural network training and validation patients
as training data for our false-positive classi�er and use the held-out test set to report the
performance.

4.3.1 Region of interest (RoI) extraction

We use the binarized neural network prediction to extract 3-D patches from the uncertainty
map corresponding to the detected lesions. The lesion correspondence graph is used to assign
a label (true positive or false positive) to each patch. The 3-D patch from the uncertainty
map(s) and the RoI extracted from the binarized prediction are used for computing intensity
and shape features, respectively.

4.3.2 Isotropic resampling

We resample each 3-D uncertainty patch and RoI mask to isotropic spacing using 3rd order
B-spline and nearest-neighbor interpolation, respectively. Isotropic resampling was per-
formed to ensure rotational invariance of texture features (Zwanenburg et al., 2020). For
the LiTS dataset, patches were resampled along all axes to 0:76mm� 0:76mm� 0:76mm, the
median in-plane voxel spacing for the dataset. For the UMC dataset, we keep the in-plane
voxel spacing unchanged and resample in the axial direction to achieve an isotropic spacing
of 1:543mm� 1:543mm� 1:543mm.
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4.3.3 Feature Computation

For each 3-D patch from the uncertainty map, we computed features as described by the
Imaging Biomarker Standardization Initiative (IBSI) (Zwanenburg et al., 2020). We used
the PyRadiomics (Van Griethuysen et al., 2017) library to compute 99 radiomics features
for each patch.

4.3.4 Feature Reduction

We designed our feature reduction step to produce a set of minimally correlated features.
Hierarchical clustering was performed by constructing a distance matrix such that distance
between a pair of features was inversely proportional to their correlation. In Figure 4 we
show the hierarchical clusters formed for the MC-Dropout (Predictive) con�guration of the
LiTS dataset. The next step was forming at clusters of features by choosing a threshold
at which the dendogram is cut. All leaves below a cut form a singleat cluster, and the
feature with maximum mutual information with respect to the labels was chosen from each
of the at clusters (highlighted in bold in Figure 4). The same threshold (1:0) was used
for both datasets and all con�gurations to produce an almost uniform number of features.
The dendogram threshold was chosen by visually examining hierarchical clusters for all
con�gurations and datasets. The threshold was chosen to ensure approximately the same
number and sizes of clusters. This could be achieved for most con�gurations, although some
were outliers with fewer features. The idea of using a �xed threshold was to ensure the use
of the same extent of correlation between features while converting the hierarchical clusters
to at clusters.

In Table 1 we show reduced feature vector sizes (N � ) computed for all the con�gurations
for both datasets.

Table 1: Reduced feature vector sizes across datasets and con�gurations

LiTS UMC

Con�guration Uncertainty Type N * N*

Baseline Predictive 9 9
Baseline + TTA Predictive 9 8

Predictive 6 7
MC-Dropout Aleatoric 5 7

Epistemic 6 6

Predictive 5 7
MC-Dropout + TTA Aleatoric 5 7

Epistemic 6 5

Predictive 8 8
Ensemble Aleatoric 9 9

Epistemic 7 8

Predictive 8 8
Ensemble + TTA Aleatoric 9 8

Epistemic 8 8

11



Bhat et al.

Figure 4: Hierarchical cluster formation based on the feature correlation matrix. The dashed
red line shows the threshold at which the dendogram iscut. A single feature is selected
(based on maximum mutual information with respect to the label) from each of the at
clusters formed after thresholding (shown in bold).

4.3.5 Classifier Training

We used features computed from uncertainty map patches, corresponding to lesion detec-
tions in the training and validation images for the neural network, to train an Extremely
Randomized Trees (ERT) (Geurts et al., 2006) classi�er to classify the detected lesion, as a
true or false positive. This classi�er is an example of a bagging predictor (Breiman, 1996),
which performs the classi�cation task using an ensemble of randomized base classi�ers. The
base classi�er for the ERT is a decision tree, and randomization is introduced in each deci-
sion tree using two methods. First, random subsets of input features are used to split tree
nodes. Second, thresholds for each of the input features are sampled randomly and the best
of these is used as the splitting rule. Injecting randomness in the base classi�ers decouple
their prediction errors and reduce over�tting in the constructed ensemble.

The hyperparameters for the classi�er were chosen via �ve-fold cross-validation while
optimizing for the area under the curve (AUC) metric, to achieve a good trade-o� between
sensitivity and speci�city. The hyperparameters are shown in Table 6 in Appendix A. The
number of training samples for both datasets and all uncertainty estimation methods is
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shown in Table 2. We used the scikit-learn (Pedregosa et al., 2011) library to develop code
related to classi�er training.

Table 2: Training dataset size and class imbalance ratio for the LiTS and UMC datasets

LiTS UMC

Con�guration Training Samples TP:FP ratio Training Samples TP:FP ratio

Baseline 1356 0.684 289 1.125
Baseline + TTA 1282 0.765 233 1.118

MC-Dropout 1267 0.710 325 1.321
MC-Dropout + TTA 1564 0.494 576 0.714

Ensemble 1332 0.743 166 2.388
Ensemble + TTA 1328 0.722 145 2.536

4.3.6 Label prediction

(a) Lesion correspondence graph constructed
from the neural network prediction

(b) Lesion correspondence graph after label
prediction

Figure 5: Modifying the lesion correspondence graph based on classi�er predictions. All
the false positives (detected structures P1, P4 in Figure 5a) are �ltered out.

We used the trained classi�er to predict the label (true positive or false positive) of each
detected lesion for each patient in the held-out test set. For each patient, the predicted
labels for each lesion in the neural network prediction were then used to modify the le-
sion correspondence graph (Section 4.2). If a lesion was classi�ed as a false positive, the
corresponding node in the graph was deleted. We show this in Figure 5.

5. Experiments

5.1 Neural network architecture and training

We used the 2-D U-Net (Ronneberger et al., 2015) architecture to create identical segmen-
tation networks for both the datasets. Each convolution block consisted of a 3� 3 weight
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kernel, instance normalization and a leaky ReLU activation function. Downsampling was
performed via max-pooling and up-sampling was performed via transposed convolutions.
At the output layer, a 1 � 1 convolution was performed, followed by the application of the
softmax function to obtain per-voxel class probabilities.

The networks for the UMC and LiTS datasets were trained for approximately 10K (batch
size = 16) and 20K (batch size = 8) batch iterations based on early-stopping while monitor-
ing the decrease in the validation loss. For both datasets, we used the ADAM (Kingma and
Ba, 2015) optimizer with a learning rate of 10� 4 and weight decay of 5� 10� 5. To tackle
class-imbalance, we used only slices containing a lesion to train the neural network. Fur-
thermore, we used a weighted cross-entropy as the loss function, with the per-class weights
inversely proportional to the fraction of voxels belonging to that class. For both datasets,
data augmentation was performed by randomly rotating the input by an angle sampled
from [� 45; 45] degrees.

For the MC-Dropout models, dropout layers were added at the outputs of the encoder
and decoder at the lowest levels, similar to the Bayesian SegNet (Kendall et al., 2017). The
dropout rate with the lowest validation loss was chosen. For the network trained using the
UMC dataset, this was 0:3, and for the network trained using the LiTS dataset, this was
0:5. For test-time augmentation, we use rotations with the angles uniformly sampled from
the range used during data augmentation.

The code for the neural network training and inference was developed using the Py-
Torch (Paszke et al., 2019) library.

For each uncertainty estimation method, we trained the false-positive classi�er and used
lesions from the neural network test set to evaluate the performance. For both datasets and
each uncertainty estimation method, we trained �ve classi�ers with di�erent random seeds
to report con�dence intervals on our metrics.

5.2 Evaluation

We used the precision, recall and F1-score metrics to quantify the e�ect of our false-positive
classi�cation pipeline on lesion detection.

To isolate the role played by features computed from uncertainty estimates in reduc-
ing false positives, we trained the classi�er using just the radiomics shape-based features.
These features are computed from the binary lesion mask and, therefore, are independent
of the per-voxel uncertainty estimates. Similar to Chlebus et al. (2018), we trained the
classi�er using radiomics features computed from image patches corresponding to lesion
segmentations.

Furthermore, to study the impact of spatial aggregation of uncertainty on false-positive
classi�cation, we compare our false positive classi�cation pipeline to the threshold-based
�ltering approach proposed by Nair et al. (2020). The classi�cation threshold was deter-
mined using a hold-out validation set. The thresholds used were 0:9995 and 0:9999 for the
UMC and LiTS datasets, respectively.

Additionally, we performed cross testingand combined testingto investigate the general-
ization properties of our classi�er. In cross-testing, for each uncertainty estimation method,
we used the classi�er trained on one dataset to predict the type of detection in the test
set of the other dataset. In combined testing, for each uncertainty estimation method, we
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trained a classi�er by merging training sets from both datasets and used it to predict the
type of detection in the test set. Both these experiments used radiomics features computed
from the uncertainty maps.

We measured feature importance using the leave-one-covariate-out (LOCO) (Lei et al.,
2018) method, where feature importance was measured directly in terms of prediction per-
formance on unseen data.

Table 3: Lesion detection metrics for the LiTS and UMC datasets before and after false-
positive reduction

LiTS UMC

Precision Recall F1 Precision Recall F1

Con�guration Input features Before After Before After Before After Before After Before After Before After

Predictive Uncertainty 0 :318 0:766� 0:005 0:700 0:510� 0:006 0:438 0:612� 0:005 0:245 0:608� 0:014 0:717 0:608� 0:006 0:365 0:608� 0:010
Image 0:318 0:727� 0:004 0:700 0:538� 0:012 0:438 0:618� 0:009 0:245 0:551� 0:008 0:717 0:604� 0:000 0:365 0:578� 0:004

Baseline Binary mask 0:318 0:691� 0:005 0:700 0:510� 0:000 0:438 0:587� 0:002 0:245 0:616� 0:022 0:717 0:603� 0:000 0:365 0:609� 0:010

Predictive Uncertainty 0 :335 0:744� 0:020 0:690 0:492� 0:003 0:451 0:592� 0:006 0:289 0:605� 0:015 0:774 0:645� 0:006 0:421 0:624� 0:008
Image 0:335 0:634� 0:004 0:690 0:492� 0:003 0:451 0:554� 0:003 0:289 0:577� 0:004 0:774 0:611� 0:007 0:421 0:593� 0:003

Baseline + TTA Binary mask 0 :335 0:725� 0:008 0:690 0:516� 0:004 0:451 0:603� 0:003 0:289 0:659� 0:005 0:774 0:626� 0:005 0:421 0:642� 0:005

Predictive Uncertainty 0 :373 0:841� 0:014 0:720 0:506� 0:004 0:491 0:632� 0:006 0:261 0:465� 0:013 0:774 0:668� 0:008 0:39 0:548� 0:006
Aleatoric Uncertainty 0 :373 0:740� 0:014 0:720 0:496� 0:01 0:491 0:594� 0:011 0:261 0:479� 0:004 0:774 0:683� 0:006 0:39 0:563� 0:004
Epistemic Uncertainty 0:373 0:838� 0:001 0:720 0:516� 0:004 0:491 0:639� 0:003 0:261 0:641� 0:003 0:774 0:506� 0:006 0:39 0:565� 0:005

Image 0:373 0:695� 0:007 0:720 0:470� 0:006 0:491 0:561� 0:003 0:261 0:494� 0:002 0:774 0:679� 0:000 0:39 0:572� 0:001
MC-Dropout Binary mask 0:373 0:790� 0:004 0:720 0:534� 0:004 0:491 0:637� 0:004 0:261 0:563� 0:000 0:774 0:679� 0:000 0:39 0:615� 0:000

Predictive Uncertainty 0 :3 0:732� 0:004 0:78 0:514� 0:006 0:433 0:604� 0:005 0:204 0:504� 0:007 0:83 0:758� 0:006 0:327 0:605� 0:005
Aleatoric Uncertainty 0 :3 0:734� 0:005 0:78 0:514� 0:004 0:433 0:605� 0:004 0:204 0:535� 0:002 0:83 0:758� 0:006 0:327 0:627� 0:003
Epistemic Uncertainty 0:3 0:743� 0:003 0:780 0:6 � 0:0 0:433 0:664� 0:001 0:204 0:6 � 0:006 0:83 0:668� 0:008 0:327 0:632� 0:005

Image 0:3 0:705� 0:006 0:780 0:522� 0:003 0:433 0:600� 0:003 0:204 0:496� 0:011 0:83 0:784� 0:007 0:327 0:607� 0:008
MC-Dropout + TTA Binary mask 0 :3 0:712� 0:005 0:780 0:592� 0:009 0:433 0:646� 0:006 0:204 0:499� 0:009 0:83 0:789� 0:005 0:327 0:611� 0:008

Predictive Uncertainty 0 :385 0:804� 0:011 0:790 0:558� 0:009 0:518 0:659� 0:008 0:375 0:754� 0:008 0:792 0:543� 0:006 0:509 0:632� 0:005
Aleatoric Uncertainty 0 :385 0:806� 0:004 0:790 0:530� 0:000 0:518 0:639� 0:001 0:375 0:546� 0:010 0:792 0:725� 0:015 0:509 0:622� 0:006
Epistemic Uncertainty 0:385 0:811� 0:008 0:790 0:558� 0:006 0:518 0:661� 0:007 0:375 0:616� 0:029 0:792 0:547� 0:000 0:509 0:579� 0:013

Image 0:385 0:779� 0:008 0:790 0:544� 0:004 0:518 0:641� 0:002 0:375 0:524� 0:013 0:792 0:679� 0:000 0:509 0:591� 0:008
Ensemble Binary mask 0:385 0:799� 0:004 0:790 0:542� 0:003 0:518 0:646� 0:004 0:375 0:674� 0:007 0:792 0:672� 0:013 0:509 0:673� 0:004

Predictive Uncertainty 0 :379 0:807� 0:005 0:800 0:578� 0:006 0:514 0:674� 0:006 0:417 0:765� 0:014 0:811 0:528� 0:000 0:551 0:625� 0:005
Aleatoric Uncertainty 0 :379 0:813� 0:012 0:800 0:554� 0:004 0:514 0:659� 0:006 0:417 0:544� 0:022 0:811 0:702� 0:023 0:551 0:612� 0:010
Epistemic Uncertainty 0:379 0:834� 0:014 0:800 0:580� 0:006 0:514 0:684� 0:005 0:417 0:805� 0:014 0:811 0:528� 0:000 0:551 0:638� 0:004

Image 0:379 0:775� 0:007 0:800 0:564� 0:004 0:514 0:653� 0:004 0:417 0:597� 0:035 0:811 0:701� 0:035 0:551 0:644� 0:008
Ensemble + TTA Binary mask 0 :379 0:760� 0:015 0:800 0:582� 0:003 0:514 0:659� 0:007 0:417 0:770� 0:011 0:811 0:683� 0:005 0:551 0:724� 0:007

6. Results

In Figure 6 we show the relative change in the lesion detection metrics of precision, recall,
and F1 after false-positive classi�cation for both datasets and all the uncertainty estimation
methods using radiomics features computed from uncertainty maps (Figure 6a), image
intensities (Figure 6b), and binary masks (Figure 6c). We show these detection metrics
(before and after classi�cation) in Table 3.

The relative change in lesion detection metrics for all uncertainty methods and both
dataset, using the threshold-based method described in Nair et al. (2020) is shown in Figure
7.

In Table 4 we show the changes in the lesion detection metrics (with respect to Table
3) when MR-CT cross-testing.

In Table 5 we show the changes in the lesion detection metrics (with respect to Table
3) when combined testing was performed.

The feature importance scores for all uncertainty estimation methods have been shown
in Appendix B (Figures 10 and 11).
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(a) Radiomics features computed from uncertainty map

(b) Radiomics features computed from image intensities

(c) Radiomics features computed from binary mask

Figure 6: Relative change in precision, recall, and F1 metrics after false-positive classi�ca-
tion. Figure 6a shows the relative change in the lesion detection metrics when radiomics
features computed from uncertainty maps are used to perform false-positive classi�cation.
Figures 6b and 6c show the relative changes in lesion detection metrics when radiomics
features are computed from image patches and binary masks, respectively.

7. Discussion

The results in Figure 6 show that the chosen uncertainty estimation method, by itself,
did not contribute much towards reducing false positives. However, its impact was seen
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Figure 7: Relative change in the lesion detection metrics when a threshold on the log-
sum of uncertainty values over the predicted lesion volume was used to �lter false-positive
lesions (Nair et al., 2020)

Table 4: Change in lesion detection metrics with cross-testing. The Kolmogorov-Smirnov
test was used to check for statistical signi�cance (� = 0 :05) of the change in lesion detection
metrics, statistically signi�cant changes have been marked with�

LiTS UMC

Con�guration Uncertainty Type Precision (% increase) Recall (% increase) F1 (% increase) Precision (% increase) Recall (% increase) F1 (% increase)

Baseline Predictive � 6:35� � 17:64� � 13:48� � 19:03� 11:80� � 6:09�

Baseline + TTA Predictive � 15:07� � 7:31� � 10:76� � 2:72 5:84� 1:24

Predictive � 30:35� 3:16� � 12:66� 27:86� 2:26� 15:65�

MC-Dropout Aleatoric � 24:33� 8:87� � 7:42� 47:42� � 0:55 22:97�

Epistemic 3:98 � 22:09� � 13:89� � 8:39� 23:13� 6:91�

Predictive � 1:63� � 3:89� � 2:98� � 37:33� 6:97� � 24:92�

MC-Dropout + TTA Aleatoric � 0:92 � 5:44� � 3:63� � 38:77� 6:97� � 25:62�

Epistemic 1:37 � 25:66� � 15:68� � 52:57� 24:29� � 32:94�

Predictive � 5:72� 2:15 � 1:23� � 1:44 10:41� 5:12�

Ensemble Aleatoric � 32:99� 29:43� � 5:57� 0:61 � 1:04 � 0:07
Epistemic � 10:51� � 0:71 � 5:26� 13:79� 6:89� 10:11�

Predictive � 20:45� � 10:72� � 15:07� 7:24� 7:85� 7:60�

Ensemble + TTA Aleatoric � 22:14� 4:33 � 8:56� 4:33 � 3:22 1:05
Epistemic � 14:26� � 9:31 � 11:41� 0:31 7:85� 4:72�

on the neural network training, detection performance and feature selection for the false-
positive classi�er. Figures 6a, 6b, and 6c show similar trends for all uncertainty estimation
methods. The uncertainty estimated by any given method does not play a major role in
reducing false positives, since a similar performance is observed when radiomics features
from binary masks and image intensities are used to train the classi�er.

Figure 6 shows that the false-positive classi�cation pipeline had a considerable impact on
the performance metrics of the neural network for all uncertainty estimation methods and
type of input features. While precision and F1-score improved, the extent of improvement
depended on the class imbalance present in the data to train the classi�er. Table 2 shows
that the Ensemble and Ensemble+TTA con�gurations of the UMC dataset have a larger
degree of class imbalance and a smaller training set size than the others. This was reected
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Table 5: Change in lesion detection metrics with a classi�er trained with a combined training
set. The Kolmogorov-Smirnov test was used to check for statistical signi�cance (� = 0 :05)
of the change in lesion detection metrics, statistically signi�cant changes have been marked
with �

LiTS UMC

Con�guration Uncertainty Type Precision (% increase) Recall (% increase) F1 (% increase) Precision (% increase) Recall (% increase) F1 (% increase)

Baseline Predictive 3:16� � 2:76 � 0:49 � 14:26� 9:32� � 3:91�

Baseline + TTA Predictive � 0:81 � 0:41 � 0:54 4:53 5:26� 4:88�

Predictive � 4:77� � 4:74� � 4:74� � 5:99 10:16� 0:07
MC-Dropout Aleatoric 8 :51� � 2:82 1:43 � 8:44� 7:73� � 2:41

Epistemic � 4:25� � 4:26� � 4:26� � 30:63� 52:99� � 0:11

Predictive 1:63� � 6:61� 1:11 � 16:75� 7:46� � 8:52�

MC-Dropout + TTA Aleatoric 13 :01� � 5:06� 1:63 � 20:47� 4:47� � 11:76�

Epistemic � 6:32� � 17:00� 12:54� � 31:84� 24:29� � 13:31�

Predictive 2:65 � 1:75 � 0:02 � 6:80� 13:19� 3:84�

Ensemble Aleatoric � 1:54 � 3:40� � 1:50� � 5:26� 2:60 � 2:00
Epistemic 6:04� � 1:07 1:69 9:10� 6:20� 7:62�

Predictive 0:40 2:07 1:37 2:85� 5:71� 4:53�

Ensemble + TTA Aleatoric � 1:41 0:00 � 0:6 � 0:77 � 2:15 � 1:22
Epistemic � 0:66 1:37 0:54 � 11:35� 12:14� 1:49

in the smaller improvement in the F1-score metric for these con�gurations. Future work
could improve upon this, by implementing strategies that make classi�ers more robust
against class imbalance, like SMOTE (Chawla et al., 2002) or ADASYN (He et al., 2008).
However, Figure 6c and Table 3, show a better performance for the UMC Ensemble and
Ensemble+TTA when radiomics features computed from binary masks were used. This
shows that shape-based features are more robust to class imbalance.

As expected, there is also a slight drop in recall, due to some true positive lesions being
classi�ed as false positives and �ltered out. A trade-o� between precision and recall can be
made, for which the optimal classi�er threshold may be chosen by the end-user.

Across both datasets, for almost all uncertainty estimation methods and types, the
shape-based features ofSphericity or Flatness or Elongation were consistently ranked high-
est with respect to the LOCO feature importance scores. In Figure 6c we see almost no
di�erence in the relative change in the metrics when intensity and texture features are
excluded from the classi�er training. The trends in Figures 6a, 6b, and 6c show us that
features computed from the per-voxel uncertainty estimates do not play a major role in
reducing false positives in this setting. In Figure 8, we show an example of how classifying
a detected lesion as a false-positive depends on its size. This can be also seen in the relative
improvement in the F1 score, which is almost the same for all uncertainty types for a given
uncertainty estimation method.

The trends in Figure 7 show that threshold-based classi�cation using the log-sum of per-
voxel uncertainty estimates is an e�ective method to reduce false positives. Compared to
Figure 6, the trends in the relative change of precision, recall, and F1 metrics are similar for
the UMC dataset, while for the LiTS dataset they are worse. The log-sum computed over
a predicted lesion strongly correlates with its size. This leads to most small segmentations
being classi�ed as false positives. This trend is also reported by Nair et al. (2020). Therefore,
the log-sum aggregate is a proxy for lesion size, thereby strengthening our claim that shape-
based features, and not uncertainty estimates themselves, play an important role in false-
positive classi�cation. We show evidence of this correlation in Appendix C. The presence
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Figure 8: Inuence of shape-based features on false-positive classi�cation. The top row of
the �gure shows DCE-MR images from the UMC dataset overlaid with lesion segmentations
computed by the segmentation network for the MC-Dropout con�guration. The bottom row
shows the corresponding lesion segmentation obtained after false-positive classi�cation. The
reference lesion segmentations are coloured green, the predicted lesion segmentations are
red, and their overlap is yellow. The bright yellow arrow points to the predicted lesion in
the original and �ltered predictions. The �rst two columns show examples of small false
positives �ltered out by the classi�er, while the relatively larger detections are correctly
classi�ed as true positives and retained. The third column shows an example of a slightly
larger false positive misclassi�ed as a true positive. The fourth column shows an example
of a small detection overlapping with a true lesion incorrectly �ltered out by the classi�er.

of smaller true positive lesions in the LiTS dataset could be a reason for the worsening of
performance with respect to the false positive classi�cation pipeline.

The results on the cross-testing (Table 4) and combined-testing (Table 5) show that,
although the underlying task is the same, the trained classi�er cannot be shared between
datasets. This is likely because the learned features are similar, but the thresholds learned do
not generalize across datasets. In Figure 9 we show while correlated features (Flatness and
Sphericity) play an important role in classifying lesion predictions in each of the datasets,
the classi�er produces poor results when used in across setting.

A limitation of our work was the inability to study the role uncertainty estimation
can play in recovering false negatives. This was because the �rst step in the pipeline,
identifying regions of interest, did not include regions for undetected lesions. Moreover, the
uncertainty in the region of false negatives was low, indicating that the neural networks were
incorrect with high con�dence; a consequence of miscalibration. Miscalibration refers to the
e�ect that the con�dence assigned to an outcome by a classi�er does not correspond to the
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(a) LOCO feature importances for LiTS (b) LOCO feature importances for UMC

(c) Distribution plot of the Flatness feature in the training sets of LiTS and UMC data. Flatness
and Sphericity, which are correlated features, are the most important features for the LiTS and
UMC datasets respectively. We show that the di�erent distributions of the Flatness features in the
training sets of the two datasets lead to di�erent optimal thresholds, which cause degradation in the
metrics when we perform cross-testing.

Figure 9: Feature importance (ascending order, top to bottom) and distributions for the
Flatness feature for the Baseline con�guration

eventual prediction accuracy. This has been shown to occur in deep neural networks, where
recent architectural advances have lead to improved classi�cation performance but poorly
modelled probability estimates (Guo et al., 2017). In our work, this was substantiated by
the fact that the false-positive classi�ers did not assign a high importance to the intensity-
based features computed from the uncertainty maps, but rather focussed on shape-based
features computed from the binary lesion masks (Figure 6c, Figure 10, and Figure 11).
This phenomenon was demonstrated by Jungo et al. (2020), who showed that voxel-wise
uncertainties were insu�cient for detecting segmentation failures. Improving neural network
calibration would improve lesion detection metrics and might produce uncertainty estimates
that are more informative for false positive reduction.

Future work could consider a number of di�erent steps to further improve our re-
sults. Our false-positive classi�cation pipeline2 can be used with any probabilistic clas-
si�er. Therefore, analysing the inuence of uncertainty estimates computed by more recent

2. https://github.com/ishaanb92/FPCPipeline
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methods (Van Amersfoort et al., 2020; Liu et al., 2022) on false-positive classi�cation is
an interesting research direction. Jungo et al. (2020) show that the calibration error of
segmentation models goes down as training set size is increased. Therefore, the e�ect of
training set size on our false-positive classi�cation pipeline may be studied in a future work.
Sander et al. (2020) train a second neural network using the uncertainty map computed by
the segmentation network to correct local errors. A similar method to detect false positives
is an interesting future direction because explicit feature computation is avoided. Finally,
steps taken to make models robust to class-imbalance, such as selective sampling of slices or
using weighted versions of loss functions during training, while improving detection metrics
(especially recall), might harm calibration. Poor calibration is caused by poorly modelled
probabilities, which makes it di�cult to trust the uncertainty metrics computed using these
probabilities. This is reected in our results, where uncertainty estimates by themselves
are not meaningful in reducing false-positive predictions. Therefore, an important direction
for future research is developing segmentation models robust to class-imbalance, while still
producing well-calibrated probabilities.

Our results on the LiTS and UMC datasets showed that per-voxel uncertainty estimates
did not play a major role in false-positive classi�cation. Similar to Jungo et al. (2020), we
observed that di�erent uncertainty estimation methods a�ected segmentation performance
via their inuence on the training dynamics and their regularization e�ects. Our results
show that model ensembles perform the best with respect to the F1-score on both datasets.

8. Conclusion

We studied the e�cacy of features computed from uncertainty estimates at reducing false
positives by developing a classi�er-based pipeline. We found that the relative improvement
in the lesion detection metrics is mainly inuenced by the class imbalance in the data
used to train the classi�er and the distribution of various shape-based features for all the
uncertainty estimation methods we studied.

Acknowledgments

This work was �nancially supported by the project IMPACT (Intelligence based iMprove-
ment of Personalized treatment And Clinical workow supporT) in the framework of the
EU research programme ITEA3 (Information Technology for European Advancement).

Ethical Standards

The work follows appropriate ethical standards in conducting research and writing the
manuscript, following all applicable laws and regulations regarding treatment of animals
or human subjects. The UMCU Medical Ethical Committee has reviewed this study and
informed consent was waived due to its retrospective nature.

Conicts of Interest

21



Bhat et al.

The authors declare no conict of interest.

References

Ishaan Bhat, Hugo J. Kuijf, Veronika Cheplygina, and Josien P.W. Pluim. Using Uncer-
tainty Estimation To Reduce False Positives In Liver Lesion Detection. In 2021 IEEE
18th International Symposium on Biomedical Imaging (ISBI), pages 663{667, April 2021.
doi: 10.1109/ISBI48211.2021.9434119. ISSN: 1945-8452.

Patrick Bilic, Patrick Ferdinand Christ, Eugene Vorontsov, Grzegorz Chlebus, Hao Chen,
Qi Dou, Chi-Wing Fu, Xiao Han, Pheng-Ann Heng, J•urgen Hesser, Samuel Kadoury,
Tomasz Konopczynski, Miao Le, Chunming Li, Xiaomeng Li, Jana Lipkov�a, John Lowen-
grub, Hans Meine, Jan Hendrik Moltz, Chris Pal, Marie Piraud, Xiaojuan Qi, Jin Qi,
Markus Remper, Karsten Roth, Andrea Schenk, Anjany Sekuboyina, Eugene Vorontsov,
Ping Zhou, Christian H•ulsemeyer, Marcel Beetz, Florian Ettlinger, Felix Gruen, Georgios
Kaissis, Fabian Loh•ofer, Rickmer Braren, Julian Holch, Felix Hofmann, Wieland Sommer,
Volker Heinemann, Colin Jacobs, Gabriel Efrain Humpire Mamani, Bram van Ginneken,
Gabriel Chartrand, An Tang, Michal Drozdzal, Avi Ben-Cohen, Eyal Klang, Marianne M.
Amitai, Eli Konen, Hayit Greenspan, Johan Moreau, Alexandre Hostettler, Luc Soler,
Refael Vivanti, Adi Szeskin, Naama Lev-Cohain, Jacob Sosna, Leo Joskowicz, and Bjo-
ern H. Menze. The Liver Tumor Segmentation Benchmark (LiTS). arXiv:1901.04056
[cs], January 2019. URL http://arxiv.org/abs/1901.04056 . arXiv: 1901.04056.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural networks. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML'15, page 1613{1622.
JMLR.org, 2015.

Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123{140, August 1996.
ISSN 1573-0565. doi: 10.1023/A:1018054314350. URLhttps://doi.org/10.1023/A:
1018054314350.

Robin Camarasa, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, M. Eline Kooi, Aad
van der Lugt, and Marleen de Bruijne. A quantitative comparison of epistemic uncertainty
maps applied to multi-class segmentation.Machine Learning for Biomedical Imaging, 1,
2021.

Daniel C. Castro, Ian Walker, and Ben Glocker. Causality matters in medical imag-
ing. Nature Communications, 11(1):3673, July 2020. ISSN 2041-1723. doi: 10.1038/
s41467-020-17478-w.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:
Synthetic minority over-sampling technique. J. Artif. Int. Res. , 16(1):321{357, June 2002.
ISSN 1076-9757.

Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin,
Brian T. Do, Gregory P. Way, Enrico Ferrero, Paul-Michael Agapow, Michael Zietz,
Michael M. Ho�man, Wei Xie, Gail L. Rosen, Benjamin J. Lengerich, Johnny Israeli,

22



Influence of uncertainty estimation techniques on false-positive reduction

Jack Lanchantin, Stephen Woloszynek, Anne E. Carpenter, Avanti Shrikumar, Jinbo
Xu, Evan M. Cofer, Christopher A. Lavender, Srinivas C. Turaga, Amr M. Alexandari,
Zhiyong Lu, David J. Harris, Dave DeCaprio, Yanjun Qi, Anshul Kundaje, Yifan Peng,
Laura K. Wiley, Marwin H. S. Segler, Simina M. Boca, S. Joshua Swamidass, Austin
Huang, Anthony Gitter, and Casey S. Greene. Opportunities and obstacles for deep learn-
ing in biology and medicine. Journal of The Royal Society Interface, 15(141):20170387,
April 2018. ISSN 1742-5689, 1742-5662. doi: 10.1098/rsif.2017.0387.

Grzegorz Chlebus, Andrea Schenk, Jan Hendrik Moltz, Bram van Ginneken, Horst Karl
Hahn, and Hans Meine. Automatic liver tumor segmentation in CT with fully con-
volutional neural networks and object-based postprocessing.Scienti�c Reports , 8(1):
15497, December 2018. ISSN 2045-2322. doi: 10.1038/s41598-018-33860-7. URL
http://www.nature.com/articles/s41598-018-33860-7 .

Ozan Ciga, Tony Xu, Sharon Nofech-Mozes, Shawna Noy, Fang-I. Lu, and Anne L. Mar-
tel. Overcoming the limitations of patch-based learning to detect cancer in whole slide
images. Scienti�c Reports , 11(1):8894, April 2021. ISSN 2045-2322. doi: 10.1038/
s41598-021-88494-z. URLhttps://www.nature.com/articles/s41598-021-88494-z .
Number: 1 Publisher: Nature Publishing Group.

Stefan Depeweg, Jose Miguel Hernandez-Lobato, Finale Doshi-Velez, and Ste�en Udluft.
Decomposition of uncertainty in bayesian deep learning for e�cient and risk-sensitive
learning. In Proceedings of the 35th International Conference on Machine Learning
(ICML) , volume 80, Stockholm, Sweden, 2018.

Terrance DeVries and Graham W. Taylor. Leveraging Uncertainty Estimates for Predicting
Segmentation Quality. July 2018. URL http://arxiv.org/abs/1807.00502 . arXiv:
1807.00502.

Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, S�ebastien Ourselin, and M. Jorge Car-
doso. Towards Safe Deep Learning: Accurately Quantifying Biomarker Uncertainty in
Neural Network Predictions. In Alejandro F. Frangi, Julia A. Schnabel, Christos Da-
vatzikos, Carlos Alberola-L�opez, and Gabor Fichtinger, editors, Medical Image Comput-
ing and Computer Assisted Intervention { MICCAI 2018, Lecture Notes in Computer
Science, pages 691{699, Cham, 2018. Springer International Publishing. ISBN 978-3-030-
00928-1. doi: 10.1007/978-3-030-00928-178.

Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A Loss Land-
scape Perspective. arXiv:1912.02757 [cs, stat], June 2020. URL http://arxiv.org/
abs/1912.02757 . arXiv: 1912.02757.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML 2016, volume 48 ofJMLR Workshop and Conference
Proceedings, pages 1050{1059. JMLR.org, 2016.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.Mach.
Learn., 63(1):3{42, April 2006. ISSN 0885-6125. doi: 10.1007/s10994-006-6226-1. URL
https://doi.org/10.1007/s10994-006-6226-1 .

23



Bhat et al.

Simon Graham, Hao Chen, Jevgenij Gamper, Qi Dou, Pheng-Ann Heng, David Snead,
Yee Wah Tsang, and Nasir Rajpoot. MILD-Net: Minimal information loss dilated net-
work for gland instance segmentation in colon histology images.Medical Image Analysis,
52:199{211, February 2019. ISSN 1361-8415. doi: 10.1016/j.media.2018.12.001.

Chuan Guo, Geo� Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neu-
ral networks. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML'17, page 1321{1330. JMLR.org, 2017.

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic
sampling approach for imbalanced learning. In2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence), pages 1322{
1328, 2008. doi: 10.1109/IJCNN.2008.4633969.

Carl-Johan Hoel, Tommy Tram, and Jonas Sj•oberg. Reinforcement learning with uncer-
tainty estimation for tactical decision-making in intersections. In 2020 IEEE 23rd Inter-
national Conference on Intelligent Transportation Systems (ITSC), pages 1{7, 2020. doi:
10.1109/ITSC45102.2020.9294407.

M J A Jansen, H J Kuijf, W B Veldhuis, F J Wessels, M S van Leeuwen, and J P W Pluim.
Evaluation of motion correction for clinical dynamic contrast enhanced MRI of the liver.
Physics in Medicine & Biology, 62(19):7556{7568, September 2017. ISSN 1361-6560. doi:
10.1088/1361-6560/aa8848.

Mari•elle J. A. Jansen, Hugo J. Kuijf, Maarten Niekel, Wouter B. Veldhuis, Frank J. Wessels,
Max A. Viergever, and Josien P. W. Pluim. Liver segmentation and metastases detection
in MR images using convolutional neural networks.Journal of Medical Imaging, 6(4):1 {
10, 2019. doi: 10.1117/1.JMI.6.4.044003. URLhttps://doi.org/10.1117/1.JMI.6.4.
044003.

Alain Jungo, Fabian Balsiger, and Mauricio Reyes. Analyzing the Quality and Challenges
of Uncertainty Estimations for Brain Tumor Segmentation. Frontiers in Neuroscience,
14:282, April 2020. ISSN 1662-453X. doi: 10.3389/fnins.2020.00282.

Davood Karimi, Qi Zeng, Prateek Mathur, Apeksha Avinash, Sara Mahdavi, Ingrid
Spadinger, Purang Abolmaesumi, and Septimiu E. Salcudean. Accurate and robust
deep learning-based segmentation of the prostate clinical target volume in ultrasound
images. Medical Image Analysis, 57:186{196, October 2019. ISSN 1361-8415. doi:
10.1016/j.media.2019.07.005.

Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian SegNet: Model Uncer-
tainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding. In
Procedings of the British Machine Vision Conference 2017, page 57, London, UK, 2017.
British Machine Vision Association. ISBN 978-1-901725-60-5. doi: 10.5244/C.31.57. URL
http://www.bmva.org/bmvc/2017/papers/paper057/index.html .

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

24



Influence of uncertainty estimation techniques on false-positive reduction

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS'15, page 2575{2583, Cambridge, MA,
USA, 2015. MIT Press.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it matter? Struc-
tural Safety, 31(2):105{112, March 2009. ISSN 0167-4730. doi: 10.1016/j.strusafe.2008.
06.020.

S. Klein, M. Staring, K. Murphy, M.A. Viergever, and J.P.W. Pluim. Elastix : a toolbox
for intensity-based medical image registration. IEEE Transactions on Medical Imaging,
29(1):196{205, 2010. ISSN 0278-0062. doi: 10.1109/TMI.2009.2035616.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. InAdvances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, pages 6402{6413, 2017.

Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman.
Distribution-Free Predictive Inference for Regression. Journal of the American Statis-
tical Association, 113(523):1094{1111, July 2018. ISSN 0162-1459, 1537-274X. doi:
10.1080/01621459.2017.1307116. URLhttps://www.tandfonline.com/doi/full/10.
1080/01621459.2017.1307116.

Christian Leibig, Vaneeda Allken, Murat Se�ckin Ayhan, Philipp Berens, and Siegfried
Wahl. Leveraging uncertainty information from deep neural networks for disease de-
tection. Scienti�c Reports , 7(1):17816, December 2017. ISSN 2045-2322. doi: 10.1038/
s41598-017-17876-z.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Gin-
neken, and Clara I. S�anchez. A survey on deep learning in medical image analysis.Medical
Image Analysis, 42:60 { 88, 2017. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.
2017.07.005.

Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zack
Nado, Jasper Snoek, Dustin Tran, and Balaji Lakshminarayanan. A Simple Approach
to Improve Single-Model Deep Uncertainty via Distance-Awareness, May 2022. URL
http://arxiv.org/abs/2205.00403 . arXiv:2205.00403 [cs, stat].

Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A General Framework for Un-
certainty Estimation in Deep Learning. IEEE Robotics and Automation Letters, 5(2):
3153{3160, April 2020. ISSN 2377-3766, 2377-3774. doi: 10.1109/LRA.2020.2974682.

David J. C. MacKay. A Practical Bayesian Framework for Backpropagation Networks.
Neural Computation, 4(3):448{472, 05 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.
3.448.

25



Bhat et al.

Alireza Mehrtash, William M. Wells, Clare M. Tempany, Purang Abolmaesumi, and Tina
Kapur. Con�dence calibration and predictive uncertainty estimation for deep medical
image segmentation. IEEE Transactions on Medical Imaging, page 1{1, 2020. ISSN
1558-254X. doi: 10.1109/tmi.2020.3006437. URLhttp://dx.doi.org/10.1109/TMI.
2020.3006437.

Raghav Mehta, Thomas Christinck, Tanya Nair, Paul Lemaitre, Douglas Arnold, and Tal
Arbel. Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved
Deep Learning Inference. InUncertainty for Safe Utilization of Machine Learning in Med-
ical Imaging and Clinical Image-Based Procedures, volume 11840, pages 23{32. Springer
International Publishing, Cham, 2019. ISBN 978-3-030-32688-3 978-3-030-32689-0. doi:
10.1007/978-3-030-32689-03.

Tanya Nair, Doina Precup, Douglas L. Arnold, and Tal Arbel. Exploring uncertainty mea-
sures in deep networks for Multiple sclerosis lesion detection and segmentation.Med-
ical Image Analysis, 59:101557, 2020. ISSN 1361-8415. doi: https://doi.org/10.1016/
j.media.2019.101557. URLhttps://www.sciencedirect.com/science/article/pii/
S1361841519300994.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidel-
berg, 1996. ISBN 0387947248.

Matthew Ng, Fumin Guo, Labonny Biswas, Ste�en E. Petersen, Stefan K. Piechnik, Stefan
Neubauer, and Graham Wright. Estimating Uncertainty in Neural Networks for Cardiac
MRI Segmentation: A Benchmark Study. arXiv:2012.15772 [cs, eess], December 2020.
URL http://arxiv.org/abs/2012.15772 . arXiv: 2012.15772.

Ipek Oguz, Aaron Carass, Dzung L. Pham, Snehashis Roy, Nagesh Subbana, Peter A.
Calabresi, Paul A. Yushkevich, Russell T. Shinohara, and Jerry L. Prince. Dice Over-
lap Measures for Objects of Unknown Number: Application to Lesion Segmentation.
In Alessandro Crimi, Spyridon Bakas, Hugo Kuijf, Bjoern Menze, and Mauricio Reyes,
editors, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ,
volume 10670, pages 3{14. Springer International Publishing, Cham, 2018. ISBN 978-3-
319-75237-2 978-3-319-75238-9. doi: 10.1007/978-3-319-75238-91. Series Title: Lecture
Notes in Computer Science.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's un-
certainty? Evaluating predictive uncertainty under dataset shift. In Advances in Neural
Information Processing Systems 32, pages 13991{14002. Curran Associates, Inc., 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alch�e-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024{8035. Curran Associates, Inc., 2019.

26



Influence of uncertainty estimation techniques on false-positive reduction

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825{2830, 2011.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. InMedical Image Computing and Computer-Assisted
Intervention { MICCAI 2015 , pages 234{241, Cham, 2015. Springer International Pub-
lishing. ISBN 978-3-319-24574-4.

Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, and Christian Wachinger. Inherent Brain
Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling. In Medical
Image Computing and Computer Assisted Intervention { MICCAI 2018, pages 664{672,
Cham, 2018. Springer International Publishing. ISBN 978-3-030-00928-1.

J•org Sander, Bob D. de Vos, Jelmer M. Wolterink, and Ivana I�sgum. Towards in-
creased trustworthiness of deep learning segmentation methods on cardiac MRI. In
Medical Imaging 2019: Image Processing, volume 10949, pages 324 { 330. Interna-
tional Society for Optics and Photonics, SPIE, 2019. doi: 10.1117/12.2511699. URL
https://doi.org/10.1117/12.2511699 .

J•org Sander, Bob D. de Vos, and Ivana I�sgum. Automatic segmentation with detection of
local segmentation failures in cardiac MRI. Scienti�c Reports , 10(1):21769, December
2020. ISSN 2045-2322. doi: 10.1038/s41598-020-77733-4. Number: 1 Publisher: Nature
Publishing Group.

Suman Sedai, Bhavna Antony, Dwarikanath Mahapatra, and Rahil Garnavi. Joint Seg-
mentation and Uncertainty Visualization of Retinal Layers in Optical Coherence To-
mography Images Using Bayesian Deep Learning. In Danail Stoyanov, Zeike Tay-
lor, Francesco Ciompi, Yanwu Xu, Anne Martel, Lena Maier-Hein, Nasir Rajpoot,
Jeroen van der Laak, Mitko Veta, Stephen McKenna, David Snead, Emanuele Trucco,
Mona K. Garvin, Xin Jan Chen, and Hrvoje Bogunovic, editors, Computational Pathol-
ogy and Ophthalmic Medical Image Analysis, volume 11039, pages 219{227. Springer
International Publishing, Cham, 2018. ISBN 978-3-030-00948-9 978-3-030-00949-6. doi:
10.1007/978-3-030-00949-626. Series Title: Lecture Notes in Computer Science.

Philipp Seeb•ock, Jos�e Ignacio Orlando, Thomas Schlegl, Sebastian M. Waldstein, Hrvoje
Bogunovi�c, Sophie Klimscha, Georg Langs, and Ursula Schmidt-Erfurth. Exploiting Epis-
temic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT.
IEEE Transactions on Medical Imaging, 39(1):87{98, January 2020. ISSN 0278-0062,
1558-254X. doi: 10.1109/TMI.2019.2919951. URLhttp://arxiv.org/abs/1905.12806 .
arXiv: 1905.12806.

L. Smith and Y. Gal. Understanding Measures of Uncertainty for Adversarial Example
Detection. In UAI , 2018.

Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Over�tting. Journal
of Machine Learning Research, 15(56):1929{1958, 2014.

27



Bhat et al.

Chao Tao, Ke Chen, Lin Han, Yulan Peng, Cheng Li, Zhan Hua, and Jiangli Lin. New one-
step model of breast tumor locating based on deep learning. Journal of X-Ray Science
and Technology, 27(5):839–856, 2019. ISSN 1095-9114. doi: 10.3233/XST-190548.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty Estimation
Using a Single Deep Deterministic Neural Network. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, pages 9690–9700. PMLR, November 2020. URL
https://proceedings.mlr.press/v119/van-amersfoort20a.html. ISSN: 2640-3498.

Joost J.M. Van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, Nicole
Aucoin, Vivek Narayan, Regina G.H. Beets-Tan, Jean-Christophe Fillion-Robin, Steve
Pieper, and Hugo J.W.L. Aerts. Computational Radiomics System to Decode the Ra-
diographic Phenotype. Cancer Research, 77(21):e104–e107, 2017. ISSN 0008-5472. doi:
10.1158/0008-5472.CAN-17-0339. Publisher: American Association for Cancer Research
eprint: https://cancerres.aacrjournals.org/content/77/21/e104.full.pdf.

Janita E. Van Timmeren, Davide Cester, Stephanie Tanadini-Lang, Hatem Alkadhi, and
Bettina Baessler. Radiomics in medical imaging—“how-to” guide and critical reflec-
tion. Insights into Imaging, 11(1):91, December 2020. ISSN 1869-4101. doi: 10.1186/
s13244-020-00887-2. URL https://insightsimaging.springeropen.com/articles/

10.1186/s13244-020-00887-2.

Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and Tom Ver-
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Appendix A. Classifier Hyperparameters

LiTS UMC

Configuration Input features Number of trees Minimum samples for splitting Minimum samples per leaf Splitting criterion Number of trees Minimum samples for splitting Minimum samples per leaf Splitting criterion

Predictive Uncertainty 250 10 1 Entropy 250 4 1 Entropy
Image 1000 2 4 Gini 750 12 1 Gini

Baseline Binary mask 750 10 4 Gini 250 2 8 Gini

Predictive Uncertainty 250 10 4 Gini 750 12 1 Entropy
Image 500 12 1 Entropy 250 4 1 Gini

Baseline + TTA Binary mask 1000 2 8 Entropy 250 12 1 Entropy

Predictive Uncertainty 500 10 2 Entropy 250 10 1 Entropy
Aleatoric Uncertainty 250 2 4 Entropy 250 2 4 Gini
Epistemic Uncertainty 250 8 2 Gini 750 2 1 Entropy

Image 250 12 2 Entropy 1000 10 1 Gini
Dropout Binary mask 750 10 4 Entropy 250 2 1 Entropy

Predictive Uncertainty 750 12 4 Entropy 750 8 1 Entropy
Aleatoric Uncertainty 1000 2 4 Entropy 500 8 2 Entropy
Epistemic Uncertainty 250 8 2 Entropy 250 12 2 Entropy

Image 250 12 1 Entropy 250 2 2 Entropy
Dropout + TTA Binary mask 250 12 4 Entropy 250 12 2 Entropy

Predictive Uncertainty 250 12 1 Entropy 500 4 1 Gini
Aleatoric Uncertainty 250 8 2 Entropy 750 2 1 Entropy
Epistemic Uncertainty 500 2 4 Gini 250 2 1 Gini

Image 250 8 2 Gini 1000 4 1 Entropy
Ensemble Binary mask 750 10 4 Entropy 250 12 4 Entropy

Predictive Uncertainty 250 12 1 Gini 250 10 4 Gini
Aleatoric Uncertainty 500 12 2 Entropy 500 4 1 Entropy
Epistemic Uncertainty 500 10 2 Entropy 750 2 10 Entropy

Image 250 2 4 Entropy 750 2 1 Entropy
Ensemble + TTA Binary mask 750 10 2 Gini 1000 2 4 Gini

Table 6: Classifier hyperparameters for the LiTS and UMC datasets

Appendix B. Feature Importance scores

Feature importance scores from the trained classifiers for LiTS and UMC dataset are shown
in Figures 10 and 11.

Appendix C. Analysis of threshold-based classification

Figures 12 and 13 show the strong correlation between the log-sum of per-voxel uncertainties
and lesion size for both datasets. Nair et al. (2020) reported that the log-sum computed
for smaller lesions is higher, and most false positives are small, therefore log-sum can be
used to successfully filter them out. Therefore, the uncertainty log-sum is a proxy for
lesion size, as we can see from the high negative correlation between the log-sum and lesion
diameter. Therefore, even though it seems that log-sum of the uncertainty over the lesion
volume is used to filter false positives, given the high correlation with respect to the size,
our observation about the influence of lesion shape on false-positive classification holds.
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Figure 10: Feature importance scores (LOCO) for LiTS classifiers
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Figure 11: Feature importance scores (LOCO) for UMC classifiers
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Figure 12: Scatter plot of the (scaled) log-sum aggregate calculated over predicted lesions,
and maximum lesion diameter for the UMC test-set. The spearman rank correlation is
reported. The detected lesions above the dotted blue line are classified as false positives.
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Figure 13: Scatter plot of the (scaled) log-sum aggregate calculated over predicted lesions,
and maximum lesion diameter for the LiTS test-set. The spearman rank correlation is
reported. The detected lesions above the dotted blue line are classified as false positives.
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