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Abstract

We propose the Generalized Probabilistic U-Net, which extends the Probabilistic U-Net by
allowing more general forms of the Gaussian distribution as the latent space distribution
that can better approximate the uncertainty in the reference segmentations. We study the
effect the choice of latent space distribution has on capturing the variation in the reference
segmentations for lung tumors and white matter hyperintensities in the brain. We show
that the choice of distribution affects the sample diversity of the predictions and their
overlap with respect to the reference segmentations. We have made our implementation
available at https://github.com/ishaanb92/GeneralizedProbabilisticUNet

Keywords: Deep learning, Image segmentation, Uncertainty estimation, Bayesian ma-
chine learning

1. Introduction

Image segmentation may be posed as a supervised classification task with a deep learning
system trained using manually created rater labels, producing a segmentation map by esti-
mating per-voxel class probabilities. A shortcoming of standard deep learning approaches
is that they produce point estimate predictions and not an output distribution from which
multiple plausible predictions can be sampled (Kendall and Gal, 2017). This disadvantage
is highlighted when multiple segmentations per image are available, which standard deep
learning approaches cannot leverage. Inter-rater variability reflects the disagreement among
raters and ambiguity present in the image, and ideally, a supervised learning approach needs
to reflect this uncertainty for unseen test cases (Jungo et al., 2018).

The uncertainty present in a prediction can be decomposed into uncertainty originating
from the model (epistemic) and uncertainty originating from the data (aleatoric) (Armen
Der Kiureghian and Ditlevsen, 2009). Epistemic uncertainty can be reduced by making
more data available to train a classifier, but aleatoric uncertainty is irreducible (Kendall and
Gal, 2017). Bayesian techniques to estimate epistemic uncertainty in deep learning models
usually involve producing multiple outputs by sampling model parameters from an approxi-
mating distribution (Gal and Ghahramani, 2016; Blundell et al., 2015; Kingma et al., 2015;
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Teye et al., 2018). The most popular among these, MC-Dropout (Gal and Ghahramani,
2016), estimates pixel-wise uncertainty using dropout (Srivastava et al., 2014) to sample
model parameters over multiple passes. Where multiple segmentations are available, it has
been shown that regions of high estimated uncertainty reflect human disagreement (Jungo
et al., 2018; Chotzoglou and Kainz, 2019; Jensen et al., 2019). While this technique is
sufficient to produce good pixel-wise uncertainty estimations, it may produce spatially in-
consistent segmentations (Kohl et al., 2018).

Techniques that are not explicitly Bayesian in nature, like model ensembles (Lakshmi-
narayanan et al., 2017), have been a popular choice to obtain good quality segmentations
and well-calibrated epistemic uncertainty estimates (Kamnitsas et al., 2018; Mehrtash et al.,
2020). However, training a model ensemble has a large computational overhead. In Rup-
precht et al. (2017) the authors propose a network architecture with multiple outputs (or
M-Heads) that share a common backbone network, which can mimic an ensemble with a
lower compute footprint. Thus, the model ensemble and M-Heads are not scalable because
the number of models (or M-Heads) are fixed during training. Furthermore, the outputs
produced by ensembles may be unable to capture the diversity in the reference segmenta-
tions and fail to produce rare variants in the output distribution (Kohl et al., 2018).

Techniques that estimate aleatoric uncertainty use an approximating distribution for
the input (Wang et al., 2019), output (Kendall and Gal, 2017; Monteiro et al., 2020), or
intermediate layers (latent space) (Sohn et al., 2015; Kohl et al., 2018). Samples drawn
from this approximating distribution are used to quantify the uncertainty.

Test-time augmentation (TTA) (Wang et al., 2019) is an uncertainty estimation tech-
nique that estimates aleatoric uncertainty by generating multiple plausible outputs using
transformed versions of the input. In Kendall and Gal (2017) the authors induce a Gaussian
distribution over the output feature map and estimate the mean and standard deviation for
each logit. Since there is no correlation between pixels, the samples produced are not realis-
tic and the quantified uncertainty is poor (Jungo et al., 2020). To address this short-coming,
Monteiro et al. (2020) use a Gaussian distribution with a low-rank parameterization of the
covariance matrix to model the joint distribution over the output logits, to produce diverse
and plausible outputs.

In Kohl et al. (2018) the authors combine the conditional variational autoencoder (Sohn
et al., 2015) framework with the popular U-Net (Ronneberger et al., 2015) architecture to
create the Probabilistic U-Net to estimate aleatoric uncertainty by leveraging labels from
multiple annotators. Different plausible variants of the prediction are computed by sampling
from the (learned) latent space and combining this sample with the highest resolution feature
map of the U-Net.

In Hu et al. (2019) the authors extend the Probabilistic U-Net to capture epistemic
uncertainty by using variational dropout (Kingma et al., 2015) over the model weights. The
PHISegNet (Baumgartner et al., 2019) shows a further improvement in sample diversity by
using a series of hierarchical latent spaces from which samples are combined with the U-Net
feature maps at different resolutions.

The Probabilistic U-Net and its hierarchical variants use an axis-aligned Gaussian dis-
tribution to model the distribution over the latent space. However, techniques such as
normalizing flows (Rezende and Mohamed, 2015), which convert simple distributions into
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complex ones via invertible transformations, have been shown to be a promising alternative
to model the latent space distribution (Selvan et al., 2020).

Given the success of the Probabilistic U-Net (and its hierarchical variants) at estimating
the aleatoric uncertainty (Kohl et al., 2018; Baumgartner et al., 2019), and the improve-
ment shown by methods using more complex distributions to approximate the distribution
over the latent space (Selvan et al., 2020), we propose the Generalized Probabilistic U-Net
that can use more general forms of the Gaussian distribution to model the latent space
distribution to better approximate the uncertainty in the reference segmentations.

In this paper, we extend our previous work (Bhat et al., 2022) with the following addi-
tions:

• Inclusion of an additional dataset of white matter hyperintensities in the brain (Kuijf
et al., 2019)

• Estimation of the covariance matrix of the latent space distribution using a low-rank
factor matrix (Section 2.2.2)

• Inclusion of popular uncertainty estimation techniques and additional experiments
(Section 3.3)

Section 2 provides background on variational inference (Section 2.1) and describes our
additions to the Probabilistic U-Net framework to allow more general forms of the Gaussian
distribution to be used as the latent space distribution (Section 2.2). Section 3 describes
the datasets used (Section 3.1), neural network training (Section 3.2), and the evaluation
metrics used to quantify performance (Section 3.3). In Section 4, we present our results
and discuss their implications.

2. Methods

2.1 Background

Variational inference (VI) (Wainwright and Jordan, 2007) is a tool to approximate complex
probability distributions in a scalable and computationally efficient manner. Variational
autoencoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014), a class of deep
latent variable models, were developed to perform generative modelling with possible one-
to-many mappings. They do so by learning a distribution over the latent variables using
variational inference, and sample from this distribution to generate multiple plausible out-
puts. In Sohn et al. (2015) the authors created a conditional variant (cVAE) to handle
structured prediction problems like image segmentation.

In a medical image segmentation problem, we typically have an image x ∈ RH×W and
label y ∈ {0, 1}H×W and the goal is to produce accurate and coherent samples from the
distribution pθ(y|x) using a deep neural network parameterized by θ. To enable tractable
sampling from pθ(y|x), simple distributions pϕ(z|x) and qψ(z|x, y) are used as approxima-
tions for the true prior and posterior distributions over the latent space respectively. The
distributional parameters for qψ(z|x, y) and pϕ(z|x) are learnt by neural (sub-)networks
parameterized by ψ and ϕ respectively.

The training objective for the cVAE is minimizing the KL-divergence between the true
and approximating posterior distributions (Sohn et al., 2015):

153



Bhat et al.

Image Prediction Label

U-Net

μ1
prior, Σ1

prior

Prior Enc.
pφ(z|x)

Posterior Enc.
qψ(z|x, y)

Sample z ~ qψ(z|x, y) 

Cross-entropy
loss

KL 
divergence

μN
prior, ΣN

prior

μ1
post., Σ1

post.

μN
post., ΣN

post.

π1

πN

γ1

γN

(a) Training

Image Prediction

U-Net

μ1
prior, Σ1

prior

Prior Enc.
pφ(z|x)

Sample z ~ pφ(z|x)  

μN
prior, ΣN

prior

π1

πN

(b) Inference

Figure 1: Generalized Probabilistic U-Net framework. In Figure 1a, the model learns prior
and posterior distribution parameters {µpriori ,Σprior

i , πi}Ni=1 and {µpost.i ,Σpost.
i , γi}Ni=1. In

the most general case, the prior and posterior distributions are modelled as a mixture of N
Gaussians, which can be reduced to a single Gaussian forN = 1. Similarly, different variants
of the multivariate Gaussian distribution can be modelled by constructing the covariance
matrix in the different ways described in Section 2.2. During inference, the posterior encoder
is discarded, and different plausible outputs can be computed by sampling from the prior
distribution and combining this sample with the last U-Net layer.

LTr(θ, ϕ, ψ;x, y) = −Eqψ(z|x,y)[log pθ(y|x, z)] + β ∗KL(qψ(z|x, y)||pϕ(z|x)) (1)

In Equation 1, the first term is the expected value of the standard cross-entropy loss
computed under the posterior distribution. The second term is the Kullback-Leibler (KL)
divergence between the prior distribution, pϕ(z|x), and the posterior distribution, qψ(z|x, y).
This term acts as a regularization term that pulls the prior and posterior distribution closer
to each other by penalizing their differences (Kohl et al., 2018). This is desirable since the
posterior network is discarded during test-time. The β term controls the trade-off between
the segmentation and KL-loss terms (Higgins et al., 2017).

The reparameterization trick (Kingma and Welling, 2014) is used to generate samples
from qψ(z|x, y) in a computationally efficient manner. This trick is used to obtain an
unbiased estimate of the gradient of the expectation term Eqψ(z|x,y)[log pθ(y|x, z)] and make
it differentiable with respect to parameters ψ. Therefore, it is convenient if the distribution
chosen to approximate the latent space distribution supports the reparameterization trick.

2.2 Contributions

The cVAE (Sohn et al., 2015) uses an axis-aligned Gaussian to model the prior and posterior
distributions over the latent space. The Probabilistic U-Net (Kohl et al., 2018) combines
the VI framework of the cVAE with the U-Net (Ronneberger et al., 2015) architecture.
Additionally, it makes output computation efficient by merging the sample from the latent
space distribution at the last layer of the U-Net.
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We propose three extensions to this framework by using more general forms of the Gaus-
sian distribution as choices for the latent space distributions in order to better capture the
uncertainty in the reference segementations. Our generalized Probabilistic U-Net framework
is shown in Figure 1.

2.2.1 Full-covariance Gaussian

For a matrix to be a valid covariance matrix, it must be positive semi-definite. Since this
constraint is difficult to impose while training a neural network, the covariance matrix Σ is
built using its Cholesky decomposition L (Williams, 1996):

Σ = LLT

The matrix L is a lower-triangular matrix with a positive-valued diagonal. By masking the
upper-triangular section of the matrix and using the exponential operator to ensure positive
values on the diagonal, L can be directly computed by the neural network. Samples can be
drawn from the full-covariance Gaussian using the reparameterization trick (Kingma and
Welling, 2019):

z = µ+ L ∗ ϵ, ϵ ∼ N (0, I)

2.2.2 Full-covariance Gaussian with a low-rank parameterization

A limiting factor in modelling a Gaussian with a full covariance matrix using neural networks
is often the squared dependence between the size of the covariance matrix and dimensionality
of the random variable. In Barber and Bishop (1997) the authors use a low-rank factor
matrix P and a diagonal matrixD to build the covariance matrix used to model the posterior
distribution over the neural network weights. We use this technique to build the covariance
matrix Σ for our latent space distribution:

Σ = PP T +D

For a N -dimensional Gaussian distribution, D is a N -dimensional vector with the diag-
onal elements and P is a N × R factor matrix, where R is a hyperparameter that defines
the rank of the parameterization. The P and D matrices are computed as outputs of the
posterior and prior encoders. This low-rank parameterization also supports the reparame-
terization trick for sampling via the Cholesky decomposition of Σ (Monteiro et al., 2020).

2.2.3 Modelling of mixture of Gaussians

Any arbitrary (continuous) distribution can be modelled by a mixture of a sufficient number
of Gaussians, with appropriate mixture weights (Bishop, 2006). Mixtures of Gaussians
have been used to model posterior distributions in variational autoencoders for clustering
tasks (Jiang et al., 2017; Kopf et al., 2021).
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For example, the posterior distribution1 qψ(z|x, y) can be modelled as a mixture of N
Gaussians as follows:

qψ(z|x, y) =
N∑
i=1

γiN (µi(x, y),Σi(x, y))

The individual Gaussians in the mixture, N (µi(x, y),Σi(x, y)), are called the component
distributions and the weights for the component distributions, {γi}Ni=1, are the mixing co-
efficients. The individual Gaussians can be modelled using a diagonal or full covariance
matrix. For the distribution to be valid, the mixing coefficients must be greater than or
equal to 0 and sum to 1. Therefore, a categorical distribution can be used to define the
mixture distribution.

As explained in Section 2.1, a distribution chosen to model the posterior must support
differentiable sampling. To sample from a mixture of Gaussians, a component index is
sampled from the categorical distribution defined by the mixture coefficients and then a
value is sampled from the corresponding component (Gaussian) distribution.

i ∼ Cat(N ; γ)

z ∼ N (µi(x, y),Σi(x, y))

The second step in the sampling process is differentiable and supports the reparameteriza-
tion trick, however, the first step, that is, sampling from a categorical distribution is not
differentiable. To make sampling fully differentiable, we used the Gumbel-Softmax (GS)
distribution(Jang et al., 2017; Maddison et al., 2017) to model the mixture distribution.
The Gumbel-Softmax distribution is a continuous relaxation (defined by the temperature
parameter, τ) of the discrete categorical distribution, that supports differentiable sam-
pling via the reparameterization trick. To obtain a discrete component index, we perform
Straight-Through(ST) sampling (Jang et al., 2017), where we used the argmax operation
in the forward pass and used the continuous relaxation in the backward pass while com-
puting gradients used to update model parameters during training. With this, we used the
following two-step process to sample from the mixture of Gaussians:

i ∼ GS(N ; γ, τ)

z ∼ N (µi(x, y),Σi(x, y))

Unlike for a pair of Gaussians, the KL divergence for a pair of Gaussian mixtures does not
have a closed-form expression. We estimated the KL divergence in Equation 1 via Monte
Carlo sampling, which provides a good approximation (Hershey and Olsen, 2007).

3. Experiments

3.1 Data

3.1.1 LIDC-IDRI

The LIDC-IDRI dataset (Armato et al., 2011) consists of 1018 thoracic CT scans with lesion
segmentations from four raters. Like Kohl et al. (2018) and Baumgartner et al. (2019), we
use a pre-processed version of the dataset, consisting of 128×128 patches containing lesions.

1. This subsection holds true for the cVAE prior distribution as well. The only difference is the dependence
on the label, y, is dropped.
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Figure 2: Trends in the GED metric for LIDC-IDRI and WMH datasets using letter-value
plots. Best performing configurations in bold (multiple bold configurations indicate lack
of a statistically significant difference). The median is shown by a horizontal line segment,
and the innermost box is drawn at the upper and lower fourths, that is, 25th and 75th
percentiles. The other boxes are drawn at the upper and lower eighths, sixteenths and so
on. The GED was computed using 16 prediction samples.

Table 1: Neural network hyperparameters for LIDC-IDRI and WMH datasets. The number
of U-Net encoder and decoder blocks were fixed at 3, and the filter depths used were
32, 64, 128 for the first, second and third blocks respectively. The bottleneck layer had a filter
depth of 512. The numbers below each of the hyperparameters indicate the search space,
with square brackets indicating a full grid search among the values between parenthesis,
and curved brackets indicating random sampling in the range of values between parenthesis.

Model Hyper-parameters (LIDC-IDRI / WMH)

Latent space dimension β Rank Mixture components Temperature Dropout rate
[2, 4, 6, 8] [1, 10, 100] [1, 7] (1, 10) (0.1, 0.5) [0.1, 0.3, 0.5]

AA 6 / 4 1 / 1 - / - - / - - / - - / -
FC 2 / 2 1 / 1 - / - - / - - / - - / -
FC-LR 2 / 2 1 / 1 1 / 1 -/- - / - - / -
AA Mixture 4 / 4 1 / 1 - 5 / 3 0.36 / 0.20 - / -
FC Mixture 2 / 4 1 / 1 - 9 / 4 0.28 / 0.22 - / -
FC-LR Mixture 4 / 8 1 / 1 2 / 7 2 / 9 0.20 / 0.17 - / -
MC-Dropout - / - - / - - / - - / - - / - 0.3 / 0.3

We obtained a total of 15, 096 patches. We used a 60 : 20 : 20 split to randomly partition
the dataset into 9058, 3019, and 3019 patches for training, validation, and test respectively.
The intensity of the patches was scaled to [0, 1] range and no data augmentation was used.
We used the publicly available version of the pre-processed dataset from https://github.

com/stefanknegt/Probabilistic-Unet-Pytorch.
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3.1.2 White matter hyperintensities (WMH)

The WMH dataset (Kuijf et al., 2019) consists of 60 MR images collected from three centers:
University Medical Center (UMC) Utrecht (20 patients), VU University Medical Center
(VU) Amsterdam (20 patients), both in the Netherlands, and the National University Health
System (NUHS) (20 patients) in Singapore.

For each patient, a 3D T1-weighted and a 2D multi-slice FLAIR image were provided.
For each patient, the 3D T1-weighted image was registered to the FLAIR image using
the elastix (Klein et al., 2010) toolbox to create a two-channel image. A brain mask was
created from the FLAIR image using the ROBEX (Iglesias et al., 2011) technique, which was
applied to the T1-weighted image as well. All 60 images had white matter hyperintensities
annotated by three raters.

We used a 80 : 10 : 10 split to get 48, 6, and 6 patients for training, validation, and
test respectively. From each patient MR image, we only used slices that have at least one
non-empty segmentation. All images and labels were padded to be 256× 256 in dimension.
Each image was normalized using the (channel-wise) mean and standard deviation. During
training, we used random flips, random rotation, contrast, and brightness manipulation to
perform data augmentation.

3.2 Neural network training

For all datasets and models, we used the ADAM (Kingma and Ba, 2015) optimizer with
a learning rate of 10−4. Training was stopped when the validation loss did not improve
for more than 20 epochs, and the model parameters with the minimum validation loss
were saved. During each iteration, random sampling was performed to select a rater and
the corresponding ground truth segmentation was chosen to calculate the training loss and
perform parameter updates. We chose hyperparameters for both datasets and the different
configurations of the Generalized Probabilistic U-Net via a random grid search strategy.
The hyperparameters for all datasets and models are shown in Table 1.

To ensure comparability between models with different latent space distributions, we
maintain the same number of layers for the U-Net, the prior encoder, and the posterior
encoder. Furthermore, in accordance with the original Probabilistic U-Net architecture,
the prior and posterior encoder have the same architecture as the U-Net encoder. Each
convolution block in the model consisted of convolution with a 3 × 3 kernel, a ReLU non-
linearity and batch normalization (Ioffe and Szegedy, 2015). Downsampling is performed
via average pooling and upsampling is performed via bilinear interpolation.

The code for the neural network training and inference was developed using the Py-
Torch (Paszke et al., 2019) library.

3.3 Evaluation

We study different configurations of the Generalized Probabilistic U-Net by using different
distributions (Section 2.2) to model the latent space distributions. Additionally, we included
the popular uncertainty estimation techniques MC-Dropout (Gal and Ghahramani, 2016)
and model ensembles (Lakshminarayanan et al., 2017). We included the following models
in our experiments:
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Figure 3: GED divided into average IoU and sample diversity terms for the LIDC-IDRI
and WMH datasets. Best performing configurations in bold (multiple bold configurations
indicate lack of a statistically significant difference).

• Axis-aligned Probabilistic U-Net (AA) (Kohl et al., 2018)

• Full covariance Probabilistic U-Net (FC)

• Full covariance Probabilistic U-Net [Low-rank parameterization] (FC-LR)

• Mixture AA Probabilistic U-Net

• Mixture FC Probabilistic U-Net

• Mixture FC-LR Probabilistic U-Net

• MC-Dropout (Gal and Ghahramani, 2016)

• Model ensemble (Lakshminarayanan et al., 2017)

To ensure a fair comparison between the Generalized Probabilistic U-Net configurations
and the rest, MC-Dropout and model ensemble used the same U-Net architecture as the
Probabilistic U-Net variants. The model ensemble was created by training 16 models inde-
pendently using different random seeds. The dropout rate for the MC-Dropout model was
selected based on minimum validation loss. The dropout rate chosen for the WMH and
LIDC-IDRI datasets was 0.3.

We used the generalized energy distance (GED) metric (Kohl et al., 2018) to compare
how well the distribution of neural network predictions Ps matched the distribution of
ground truth labels Pgt.

D2
GED(Pgt, Ps) = 2E[d(S, Y )]− E[d(S, S′)]− E[d(Y, Y ′)] (2)

The distance metric between a pair of segmentations, d(x, y), is defined as 1−IoU(x, y) (Kohl
et al., 2018; Baumgartner et al., 2019). In Equation 2, S, S′ are samples from the prediction
distribution and Y, Y ′ are samples from the ground truth distribution. The expectation
terms in Equation 2 are computed via Monte Carlo estimation. We used 16 samples from
the prediction distribution to compute the GED. A lower GED implies a better match
between prediction and ground truth distributions.
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(a) LIDC-IDRI

(b) WMH

Figure 4: Example image, labels, and predictions for both datasets. The first row contains
the image and the ground truth labels made by the different annotators. The following
rows show 16 samples drawn from the prediction distribution (used to compute the GED).
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Figure 5: GED trends within the LIDC-IDRI test-set grouped by rater agreement. Best
performing configurations in bold.

We also studied the trends in the component terms of the GED metric. The first
term E[d(S, Y )] signifies the extent of overlap between samples from the prediction and
ground truth distribution, while the second term E[d(S, S′)] is the sample diversity in the
predictions. As a baseline for the overlap trends, we included results obtained on the test-set
using a single U-Net (Ronneberger et al., 2015). To provide context for the sample diversity
in the predictions, we included the diversity in the labels in our results. By investigating the
correlation of these terms with the GED metric, we studied the interplay between overlap
and diversity that lead to a better (or worse) match between distributions.

To study the effect the choice of latent space distribution has on capturing uncertainty,
we partitioned the test-set of the LIDC-IDRI dataset into four subsets, based on rater
agreement. The slices were assigned to one of the four subsets based on the number of
raters (1-4) that annotated a lesion in it.

We studied the influence of the rank (number of columns in P ) hyperparameter used to
construct the covariance matrix for the FC-LR configuration of the Generalized Probabilistic
U-Net. For each of the latent space dimensions in the hyperparameter search space (Table
1), we analysed the trends in the GED for the allowed values of the rank.

Lastly, we studied the effect the number of raters has on the ability of the model to
predictions that accurately match the ground truth distribution. To do so, we trained each
model on a sub-set of raters and evaluated their performance using segmentations from all
the raters.

To check for statistical significance of differences in the metrics for models, we performed
the Wilcoxon signed-rank test at a significance of 0.05.

4. Results and Discussion

Figure 2 shows the trend in the GED metric for both datasets. The results show that the
optimal choice of model, with respect to the median GED, depends on the dataset. In
Figure 2a, we see that the models using a mixture of Gaussians to model the latent space
distribution (Mixture FC and Mixure FC-LR) perform best with respect to GED for the
LIDC-IDRI dataset. In Figure 2b, the model ensemble performs best for the WMH dataset.

Furthermore, we see that the different configurations of the Generalized Probabilistic U-
Net do considerably better than MC-Dropout/model ensemble for the LIDC-IDRI dataset.
For the WMH dataset, we observed very similar performances by all the models studied.
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Figure 6: Influence of the rank hyperparameter on GED trends. Best performing con-
figurations in bold (multiple bold configurations indicate lack of a statistically significant
difference). For each latent space dimension z, rank ∈ [1, z − 1]. We include GED trends
for the full covariance (FC) configuration for each latent space dimension for comparison.

The GED results showed that there was no statistically significant difference between any
model pair except the model ensemble.

To explain model performances in Figure 2, we studied trends in overlap and diversity
terms in the GED equation (Equation 2), shown in Figure 3. A model that produces
predictions that have a higher overlap capture the common variants, whereas predictions
with a higher diversity can capture rarer variants in the output distribution. Therefore, the
GED, which essentially captures the distance between distributions, is determined by the
balance between diversity and overlap.

In Figure 3a, for the LIDC-IDRI dataset, we show that the Generalized Probabilistic
U-Net configurations have a lower average overlap, but higher diversity compared with the
MC-Dropout, ensemble, and U-Net models. Therefore, these models capture the common
outcome well, but fail to produce diverse outputs for the LIDC-IDRI dataset. Our results
show that the mixture models (Mixture FC and Mixture FC-LR) achieve an optimal com-
bination of overlap and diversity to emerge as the best performing models with respect to
the GED.

In Figure 3b, there is no statistically significant difference in the overlap trends between
a majority of the models. The results show that samples from the model ensemble have a
higher sample diversity compared to the rest of the models, leading to better performance
with respect to the GED metric.
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Figure 7: GED metric trends as number of raters is increased during training. During
evaluation, segmentations by all raters were used. Best performing configurations in bold
(multiple bold configurations indicate lack of a statistically significant difference).

In Figure 3 we see different trends for the LIDC-IDRI and WMH datasets. This relates
to the fundamental difference between the datasets, in particular, the structures of interest
and the variations therein. The difference between the datasets with respect to the inter-
rater agreement can be seen in Figure 4. In the example shown, the different raters produce
similar segmentations for the WMH dataset, whereas the differences are more noticeable for
the LIDC-IDRI example. The inter-rater variability trends can be seen in Figure 3, which
show that the WMH dataset has a lower diversity in its labels compared to the LIDC-IDRI
datasets. Furthermore, compared to tumors, hyperintensities are smaller structures and
therefore any variation present is extremely local. Our results (Figure 2) demonstrate that
model ensembles and MC-Dropout are better choices to capture spatially local variation,
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while Probabilistic U-Net variants are better at capturing more long-range variation and
increased rater disagreement.

The consequence of the overlap-diversity balance for the LIDC-IDRI dataset can be
seen clearly in Figure 5. For segmentations with larger degree of agreement between raters,
that is, where one out of four or four out of four raters agree on the presence of a lesion,
the MC-Dropout and ensemble models perform on par with the Generalized Probabilistic
U-Net configurations with respect to the GED metric. In the other cases, the Generalized
Probabilistic U-Net configurations do better since they are able to better estimate uncer-
tainty by also capturing the rarer samples from the label distribution. This is something the
MC-Dropout and ensemble were unable to do, leading to a mismatch between the prediction
and label distributions. Intuitively, it can be argued that the latent space of the Gener-
alized Probabilistic U-Net seeks to learn the distribution of labels as part of its training
objective, thereby enabling them to model the rarer variants and capture rater disagree-
ment. In contrast, MC-Dropout and model ensembles might produce diverse samples either
through sub-sampling of model weights (MC-Dropout) or differing optimization trajecto-
ries (model ensembles). This diversity might not correspond to the true distribution of the
labels because the objective function for these models usually correspond to maximising
accuracy.

Figure 6 shows the influence of the rank hyperparameter on the GED trends for both
datasets. Our results show that there is no clear relationship between the rank used to con-
struct the covariance matrix and the trends in the GED metric. A similar observation was
reported in Monteiro et al. (2020) when the low-rank factor method was used to construct
the covariance matrix for the logit (pre-softmax) layer. The results for the LIDC-IDRI
dataset show that for all latent space dimensions, there exists an FC-LR configuration that
outperforms the FC configuration. The difference between the FC and FC-LR configura-
tions lies in the method used to construct the covariance matrix, which might indicate that
the low-rank factor method is a better method. However, the trends for the WMH dataset
provide no such indication because there is no statistically significant difference between
the FC and best performing FC-LR configurations for the latent space dimensions studied.

Figure 7 shows changes in the GED metric trends as we increase the number of raters
used during training. The trends seen for the Generalized Probabilistic U-Net configurations
seem to be intuitive for both datasets, that is, using more than one rater during training
leads to an improvement in the GED on the test-set. However, the extent of generalization,
that is, the decrease in GED, is different for the different variants. For MC-Dropout and
the model ensemble, we observed little change in the GED trends as the number of raters
was increased. This shows that while these methods do produce predictions with some
variation, they do not really capture the inter-rater differences in any meaningful manner.

Our results show that achieving a good match between the prediction and ground truth
distributions depends on striking the optimal (with respect to the dataset) balance between
overlap and diversity. The structure of interest and variability between raters dictates the
choice of the model that achieves that optimal balance. The hyperintensities in the WMH
dataset are uniform in structure, with a larger agreement among raters. The Generalized
Probabilistic U-Net configurations fail to produce predictions that match the label distri-
bution, with the model ensemble being the best choice. On the other hand, the tumors in
the LIDC-IDRI dataset have a more varied structure (between different patients) and more
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variability in the segmentations (for the same patient) as compared to the WMH dataset.
Our results show that MC-Dropout and the model ensemble fail to capture this variability,
and the Generalized Probabilistic U-Net configurations are a better choice. Within the
Generalized Probabilistic U-Net configurations, we found models that used a mixture of
Gaussians to model the latent space distributions performed best.

All Generalized Probabilistic U-Net configurations showed poor performance in the sin-
gle rater scenario, when only annotations from one rater were used during training. How-
ever, the original Probabilistic U-Net framework was not designed for this scenario. Our
results confirm that using the (Generalized) Probabilistic U-Net is a suboptimal choice when
segmentations from only one rater are available for training.

We treated the number of Gaussians in the mixture model as a hyperparameter that
was fixed at the start of training. Future implementations could treat it as a learned
parameter, where the final number of Gaussians can be optimized during training. Similar
to Kohl et al. (2018) and Baumgartner et al. (2019), we used random sampling to select
ground truth segmentations during training. Studying the interplay between different label
fusion methods (Warfield et al., 2004; Jensen et al., 2019) and latent space distributions
is an interesting research direction. Our extensions to model more general forms of the
Gaussian distribution can easily be integrated into a hierarchical latent space model such
as PHISeg (Baumgartner et al., 2019). Future research could be directed at studying the
efficacy of different latent space distributions at different resolutions in a hierarchical model.

Our results show that the Generalized Probabilistic U-Net is a good choice for segment-
ing ambiguous medical images, where ambiguity is quantified by disagreement between
annotators. Furthermore, choosing more general forms of the Gaussian distribution as the
latent space distribution results in statistically significant improvements over the default
axis-aligned distribution, as measured by the GED metric on the (more ambiguous) LIDC-
IDRI dataset. It is therefore advised to explore alternative Gaussian distributions, since the
default choice of axis-aligned Gaussian for the latent space distribution is never the optimal
choice in our experiments.

5. Conclusions

Our work focused on extending the Probabilistic U-Net framework by going beyond the
axis-aligned Gaussian distribution as the de facto choice for the variational distribution.
Our results showed that the choice of model (or latent space distribution) is dictated by
the optimal overlap-diversity combination for a particular dataset. Therefore, investigating
the suitability of different latent space distributions for a particular dataset is beneficial.
The distributions studied in this paper can be used as a drop-in replacement for the axis-
aligned Gaussian in other extensions to the Probabilistic U-Net framework, like the class of
models using hierarchical latent spaces (Baumgartner et al., 2019), or as base distributions
for normalizing flow-based segmentation models (Selvan et al., 2020).
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