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Abstract

Deep learning techniques show success in detecting objects in medical images, but still
suffer from false-positive predictions that may hinder accurate diagnosis. The estimated
uncertainty of the neural network output has been used to flag incorrect predictions. We
study the role played by features computed from neural network uncertainty estimates
and shape-based features computed from binary predictions in reducing false positives in
liver lesion detection by developing a classification-based post-processing step for different
uncertainty estimation methods. We demonstrate an improvement in the lesion detection
performance of the neural network (with respect to F1-score) for all uncertainty estimation
methods on two datasets, comprising abdominal MR and CT images, respectively. We show
that features computed from neural network uncertainty estimates tend not to contribute
much toward reducing false positives. Our results show that factors like class imbalance
(true over false positive ratio) and shape-based features extracted from uncertainty maps
play an important role in distinguishing false positive from true positive predictions. Our
code can be found at https://github.com/ishaanb92/FPCPipeline
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1. Introduction

Deep learning systems have become the go-to approach for various medical image analysis
tasks (Zhou et al., 2021; Litjens et al., 2017). However, such systems may make erroneous
predictions. These arise due to a variety of reasons, for example, the model overfitting to the
training data, presence of noise/artefacts in the image, or mismatch between the training
and clinical data distributions (Castro et al., 2020). False-positive prediction is one such
type of error and may hinder accurate diagnosis.

Lesion detection in medical imaging is usually formulated as an image segmentation
problem, where labels are assigned to each voxel in the image. The task suffers from class
imbalance, because lesions occupy a small volume in the image. The imbalance is usu-
ally corrected by re-weighting components of the loss function and/or selectively sampling
data. While this may lead to more voxels being correctly classified as lesions, the predic-
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tion algorithm may become biased toward detecting more lesions than are actually present.
False-positive reduction is accomplished via negative sampling i.e. sampling background to
reduce algorithmic bias toward finding lesions (Ciga et al., 2021), architectural modifica-
tions (Tao et al., 2019), or by using a classifier as a post-processing step (Chlebus et al.,
2018; Bhat et al., 2021).

In this paper, we extend initial work performed in Bhat et al. (2021) by developing a
system to reduce false-positive predictions using uncertainty estimations made by the neural
network. We study the effect uncertainty estimation methods have on the detection of false
positive lesions. To do so, we develop a model-agnostic post-processing pipeline that can
work with predictions made by any probabilistic classifier.

We summarize related work in Section 2. Section 3 describes the datasets used in this
paper. In Section 4 we provide background about the different uncertainty methods we
studied, and describe the false-positive classification pipeline. In Section 5 we describe the
neural network architecture and training (Section 5.1), and the different evaluation methods
used to analyse the performance of uncertainty estimation methods to reduce false positives
(Section 5.2). Results are shown in Section 6 and their implications are discussed in Section
7.

2. Related Works

The estimation of prediction uncertainty has been useful in domains such as detecting
adversarial (Smith and Gal, 2018) and out-of-distribution (Ovadia et al., 2019) examples,
robotics (Loquercio et al., 2020), autonomous driving (Hoel et al., 2020), and reinforcement
learning (Depeweg et al., 2018). Uncertainty estimation has also found numerous promising
applications in the field of medical image analysis (Ching et al., 2018).

Uncertainty estimates have been used as a proxy to determining the quality of the
predictions, with poor quality predictions being referred to an expert. Leibig et al. (2017)
showed that the detection of diabetic retinopathy improved when predictions with estimated
uncertainty above a certain threshold were referred to an expert. Seebock et al. (2020) used
the uncertainty map to detect anomalous regions in retinal OCT images. For the task of
cardiac MR segmentation, Sander et al. (2019) referred voxels with high uncertainty to an
expert to produce segmentations with more accurate boundaries. Sedai et al. (2018) showed
the benefits of using the uncertainty map as a visual aid to clinicians for the task of retinal
layer segmentation in OCT images. Camarasa et al. (2021) show metrics derived from the
uncertainty maps can be used to evaluate the quality of multi-class segmentations of the
carotid artery. Karimi et al. (2019) used uncertainty estimation to flag poor segmentations
and used a statistical shape model to improve the result for the task of prostate segmentation
from ultrasound images. In addition to determining quality of predictions, uncertainty
estimates have also been shown to improve performance of downstream tasks within a
cascade (Mehta et al., 2019).

When it comes to segmenting structures of interest within images, such as lesions, there
is a need to quantify uncertainty at the structure level, by aggregating per-voxel uncertainty
estimates, because it is at the structure level that diagnosis is performed. Nair et al. (2020)
showed that the log-sum of voxel-wise uncertainties computed over the detected structures
can be used to filter small false positives. Similarly, Graham et al. (2019) used the mean
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uncertainty over segmented glandular structures to disregard poor quality predictions made
on colon histopathological images. Mehrtash et al. (2020) showed that for prostate, brain
lesion and cardiac segmentation, the mean uncertainty over the segmented structure had
a negative correlation with the Dice overlap and therefore the mean uncertainty could be
used as a proxy for segmentation quality. Similarly, Ng et al. (2020) and Roy et al. (2018)
developed metrics to check variations in the prediction at the structure level and showed
a negative correlation between this metric and the Dice coefficient for cardiac and brain
lesion segmentation, respectively. Eaton-Rosen et al. (2018) used uncertainty estimation to
compute well-calibrated error bars for the estimated brain lesion volumes for clinical use.

There is also a class of methods that use uncertainty estimates as an input to a second
stage that is used to predict segmentation quality or detect segmentation failures. Jungo
et al. (2020) used the task of segmenting different types of lesions from brain MR images to
show that aggregating features computed from the per-voxel uncertainty maps can predict
segmentation quality. These features correlated well with the Dice score of the prediction
and therefore could be used to a flag a poor segmentation. In a similar vein, DeVries
and Taylor (2018) used a second neural network as a regressor to predict the Jaccard
index using the per-voxel uncertainty map and binary segmentation as inputs for their
skin lesion segmentation task. Sander et al. (2020) used a second neural network to detect
local segmentation errors in a cardiac segmentation task using the uncertainty map, the
prediction, and image patches as inputs.

Most approaches use voxel-wise uncertainty estimates to detect segmentation failures,
or use them as a proxy for segmentation quality. Nair et al. (2020) showed that aggregating
voxel-wise uncertainty estimates over the predicted lesion volume using the log-sum opera-
tion can be used to filter small false positives. Jungo et al. (2020) compared different ways
to perform spatial aggregation at the subject level and concluded using radiomics features to
construct subject-level feature vectors performed best at detecting failures while segment-
ing tumours in brain MR images. Since this is a more general form of spatial aggregation,
we construct radiomics feature vectors corresponding to predicted lesion volumes from the
uncertainty map estimated by the neural network to investigate the role of uncertainty
estimates in reducing false-positive detections.

3. Data
3.1 UMC MR dataset

We used abdominal dynamic contrast enhanced (DCE) and diffusion weighted (DW) MRI
of 71 patients with liver metastases from the University Medical Center Utrecht, the Nether-
lands. This data was acquired between February 2015 and February 2018. The DCE-MR
series was acquired in six breath holds, resulting in a total of 16 3-D contrast phases per
patient. Voxel spacing for these images is 1:5mm  1:5mm  2mm. The liver and the
metastases within the liver were manually segmented on the DCE-MRI by a radiologist in
training and verified by a radiologist with more than 10 years of experience. The dataset
mainly included colorectal and neuroendocrine metastases, with few other types in addition
(i.e., other gastrointestinal metastases and breast metastases). Motion correction between
the different contrast phases for each DCE MR image was performed using the techniques
described in Jansen et al. (2017).
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The DW-MR images were acquired with three b-values: 10, 150, and 1000 s/mm?, using
a protocol with the following parameters: TE: 70 ms; TR: 1:660 ms; flip angle: 90 degrees.
For each patient, the DW MR image was non-linearly registered to the DCE MR image
using the elastix (Klein et al., 2010) toolbox.

We applied the manually created liver masks to the abdominal DCE and DW MR
images. All images were resized to in-place dimensions of 256 256, followed by z-score
normalization of the intensities. The 16 contrast phases of the DCE MR images were divided
into groups and averaged to generate a 6-channel image (Jansen et al., 2019). The contrast
phases were grouped as follows, the pre-contrast image, the early arterial phase, the late
arterial phase, the hepatic/portal-venous phase, the late portal-venous/equilibrium phase,
and the late equilibrium. The DW images were concatenated with the DCE images along
the channel axis to create a 9-channel input image for the neural network.

The data was split into 50 training patients, 5 validation patients and 16 test patients.

3.2 Liver lesion Segmentation Challenge (LiTS)

The LiTS dataset (Bilic et al., 2019)! contains 131 abdominal CT images with reference
liver and lesion segmentations from seven hospitals and research institutes. Out of these 131
images, we excluded 13 images that had no lesions. All images in the dataset had in-plane
dimensions of 512 x 512 with variable voxel spacings. The median voxel spacing for the
dataset was 0:76 x 0:76 x 1:0 mm.

Pre-processing on the images was performed by first clipping the intensities to the range
[ 100;200] and then re-scaling the clipped intensities to the range [0;1]. Non-liver regions
in the image were masked using the reference liver segmentation.

We divided our reduced dataset of 118 CT images into non-overlapping sets with 94
training, 6 validation and 18 test patients.

4. Materials and Methods

We have developed a classification pipeline to study the effect of uncertainty estimation
techniques on false-positive reduction. Section 4.1 provides a general framework to de-
scribe different uncertainty estimation methods. Section 4.2 explains our graph-based lesion
counting method to account for many-to-one and one-to-many correspondences between the
predicted and ground truth segmentations while evaluating lesion detection performance.
Finally, Section 4.3 describes the classification pipeline used to reduce false-positive lesion
segmentations.

4.1 Theory

Standard neural network training and inference provide point estimates for their prediction.
There has been early work on uncertainty estimation utilizing a Bayesian framework to
train neural networks that can produce a distribution instead of a point estimate (MacKay,
1992; Neal, 1996). However, neural network training and inference with these approaches
was computationally expensive. Recent approaches build upon these earlier approaches to
make them computationally efficient using variational inference techniques (Blundell et al.,

1. https://competitions.codalab.org/competitions/17094
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2015; Gal and Ghahramani, 2016; Kingma et al., 2015), the most widely adopted amongst
these being MC-Dropout (Gal and Ghahramani, 2016). In addition to these methods,
techniques such as using model ensembles (Lakshminarayanan et al., 2)17) and test-time
augmentation (Wang et al., 2019) are widely used and have been described later in this
subsection.

We rst present a general method to compute the output distribution of a neural net-
work, and then show how each of the methods mentioned before can be derived from this
general formulation. In a Bayesian framework, the output distribution of a neural network,
p(y jx ;X;Y), is obtained by marginalizing over the posterior distribution of the model
parameters and image transforrr%ations:

Z
py ix ;X;Y) = o p(y jx ;1 )p(t XY )p( )d d! 1)
Herex ,y are the input and output values respectively, X and Y are the data and labels
used for training respectively, and! , are the set of neural network parameters and input

transformations respectively. The integral in Equation 1 is approximated using a Monte-
Carlo simulation:

XX

. 1 .
Papprox (Y JX ; X;Y ) = NV ply jx ;ti; ) 2
i=1 j=1

4.1.1 Baseline

As a baseline, we included a convolutional neural network with a softmax output producing
per-voxel point probability estimates, p(y jx ;! ), wherey , x are the output and input
respectively, and! is the set of neural network parameters obtained via optimization.
Therefore, the distribution over the model parameters, p(! jX;Y ) becomes a Dirac delta
function at ! , and the distribution over input transformations, p( ) a Dirac delta function
at the identity transform.

4.1.2 MC-Dropout

Dropout (Srivastava et al., 2014) is a regularization technique where di erent random subsets
of the neural network weights are set to zero during training, based on sampling masks
from a Bernoulli distribution with a xed probability or  dropout rate. Gal and Ghahramani
(201€) show that weights retained during dropout can be used as samples of the posterior
distribution over the weights, p(! jX;Y ).

Therefore, for MC-Dropout, Equation 2 reduces to:

%Cd

ply jx ;1) 3

i=1

i ) =
pmcd(YJ ) chd

Here!; are the model parameters retained during thei'™™ pass during inference.

4.1.3 Model Ensembles

Model ensembles (Lakshminarayanan et al., 201.7) have been shown to have superior per-
formance and yield high quality uncertainty estimates as compared with a single neural
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network. Models within an ensemble are trained independently of each other, and the nal
prediction is obtained by averaging the outputs of the di erent models. From a Bayesian
viewpoint, this can be seen as another way to draw samples from . Therefore, for model
ensembles, Equation 2 becomes:

1 Neb{emble
Pensemble(yY jX ; X;Y )= ——— p(y jx ;1i) 4)

N ensemble i=1
Here!; is the set of weights belonging to thei™™ model in the ensemble.

4.1.4 Test-time augmentation

Test-time augmentation (TTA) (Wang et al., 2019) computes the output probability distri-
bution by marginalizing over a distribution of image transformations, p( ), used to trans-
form the input image.

1 Wita

Pra (Y jX ;! )= Mo ply ix ;! 5 ) (5)
a =1

Here  is the | t transform sampled fromp( ) and ! is the point estimate of the model
parameters obtained via optimization.

4.1.5 Combining any method with TTA

MC-Dropout or model ensembles can be combined with test-time augmentation, as shown
in Equation 2 where ! ; could either be the weights retained duringi™ dropout pass or
weights from the i"" model in the ensemble

4.1.6 Uncertainty estimation and decoupling

The predictive uncertainty for classi cation problems, i.e. with a discrete set of C labels as
possible output values, is quanti ed by the entropy of the output distribution. The entropy
for such a distribution p is given by:

X
Upredictive = H[p] = ply = cix )log(p(y = cjx )) (6)
c=1

Entropy is low when all the probability mass is concentrated on a single class, and high
when it is distributed more evenly over classes.

The predictive uncertainty can be decomposed into uncertainty originating from the
model (epistemic) and uncertainty originating from the data (aleatoric) (Kiureghian and
Ditlevsen, 2009). This decomposition is possible if there is variation in the model parameters
used to generate the prediction, as is the case with MC-Dropout or model ensembles (Smith
and Gal, 2018).

Aleatoric uncertainty re ects the true noise in the data and cannot be reduced by using
more data to train the model. Inherent noise in the data may be re ected in a prediction
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with high entropy. Thus, the aleatoric uncertainty is the mean entropy computed over
predictions with xed parameters:

1 X
Ualeatoric = T Hp(y jx ;'i)l (7)
i=1
The epistemic uncertainty in the prediction is the mutual information between the model
parameters and the data (Smith and Gal, 2018). This is equivalent to the epistemic uncer-
tainty being the di erence between the predictive uncertainty (Equation 6) and the aleatoric
uncertainty (Equation 7):

Uepistemic = Upredictive ~ Ualeatoric (8)

For models that use a single xed set of parameters (eg: TTA), Equation 7 shows
that the aleatoric uncertainty is equal to the predictive uncertainty, i.e. the predictive
uncertainty is estimated from the data only. For predictions from either MC-Dropout or
model ensembles, all three uncertainty measures may be computed.

Image segmentation can be viewed as a per-voxel classi cation problem, and per-voxel
uncertainty estimates form an uncertainty map. As an example, we show the original image
(with the binary prediction overlaid) and uncertainty maps for a single CT image slice from
the LiTS dataset in Figure 1. The epistemic uncertainty maps for MC-Dropout and MC-
Dropout+TTA are almost completely empty. This signi es that there is low variation in
the MC-Dropout and MC-Dropout+TTA outputs, produced by di erent passes through
the model for a given input (See Equations 6, 7, 8). On the other hand, in Figure 1,
the rows corresponding to ensemble and ensemble+TTA, the epistemic uncertainty maps
show signal outlining the lesion boundaries, comparable to the predictive and aleatoric
uncertainty maps. Following a similar reasoning, this indicates that there is high variation
in the outputs of the dierent models in the ensemble for a given input. This occurs
because in an ensemble of independently trained models, the outputs from each model
are less correlated as compared to MC-Dropout outputs, which are generated by sampling
subsets of weights optimized jointly (Fort et al., 2020).

4.2 Lesion detection

Lesions were detected using a neural network trained to perform image segmentation (See
Section 5.1 for details). Inference was performed on 2-D slices of the images, which were
combined to form the segmented volume. For MC-Dropout and test-time augmentation,
we used values ofNp g = 10 and Myy = 10. Larger values of Npog and My, did not
result in any change in the precision and recall metrics on the test set (shown in Table 3).
For test-time augmentation, random rotations between [ 45;45] degrees were applied to
compute predictions. For the ensemble con gurations, we used ve independently trained
models (Nensemble = 5) to compute the prediction on test images. We applied a threshold
of 0:5 to convert the per-voxel probability output maps to binary lesion masks.

Post-processing was performed on the binary lesion masks using a morphological closing
witha 3 3 3 cube-shaped element followed by morphological opening with a 33 3
cross-shaped element (Jansen et al., 2019). Within the post-processed volume, we performed
connected component analysis to identify lesion volumes.
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Figure 1: Uncertainty maps for di erent estimation techniques. In the left-most column,
we show the CT image slice with the reference segmentation (green), predicted segmenta-
tion (red) and their overlap (yellow). Since model parameters are xed for Baseline and
Baseline+TTA con gurations, the epistemic uncertainty is always 0.

To quantify the e cacy of our segmentation network at lesion detection, we used the
precision, recall and F1 metrics. However, to compute these metrics, it is necessary to
nd correspondences between the detected lesion volumes and the lesion volumes present
in the reference segmentation. Situations could arise where many-to-one or one-to-many
correspondences between lesion volumes are found, and any method used to count the
number of detected lesions must take this into account (Oguz et al., 2018).

We tackled the problem of counting detections by constructing a directed bipartite
graph with 2 sets of nodes, i.e. the lesions in the predicted segmentation and reference
segmentation respectively. We constructed edges between the lesions from the two sets of
nodes and set the edge weight between them to be the Dice overlap between the lesion
volumes. Edge construction was done in both directions, overlap for a single volume in the
predicted segmentation was computed with each object in the reference segmentation and
vice versa.
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Once the graph edges are constructed, counting the number of true positive, false positive
and false negative predictions is straightforward. Any volume in the predicted segmentation
is considered atrue positive detection if it has at least one outgoing edge with a non-zero
weight. To account for many-to-one correspondences, we count true positives as the number
of nodes in the reference lesion partition with at least one incoming edge to avoid multiple
counting. A volume in the predicted segmentation is considered dalse positive prediction if
it has no edges with a non-zero weight. Similarly, a volume in the reference segmentation is
considered afalse negativeif it has no incoming edges with a non-zero weight. In Figure 2,
we show an example of a correspondence graph with a many-to-one lesion correspondence.

The detection metrics are computed as follows:

true positives

precision = — — 9)
true positives + false positives
true positives
recall = — P - (20)
true positives + false negatives
2 precision recall
= (11)

precision + recall

(a) Prediction (red) and reference (green)
segmentations (overlap in yellow), overlaid on
a DCE MR image. In this image slice, it can
be seen that the same predicted lesion volume
overlaps with two lesions from the reference
segmentations. In such a case, we count two
detected lesions.

(b) Graph capturing lesion correspondences
for the DCE MR image in Figure 2a in terms
of overlap. The nodes on the left in red are
lesions in the predicted segmentation, and
those on the right in green are lesions from
the reference segmentation. Edges with O
weight have not been shown for clarity. It
can be seen that three lesions (two of which
can be seen in Figure 2a) in the reference seg-
mentation correspond to a single lesion (P0)
in the prediction.

Figure 2: Correspondences between predicted and reference segmentations
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4.3 False-positive classi cation

The steps involved in Itering false positive predictions from the neural network predic-
tion are shown in Figure 3. The pipeline was designed following guidelines on radiomics
work ows detailed in Van Timmeren et al. (2020).

Figure 3: Pipeline to Iter false positive lesion predictions from neural network predictions
using uncertainty maps.

We used the lesion detections from the neural network training and validation patients
as training data for our false-positive classi er and use the held-out test set to report the
performance.

4.3.1 Region of interest (Rol) extraction

We use the binarized neural network prediction to extract 3-D patches from the uncertainty
map corresponding to the detected lesions. The lesion correspondence graph is used to assign
a label (true positive or false positive) to each patch. The 3-D patch from the uncertainty
map(s) and the Rol extracted from the binarized prediction are used for computing intensity
and shape features, respectively.

4.3.2 Isotropic resampling

We resample each 3-D uncertainty patch and Rol mask to isotropic spacing using'8 order
B-spline and nearest-neighbor interpolation, respectively. Isotropic resampling was per-
formed to ensure rotational invariance of texture features (Zwanenburg et al., 2020). For
the LiTS dataset, patches were resampled along all axes to.®6mm 0:76mm 0:76mm, the
median in-plane voxel spacing for the dataset. For the UMC dataset, we keep the in-plane
voxel spacing unchanged and resample in the axial direction to achieve an isotropic spacing
of :543mm 1:543mm  1:543mm.

10
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4.3.3 Feature Computation

For each 3-D patch from the uncertainty map, we computed features as described by the
Imaging Biomarker Standardization Initiative (IBSI) (Zwanenburg et al., 2020). We used
the PyRadiomics (Van Griethuysen et al., 2017) library to compute 99 radiomics features
for each patch.

4.3.4 Feature Reduction

We designed our feature reduction step to produce a set of minimally correlated features.
Hierarchical clustering was performed by constructing a distance matrix such that distance
between a pair of features was inversely proportional to their correlation. In Figure 4 we
show the hierarchical clusters formed for the MC-Dropout (Predictive) con guration of the
LiTS dataset. The next step was forming at clusters of features by choosing a threshold
at which the dendogram iscut. All leaves below a cut form a single at cluster, and the
feature with maximum mutual information with respect to the labels was chosen from each
of the at clusters (highlighted in bold in Figure 4). The same threshold (1:0) was used
for both datasets and all con gurations to produce an almost uniform number of features.
The dendogram threshold was chosen by visually examining hierarchical clusters for all
con gurations and datasets. The threshold was chosen to ensure approximately the same
number and sizes of clusters. This could be achieved for most con gurations, although some
were outliers with fewer features. The idea of using a xed threshold was to ensure the use
of the same extent of correlation between features while converting the hierarchical clusters
to at clusters.

In Table 1 we show reduced feature vector sizes\ ) computed for all the con gurations
for both datasets.

Table 1: Reduced feature vector sizes across datasets and con gurations

LITS UMC
Con guration Uncertainty Type N © N
Baseline Predictive 9 9
Baseline + TTA Predictive 9 8
Predictive 6 7
MC-Dropout Aleatoric 5 7
Epistemic 6 6
Predictive 5 7
MC-Dropout + TTA Aleatoric 5 7
Epistemic 6 5
Predictive 8 8
Ensemble Aleatoric 9 9
Epistemic 7 8
Predictive 8 8
Ensemble + TTA Aleatoric 9 8
Epistemic 8 8

11
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Figure 4. Hierarchical cluster formation based on the feature correlation matrix. The dashed
red line shows the threshold at which the dendogram iscut. A single feature is selected
(based on maximum mutual information with respect to the label) from each of the at
clusters formed after thresholding (shown in bold).

4.3.5 Classifier Training

We used features computed from uncertainty map patches, corresponding to lesion detec-
tions in the training and validation images for the neural network, to train an Extremely
Randomized Trees (ERT) (Geurts et al., 2006) classi er to classify the detected lesion, as a
true or false positive. This classi er is an example of a bagging predictor (Breiman, 1996),
which performs the classi cation task using an ensemble of randomized base classi ers. The
base classi er for the ERT is a decision tree, and randomization is introduced in each deci-
sion tree using two methods. First, random subsets of input features are used to split tree
nodes. Second, thresholds for each of the input features are sampled randomly and the best
of these is used as the splitting rule. Injecting randomness in the base classi ers decouple
their prediction errors and reduce over tting in the constructed ensemble.

The hyperparameters for the classi er were chosen via ve-fold cross-validation while
optimizing for the area under the curve (AUC) metric, to achieve a good trade-o between
sensitivity and speci city. The hyperparameters are shown in Table 6 in Appendix A. The
number of training samples for both datasets and all uncertainty estimation methods is

12
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shown in Table 2. We used the scikit-learn (Pedregosa et al., 2011) library to develop code
related to classi er training.

Table 2: Training dataset size and class imbalance ratio for the LIiTS and UMC datasets

LiTS UuMC
Con guration Training Samples TP:FP ratio Training Samples TP:FP ratio
Baseline 1356 0.684 289 1.125
Baseline + TTA 1282 0.765 233 1.118
MC-Dropout 1267 0.710 325 1.321
MC-Dropout + TTA 1564 0.494 576 0.714
Ensemble 1332 0.743 166 2.388
Ensemble + TTA 1328 0.722 145 2.536

4.3.6 Label prediction

(a) Lesion correspondence graph constructed (b) Lesion correspondence graph after label
from the neural network prediction prediction

Figure 5. Modifying the lesion correspondence graph based on classi er predictions. All
the false positives (detected structures P1, P4 in Figure 5a) are lItered out.

We used the trained classi er to predict the label (true positive or false positive) of each
detected lesion for each patient in the held-out test set. For each patient, the predicted
labels for each lesion in the neural network prediction were then used to modify the le-
sion correspondence graph (Section 4.2). If a lesion was classi ed as a false positive, the
corresponding node in the graph was deleted. We show this in Figure 5.

5. Experiments

5.1 Neural network architecture and training

We used the 2-D U-Net (Ronneberger et al., 2015) architecture to create identical segmen-
tation networks for both the datasets. Each convolution block consisted of a 3 3 weight

13
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kernel, instance normalization and a leaky RelLU activation function. Downsampling was
performed via max-pooling and up-sampling was performed via transposed convolutions.
At the output layer, a1 1 convolution was performed, followed by the application of the
softmax function to obtain per-voxel class probabilities.

The networks for the UMC and LiTS datasets were trained for approximately 10K (batch
size = 16) and 20K (batch size = 8) batch iterations based on early-stopping while monitor-
ing the decrease in the validation loss. For both datasets, we used the ADAM (Kingma and
Ba, 2015) optimizer with a learning rate of 10 4 and weight decay of 5 10 °. To tackle
class-imbalance, we used only slices containing a lesion to train the neural network. Fur-
thermore, we used a weighted cross-entropy as the loss function, with the per-class weights
inversely proportional to the fraction of voxels belonging to that class. For both datasets,
data augmentation was performed by randomly rotating the input by an angle sampled
from [ 45;45] degrees.

For the MC-Dropout models, dropout layers were added at the outputs of the encoder
and decoder at the lowest levels, similar to the Bayesian SegNet (Kendall et al., 2017). The
dropout rate with the lowest validation loss was chosen. For the network trained using the
UMC dataset, this was (3, and for the network trained using the LiTS dataset, this was
0:5. For test-time augmentation, we use rotations with the angles uniformly sampled from
the range used during data augmentation.

The code for the neural network training and inference was developed using the Py-
Torch (Paszke et al., 2019) library.

For each uncertainty estimation method, we trained the false-positive classi er and used
lesions from the neural network test set to evaluate the performance. For both datasets and
each uncertainty estimation method, we trained ve classi ers with di erent random seeds
to report con dence intervals on our metrics.

5.2 Evaluation

We used the precision, recall and F1-score metrics to quantify the e ect of our false-positive
classi cation pipeline on lesion detection.

To isolate the role played by features computed from uncertainty estimates in reduc-
ing false positives, we trained the classi er using just the radiomics shape-based features.
These features are computed from the binary lesion mask and, therefore, are independent
of the per-voxel uncertainty estimates. Similar to Chlebus et al. (2018), we trained the
classi er using radiomics features computed from image patches corresponding to lesion
segmentations.

Furthermore, to study the impact of spatial aggregation of uncertainty on false-positive
classi cation, we compare our false positive classi cation pipeline to the threshold-based
Itering approach proposed by Nair et al. (2020). The classi cation threshold was deter-
mined using a hold-out validation set. The thresholds used were :9995 and 09999 for the
UMC and LiTS datasets, respectively.

Additionally, we performed cross testingand combined testingto investigate the general-
ization properties of our classi er. In cross-testing, for each uncertainty estimation method,
we used the classi er trained on one dataset to predict the type of detection in the test
set of the other dataset. In combined testing, for each uncertainty estimation method, we
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trained a classi er by merging training sets from both datasets and used it to predict the
type of detection in the test set. Both these experiments used radiomics features computed
from the uncertainty maps.

We measured feature importance using the leave-one-covariate-out (LOCO) (Lei et al.,
2018) method, where feature importance was measured directly in terms of prediction per-
formance on unseen data.

Table 3: Lesion detection metrics for the LITS and UMC datasets before and after false-
positive reduction

LiTS umcC
Precision Recall F1 Precision Recall F1
Con guration Input features Before After Before After Before After Before After Before After Before After
Predictive Uncertainty 0:318 Q766 0:005 Q700 0510 0:006 0438 0612 0:005 0245 Q608 0:014 Q717 Q608 0:006 0365 0608 0:.010
Image Q318 Q727 0:004 Q700 0538 0:012 0438 0618 0:009 0245 Q551 0:008 Q717 Q604 0:000 0365 0578 0:004
Baseline Binary mask 0318 0691 0:005 Q700 0510 0:000 0438 0587 0:002 0245 0616 0:022 Q717 0603 0:000 0365 0609 0:.010
Predictive Uncertainty 0:335 Q744 0:020 Q690 0492 0:.003 Q451 0592 0:006 0289 Q605 0:015 Q774 Q645 0:.006 Q421 0624 0:008
Image Q335 0634 0:004 Q690 0492 0:003 0451 0554 0:003 0289 Q577 0:004 Q774 Q611 0:007 Q421 0593 0:003
Baseline + TTA Binary mask 0:335 Q725 0:.008 0690 Q516 0:004 Q451 Q603 0:003 0289 0659 0.005 Q774 0626 0:005 Q421 0642 0:005

Predictive Uncertainty 0:373 0841 0:014 Q720 0506 0:.004 0491 0632 0:006 0261 0465 0:013 Q774 (0668 0008 039 0548 0:006

Aleatoric Uncertainty  0:373 Q740 0:014 Q720 Q496 001 0491 0594 0011 0261 0479 0:004 Q774 0683 0:006 Q39 0563 0:004

Epistemic Uncertainty  0:373 0838 0:001 Q720 Q516 0:004 0491 (0639 0003 0261 0641 0:003 Q774 Q506 0:006 Q39 Q565 0:005

Image Q373 0695 0:007 Q720 Q470 0:006 0491 0561 0:.003 0261 Q494 0:002 Q774 Q679 0:000 Q39 0572 0.001

MC-Dropout Binary mask 0:373 Q790 0:.004 Q720 0534 0:004 0491 0637 0:004 Q261 0563 0.000 Q774 Q679 0:000 039 0615 0:000

Predictive Uncertainty ~ 0:3 (0732 0:.004 Q78 (0514 0:006 0433 0604 0005 Q204 Q504 0:.007 083 (0758 0:006 0327 Q605 0:005

Aleatoric Uncertainty 0:3 (0734 0005 Q78 (0514 0:004 0433 0605 0:004 Q204 0535 0:.002 083 (0758 0:006 0327 0627 0:003

Epistemic Uncertainty 0:3 0743 0:.003 Q780 Q6 00 0433 0664 0:001 0204 06 0:006 083 (668 0:008 Q327 0632 0:005

Image Q3 (0705 0:.006 0780 0522 0:003 0433 0600 0:003 Q204 0496 0011 083 (0784 0:007 0327 Q607 0:008

MC-Dropout + TTA Binary mask 0:3 (0712 0:.005 0780 0592 0:009 0433 0646 0:006 Q204 Q499 0009 083 (0789 0:005 0327 0611 0:008

Predictive Uncertainty 0:385 0804 0.011 Q790 0558 0:009 0518 0659 0:008 Q375 Q754 0:008 0792 0543 0.006 Q509 0632 0:005

Aleatoric Uncertainty  0:385 Q806 0:004 Q790 0530 0.000 0518 0639 0:001 0375 Q546 0:010 Q792 Q725 0:015 Q509 0622 0:006

Epistemic Uncertainty 0:385 0811 0:008 Q790 0558 0.006 0518 0661 0:007 0375 0616 0:029 0792 0547 0:000 Q509 0579 0:013

Image Q385 Q779 0:.008 Q790 Q544 0:004 0518 0641 0002 Q375 0524 0:.013 0792 Q679 0:000 Q509 0591 0:008

Ensemble Binary mask 0385 Q799 0004 Q790 0542 0:003 0518 0646 0:004 Q375 0674 0.007 Q792 Q672 0:013 Q509 Q673 0:004

Predictive Uncertainty 0:379 Q0807 0:005 Q800 0578 0:006 0514 Q674 0:.006 0417 Q765 0:014 0811 0528 0:000 0551 0625 0:005

Aleatoric Uncertainty  0:379 0813 0:012 Q800 0554 0:004 Q514 (0659 0:.006 0417 0544 0:022 0811 Q702 0:023 Q551 0612 0:010

Epistemic Uncertainty  0:379 0834 0:014 (800 0580 0:006 0514 (0684 0:005 Q417 0805 0:014 0811 0528 0:000 Q551 0638 0:004

Image Q379 Q775 0:007 Q800 0564 0:.004 0514 0653 0:.004 0417 Q597 0:035 0811 Q701 0:035 0551 0644 0.008

Ensemble + TTA Binary mask 0:379 Q760 0.015 0800 0582 0:003 0514 0659 0:007 Q417 Q770 0.011 Q811 0683 0:005 0551 Q724 0:007

6. Results

In Figure 6 we show the relative change in the lesion detection metrics of precision, recall,
and F1 after false-positive classi cation for both datasets and all the uncertainty estimation
methods using radiomics features computed from uncertainty maps (Figure 6a), image
intensities (Figure 6b), and binary masks (Figure 6c). We show these detection metrics
(before and after classi cation) in Table 3.

The relative change in lesion detection metrics for all uncertainty methods and both
dataset, using the threshold-based method described in Nair et al. (2020) is shown in Figure
7.

In Table 4 we show the changes in the lesion detection metrics (with respect to Table
3) when MR-CT cross-testing.

In Table 5 we show the changes in the lesion detection metrics (with respect to Table
3) when combined testing was performed.

The feature importance scores for all uncertainty estimation methods have been shown
in Appendix B (Figures 10 and 11).
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(a) Radiomics features computed from uncertainty map

(b) Radiomics features computed from image intensities

(c) Radiomics features computed from binary mask

Figure 6. Relative change in precision, recall, and F1 metrics after false-positive classi ca-
tion. Figure 6a shows the relative change in the lesion detection metrics when radiomics
features computed from uncertainty maps are used to perform false-positive classi cation.
Figures 6b and 6¢c show the relative changes in lesion detection metrics when radiomics
features are computed from image patches and binary masks, respectively.

7. Discussion

The results in Figure 6 show that the chosen uncertainty estimation method, by itself,
did not contribute much towards reducing false positives. However, its impact was seen
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Figure 7: Relative change in the lesion detection metrics when a threshold on the log-
sum of uncertainty values over the predicted lesion volume was used to lter false-positive
lesions (Nair et al., 2020)

Table 4. Change in lesion detection metrics with cross-testing. The Kolmogorov-Smirnov
test was used to check for statistical signi cance ( = 0:05) of the change in lesion detection
metrics, statistically signi cant changes have been marked with

LiTS umc
Con guration Uncertainty Type Precision (% increase) Recall (% increase) F1 (% increase) Precision (% increase) Recall (% increase) F1 (% increase)
Baseline Predictive 6:35 17.64 1348 19.03 11:80 6:09
Baseline + TTA Predictive 15.07 731 10:76 272 584 1:24
Predictive 30:35 3:16 1266 27.86 2:26 15:65
MC-Dropout Aleatoric 24:33 8:87 7:42 47:42 0:55 2297
Epistemic 398 2209 1389 8:39 2313 6:91
Predictive 1:63 3:89 2:98 37:33 6:97 2492
MC-Dropout + TTA Aleatoric 0:92 5:44 3:63 3877 6:97 2562
Epistemic 1:37 2566 15:68 5257 2429 3294
Predictive 5:72 2:15 123 1:44 1041 5:12
Ensemble Aleatoric 3299 2943 5:57 0:61 1:.04 0:07
Epistemic 1051 0:71 5:26 1379 6:89 1011
Predictive 20:45 10:72 15.07 7:24 7:85 7:60
Ensemble + TTA Aleatoric 2214 4:33 8:56 4:33 3:22 105
Epistemic 14:26 9:31 1141 0:31 7.85 472

on the neural network training, detection performance and feature selection for the false-
positive classi er. Figures 6a, 6b, and 6¢ show similar trends for all uncertainty estimation
methods. The uncertainty estimated by any given method does not play a major role in
reducing false positives, since a similar performance is observed when radiomics features
from binary masks and image intensities are used to train the classi er.

Figure 6 shows that the false-positive classi cation pipeline had a considerable impact on
the performance metrics of the neural network for all uncertainty estimation methods and
type of input features. While precision and F1-score improved, the extent of improvement
depended on the class imbalance present in the data to train the classi er. Table 2 shows
that the Ensemble and Ensemble+TTA con gurations of the UMC dataset have a larger
degree of class imbalance and a smaller training set size than the others. This was re ected
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Table 5: Change in lesion detection metrics with a classi er trained with a combined training
set. The Kolmogorov-Smirnov test was used to check for statistical signi cance ( = 0:05)
of the change in lesion detection metrics, statistically signi cant changes have been marked
with

LiTS umMmcC
Con guration Uncertainty Type Precision (% increase) Recall (% increase) F1 (% increase) Precision (% increase) Recall (% increase) F1 (% increase)
Baseline Predictive 316 2:76 0:49 14:26 9:32 391
Baseline + TTA Predictive 0:81 0:41 0:54 453 526 4:88
Predictive 477 474 474 5:99 1016 0:.07
MC-Dropout Aleatoric 8:51 2:82 143 8:44 773 241
Epistemic 4:25 4:26 4:26 3063 5299 0:11
Predictive 1:63 6:61 1:11 1675 7:46 8:52
MC-Dropout + TTA Aleatoric 13 01 5:06 1:63 20:47 447 1176
Epistemic 6:32 17:00 1254 3184 24:29 1331
Predictive 2:65 175 0:02 6:80 1319 3:84
Ensemble Aleatoric 1.54 3:40 150 5:26 2:60 2:00
Epistemic 6:04 1.07 169 910 6:20 7:62
Predictive 0:40 207 137 285 571 4:53
Ensemble + TTA Aleatoric 141 Q00 0:6 0:77 2:15 122
Epistemic 0:66 137 054 11:35 1214 1:49

in the smaller improvement in the F1-score metric for these con gurations. Future work
could improve upon this, by implementing strategies that make classi ers more robust
against class imbalance, like SMOTE (Chawla et al., 2002) or ADASYN (He et al., 2008).
However, Figure 6¢c and Table 3, show a better performance for the UMC Ensemble and
Ensemble+TTA when radiomics features computed from binary masks were used. This
shows that shape-based features are more robust to class imbalance.

As expected, there is also a slight drop in recall, due to some true positive lesions being
classi ed as false positives and ltered out. A trade-o between precision and recall can be
made, for which the optimal classi er threshold may be chosen by the end-user.

Across both datasets, for almost all uncertainty estimation methods and types, the
shape-based features dbphericity or Flatness or Elongation were consistently ranked high-
est with respect to the LOCO feature importance scores. In Figure 6¢ we see almost no
di erence in the relative change in the metrics when intensity and texture features are
excluded from the classi er training. The trends in Figures 6a, 6b, and 6¢ show us that
features computed from the per-voxel uncertainty estimates do not play a major role in
reducing false positives in this setting. In Figure 8, we show an example of how classifying
a detected lesion as a false-positive depends on its size. This can be also seen in the relative
improvement in the F1 score, which is almost the same for all uncertainty types for a given
uncertainty estimation method.

The trends in Figure 7 show that threshold-based classi cation using the log-sum of per-
voxel uncertainty estimates is an e ective method to reduce false positives. Compared to
Figure 6, the trends in the relative change of precision, recall, and F1 metrics are similar for
the UMC dataset, while for the LiTS dataset they are worse. The log-sum computed over
a predicted lesion strongly correlates with its size. This leads to most small segmentations
being classi ed as false positives. This trend is also reported by Nair et al. (2020). Therefore,
the log-sum aggregate is a proxy for lesion size, thereby strengthening our claim that shape-
based features, and not uncertainty estimates themselves, play an important role in false-
positive classi cation. We show evidence of this correlation in Appendix C. The presence
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Figure 8: In uence of shape-based features on false-positive classi cation. The top row of
the gure shows DCE-MR images from the UMC dataset overlaid with lesion segmentations
computed by the segmentation network for the MC-Dropout con guration. The bottom row
shows the corresponding lesion segmentation obtained after false-positive classi cation. The
reference lesion segmentations are coloured green, the predicted lesion segmentations are
red, and their overlap is yellow. The bright yellow arrow points to the predicted lesion in
the original and Itered predictions. The rst two columns show examples of small false
positives Itered out by the classi er, while the relatively larger detections are correctly
classi ed as true positives and retained. The third column shows an example of a slightly
larger false positive misclassi ed as a true positive. The fourth column shows an example
of a small detection overlapping with a true lesion incorrectly ltered out by the classi er.

of smaller true positive lesions in the LiTS dataset could be a reason for the worsening of
performance with respect to the false positive classi cation pipeline.

The results on the cross-testing (Table 4) and combined-testing (Table 5) show that,
although the underlying task is the same, the trained classi er cannot be shared between
datasets. Thisis likely because the learned features are similar, but the thresholds learned do
not generalize across datasets. In Figure 9 we show while correlated featureSlgtness and
Sphericity) play an important role in classifying lesion predictions in each of the datasets,
the classi er produces poor results when used in &ross setting.

A limitation of our work was the inability to study the role uncertainty estimation
can play in recovering false negatives. This was because the rst step in the pipeline,
identifying regions of interest, did not include regions for undetected lesions. Moreover, the
uncertainty in the region of false negatives was low, indicating that the neural networks were
incorrect with high con dence; a consequence of miscalibration. Miscalibration refers to the
e ect that the con dence assigned to an outcome by a classi er does not correspond to the
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(a) LOCO feature importances for LiTS (b) LOCO feature importances for UMC

(c) Distribution plot of the Flatness feature in the training sets of LiTS and UMC data. Flatness
and Sphericity, which are correlated features, are the most important features for the LiTS and
UMC datasets respectively. We show that the di erent distributions of the Flatness features in the
training sets of the two datasets lead to di erent optimal thresholds, which cause degradation in the
metrics when we perform cross-testing.

Figure 9. Feature importance (ascending order, top to bottom) and distributions for the
Flatness feature for the Baseline con guration

eventual prediction accuracy. This has been shown to occur in deep neural networks, where
recent architectural advances have lead to improved classi cation performance but poorly
modelled probability estimates (Guo et al., 2017). In our work, this was substantiated by
the fact that the false-positive classi ers did not assign a high importance to the intensity-
based features computed from the uncertainty maps, but rather focussed on shape-based
features computed from the binary lesion masks (Figure 6c, Figure 10, and Figure 11).
This phenomenon was demonstrated by Jungo et al. (2020), who showed that voxel-wise
uncertainties were insu cient for detecting segmentation failures. Improving neural network
calibration would improve lesion detection metrics and might produce uncertainty estimates
that are more informative for false positive reduction.

Future work could consider a number of dierent steps to further improve our re-
sults. Our false-positive classi cation pipeline® can be used with any probabilistic clas-
si er. Therefore, analysing the in uence of uncertainty estimates computed by more recent

2. https://github.com/ishaanb92/FPCPipeline
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methods (Van Amersfoort et al., 2020; Liu et al., 2022) on false-positive classi cation is
an interesting research direction. Jungo et al. (2020) show that the calibration error of
segmentation models goes down as training set size is increased. Therefore, the e ect of
training set size on our false-positive classi cation pipeline may be studied in a future work.
Sander et al. (2020) train a second neural network using the uncertainty map computed by
the segmentation network to correct local errors. A similar method to detect false positives
is an interesting future direction because explicit feature computation is avoided. Finally,
steps taken to make models robust to class-imbalance, such as selective sampling of slices or
using weighted versions of loss functions during training, while improving detection metrics
(especially recall), might harm calibration. Poor calibration is caused by poorly modelled
probabilities, which makes it di cult to trust the uncertainty metrics computed using these
probabilities. This is re ected in our results, where uncertainty estimates by themselves
are not meaningful in reducing false-positive predictions. Therefore, an important direction
for future research is developing segmentation models robust to class-imbalance, while still
producing well-calibrated probabilities.

Our results on the LiTS and UMC datasets showed that per-voxel uncertainty estimates
did not play a major role in false-positive classi cation. Similar to Jungo et al. (2020), we
observed that di erent uncertainty estimation methods a ected segmentation performance
via their in uence on the training dynamics and their regularization e ects. Our results
show that model ensembles perform the best with respect to the F1-score on both datasets.

8. Conclusion

We studied the e cacy of features computed from uncertainty estimates at reducing false
positives by developing a classi er-based pipeline. We found that the relative improvement
in the lesion detection metrics is mainly in uenced by the class imbalance in the data
used to train the classi er and the distribution of various shape-based features for all the
uncertainty estimation methods we studied.
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