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Abstract

Static cardiac imaging such as late gadolinium enhancement, mapping, or 3-D coronary
angiography require prior information, e.g., the phase during a cardiac cycle with least
motion, called resting phase (RP). The purpose of this work is to propose a fully automated
framework that allows the detection of the right coronary artery (RCA) RP within CINE
series. The proposed prototype system consists of three main steps. First, the localization
of the regions of interest (ROI) is performed. Second, the cropped ROI series are taken
for tracking motions over all time points. Third, the output motion values are used to
classify RPs. In this work, we focused on the detection of the area with the outer edge
of the cross-section of the RCA as our target. The proposed framework was evaluated
on 102 clinically acquired dataset at 1.5T and 3T. The automatically classified RPs were
compared with the reference RPs annotated manually by a expert for testing the robustness
and feasibility of the framework. The predicted RCA RPs showed high agreement with the
experts annotated RPs with 92.7% accuracy, 90.5% sensitivity and 95.0% specificity for the
unseen study dataset. The mean absolute difference of the start and end RP was 13.6 ±
18.6 ms for the validation study dataset (n=102). In this work, automated RP detection
has been introduced by the proposed framework and demonstrated feasibility, robustness,
and applicability for static imaging acquisitions.
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1. Introduction

In cardiovascular magnetic resonance (CMR) imaging, static cardiac imaging techniques,
such as late gadolinium enhancement (LGE) (Kellman and Arai, 2012; Kellman et al., 2002;
Akçakaya et al., 2012; Basha et al., 2017), mapping (Kellman and Hansen, 2014; Messroghli
et al., 2017; Aherne et al., 2020), or three-dimensional (3-D) whole heart coronary angiog-
raphy (Munoz et al., 2020; Greil et al., 2017; Cruz et al., 2017; Forman et al., 2014) are
increasingly being performed to qualitatively and quantitatively assess the cardiac anatomy
and function. It is important to acquire the data during the phase of the cardiac cycle
with least motion, called a resting phase (RP), especially mid- or end-diastolic (ED) phases
(Kramer et al., 2020; Isma’eel et al., 2009; Kramer et al., 2013), or in patients with a fast
heart rate during the end-systolic (ES) phase.
In standardized CMR protocols (Kramer et al., 2020, 2013), the guidelines recommend us-
ing the diastolic RP with a duration of less than 200 ms as the acquisition window for static
cardiac imaging. In certain situations, e.g., high heart rate or patients with arrhythmias,
especially in terms of mapping acquisition, the systolic RP is preferably chosen. As outlined
in (Kim et al., 2001; Seifarth et al., 2007; Hofman et al., 1998), electrocardiogram-based
heuristics enable the ED phase selection based on a trigger time at 75% of the RR interval
for most patients, however it can be suboptimal due to the magnetohydrodynamic effect
(Abi-Abdallah et al., 2007), and not generalizable, especially for patients with high or irreg-
ular heart rates. For advanced applications such as high-resolution angiography, accurate
determination of RP is necessary. As different structures in the heart rest at different times
of the cardiac cycle, ideally a targeted RP for the anatomy of interest should be determined.
For coronary angiography, for example, it is suggested to accurately determine the RP of
the right coronary artery (RCA) (Kramer et al., 2020, 2013; Shechter et al., 2005; Johnson
et al., 2004; Wang et al., 2001).
The selection of the RPs is typically performed based on visual inspection on a CINE series
acquired prior to the static imaging. In current clinical practice, an expert is required to
select either the end-systolic, mid- or end-diastolic phase for acquisition. To tackle the
complex and time-consuming manual task of RP selection for the static cardiac imaging,
some previous studies have been introduced to perform the RP determination automati-
cally. In previously conducted studies (Wang et al., 2001; Stuber et al., 1999), a calibration
scan-based approach using navigator echoes has been presented, however this approach re-
quires significant user experience and interaction in order to accurately plan the navigator
position. A threshold-based clustering algorithm was proposed to track low-motion peri-
ods (Suever et al., 2011). However to track the RCA area, manual tracking is required.
Another approach (Jahnke et al., 2005) was proposed using image based cross-correlation
of CINE series for the automatic selection of RPs, proving to be advantageous in terms
of image quality. An extension of the previous method (Ustun et al., 2007) calculates the
myocardial displacement from the cross-correlation calculation. These methods, however,
also require user interaction to position the region of interest (ROI) enclosing the heart. An
alternative technique with automated RCA positioning (Sato et al., 2009) using template
matching algorithm was proposed to automatically select RP based on image intensity dif-
ferences. The intensity difference calculation as well as the template matching algorithm
can be sensitive to artifacts. Further, a method attempts to determine the cardiac motion
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resolution-independently (Huang et al., 2014) using intensity standard deviation calcula-
tion, and additionally proposed the motion extraction based on deformable model-based
registration. Another idea was proposed in which the feasibility of motion correction al-
gorithm for quantifying the rest periods of the coronary arteries is shown (Shechter et al.,
2005). However, the computed RP is based on the entire field-of-view and do not provide
localized RPs for specific anatomies, and the detection is limited to two RPs due to the
two local minima search. In a recent study (Asou et al., 2018), an automated RP selec-
tion algorithm was introduced based on a motion area map generated from the high-speed
component of the motion within a CINE series, however the high-speed component is not
necessarily related to the anatomical structures.
Deep Learning approaches have the potential to automate clinical workflows, and the state-
of-the-art methods using convolutional neural networks (CNN) are currently used for image
localization and segmentation (Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan and
Zisserman, 2014; Ronneberger et al., 2015). The CNN-based models are particularly used
for learning the optimal spatial features from input data, especially images, thus perform-
ing a specific task such as localization or segmentation. Beside the power of CNN models
for learning the spatial information, 3-D convolutional operators are used to learn spatial
and temporal information for capturing features in a 3-D input data (Ji et al., 2012; Tran
et al., 2015). Registration approaches are commonly used when it comes to motion analysis,
object tracking, etc. (Dyke et al., 2019; Chefd’Hotel et al., 2002; Szeliski and Shum, 1996;
Spinei et al., 1998; Rueckert et al., 1999), by estimating a smooth correspondence function
mapping between the coordinates from a reference image and those in a target image. These
techniques can be used for calculating the motion of a target with the deformation fields
within CINE series quantitatively.

In this work, we propose a fully automated prototype system combining the advantages
of the 3-D CNN and registration algorithms for detecting localized RPs of the RCA from
4-chamber view (4CH) CINE series. As the CINE series are time-resolved images, a 3-
D CNN based model is trained to perform landmark detection over the cardiac phases.
The proposed system combines the deep neural network for landmark detection and a
registration algorithm. The motion within a localized anatomy is quantified in order to
automatically classifying the systolic and diastolic RPs of the RCA. The duration of the RPs
is quantified in both cases. To test the robustness and feasibility, the proposed framework
was integrated into the scanner software and validated on patient data acquired on 1.5T
and 3T scanners at multiple centers and different CINE sequences.

2. Methods

2.1 System Overview

The proposed prototype system consists of three main steps that are executed consecutively
(Figure 1). The first step is to localize the ROI (see details in section 2.2) from the input
which is a 4CH CINE series. ROI can be chosen for any anatomical structures, that are
of interest displayed in 4CH images, such as the RCA. The localization can be performed
by neural networks trained for landmark detection tasks. In case of landmark detection,
the output can be pixel coordinates that are used for cropping the image to the localized
anatomy (see details in section 2.3). The cropped series containing the ROI are used for
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Figure 1: Overview of the proposed system. Prior to a static imaging, a RP must be defined
to prevent motion artifacts. The automated RP detection system consists of localization,
ROI cropping, motion quantification and RP classification steps and provides the RPs of
the target of interest within a 4CH CINE series.

motion quantification (see details in section 2.4) by performing the elastic image registration
(Chefd’Hotel et al., 2002). By taking the median of the magnitude of the deformation fields
from consecutive frames, the motion values over time points are calculated. Finally, the RPs
are classified by an absolute threshold, defined based on the correlations of the predicted
RPs by varying the thresholds with the expert annotations (see details in section 2.5). The
frames which have lower motion values than the threshold value, are selected as RPs. The
detected RPs are then used to plan the subsequent static image acquisition.

2.2 Localization

In this work, the landmark detection neural network is built to automatically detect the
location of RCA in a 4CH time-resolved series. The densely connected neural network (3-D
DenseNet) architecture is trained to regress the x- and y- coordinates of the RCA over
time and it is described in detail here. As a preprocessing step, the 4CH CINE series are
interpolated to a fixed spatial and temporal size of 224× 224× 32 to be independent from
resolution. Further, the min-max pixel intensity normalization was applied to rescale the
different intensity range in [0,1]. The 3-D DenseNet proposed in (Huang et al., 2017) was
trained under supervised learning. The weights of the network were updated by using the
Adam optimizer (Kingma and Ba, 2014) with λ = 10−3 and the mean-squared-error loss
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Table 1: The extended 3-D DenseNet built for the RCA detection. Each Conv consists of
the successively executed layers of 3-D batch normalization, rectified linear unit activation
function and 3-D convolutions. For the RCA detection, the 3-D DenseNet with the total
number of 122 convolutional layers are built as follows: d = 32, h,w = 224 and c1,2,3,4 =
6, 12, 24, 16.

Layers Output Size 3-D DenseNet

Convolution d× h
2 × w

2 3× 3× 3 Conv,
1× 2× 2 stride

Pooling d
2 × h

4 × w
4 3× 3× 3 max-pool,

2× 2× 2 stride

Dense block d
2 × h

4 × w
4

[
1× 1× 1 Conv
3× 3× 3 Conv

]
× c1

Transition block d
4 × h

8 × w
8 1× 1× 1 Conv,

2× 2× 2 avg-pool,
2× 2× 2 stride

Dense block d
4 × h

8 × w
8

[
1× 1× 1 Conv
3× 3× 3 Conv

]
× c2

Transition block d
8 × h

16 × w
16 1× 1× 1 Conv,

2× 2× 2 avg-pool,
2× 2× 2 stride

Dense block d
8 × h

16 × w
16

[
1× 1× 1 Conv
3× 3× 3 Conv

]
× c3

Transition block d
16 × h

32 × w
32 1× 1× 1 Conv,

2× 2× 2 avg-pool,
2× 2× 2 stride

Dense block d
16 × h

32 × w
32

[
1× 1× 1 Conv
3× 3× 3 Conv

]
× c4

Classification block d× 4 3-D adaptive avg-pool,
1× 1× 1 Conv

function (MSE) as follows:

MSE =
1

N

N∑
n=1

(
1

T
∥(ŷt,n − yt,n∥2

)
(1)

where ŷt,n is the predicted pixel coordinates at the time t from n dataset, the ŷt,n ground
truth, T the number of frames, and N the number of the datasets. The ground truth is
generated in a semi-supervised manner, where the RCA pixel coordinates in the first frame
are manually annotated and propagated to the next frames using the deformation fields
describing the displacement between ŷt,n and ŷt+1,n. The deformation field are generated
by using the elastic image registration (Chefd’Hotel et al., 2002). Each frame was then
corrected manually if the propagated coordinates were not accurate. The total number of
convolutional layers (Conv) is 122, and before each Conv a 3-D batch normalization (BN)
(Ioffe and Szegedy, 2015) and rectified linear unit (ReLU) activation functions (Nair and
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Hinton, 2010) are applied. After the initial 3-D Conv and max pooling operator, the feature
maps were forwarded through 4 concatenated dense blocks (DB) and transition blocks (TB).
The number of 4 concatenated DBs are set to 6, 12, 24, 16, in which after each DB, a TB
is applied. In each DB, 2 Convs, each followed by 3-D BN and ReLU operators with the
increase of the feature maps with 12 are applied. Each layer obtains additional inputs
from all preceding layers and forwards the feature maps to all subsequent layers. In each
TB, a Conv with BN and ReLU followed by 3-D average pooling operator is applied for
spatial and temporal down-sampling. As the last step, a global average pooling and 1×1×1
convolutional operator are used to regress the coordinates from the extracted features maps.
The detailed architectural details can be found in the Table 1.

2.3 Cropping

From the output of the localization task, a ROI can be simply selected from the pixel
coordinates. The detected pixel coordinates are transformed back to the original coordinate
system, and then the cropping is performed. Given the predicted pixel coordinates of RCA
by 3-D DenseNet, the bounding box is defined by taking the minimum and maximum x-
and y-coordinates of the points in the coordinate plane from a time-resolved series and
calculating the average of these x and y-coordinates. The size of the bounding box is
selected based on prior knowledge about the size of the anatomy, chosen as 50× 50 mm2.

2.4 Motion Quantification

The motion values are quantitatively determined using elastic image registration (Chefd’Hotel
et al., 2002). Consecutive frames of the CINE series, st(x) and st+1(x) for all timepoints
t, are registered to obtain deformation fields dt(x) such that st+1(dt(x)) minimizes the dis-
similarity measure related to st(x). The motion curve m(t) describing the amount of RCA
motion is then computed as the median of the weighted magnitudes of the deformation
fields ∥dt(x)∥ as follows:

m(t) = median{Gt(x) · ∥dt(x)∥2} (2)

where Gt(x) is a Gaussian weighting function centered at the midpoint of the detected
location of the RCA between ŷt and ŷt+1 at the time point t:

Gt(x) = exp

(
−∥x− pt∥2

σ2

)
(3)

while pt denotes the midpoint of the detected RCA position. This Gaussian weighting en-
sures that the motion curve represents mainly the motion of the RCA, while still being
robust to slight imprecisions of the localization results. The standard deviation was em-
pirically chosen as σ = 12. Figure 2 shows the Gaussian weighting functions overlaid on
the anatomical images at each time point, as well as the weighted deformation fields cor-
responding to subsequent image pairs. The quantification of motion can be considered in
different ways, and the detailed analysis of obtaining the RCA motion values can be found
in section 3.2.
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Figure 2: An example of RCA ROI overlayed with weighted heatmaps, and below each two
frames the magnitude of the weighted consecutive deformation fields are illustrated. The
upper color bar corresponds to the weighted heatmaps, and the below one to the magnitude
of the deformation vectors. The predicted systolic resting phase is marked in orange, and
the predicted diastolic resting phase in blue. For the sake of simplicity, the last frame is
not visualized.

2.5 Resting Phase Classification

After the motion curve is quantified, a classification is required to obtain the RP. This
classification is performed within a time interval Tvalid = [α, ω], i.e. the first α and the last
ω ms of a cardiac cycle are excluded. α accounts for the time needed for preparation pulses
before the data acquisition window can start. ω is a safety margin at the end of the cardiac
cycle to account for heart rate variability, i.e. the detected resting phase should not be too
late in the cardiac cycle in case subsequent cardiac cycles during the 3-D acquisition are
shorter, which can lead to unstable measurements (Kim et al., 2001; Seifarth et al., 2007).
Based on the ground truth annotation of RPs, the α, and ω are empirically chosen to be
80 ms. The RPs can be determined with an absolute threshold from the motion values.
The frames with motion values lower than the absolute threshold value are assigned as RPs
which can be described as follows:

RP (t) =

{
1, m(t) < τ, t ∈ Tvalid

0, m(t) ≥ τ, t ∈ Tvalid

where τ is the absolute threshold value, andm(t) is the obtained motion value at trigger time
t. The threshold value is obtained based on sensitivity (true positive rate) and specificity
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(true negative rate) analysis from manual annotations. The optimal absolute threshold is
chosen as the one achieved with best balanced accuracy.

2.6 Data

2.6.1 Training and Validation Dataset for the RCA Detection Network

Data used for training and evaluating the RCA detection network was acquired on 1.5T and
3T clinical MRI scanners (MAGNETOM Aera, Avanto, Prisma, Skyra, Trio TIM; Siemens
Healthcare, Erlangen, Germany) at multiple centers (n=1000). The dataset was split into
70% training, 15% validation and 15% testing set for the RCA detection. Details about the
datasets used for training, validating, testing the RCA detection network, and evaluating
the classified resting phases are shown in Table 2. A medical expert with more than 10 years
of cardiac MRI experience manually annotated the RPs on 76 datasets from the testing set
for the analysis of the system.

2.6.2 Study Dataset

Data used for evaluating the proposed system was acquired on 1.5T and 3T clinical MRI
scanners (MAGNETOM Aera, Avanto fit, Skyra, Skyra fit, Sola, Vida; Siemens Healthcare,
Erlangen, Germany) at multiple centers (n=102). The proposed system was integrated into
the scanner software and tested online. The dataset from the study was not used for
training, testing the RCA network or the threshold analysis, and was not mixed with the
RCA Detection Network dataset. The test datasets consist of non-pre-selected patient data
with a minimum heart rate of 35 and a maximum heart rate of 97 who are clinically referred
for coronary assessment. None of the patients have not received beta-blockers or a target
heart rate was determined. Details about the study datasets are listed in Table 2.

2.7 Experiments

2.7.1 Localization

The RCA detection is validated by calculating the mean and standard deviation of the
Euclidean distance between the predicted pixel coordinates and the ground truth pixel
coordinates.

Distance Error =
1

N

N∑
n=1

(
1

T

T∑
t=1

∥p̂t,n − pt,n∥2
)

(4)

where N denotes the number of annotated test dataset, T the number of time frames in each
CINE series and p̂ the predicted and p the ground truth RCA position. The robustness and
performance of the network was qualitatively validated on 12 oblique and diverse oriented
4CH CINE and 9 clinically acquired unseen study dataset with different field strength
scanners. Further, the network was evaluated by a box plot showing the performance of the
prediction at each frame.

8



Automated Cardiac Resting Phase Detection

Table 2: Statistics about the data population and acquisition used for training and testing
the RCA detection network, and of the additional unseen study dataset.

RCA Detection
Network Dataset
(Resting Phase
annotation)

Study Dataset

Number of
patients

1000
(76)

102

Age 55.0 ± 19.0
(59.0 ± 17.2)

39.3 ± 10.9

Gender 64 % male
(68% male)

69% male

Heart Rate
[bpm]

64.7 ± 11.6
(68.0 ± 13.2)

70.1 ± 12.3

Field Strength 25%1.5T , 75%3T
(46%1.5T ,
54%3T )

22%1.5T , 78%3T

Spatial Resolution
[mm2]

1.4 ± 0.1
(1.5 ± 0.2)

1.7 ± 0.1

Temporal Resolution
[ms]

33.8 ± 9.9
(35.8 ± 6.8)

37.3 ± 7.8

FOV
[mm x mm]

311.3 ± 30.6
344.4 ± 26.9
(312.2 ± 31.7
357.4 ± 23.6)

283.5 ± 9.2
345.9 ± 8.9

Number of Frames 25.8 ± 2.3
(25.6 ± 1.6)

26.0 ± 2.0

2.7.2 Motion Quantification

In order to find the best approach to quantify motion values, several approaches were
evaluated on the annotated datasets for quantifying RCA motion from a cropped CINE
series. The first approach is to quantify motion based on the distance between detected
pixel coordinate over each adjacent time point as follows:

mdist(t) = ∥pt − pt+1∥ (5)

The second is to aggregate the magnitudes of the deformation fields within the ROI without
the Gaussian weighting using percentile or mean:

mpct(t) = ηn{∥dt(x)∥ |x ∈ ROI, or} (6)

mmean(t) = mean{∥dt(x)∥ |x ∈ ROI} (7)

where ηn is the nth percentile.
Our last proposed approach is to aggregate the weighted deformation field magnitudes to
calculate the motion values as described in the following:

mwpct(t) = ηn{Gt(x⃗) · ∥dt(x)∥ |x ∈ ROI, or} (8)
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mwmean(t) = mean{Gt(x) · ∥dt(x)∥ |x ∈ ROI}, (9)

where ∥dt(x)∥ is the magnitudes of the deformation fields. The percentile analysis is per-
formed to quantify motion from the deformation fields, which is based on calculating the
balanced accuracy, sensitivity and specificity by varying n from 10th to 100th by 10th per-
centile steps. Further, the mean value is calculated as well, and compared with the percentile
analysis. In addition, the motion values of the above mentioned 9 clinically acquired dataset
are extracted and qualitative validated.

2.7.3 Threahold Analysis

The analysis for finding the optimal threshold value to determine the RPs from the quanti-
fied motion value is performed by the binary classification task with varying the threshold
τ from 0.01 to 1 by 0.01 steps by calculating the sensitivity and specificity. The analysis is
performed separately for 1.5T and 3T and using the annotated datasets. The performance
with the selected threshold τ is analyzed based on area under curve (AUC) from the receiver
operating characteristic (ROC) curve (Swets, 1979), and confusion matrices are evaluated
on testing and study datasets. For all different approaches of motion quantification, the
threshold analysis is performed such that each approach can be fairly compared. Based on
thresholding, the accuracy of classified RPs is evaluated as described in section 2.5.

2.7.4 RP Classification

To evaluate the performance of RP classification, the mean absolute error (MAE) and the

standard deviation between the system predicted R̂P and annotated start and end time
points of systolic and diastolic RP are calculated as follows:

MAEλ,µtype =
1

N

N∑
n=1

∣∣∣∣R̂P λ,µN,type
−RPλ,µN,type

∣∣∣∣,
whereλ ∈ start, end of RP, µ ∈ window, frame

The number of RP annotated dataset is denoted as N , and the type can be the classified
systolic (sys) or diastolic (dia) RP. The performance was validated by two different mea-
sures, firstly the difference of the time window and secondly, the number of images between
the predicted and ground truth annotation. The time window specifies the accuracy in
milliseconds, whereas the frame in number of images. The validation was performed on
the testing datasets in which the RPs are manually annotated by a medical expert used
for the threshold analysis. The performance of the system was analyzed based on Bland-
Altmann analysis. The RPs was not counted when it was very short (<30 ms, n=10), i.e.,
not resolvable by the temporal resolution of the acquisition. Additionally, the results of the
system validation were presented by sensitivity, specificity and accuracy. To overcome the
imbalanced classes (RP, no RP), the balanced accuracy is calculated based on true positive

rate, and false true negative rate as follows: Accuracy = (TPR+TNR)
2 , where TPR is true

positive rate, and TNR true negative rate. Further, the ranges of each annotated RP type
and predicted RP type were compared.

10



Automated Cardiac Resting Phase Detection

Figure 3: The robustness of the RCA detection network is shown in a subset of the unseen
dataset. For each case, the 4CH input is shown with a bounding box in red and the cropped
image next to it for a total of 12 cases.

To evaluate the robustness of the proposed system, different CINE sequences (Cartesian
segmented, Cartesian segmented with small field-of-view, Cartesian segmented Compressed
Sensing Prototype (CS), Cartesian Real-time CS, Radial real-time) were acquired and the
predicted RPs of each sequence were compared with each of the expert annotation. Further,
the computation time of the proposed system was measured at the beginning and the end
of the proposed system.

3. Results

3.1 Localization

The mean and standard deviation error between the prediction and ground truth of the
fully convolutional 3-D DenseNet with 122 layers was 4.6 ± 1.8 mm. The box plot in Figure
5, shows the Distance Error in mm between the p̂ and the p in each frame. Robustness
results for unseen datasets are presented in two ways, first in Figure 3 which shows the
performance on oblique and diverse oriented cases (n=12) and second in Figure 4, which
visualized the worst cases. The quantitative localization results of a part of the study
dataset (n=9) acquired with breath-hold and free-breathing CINE sequences are shown in
Figure 6 above. The first frame of each CINE series and the corresponding RCA cropped
series are shown. Each case was visualized with the first frame of the corresponding CINE
series marked with a red box showing the position of ROI defined based on the network
prediction and beside it with the cropped series enclosing the area with the outer edge of
the cross-section of the RCA overlayed with the generated heatmap.

3.2 Motion Quantification

The motion values obtained by calculating the distance between the predicted pixel co-
ordinates in each adjacent time points achieved 61.1% accuracy for 1.5T, and 52.8% for
3T. As the motion quantification analysis in the Table 3 shows, the 50th percentile/median
of Gaussian weighting achieved 90.1% accuracy, whereas the accuracy was 87.2% without
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Figure 4: The worst cases on the test dataset of the RCA detection network are visual-
ized (n=4). The blue dot represents the predicted landmark position, the orange dot, the
expert’s annotation and the red box, the ROI defined based on the predicted landmark po-
sitions, respectively. Despite incorrect detection, the annotation landmark is still invariably
included in all ROI windows.

Figure 5: A box plot showing the performance of the 122-layer 3-D DenseNet in each time
point is illustrated. Orange line represents the median value and the green triangle, the
mean value.

weighting the deformation field. The median performed 91.0% accuracy for 1.5T and 88.9%
for 3T. The best accuracy achieved by taking the mean metric was 89.3%, without Gaus-
sian weighting. The motion values quantified based on the median approach with Gaussian
weighting in 9 clinically acquired dataset are shown in Figure 6 bottom.
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Figure 6: Overview of the first frame of 9 different RCA series highlighted with a generated
heatmap, which center point is taken from the predicted coordinate by the 3-D DenseNet
trained for detecting the RCA pixel coordinate (A). The quantified motion value and clas-
sified RPs corresponding to each dataset are shown below (B). The vertical dashed line
represents the window of interest as described in 2.5. The horizontal dashed line represents
the selected threshold value. The lower the motion value, the less motion exists in the
frame.

13



Yoon et al.

Table 3: The analysis of motion quantification. Two approaches by using the Gaussian
weighting of the magnitude of the deformation fields, or without any weighting have been
compared for varying the percentile and taking the mean value.

Metric Percentile Accuracy Sensitivity Specificity Threshold [a.u.]

mdist - 71.4 50.5 92.3 0.50

mpct 10th 75.1 55.5 94.6 0.08
mpct 20th 81.5 67.3 95.8 0.13
mpct 30th 84.1 72.2 96.0 0.18
mpct 40th 86.9 77.6 96.2 0.23
mpct 50th 87.2 78.1 96.4 0.28
mpct 60th 87.7 80.1 95.3 0.34
mpct 70th 86.5 76.2 96.7 0.38
mpct 80th 83.2 69.0 97.5 0.42
mpct 90th 81.7 65.8 97.7 0.49
mpct 100th 78.3 61.6 95.1 0.68
mmean - 89.3 84.7 93.9 0.34

mwpct 10th 62.4 29.5 95.2 0.01
mwpct 20th 72.8 51.9 93.6 0.03
mwpct 30th 82.7 74.2 91.2 0.07
mwpct 40th 87.4 80.8 94.0 0.12
mwpct 50th 90.1 85.4 94.8 0.20
mwpct 60th 88.0 78.9 97.2 0.28
mwpct 70th 85.8 74.4 97.2 0.42
mwpct 80th 85.1 73.4 97.0 0.62
mwpct 90th 83.6 71.2 96.0 0.98
mwpct 100th 66.4 33.2 99.5 1.0
mwmean - 86.2 76.6 95.8 0.36

3.3 Threshold Analysis

For each percentile and mean analysis, the threshold τ selected based on binary classification
task is listed in the right column in the Table 3. From the motion values obtained by taking
the median, the selected τ was 0.2. The resulting ROC curve is plotted in Figure 7, and
the accuracy over each threshold step is plotted in Figure 7 in the top row, in which the
threshold τ is marked by an orange vertical line. On the below row in Figure 7 shows the
confusion matrices of each annotated datasets. On the above one, the performance of the
threshold on the testing dataset is shown, while on the below one the performance of the
threshold on the study dataset is displayed.

3.4 RP Classification

The detailed results about the performance of the predicted systolic and diastolic RP on
the study datasets are listed in Table 4, Table 5. The Bland-Altmann plots showing the
performance of start and end detected time point for each systolic and diastolic RP is
shown in Figure 8. MAEstart,end window/framesys

and MAEstart,end window/framedia
for 1.5T

datasets was 11.8 ± 16.5 ms (0.38 ± 0.53 frame) and 14.2 ± 18.9 ms (0.48 ± 0.63 frame)
for 3T datasets. By using the selected τ , the proposed system resulted in 93.4% accuracy,
sensitivity at 90.1% and specificity 96.8% for 1.5T and 92.6%, 90.7% and 94.5% for 3T
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Figure 7: Upper Left: the ROC curve from the threshold analysis is shown. Upper Right:
the accuracy plot over the threshold values is shown. The best performed threshold value,
0.2 is marked in orange vertical line. Below Left: the confusion matrix showing the perfor-
mance of binary classification task by taking the best threshold value on testing datasets.
Below Right: the confusion matrix showing the performance by taking the best threshold
value on study datasets. In each measure, the counts and rate in percentage are listed.
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Table 4: The results of the system on the unseen study datasets are listed. In the first
row, the difference between the start and end RP and expert annotations are shown. In the
second row, the difference of start and end systolic and diastolic RPs are shown in frame.

Magnetic Field Number
datasets

Threshold Start Systolic
RP [ms]

End Systolic
RP [ms]

Start Diastolic
RP [ms]

End Diastolic
RP [ms]

1.5T N=22 0.20 14.4 ± 19.8 15.0 ± 16.9 5.7 ± 13.1 12.2 ± 16.1

3T N=80 0.20 19.7 ± 22.4 12.2 ± 16.6 15.8 ± 21.3 8.9 ± 15.2

1.5T & 3T N=102 0.20 18.7 ± 22.1 12.7 ± 16.7 13.2 ± 20.0 9.7 ± 15.5

Magnetic Field Number
datasets

Threshold Start Systolic
RP [Frame]

End Systolic
RP [Frame]

Start Diastolic
RP [Frame]

End Diastolic
RP [Frame]

1.5T N=22 0.20 0.46 ± 0.63 0.54 ± 0.63 0.16 ± 0.36 0.37 ± 0.48

3T N=80 0.20 0.70 ± 0.82 0.43 ± 0.59 0.49 ± 0.63 0.28 ± 0.49

1.5T & 3T N=102 0.20 0.66 ± 0.80 0.45 ± 0.60 0.40 ± 0.59 0.31 ± 0.49

Table 5: Accuracy, sensitive and specificity are listed with the optimally defined threshold.

Magnetic Field Number
datasets

Threshold Accuracy Sensitivity Specificity

1.5T N=22 0.20 93.4 90.1 96.8

3T N=80 0.20 92.6 90.7 94.5

1.5T & 3T N=102 0.20 92.7 90.5 95.0

datasets. MAEstart,end window/framesys
andMAEstart,end window/framedia

was 13.6 ± 18.6 ms

(0.46 ± 0.62 frame) when using the datasets independent from field strength for analysis.
The accuracy, sensitivity and specificity achieved by the defined absolute τ , <0.2, was
92.7%, 90.5% and 95.0%. The automatically classified RPs resulted in a mean max error
of 30 ms, meaning that it deviates by roughly one frame. The datasets with RPs with
less than 30 ms were discarded (n=9). Further, there was no systolic RP annotated by the
expert in 14 cases, and no diastolic RP in 12 cases. These phases were excluded from the
analysis. The R̂P start windowsys matched with the annotation, or was off one frame in 93.6%,

the R̂P end windowsys in 97.5%, the R̂P start windowdia
in 93.8% and R̂P end windowdia

in 96.3%,

respectively. R̂P start windowsys was detected earlier/later than the expert’s annotation in

27.8%/5% and R̂P start windowdia
in 20.9%/16.0%. R̂P end windowsys was detected earlier/later

than the expert’s annotation in 11.4%/29.1% and R̂P end windowend
in 15.2%/14.8%. In

average, the R̂P start window was selected earlier than the ground truth in 24.3% of the cases
and later in 10.6%. In 10 cases, outliers were present, off by 2 or more frames. In 10
cases, there were outliers present for the R̂P start window, off by 2 or more frames. For the
R̂P end frame, it was off by 2 or more frames in 5 cases.
The range of annotated systolic RP was 61.1 ± 24.1 ms and the predicted range of systolic
RP was 75.5 ± 32.9 ms. Further the range of annotated diastolic RP was 156.0 ± 102.1 ms
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Figure 8: Top: the difference between the predicted and expert annotations of start and
end systolic RP are shown in Bland-Altmann plot. Bottom: the difference between the
predicted and expert annotations of start and end diastolic RP are shown. The blue dots
represent the exact match between the predicted and annotation, and the orange dots show
when there is one frame difference. The gray dots represent when the difference is more
than 2 frames.
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Figure 9: An example of a study case with 6 different CINE sequences. On the left (A), the
first frame of each CINE series and the output of the cropped series are shown. Each color
represents one sequence acquisition. On the top right (B), the quantified motion values of
each RCA cropped series are plotted over the time points. On the bottom right (C), the
classified RPs of each are shown with the expert’s annotation, which is marked in orange
color. The RR interval of the real-time CINE acquisitions varied from the segmented CINE,
which caused early detection of the RPs.

and the predicted range was 158.2 ± 104.3 ms. In Figure 9, the robustness of the proposed
system is shown in which the system was tested in different sequences including a rescan
from a single volunteer. The visualized different CINE outputs are acquired in the order
from top to bottom and with 5min between the first and last acquisition. The predicted
start and end systolic phases were matched with annotation in most cases, except in one
CINE sequence, where the systolic RP was detected by the system but not by the expert,
and in a repeat scan, the end time point was off one frame. The start diastolic RP was
detected one frame earlier in 2 cases, and end diastolic RP was detected two frames off
in real-time sequences. In an example case, the automatically detected RPs were used for
the later 3-D static cardiac acquisition targeted to the RCA. The 3-D RCA visualization
with the automatically classified RPs showed no residual motion artifacts (Figure 10). The
computation time of the proposed system was averaged 1.5 seconds.

4. Discussion

The detection of the RCA ROI is successfully and robustly performed by the 3-D DenseNet
on the testing dataset and on the study cases. The 3-D based Conv networks leverage the
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RCA localization

Systolic resting phase

Diastolic resting phase

ROI cropping

Static coronary imaging

Figure 10: An example of a volunteer study illustrated with the main steps of the framework
pipeline. The outputs are generated directly from the scanner after the proposed system
was integrated online. The RCA localization series is the original CINE series with an
RCA position marked by a cross. The ROI cropping generated the cropped series based on
the RCA localization. From these cropped series, the motion is quantified, from which the
RPs are determined. The series that represent the systolic and diastolic resting phase are
generated as well. Here, the diastolic resting phase window (dark blue arrow) is applied for
the static coronary imaging.

spatial and temporal information from the time-resolved input, rather than learning only
spatial information per time point. The size of the fixed ROI (50 × 50mm2) was sufficient
in all cases for depicting the RCA at each time point. Further, the network was robustly
performed on diverse oriented cases (Figure 3) and different CINE sequences (Figure 9)
which allows the proposed system to be integrated into different clinical protocols.
In terms of quantifying motion values, the approach of taking the Euclidean distance from
the predicted RCA pixel coordinate over cardiac phases highly relies on the performance of
the network, furthermore, taking the pixel distance measurement for the displacement met-
ric of the anatomy-of-interest between the consecutive frames was not accurate as shown in
Table 3. The approaches deriving from the motion values by taking the deformation fields
defined by the elastic image registration show a clear advantage, from which the highest
accuracy was the one using the weighted deformation fields (see in Table 3). The approach
with deformation fields is clearly more robust to slight inaccuracies of localization results.
The Gaussian weighting further improves the performance of the system, as it allows to
focus on the target-of-interest, and eliminates the area which is not of interest, such as the
blood flow in the atrium contained in the RCA ROI.
The metric for assessing the motion values from the weighted deformation fields was rea-
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sonably chosen as 50th percentile by the accuracy analysis. The absolute threshold value is
selected based on AUC-ROC analysis, evaluated on the testing datasets from the different
1.5T, 3T scanners and CINE sequences and no specific data selection, thus shows versatil-
ity in the results (Figure 7). The classification of the RP by the absolute threshold value
is possible due to the quantitative outputs of the deformation field-based approach which
enables the detection of the phases with minimal motion, which can be either end-systolic
or mid-diastolic or end-systolic and mid-diastolic RPs. In Figure 7, the quantified motion
values of the clinically acquired dataset with different CINE sequences and the correspond-
ing predicted RPs were well matched with the expert’s annotation. As shown in Table
4, Table 5, the proposed framework performed robust in different field strengths as well.
Interestingly, in the dataset visualized in the center, there was no RP found by a medical
expert, and the proposed system was also able to classify the non-RP case demonstrating
the advantage of the system. In such cases, the system gives the user the possibility to take
the quantified curve as a reference and select the phase with minimum motion based on the
motion curve.
Based on the Bland-Altmann plots (Figure 8), the systolic RP did not perform as well as
the diastolic RP, especially the classification of the start systolic RP was challenging. The
predicted systolic RP window was usually slightly longer than the experts’ annotations.
However, the mean range difference was 15ms, which is negligible since the temporal res-
olution of CINE series is 30ms. In a recent study, the proposed system was evaluated in
a clinical validation, in which the interobserver variability was extensively validated and
revealed that the automatically detected RPs were consistent with those of the experts
(Ogawa et al., 2022). As shown in Figure 10, the RCA was sharply visualized without
severe residual motion artifacts that was acquired during the automatically detected RPs.

The study presents some limitations. First, the proposed method depends on two factors:
the performance of the RCA localization network and the registration algorithm that may
lead to inaccurate results in the presence of severe artifacts in reconstructed CINE series,
even though the network performed well on difficult cases as shown in Figure 3 and Figure
4. Second, the absolute thresholding used for classification, can be further investigated,
whether other algorithms can be used for binary classification. Third, in this study, the
focus was highly on method evaluation on patient dataset, however the clinical feasibility
and interobserver variability study using this method was performed in (Ogawa et al., 2022).
In the following research, a further clinical study can be of interest to compare the image
quality between once acquired with the automatic approach and the other with manually
determined resting phases.

Previous methods have shown the feasibility to detect the imaging acquisition win-
dow automatically using the shim box volume positioning and cross-correlation calculation
(Jahnke et al., 2005; Ustun et al., 2007). However, these semi-automated methods still
require the careful positioning of the shim volume coverage. Further, the RP detection is
targeted to the whole heart instead of a specific anatomy of interest. These methods were
validated on healthy in vivo subjects on a single field strength. Moreover, approaches based
on the standard deviation of pixel intensity (Huang et al., 2014) or difference of gradient
magnitudes (Piccini et al., 2017) were introduced, allowing the RP detection in real time.
This method however performs the RP detection globally based on the entire field-of-view,
and the detected RPs are always two RPs as the search is done by two local minima. Several
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approaches have been proposed for the automated determination of targeted RP on regions
such as RCA (Sato et al., 2009; Asou et al., 2018). A template matching was performed for
finding the area with the outer edge of the cross-section of the coronary artery, however the
template was defined based on randomly selected five datasets (Sato et al., 2009). In a more
recent study, the regions were extracted from the high-speed component within CINE series
by the frequency domain analysis, however by doing so, the cardiac anatomy structures can
be disregarded. The authors stated that this method was validated on healthy volunteers,
and uncertain the performance on large dataset especially with high heart rates. In Adam
et al. (2020), the deep learning-based RP detection network is built by combining the CNN
and Long short-term memory models taking the CINE series as input, and outputs the
binary output which is either a RP or not a RP. Therefore, this method is not quantitative
and unclear which cardiac structure is weighted, or whether the network tries to detect
global RP.

5. Conclusions

To our knowledge, this proposed study is the first to present the fully automated localized
RP detection framework from a CINE series that was validated with a large dataset with
multiple 1.5T and 3T scanners acquired with different CINE protocols, such as with free-
breathing or breath-held techniques. We investigated the robustness and feasibility of the
proposed system for fully automated systolic and diastolic RP detection. The proposed
system can improve the workflow efficiency, automation, and standardization of the static
cardiac imaging that broaden the applicability towards any static cardiac imaging. The RP
detection system can be applied in various applications, such as 2-D and 3-D LGE, mapping,
3-D coronary imaging, or any other applications in which the information of RP of heart
can be useful. Future work will focus on clinical validations, improving the accuracy of RP
classification and integration of automatic detection of other regions, such as the atria and
ventricles.
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