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Abstract

Cancer is a highly heterogeneous condition that can occur almost anywhere in the human
body. 18F-fluorodeoxyglucose (18F-FDG PET) is a imaging modality commonly used to
detect cancer due to its high sensitivity and clear visualisation of the pattern of metabolic
activity. Nonetheless, as cancer is highly heterogeneous, it is challenging to train general-
purpose discriminative cancer detection models, with data availability and disease com-
plexity often cited as a limiting factor. Unsupervised learning methods, more specifically
anomaly detection models, have been suggested as a putative solution. These models learn
a healthy representation of tissue and detect cancer by predicting deviations from the
healthy norm, which requires models capable of accurately learning long-range interactions
between organs, their imaging patterns, and other abstract features with high levels of
expressivity. Such characteristics are suitably satisfied by transformers, which have been
shown to generate state-of-the-art results in unsupervised anomaly detection by training
on normal data. This work expands upon such approaches by introducing multi-modal
conditioning of the transformer via cross-attention i.e. supplying anatomical reference in-
formation from paired CT images to aid the PET anomaly detection task. Furthermore, we
show the importance and impact of codebook sizing within a Vector Quantized Variational
Autoencoder, on the ability of the transformer network to fulfill the task of anomaly de-
tection. Using 294 whole-body PET/CT samples containing various cancer types, we show
that our anomaly detection method is robust and capable of achieving accurate cancer
localization results even in cases where normal training data is unavailable. In addition, we
show the efficacy of this approach on out-of-sample data showcasing the generalizability of
this approach even with limited training data. Lastly, we propose to combine model uncer-
tainty with a new kernel density estimation approach, and show that it provides clinically
and statistically significant improvements in accuracy and robustness, when compared to
the classic residual-based anomaly maps. Overall, a superior performance is demonstrated
against leading state-of-the-art alternatives, drawing attention to the potential of these
approaches.
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Multi-modal Transformers for Anomaly Detection

1. Introduction

Cancer is a disease affecting approximately one in two people over their lifetime (Ahmad
et al., 2015). In 2020 alone, over 19 million new cases were reported worldwide, a figure ex-
pected to rise by over 50% by 2040 (Sung et al., 2021). Although preventative measures can
be taken through dietary and lifestyle changes, often the first real line of defense is through
early diagnosis of which medical imaging plays a key role. Amongst imaging modalities, 18F-
fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) has one of the highest
detection rates for cancer (Liu et al., 2017; Endo et al., 2006). Through enabling the vi-
sualization of the glycolytic pathway, the efficacy of 18F-FDG PET is related to the high
metabolic rates of cancer cells (Almuhaideb et al.). As such PET may enhance cancer
staging, treatment planning, and the evaluation of patient responses to treatment (Kim
et al., 2015). PET is almost always coupled with CT, and more recently hybrid PET/MRI
scanners have been introduced into clinical practice. This allows anatomical localization of
18F-FDG uptake as well as attenuation correction of the PET signal. From an unsupervised
anomaly detection approach, using CT as an anatomical point of reference by combining
modalities can further enhance PET interpretability, exemplified in Fig 1.

Figure 1: 18F-FDG PET/CT Imaging. PET (left), CT (centre), combined CT-PET (right).
High intensity area in lower chest seen in PET and CT-PET scan shows cancer.
Note the non-cancer related high PET signal in the brain and kidney regions.

In clinical practice PET images are usually read in a qualitative manner, across a range
of clinically relevant tasks from staging, treatment planning, and surgical or therapy inter-
vention planning. Sensitivities can range as much as 35% for PET imaging depending on the
nuclear medicine/PET physician and cancer type (Newman-Toker et al., 2021). This can be
an issue in the case of metastatic cancer where small lesions can be overlooked (Perani et al.,
2014). Considering these shortfalls, there is significant motivation for developing accurate
automated detection methods, a major topic of interest in medical imaging research.

1.1 Related Work

Quantitative imaging analysis is an approach aimed to tackle this problem through seg-
regating normal and pathological findings by finding optimal thresholds. This approach
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can be done via regional or voxel-wise analysis. For regional analysis, uptake is compared
to the same regional uptake found in a healthy control population. This analysis however
requires extensive prior knowledge of the subject and control population in order to select
the most valid atlases and relevant discriminant regions greatly limiting this approach’s
efficacy (Signorini et al., 1999). In classic voxel-wise analysis, a PET image is often reg-
istered to a normal standardised group space to compare voxel-wise differences in uptake.
Such approaches have been implemented in Neurostat and NeuroGam (Drzezga et al., 2005;
Renard et al., 2013). Similar implementations have been carried out to generate Z-score
maps to demonstrate the degree of abnormality between the healthy model and individual
subjects. This approach implemented in Burgos et al. (2021) developed patient-specific
models through using a healthy control atlas database. However, these tools have primarily
been developed for brain imaging with limited further use outside this area, in addition the
approach has sub-optimal assumptions about the statistical occurrence of abnormalities,
i.e. noise models and parametric distributions.

Breakthroughs in recent years have primarily showcased the efficacy of deep learning
models for anomaly detection in medical data. Given the limitations of previous approaches
on whole-body data, the use of deep learning shows promise in the task of anomaly detection.

Unsupervised methods have become an increasingly prominent field in recent years for
automatic anomaly detection by eliminating the necessity of acquiring accurately labelled
data and showing a strong ability to generalise to unseen anomalies (Chen et al., 2020; Baur
et al., 2020). These methods mainly rely on creating generative models trained solely on
non-anomalous data. Then during inference, anomalies are defined as deviations from the
defined model of normality as learnt during training. However, their efficacy is often limited
by the requirement of uncontaminated (e.g., non-anomalous) data with minimal anomalies
present during training.

One particular model used for unsupervised anomaly detection is the family of gen-
erative adversarial networks (GANs). GANs are able to generate data without explicitly
modelling the probability density function of the underlying data (Yi et al., 2019). The
overall architecture consists of two sub-networks, namely a discriminator and generator.
During training, the generator is tasked with generating samples from a given input (usu-
ally gaussian noise). The objective is to generate samples that the discriminator cannot
differentiate from real. The use of GANs has many applications in medical imaging, in-
cluding reconstruction (Quan et al., 2018), denoising (Armanious et al., 2018; Kang et al.,
2018) and cross modality translation (Armanious et al., 2018; Bi et al., 2017; Ben-Cohen
et al., 2017; Armanious et al., 2019). GANs also show promise in the field of anomaly
detection, as demonstrated in (Schlegl et al., 2017; Alex et al., 2017; Sun et al., 2018).
The approach taken by Sun et al. (2018) for brain MRI anomaly detection used CycleGan,
trained to generate healthy-looking scans from anomalous ones. The approach however was
shown to be imperfect brought down to textual differences and ununiform intensities dur-
ing the reconstruction of abnormalities in addition to the instabilities inherent in training
GANs models, making them more prone to model collapse (Kodali et al., 2017). As such im-
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plementing a GAN architecture poses a greater challenge for the task of 3D image synthesis.

The most prevalent competing family of networks for unsupervised anomaly detection
is the Autoencoder (AE). AEs are models that are made of two main architectures, an en-
coder and decoder. The encoder maps the input image into a lower dimension manifold z,
where the decoder will then reconstruct the original image from said manifold. The driving
characteristic of AEs that make them suitable for anomaly detection is the low dimensional
manifold bottleneck; for an AE sufficiently constrained and trained on healthy data only,
the model will struggle to generalise when faced with unseen anomalies and will have large
reconstruction errors associated at these locations (Baur et al., 2020). Such approaches have
been used in various applications, such as brain tumour detection in MRI and CT (Atlason
et al., 2018; Baur et al., 2019; Sato et al., 2018). However, a common problem with conven-
tional AEs is the lack of regularisation of the latent space, reducing its efficacy for anomaly
detection (Chen and Konukoglu, 2018). Furthermore, AEs are simply a learnt function
whose purpose is to compress data and minimise reconstruction loss. As such, an AE can
easily overfit data unless explicitly regularised and can render irregular reconstructions on
unseen data. Improving on these AE limitations, spatial VAEs have been proposed Baur
et al. (2020). Here, the healthy data manifold is obtained by constraining the latent space
to conform to a given distribution. A comparative study has shown that VAEs demon-
strated improved performance as an alternative to AEs (Baur et al., 2020). The same study
also revealed an improvement against adversarial-based strategies like f-AnoGAN (Schlegl
et al., 2017). Even with such improvements however, a particular weakness, as explored
in Makhzani et al. (2015), is that the KL-divergence prompts the posterior to incorporate
the mode of the prior, not necessarily the entire distribution. This can result in an over-
simplified prior brought about by the KL-divergence term resulting in over-regularization.
Furthermore, the objective of the VAE can result in trivial solutions that decouple the in-
put from the model’s latent space resulting in posterior collapse (Chen et al., 2016). This
approach is further limited by low fidelity reconstructions and unwanted reconstructions of
unseen pathologies suggesting a shortfall in the model itself.

To overcome some of these issues, an approach for unsupervised anomaly detection
was presented utilising autoregressive models coupled with a superior autoencoder model,
namely the vector-quantised variational autoencoder (VQ-VAE) (van den Oord et al., 2017;
Marimont and Tarroni, 2020). Transformers, currently state-of-the-art networks in the lan-
guage modelling domain (Vaswani et al., 2017; Radford and Narasimhan, 2018), use atten-
tion mechanisms to learn contextual dependencies regardless of location, allowing the model
to learn long-distance relationships to capture the sequential nature of input sequences. This
general approach can be generalised to any sequential data, and many breakthroughs have
seen the application of transformers in computer vision tasks from image classification to
image and video synthesis (Chen et al., 2020; Child et al., 2019; Yan et al., 2021). Although
having showcased state-of-the-art performance in unsupervised anomaly detection tasks for
medical imaging data (Pinaya et al., 2021), these methods still rely heavily on purely nor-
mal data for model training. To date little research has been carried out using unlabelled
(image-wise or pixel-wise) training data that contain anomalies. The work in Zhang and
Zhuang (2022) and Zuluaga et al. (2011) proposes methods that make use of anomalous
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training data, but even so for this method to work, an initial portion of labelled normal
training data is required to successfully make use of the unlabelled training portion. To the
best of our knowledge, no prior research exists using unsupervised methods to accurately
localise anomalies while using training data containing such anomalies with no prior knowl-
edge over any samples whether they they contain anomalies or not. This task itself is of
importance given the nature of whole-body PET. It is often difficult or unethical to obtain
healthy datasets of certain medical imaging modalities as some images are only acquired
with prior suspicion of disease.

1.2 Contributions

To address these problems and shortfalls of existing state-of-the-art techniques, we pro-
pose a method for unsupervised anomaly detection and segmentation using multi-model
imaging via transformers with cross attention. Leveraging off previous work combining the
use of VQ-VAE models with transformers we propose, deploy and evaluate the following
contributions in our work:

• We show the added benefit of the use of multi-modal imaging for unsupervised anomaly
detection, achieved through the use of transformers with cross attention

• We highlight the importance of optimal choices in the VQ-VAE codebook architecture,
beyond accurate reconstruction performance, and its effect further downstream on the
transformer’s performance for anomaly detection

• We introduce an improved alternative to commonly used residual-based anomaly maps
via a kernel density estimation approach

• We supplement this kernel density estimation approach with an extensive study of
kernel choices and a selection of regularisation parameters.

• We carry out our training on data where healthy samples are unattainable and still
show high detection rates during testing where other models fail

This work is an extended version of a conference workshop paper presented at
DGM4MICCAI (Patel et al., 2022). The extensions to the conference paper involve a
more substantial literature review in addition to a larger dataset that has yielded a greater
number of training samples and a higher number of samples for testing on unseen cases.
Additionally a comprehensive ablation study showcasing the importance of codebook sizing
in the Vector Quantized-Variational Autoencoder is explored that can highlight its affect
on the performance of the transformer model for anomaly detection. A deeper exploration
into the kernel density estimation approach is also carried out showcasing the difference in
performance of varying kernel choices in addition to varying regularisation parameters for
this methodology. Finally, as further validation of our methods, we carry out an additional
set of testing on a fully out-of-sample testing dataset with varying cancer cases from a
different source to that of the original training and testing data.
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2. Proposed Method

The principal components behind the proposed whole-body anomaly detection model relies
on using transformer models and auto-encoders to model 3D whole-body 18F-FDG PET
scans. Although all training data contain anomalies, the spatial distribution of anomalies
across samples will result in such anomalies being unlikely, thus appearing at the likelihood
tail-end of the learnt distribution. In order to use transformer models, images need to be
expressed as a sequence of values, ideally categorical. As it is not computationally feasible
to do this using voxel values, a compact quantized (discrete) latent space is used as input
for the transformer via a VQ-GAN model as named and proposed in Esser et al. (2020) (a
VQ-VAE van den Oord et al. (2017) with an adversarial component).

2.1 VQ-GAN

The original VQ-VAE model (van den Oord et al., 2017) is an autoencoder that learns
discrete latent representations of images. The model comprises of three principal modules:
the encoder that maps a given sample X ∈ RH×W×D onto a latent embedding space e ∈
Rh×w×d×nz where nz is the dimension of each latent vector ei. After the encoder network
projects the image X to its latent representation ze(X), the discrete latent variables z are
generated by a nearest neighbour look-up to the shared embedding space e to generate
em,m ∈ 1, ...M where M is the vocabulary size. For simplicity we can refer to a single
random variable as z to represent a single discrete latent variable, given the input this can
represent a 1D, 2D or 3D latent feature space. In this case given we are dealing with 3D
medical data z corresponds to a 3D feature space. During training the codebook is learnt
jointly with model parameters. The posterior distribution can then be given as a categorical
one defined as:

q(z = m|X) =

{
1 for m = argminj ∥ze(X)− ej∥2

0 otherwise
(1)

Here ze(X) is the output of the encoder giving us our encoded feature vectors that are
matched to ej , a learnt codebook vector in the shared embedding space. The discrete latent
space representation is thus a sequence of indexes for each code from the codebook. The
final portion of the network is the decoder, which reconstructs the original observation from
the quantized latent space. The total loss for the VQ-VAE is then given as:

LV QV AE =
∥∥∥(X − X̂)

∥∥∥2
2
+
∥∥∥|STFT (X)| −

∣∣∣STFT (X̂)
∣∣∣∥∥∥2

2
+ ∥sg[ze(X)]− e∥22 + β ∥ze(X)− sg[e]]∥22 (2)

where X̂ is the output from the decoder and sg is a stop gradient operator to stop gradients
from flowing back into their argument. The loss function for the VQ-VAE makes use of
a spectral loss (Dhariwal et al., 2020) that is, it includes a component based on the mag-
nitude of the Fourier transform of the original and reconstructed image. From equation 2
the first term is the pixel loss, the second term is the spectral loss between the original and
reconstruction where SFTF stands for the short time Fourier transform. The third term is
the commitment cost used to ensure the encoder commits to the codebook. The final term
is to move the codebook embedding vectors towards the output from the encoder. For this
term, we replace this and use the exponential moving average updates for the codebook
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(van den Oord et al., 2017). During training, a β of 0.25 was used.

As autoencoders often have limited fidelity reconstructions (Dumoulin et al., 2016), an
adversarial loss is added to the VQ-VAE network to form a VQ-GAN, as proposed and
named in Esser et al. (2020). When implementing the VQ-GAN network, however, due to
instabilities associated with adversarial networks, the loss function is further expanded to
include a perceptual loss (Takaki et al., 2018) that helps preserve spatial consistency by
using the LPIPS library (Zhang et al., 2018). The perceptual loss applied via the LPIPS
library makes use of 2D images and as such has to be applied over slices of the original and
reconstructed sample. To improve efficiency during training the loss is randomly applied to
50% of slices across each plane. The adversarial loss used is of the following form:

Ladv = LLSGAN (Dis) + LLSGAN (E,Quant,D) (3)

Where Dis is the discriminator and E,Quant,D is the VQ-VAE Encoder, Quantizer
and Decoder Respectively. This is based on the Patch-GAN model (Isola et al., 2017) as
per (Esser et al., 2020) and paired with the LS-GAN loss (Mao et al., 2017) providing a
more stable and reproducible behaviour, denoted as:

min
Dis

LLSGAN(Dis) =
1

2
Ex∼pdata(x)

[
(Dis(X)− 1)2

]
+

1

2
Ex∼pdata(x)

[
(Dis(D(Quant(E(X))))2

]
min

Enc,Quant,Dec
LLSGAN(E,Quant,D) =

1

2
Ex∼pdata(z)

[
(Dis(D(Quant(E(X))))− 1)2

]
2.2 Transformer

Once a VQ-GAN model is trained, we now are required to train a generative model on the
discrete latent representation. For this we use a transformer. Transformer models rely on
attention mechanisms to capture the relationship between inputs regardless of the distance
or positioning relative to each other. The self-attention mechanism is best described as
a mapping of intermediate representations of three position-wise linear layers onto three
representations denoted by the Value (V), key (K) and query (Q) (Vaswani et al., 2017).
With dk denoting the dimension of the key vectors, the attention mechanism is calculated
as:

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V (4)

The multi-head attention aspect of this transformer network is then several attention
layers run in parallel with their outputs concatenated and fed through a linear layer. This
process, however, relies on the inner product between elements and, as such, network sizing
scales quadratically with sequence length. Given this limitation, achieving full attention
with large medical data, even after the VQ-GAN encoding, comes at too high a compu-
tational cost. To circumvent this issue, many efficient transformer approximations have
been proposed (Tay et al., 2020; Choromanski et al., 2020). In this study, a Performer
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model is used; the Performer uses the FAVOR+ algorithm (Choromanski et al., 2020),
which proposes a linear generalized attention that offers a scalable estimate of the attention
mechanism. Using such a model, we can apply transformer-like models to much longer se-
quence lengths associated with whole-body data. In order to learn from the discrete latent
representations, we require the discretised latent space zq to take the form of a 1D sequence
s using some arbitrary ordering. The transformer is then used to model s by minimizing
the conditional distribution p(si) = p(si | s<i) where i is the ith element of s.

2.3 Anomaly Detection

To perform the baseline anomaly detection model on unseen data, as proposed by Pinaya
et al. (2021), first, we obtain the discrete latent representation of a test image using the
VQ-GAN model. Next, the latent representation zq is reshaped using a 3D raster scan
into a 1D sequence s where the trained Performer model is used to obtain likelihoods for
each latent variable. At each position in the sequence the trained transformer will give
the learnt likelihood of each possible token appearing at every point in the sequence. In
doing so we can highlight low likelihood (or anomalous tokens) as p(si) = p(si | s<i) <
t, (where t is a threshold determined empirically using a validation dataset; t = 0.025
was found to be optimal). This generates a binary resampling mask that indicates which
tokens in the latent sequence are anomalous i.e. below the threshold. Using the resampling
mask, the anomalous latent variables are removed and replaced in the sequence with non-
anomalous tokens by resampling from the transformer. This approach replaces anomalous
latent variables with those that are more likely to belong to a healthy distribution, as such
”healing” the considered anomalous latent space. Using the non-anomalous latent space,
the VQ-GAN model reconstructs the original image X as a non-anomalous reconstruction
Cr. Finally, a voxel-wise residual map can be calculated as X–Xr with final segmentations
calculated by thresholding the residual values. As areas of interest in PET occur as elevated
uptake, residual maps are filtered to only highlight positive residuals.

2.4 CT Conditioning

There are often times when more information can be useful for inference. This can be in
the imaging domain through multiple resolutions (Chen et al., 2021) or multiple modali-
ties/spectrums (Mohla et al., 2020). It is for these tasks where cross-attention can prove
beneficial. From a clinical point of view, whole-body PET scans are acquired in conjunc-
tion with CT, or less frequently MRI data for attenuation correction purposes in addition
to providing an anatomical reference. Additionally, it can be observed that areas of high
uptake are not always associated with pathological findings i.e. high uptake may reflect
physiological uptake, e.g. within the brain and heart. Additionally areas where radiotracer
may collect like the kidney and bladder can also show high uptake patterns. Acknowledging
these areas of high physiological uptake by recognition of the organ location with respect to
a whole 3D scan visible may seem obvious to the human eye, however this may not be the
case using the transformer approach. For this work images are encoded to a discrete latent
space and then rasterized into a 1D sequence. During training and inference the model
works in an autoregressive manor i.e. only prior tokens in the sequence can be viewed.
As such when looking at a specific token (and only the prior tokens in the sequence), it
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may be hard for the model to determine the exact anatomical point within the whole body
that that specific token represents, without further context relating to the whole body. As
such the anatomical reference provided from CT data is beneficial. This leads to one of the
main contributions of the work, namely anomaly detection incorporating CT data. This
process works by generating a separate VQ-GAN model to reconstruct the PET-registered
CT data. Then, CT and PET data are encoded and ordered into a 1D sequence using the
same rasterization process, such that CT and PET latent tokens are spatially aligned. The
transformer network is then adapted to include cross-attention layers (Gheini et al., 2021)
that feed in the embedded CT sequence after each self-attention layer. At each point in the
PET sequence, the network has a full view of the CT data helping as a structural reference.
In doing so, the problem of determining the codebook index at a given position i becomes
p(si) = p(si | s<i, c), where c is the CT latent sequence.

Figure 2: Anomaly Detection Pipeline – PET image X is encoded along with CT image
Xct. Tokens form the encoded PET image are then sampled from the transformer
by obtaining their likelihood with respect to prior tokens in the sequence and all
CT tokens. Tokens below a given threshold are resampled from a multinomial
distribution, derived from likelihood outputs from the transformer for all tokens
at a given position in the sequence. This yields a non-anomalous latent space
which is decoded to give Xr.

To add cross attention to the transformer architecture, we add a cross attention layer
after each self-attention layer in the transformer architecture. Still using the same attention
mechanism, the cross attention calculation is then given as:

Attn(Qs,Kc, Vc) = softmax

(
QsK

T
c√

dk

)
Vc (5)

Where Qs is the output from the prior self-attention layer, and Kc and Vc are the Key
and Query vectors derived from the embedded conditioning CT sequence. The architecture
of an entire transformer layer with self-attention and cross-attention can be visualised as in
Fig. 3:

This approach for anomaly detection, as visualised in Fig. 2, adds robustness to the
anomaly detection framework by providing meaningful context in areas of greater variability
in uptake that can be explained by the anatomical information within CT.
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Figure 3: Network architecture showcasing layers in transformer with multi-headed self-
attention (left) and corresponding multi-headed cross-attention (right) run in
series

2.5 Kernel Density Estimation

A drawback of the baseline anomaly detection method described in section 2.3 is that the
residual image uses an explicit image-wide threshold to generate a segmentation map. The
resulting segmentation can often be noisy due to discrepancies between the reconstructed im-
age and the original, for example, between borders of high intensity. Additionally, anomalies
can occur at different intensities, meaning a blanket threshold is inappropriate. A possible
solution is to implement Z-score anomaly maps as used in similar anomaly detection work
(Burgos et al., 2021). For this work, this can be achieved by introducing stochasticity within
the model. As the distribution of uptake patterns is often multi-modal, due to its relation-
ship to base metabolic rate and procedure-related variations (eg injected tracer amount and
time since injection), the optimality of the Z-score’s Gaussian-error assumption should be
questioned and relaxed. Empirical evidence obtained by exploring the data and by sam-
pling from the transformer itself highlights that the error is indeed non-Gaussian even in
non-anomalous regions. For example, in the heart, bi-modal (even multi-modal) error dis-
tributions are observed. To remedy this, we propose to use a non-parametric approach using
kernel density estimation (KDE) (Parzen, 1962). To do this, we sample from the model
by introducing a dropout layer in the VQ-GAN decoder. Additionally, we achieve further
stochasticity by replacing unlikely tokens with ones drawn from a multinomial distribution,
derived from the likelihoods output from the transformer for each token at a given position
in the sequence. During inference, by sampling multiple times, we generate multiple nor-
mal latent representations for a single image, which are then decoded multiple times with
dropout to generate multiple non-anomalous reconstructions of a sample, at which point a
KDE is fit independently at each voxel position to generate an estimate of the probability
density function f for the intensities at a specific point across reconstructions. Letting
(x1, ..., xn) be the intensity for a voxel position across reconstructions, we can generate an
estimation for the shape of the density function f for voxel x as:
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f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(6)

Here, K is a given kernel shape and h is a smoothing bandwidth calculated via the
Silverman method (Silverman, 2018) as:

h =

(
4σ̂5

3n

)1/5

+ ϵ (7)

with σ̂ representing the standard deviation at the given voxel position across n reconstruc-
tions and ϵ is a scalar regularisation parameter determined empirically on the validation
dataset used to address areas of low variance across reconstructions. We can then score
voxels from that estimated density function at the intensity of the real image, at the voxel
level, to generate a log-likelihood for that intensity, generating the anomaly map. The KDE
approach can be further explored via varying kernels and regularisation parameters. As part
of this study, we evaluate the use of a series of different Kernels to calculate the estimation
of the probability density function f in addition to varying regularisation values for ϵ.

2.6 Clinically Consistent PET Segmentations

For whole-body PET, due to the large system Point Spread Function (PSF) of observed
uptake, the contours of an anomaly can be hard to define. Given this there are a number
of methods used clinically to define the boundaries of anomalies. This can range from
absolute thresholding over the entire image, to per anomaly thresholding via percentages
of the maximum uptake of individual anomalies, to more involved and computationally
expensive algorithms (Berthon et al., 2017; Hatt et al., 2017). In general there is no universal
standard for defining the anomaly boarders and as such we use the method most recognised
as the clinical standard in the UK as advised by our clinical experts. The method used
makes use of percentage thresholding for individual anomalies. This defines boundaries of
an anomaly as connecting voxels with intensities above 40% of the maximum intensity of a
specific anomaly and has shown to generate optimal performance with limited computation
(Berthon et al., 2017). To conform to this standard, we apply a final post-processing step
of growing all initial segmentations to satisfy this criteria.

3. Data

For the training, validation and testing of the methods described above, a combination of
two datasets was used to overcome the limitations of limited data for training purposes
and the lack of validity for the proposed methods during testing in the case of limited
testing samples. Furthermore, to improve the efficacy of the approach to unseen out-of-
distribution data, the approach will likely be supplemented with training from data that
have undergone different acquisition protocols and varying voxel dimensionality. All data
were rigidly registered to a group-wise space with a field of view from the neck down to the
upper thigh region. The initial step of the group-wise registration was to register all samples
to a given sample in the private dataset meaning all datasets were converted to the same
voxel spacing, after which, all CT images were registered to their paired PET image using
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rigid transformations. All processed images had a final dimension of 168× 208× 216. CT
data were further preprocessed to remove the bed from the images and have voxel intensities
clipped to showcase the soft-tissue window only.

3.1 Private dataset

The private dataset used consists of 83 co-registered 18F-FDG PET/CT images acquired
using a GE Medical Systems scanner. The original PET images had voxel dimensions of
2.7×2.7×3.3mm, whilst the CT images had dimensions of 1.4×1.4×3.3mm. The dataset
comprised a variety of subjects showcasing various primary cancers in various locations
across the body and metastases located in numerous further locations. Out of the 83
samples, 60 were used for training whilst the remaining 23 were split, with 12 used for
validation and 11 used for testing. From the training data, a total of 49 cases showcased
some form of cancer in the scan.

3.2 NSCLC Radiogenomics Dataset

The NSCLC Radiogenomics dataset comprises 211 co-registered 18F-FDG PET/CT sam-
ples presenting Non-small cell lung cancer cases (Bakr et al., 2017, 2018; Gevaert et al.,
2012; Clark et al., 2013a). The acquisition protocol ranges by candidate using both GE
Medical Systems and Siemens Scanners. The original PET images had voxel dimensions of
3.6× 3.6× 3.3mm, while the CT images had dimensions of 1.4× 1.4× 3.3mm. Out of the
211 samples, 160 were used for training, with 26 used for validation and 25 used for testing.
From this training data, all cases contained some form of lung cancer along with potential
metastases.

From combining the private dataset and NSCLC Radiogenomics dataset, during train-
ing, a total of 220 samples were used, of which 209 samples had some form of anomaly
present in the scan. Furthermore 38 samples were used for validation to tune hyperparam-
eters and run ablation studies on model parameters like codebook sizing and Kernel types.
The remaining 36 samples were left as a hold-out set for testing on the final models chosen
after all ablation studies were carried out.

3.3 AutoPET Dataset

For a comparison of our methods and baselines when trained on fully normal data we
leverage the autoPET dataset - a 3D whole-body Positron Emission Tomography (PET)
dataset (Gatidis et al., 2022; Clark et al., 2013b). Generally speaking in PET imaging,
scans void of any forms of anomalies are hard to come by, as often scans are taken with a
strong prior suspicion of a pathology. There are some cases where this may not be true,
that includes scans following treatment, which is where the normal samples for this dataset
are obtained. This dataset consists of 1014 PET scans with 430 non-anomalous scans, with
the remaining containing some form of lung cancer, lymphoma, or melanoma. From this
dataset we generate a separate training dataset with normal cases only. We use all 430
healthy scans to form the training data. For this work the same validation set consisting of
the private data and NSCLC radiogenomics data is used to tune the model and anomaly
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detection hyperparameters, as testing is carried out on their testing set as well for the most
fair comparison. The original PET images have voxel dimensions of 2.036× 2.036× 3mm.
All scans are aligned to the same space as the training data via affine transformations, i.e.
a field of view from the neck region to upper thigh region is used out of the whole body
images.

3.4 Clinical Proteomic Tumor Analysis Consortium - CPTAC

The CPTAC dataset comprises a combination of several individual CPTAC studies that
cover numerous cancers from lung, ovarian, pancreas and skin cancer (CPTAC, 2018; Clark
et al., 2013a). A total of 14 co-registered whole-body 18F-FDG PET/CT images are used
to demonstrate the ability of the proposed methods on fully out-of-sample data that is
not used during training or validation. The data is similarly acquired using a GE Medical
Systems Scanner. The original PET images had voxel dimensions of 3.6 × 3.6 × 3.3mm,
whilst the CT images had dimensions of 1.4× 1.4× 3.3mm. All scans are registered to the
same space as the training data.

4. Experiments and Results

4.1 VQ-GAN Training and architecture details

The training details and architecture for the VQ-GAN (besides codebook sizing) remains
the same through all experiments run in this study. The architecture used for the VQ-GAN
model uses an encoder consisting of three strided convolutional layers with stride 2 and
kernel size 4. Each convolutional layer is then followed by a ReLU activation and 3 residual
blocks (consisting of a 3x3x3 conv, ReLU, 1x1x1 conv, ReLU). The decoder similarly has 3
residual blocks, each followed by a transposed convolutional layer with stride 2 and kernel
size 4. Finally, before the last transposed convolutional layer, a Dropout layer with a
probability of 0.05 is added. Further hyperparameters include the use of β equal to 0.25,
as stated in equation 2. This value is taken from the original implementation of the VQ-
VAE as stated in van den Oord et al. (2017). Through the ablation study exploring the
effect of ranging codebook sizes, several codebook dimensions were explored, consisting of
atomic elements from 64-2048 with lengths ranging from 32-256. However, changes in the
codebook parameters had no change to the encoder and decoder architecture. To train the
VQ-GANs, we used an ADAM optimiser (Kingma and Ba, 2014) with a learning rate of
1e-4 and an exponential learning rate decay with a gamma of 0.9999. Additionally, the
discriminator network had a learning rate of 5e-4. Training data was augmented using
elastic deformations, Gaussian noise, intensity shifts, contrast adjustments and gaussian
blur. The model was trained over 1000 epochs with a batch size of 3. Further details on
model complexity and the number of model parameters can be seen in table 4 in Appendix
A.

4.2 Transformer Training and architecture details

The performer in all experiments used corresponds to a decoder transformer architecture
with 16 layers, each with 8 heads and an embedding size of 256. To train the performer
network, we used an ADAM optimiser (Kingma and Ba, 2014) with a learning rate of 1e-3
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and an exponential learning rate decay with a gamma of 0.9999. The loss function used
for training was cross-entropy, given the discrete nature of the latent sequence codes. To
obtain the input data for training the transformer network, the trained VQ-GAN model
encoded the training data into the discrete latent codes, which were used as inputs for the
transformer. To avoid overfitting, the original training dataset was augmented 4 times and
then encoded using elastic deformations, Gaussian noise, intensity shifts, contrast adjust-
ments and gaussian blur to increase the number of samples for training. The model was
then trained over 120 epochs with a batch size of 1. For the AutoPET dataset the models
were trained for 80 epochs with a batch size of 1. Further details on model complexity and
the number of model parameters for the Performer model with and without cross attention
can be seen in table 4 in Appendix A.

4.3 Experiment 1: PET-only ablation study

The first study explores the effect of codebook size on the anomaly detection pipeline. To
do this, we experiment with codebooks ranging vocabulary sizes from 64-2048 and vector
dimensions from 32-256. From this range, 24 different VQ-GAN networks of ranging code-
books were trained, of which a further 24 transformer networks were trained using their
respective VQ-GAN model using PET data only. Using the trained networks, anomaly
detection was run on the validation dataset where anomalies were located via residual maps
between the original and reconstructed images. We measure our models’ performance using
the best achievable DICE score, which serves as a theoretical upper-bound to the models’
segmentation performance. This work makes use of the anomalous training dataset. The
results can be visualised in Fig. 4

Figure 4: Best achievable DICE-score (⌈DICE⌉) on validation data for anomaly detection
with PET data only and varying codebook vocabulary sizes and latent code di-
mensions

We can see a large range (0.332-0.415) in DICE scores from adjusting the codebook
parameters highlighting the importance of choosing an optimal codebook size for anomaly
detection. Furthermore, a general trend can be seen from the results showcasing that
codebooks with a smaller vocabulary size generally perform better with large dimensions,
whereas when the vocabulary size increases, the network generally performs better with
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smaller latent vector dimensions. From the results, however, a codebook with a vocabulary
size of 256 with dimension 128 showed to generate the best results.

4.4 Experiment 2: CT Conditioning Ablation Study

Continuing with showcasing the importance of the codebook size for anomaly detection, we
further explore ranging codebook sizes with respect to the conditioning sequence from the
CT data with results showcased in Table 1. For the experiment, we generate 4 different
VQ-GAN models to encode CT images with ranging codebook sizes, chosen and conforming
to the results seen in Experiment 1, i.e., small vocabulary size with large dimensions and
large vocabulary sizes with smaller dimensions. For each of these experiments, we use a
PET VQ-GAN network with the optimal codebook size as derived from Experiment 1, i.e.,
vocabulary size of 256 with dimension 128. As with Experiment 1, we train the models
on the anomalous training dataset and run anomaly detection on the validation set to
generate DICE scores using residual maps. As in Experiment 1, a vocabulary size of 256
and dimension of 128 was found to produce the best dice score.

Table 1: Anomaly detection results on whole-body PET validation data for varying code-
book sizes. The performance is measured with best achievable DICE-score
(⌈DICE⌉) and AUPRC on the test set.

Vocabulary Size Dimensions ⌈DICE⌉
64 256 0.424
256 128 0.458
512 64 0.432
1024 32 0.443

4.5 Experiment 3: KDE Ablation Study

When implementing the kernel density estimation approach, the shape of the probability
density estimation relies on 2 factors, the shape of the kernel used and the bandwidth.
Given this, we explore varying kernels in addition to a range of ϵ values (the regularisation
term as seen in equation 7). In total, six different kernels are used (i.e. gaussian, top-hat,
Epanechikov, exponential, linear and cosine), of which their shape can be seen below in Fig.
5.

Furthermore, three ϵ values of 0.025, 0.05 and 0.1 were experimented with. From experi-
ments 1 and 2, we chose the best vocabulary sizes for the PET VQ-GAN and CT VQ-GAN,
which is a vocabulary size of 256 and dimension of 128 for both models. As we use the
kernel density estimation approach, not residual maps, we rely on multiple reconstructions
achieved through resampling from the transformer 60 times, with each latent sequence de-
coded with dropout four times each. As with the previous experiments score, we measure
our models’ performance using the best achievable DICE score based on the KDE anomaly
maps.

From the results, there are two clear standout kernels that showcase the best perfor-
mance, namely the gaussian and exponential kernel. The shape of the kernels implies that
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Figure 5: Different Kernel shapes with respect to bandwidth (h) explored in KDE ablation
study (Scikit-Learn)

Figure 6: Best achievable DICE-score (⌈DICE⌉) on validation data for Kernel Density
Estimation approach with varying Kernel shapes and ϵ values

kernels with heavier tails seem to be more favorable for the task. Additionally, we generally
see higher ϵ values, and therefore higher bandwidths and longer tails, give better perfor-
mances, with large reductions in performance associated with the smallest ϵ values due to
under regularisation and noisy KDE maps. Furthermore, we see the exponential kernel
produces the best results in addition to the least variance associated with ranging ϵ values
indicating less reliance on an optimal choice of ϵ and perhaps a more robust approach when
facing unseen data.

From the series of experiments optimized on the validation data, a final model is gen-
erated using a PET and CT VQ-GAN model with a codebook vocabulary size of 256 and
dimension 128. Furthermore, on the kernel density estimation side, final parameters are
set to calculate probability density estimates using an exponential kernel with an ϵ value of
0.05.
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4.6 Testing

After obtaining the optimal models from each hyperparameter study, we test the proposed
models on the hold-out testing data as a final ablation study to showcase the added con-
tribution of each proposed method. We compare our results to that of a Dense, Spatial
AE and Dense VAE model (Baur et al., 2020) and an SSIM AE (Bergmann et al., 2019).
These models are trained on PET only, however we also implement them with 2 channel
inputs with PET and CT to showcase the effect of CT conditioning on the baseline mod-
els in comparison to the effects of conditioning for our proposed method. We additionally
implement F-AnoGan for a further baseline comparison (Schlegl et al., 2017). Testing is
carried out on 36 samples of which the best achievable DICE score is calculated in addition
to the area under the precision-recall curve (AUPRC) as a suitable measure for segmen-
tation performance under class imbalance. These results can be seen tabulated in Table
2 and visualised in Fig. 7 qualitatively showcasing the best two state-of-the-art models
against our added contributions. The precision recall curves highlighting important model
comparisons can also be seen in Appendix B. Furthermore, we carry out paired t-tests to
showcase the statistical significance of improvements.

Table 2: Anomaly detection results on whole-body PET hold-out testing data. The perfor-
mance is measured with best achievable DICE-score (⌈DICE⌉) and AUPRC on
the test set.

Method Anomalous Training Data Normal Training Data

⌈DICE⌉ AUPRC ⌈DICE⌉ AUPRC

AE (Dense) (Baur et al., 2020) 0.333 0.301 0.371 0.322
AE (Dense) + CT (Baur et al., 2020) 0.332 0.281 0.360 0.319
AE (Spatial) Baur2020 0.313 0.251 0.355 0.349
AE (Spatial) + CT (Baur et al., 2020) 0.354 0.315 0.377 0.325
AE (SSIM) (Baur et al., 2020) 0.349 0.315 0.355 0.352
AE (SSIM) + CT (Baur et al., 2020) 0.346 0.310 0.347 0.328
F-AnoGan (Schlegl et al., 2017) 0.366 0.361 0.401 0.384
VAE (Dense) (Baur et al., 2020) 0.371 0.381 0.422 0.392
VAE (Dense) + CT (Baur et al., 2020) 0.351 0.342 0.419 0.396
VQ-GAN + Transformer (Codebook optimised 3D GAN variant of (Pinaya et al., 2021)) 0.463 0.410 0.509 0.453
VQ-GAN + Transformer + CT conditioning (ours) 0.497 0.473 0.551 0.521
VQ-GAN + Transformer + CT conditioning + KDE (ours) 0.562 0.561 0.575 0.579
VQ-GAN + Transformer + CT conditioning + KDE + 40% Thresholding (ours) 0.598 0.532 0.612 0.551

4.6.1 Ablation study:

For the models trained on anomalous training data we observe a statistically significant
improvement (P < 0.005) in anomaly detection DICE performance by implementing CT
conditioning compared to the 3D VQ-GAN variant approach of Pinaya et al. (2021). A
statistically significant improvement in AUCPR is also recorded (P < 0.001). This result
confirms our initial expectations on the use case of anatomical context in the case of whole-
body PET. Given the variability of healthy radiotracer uptake patterns, it is expected that
beyond common areas like the bladder, further context is required to identify uptake as
physiological or pathological. By incorporating model uncertainty to generate KDE maps,
we see a further improvement in the overall DICE score and an even greater increase in
AUPRC from 0.473 to 0.561 against the CT conditioned model (P < .001). This behaviour
can be explained by the increased variability around heterogeneous areas of healthy uptake,
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attributing to a decrease in false positives. The main advantage, as visualised in Fig. 7, is
the increase in precision. By discarding the assumption of Gaussian uptake distributions,
the model can better differentiate patterns of physiological uptake from pathological whilst
still being sensitive to subtle anomalies, as seen in sample C in Fig. 7. We also see the same
improvements across models in DICE and AUPRC for the models trained on normal data.

4.6.2 Comparison to state-of-the-art:

Figure 7: Columns from left to right display (1st) the input image; (2nd) the gold standard
truth segmentation; (3rd) the anomaly map as the residual for the PET only
VAE, (4th) Transformer, and (5th) CT conditioned methods; (6th) the abnor-
mality map as a KDE, (7th) and after thresholding at 40% of each abnormal
region maximum values. Results are provided for four randomly chosen subjects
(A,B,C,D)

From Table 2, we can see a statistically-significant improvement (P < .001) presented via
the VQ-GAN + transformer approach using only PET data in relation to all autoencoders
with and withouth CT inputs, the variational autoencoder and F-AnoGan method. This
result is expected, as demonstrated in prior research (Pinaya et al., 2021). However, this
divergence is also attributed to the presence of anomalies during training. It can be observed
in some samples that the autoencoder method performs worse on large anomalies as it
is able to partially or fully reconstruct them. We can see looking at the autoencoder
methods trained on healhty data that performance has improved, however even given this,
our proposed method still outperforms all baselines. Comparing the method proposed by
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Pinaya et al. (2021) to our best model comprising of CT conditioning and KDE anomaly
maps, our approach generates an improvement in DICE score from 0.463 to 0.562 (P < .001)
with a considerable increase in AUPRC from 0.410 to 0.561 (P < .001). Finally, through
clinically accurate segmentations by growing segmented regions, we see a large increase
in the best possible DICE score, but a reduction in AUPRC, likely brought about by the
expansion of false-positive regions.

4.7 Golden Out-of-sample Testing

As a further test of the proposed models and their ability to generalize to unseen data from
a different source/dataset, we showcase the performance of each proposed model and state-
of-the-art comparisons on fully out-of-sample data using the CPTAC dataset. Pictorial
results can be seen in Fig. 12, with numerical performance visible in table 3. Note that
the performance on the golden hold-out sample was, surprisingly, found to be better than
in the previous experiments, suggesting that Dice scores are highly dependent on the type
and size of the cancers.

Table 3: Anomaly detection results on out-of-sample testing data. The performance is
measured with best achievable DICE-score (⌈DICE⌉) and AUPRC on the test
set.

Method Anomalous Training Data Normal Training Data

⌈DICE⌉ AUPRC ⌈DICE⌉ AUPRC

AE (Dense) (Baur et al., 2020) 0.359 0.344 0.438 0.386
AE (Dense) + CT (Baur et al., 2020) 0.437 0.403 0.423 0.374
AE (Spatial) Baur2020 0.351 0.338 0.382 0.348
AE (Spatial) + CT (Baur et al., 2020) 0.358 0.342 0.385 0.349
AE (SSIM) (Baur et al., 2020) 0.371 0.374 0.376 0.379
AE (SSIM) + CT (Baur et al., 2020) 0.365 0.373 0.364 0.371
F-AnoGan (Schlegl et al., 2017) 0.424 0.408 0.415 0.375
VAE (Dense) (Baur et al., 2020) 0.402 0.371 0.436 0.413
VAE (Dense) + CT (Baur et al., 2020) 0.394 0.369 0.447 0.408
VQ-GAN + Transformer (Codebook optimised 3D GAN variant of (Pinaya et al., 2021)) 0.453 0.385 0.471 0 .405
VQ-GAN + Transformer + CT conditioning (ours) 0.500 0.468 0.529 0.511
VQ-GAN + Transformer + CT conditioning + KDE (ours) 0.610 0.604 0.618 0.600
VQ-GAN + Transformer + CT conditioning + KDE + 40% Thresholding (ours) 0.717 0.631 0.719 0.642

5. Discussion

From the results, there is strong evidence and motivation for using multi-modal conditioning
for whole-body PET anomaly detection and using a KDE approach for producing anomaly
maps. Not only do the proposed methods generate improved results over current state-of-
the-art, but their performance is able to generalise to out-of-sample data and perform to
the same level of competency. Firstly, we demonstrate the impact of appropriate codebook
sizes when employing discrete latent space based representations for anomaly detection with
autoregressive models. This alone showed a large range in performance based on changes
using PET data only; additionally, this impact was further shown with respect to the size
of the codebook for the conditioning CT data. Furthermore, with respect to the KDE
approach for generating anomaly maps, we showcase the importance of an appropriate
kernel shape and bandwidth regularisation term, which can generate large performance
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Figure 8: Columns from left to right display (1st) the input image; (2nd) the gold standard
truth segmentation; (3rd) the anomaly map as the residual for the VAE, (4th) our
approach using the abnormality map as a KDE and after thresholding at 40% of
each abnormal region maximum values. Results are provided for four randomly
chosen subjects (A,B,C,D)

improvements when optimised properly. We should note however that the efficacy of CT
conditioning is greatly brought about through the attention mechanism used in transformer
that allows the model to effectively model the relationship between the PET and CT data.
We can see in the baseline methods that when both PET and CT data is used, there is
little to no performance increase. Additionally we showcase how our approach works well
on models trained on both normal and anomalous training data. We can see that there
is a slight improvement when trained on normal data, as to be expected, however in the
field of medical imaging where normal data can often be hard to come by, being able to
produce a model via unsupervised approaches whilst still generating comparable results is a
key breakthrough of this work. There are, however, still areas for improvement beyond the
current scope of this research. We still see varying cases of false positives across samples,
showing ongoing difficulties in differentiating physiological from pathological uptake. The
reasons for this are likely patient-specific and can be down to several factors, i.e., pre-
existing diseases, general health, age, PET/CT miss-alignment, or whether the scan was
performed in fasting state or not. A further example can be seen in sample A, Fig 7,
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where the injection site can be visualised in the patient’s arm (although traditionally PET
scans are performed in the “arms up” position). Additionally, we see in Sample D in Fig.
12 that a patient with an amputated arm showcases high uptake at the amputation site
recorded as a false positive. Naturally, one solution would be to provide more training data
increasing observed variability; however, further work to combat these issues could stem
from some form of weak or self-supervision via to help to remove the outliers from the
training data. Another approach could also be to incorporate some form of ensembling of
models at different levels of downsampling within the VQ-GAN. In doing so the combined
models will showcase greater local and global context such that the model might be able to
better differentiate healthy physiological uptake from pathological uptake.

6. Conclusion

Detection and segmentation of anomalous regions, particularly for cancer patients, is es-
sential for staging, treatment and intervention planning. In this study, we propose a novel
transformer-based anomaly detection model using multi-modal conditioning and kernel den-
sity estimation via model stochasticity. Proposed model achieves statistically-significant im-
provements in Dice and AUPRC, representing a new state-of-the-art compared to competing
methods. We further show the impact of codebook size selection to act as a key consider-
ation when implementing VQ-VAE based methods. In addition, we show that the kernel
choice and bandwidth regularisation for the kernel density estimation approach significantly
impact the anomaly detection performance when using KDE anomaly maps, a superior al-
ternative to residual maps. We show the impact of proposed methods when faced only
with training data containing anomalies, showing greater robustness than autoencoder-only
approaches. The strong evidence presented here indicates that multi-modal abnormality
detection models, when combined with the proposed KDEs method, are key features that
deserve further focus and development by the community.
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Paul Bergmann, Sindy Löwe, Michael Fauser, David Sattlegger, and Carsten Steger. Im-
proving unsupervised defect segmentation by applying structural similarity to autoen-
coders. In VISIGRAPP, 2019.

Beatrice Berthon, Emiliano Spezi, Paulina Galavis, Tony Shepherd, Aditya Apte, Mathieu
Hatt, Hadi Fayad, Elisabetta De Bernardi, Chiara D. Soffientini, C. Ross Schmidtlein,
Issam El Naqa, Robert Jeraj, Wei Lu, Shiva Das, Habib Zaidi, Osama R. Mawlawi,
Dimitris Visvikis, John A. Lee, and Assen S. Kirov. Toward a standard for the evaluation
of pet -auto-segmentation methods following the recommendations of aapm task group
no. 211: Requirements and implementation. Medical Physics, 44:4098–4111, 8 2017. ISSN
0094-2405. doi: 10.1002/mp.12312.

Lei Bi, Jinman Kim, Ashnil Kumar, Dagan Feng, and Michael Fulham. Synthesis of
positron emission tomography (pet) images via multi-channel generative adversarial net-
works (gans). 7 2017.

Ninon Burgos, M Jorge Cardoso, Jorge Samper-González, Marie-Odile Habert, Stanley
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Appendix A. Model Parameters

The total number of parameters for the VQ-GAN Model used to encode the PET and CT
along with the parameters of the Performer models used in this work can be outlined in
Table 4.

Table 4: Number of parameters of models used
Model Trainable Parameters Total Parameters

VQ-GAN 24,599,681 24,632,449
Performer PET only 18,684,673 18,684,673

Performer PET + Cross attention CT 33,396,993 33,396,993

Appendix B. Model AUC Curves

Furthermore we display a number of meaningful Precision Recall curves for selected models
on both testing datasets to better visualise the sensitivity and specificity tradeoff of the
proposed methods.

Figure 9: Precision recall curves for proposed model using PET and CT data with KDE
anomaly maps trained on anomalous and healthy training data, for testing out-
lined in section 4.6
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Figure 10: Precision recall curves for ablation study of VQ-VAE + Transformer along with
additions including CT conditioning, KDE anomaly maps and thresholding. Re-
sults presented for testing outlined in section 4.6

Figure 11: Precision recall curves comparing baseline methods against our proposed method
of the VQ-VAE + Transformer with CT conditioning and KDE anomaly map
trained on healthy data. Results presented for testing outlined in section 4.6
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Figure 12: Precision recall curves for ablation study of VQ-VAE + Transformer along with
additions including CT conditioning, KDE anomaly maps and thresholding. Ad-
ditionally we showcase the performance of the best alternative baseline model
for the CPTAC testing set - F-AnoGan. Results presented for testing on the
out-of-sample testing on CPTAC for models trained on anomlaous data.
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