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Abstract

Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely
and accurate diagnosis for effective treatment and improved patient survival rates. While
deep learning techniques have emerged as the leading approach for medical image analy-
sis and processing, the most commonly employed supervised learning often requires large,
high-quality annotated datasets that can be costly to obtain, particularly for pixel/voxel-
wise image segmentation. To address this challenge and facilitate ICH treatment decisions,
we introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin
transformer trained on an ICH classification task with categorical labels. Our approach
leverages a hierarchical combination of head-wise gradient-infused self-attention maps to
generate accurate image segmentation. Additionally, we conducted an exploratory study
on different learning strategies and showed that binary ICH classification has a more pos-
itive impact on self-attention maps compared to full ICH subtyping. With a mean Dice
score of 0.44, our technique achieved similar ICH segmentation performance as the popular
U-Net and Swin-UNETR models with full supervision and outperformed a similar weakly
supervised approach using GradCAM, demonstrating the excellent potential of the pro-
posed framework in challenging medical image segmentation tasks. Our code is available
at https://github.com/HealthX-Lab/HGI-SAM.

Keywords: Weak Supervision, Image Segmentation, Swin Transformer, Intracranial
Hemorrhage, Self-attention

1. Introduction

Intracranial Hemorrhage (ICH) is a potentially fatal cerebrovascular disorder that is re-
sponsible for 10-15% of all stroke cases and can be caused by various factors, such as head
trauma, high blood pressure, and blood clots (Rajashekar and Liang, 2021; Apostolaki-
Hansson et al., 2021). The outcome of ICH depends on the volume of bleeding, which can
enlarge rapidly within the first few hours (Qureshi and Palesch, 2011), leading to a high
risk of secondary brain injury or even death if it is not treated promptly. In general, ICH
can be classified into five subtypes based on its location in the brain, including Intraventric-
ular (IVH), Intraparenchymal (IPH), Subarachnoid (SAH), Epidural (EDH), and Subdural
(SDH). Note that one patient may have more than one hemorrhage subtype. Each ICH
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subtype should receive customized treatment approaches, and surgery is only considered
if the location of the hemorrhage is advantageous. Upon admission at the hospital, early
detection and accurate quantification of ICH are critical in selecting appropriate medical
interventions and reducing patient mortality. Thus, efficient and automated systems to
asses ICH are highly valuable. Compared to other medical imaging modalities, such as
MRI, computerized tomography (CT) is often used in the clinic to assess ICH due to its
fast imaging time and good accessibility. However, in addition to the morphological and
spatial variabilities, the subtle contrast of ICH within often noisy clinical CT scans can pose
challenges in its detection and quantification.

Recent progresses in deep learning (DL) techniques, especially convolutional neural net-
works (CNNs), have led to the development of efficient and accurate solutions for computer-
assisted diagnosis and treatment decisions. For the care of intracranial hemorrhage, several
automatic CNN-based DL algorithms have been devised for the detection, subtyping, and
volumetric segmentation of intracranial hemorrhage based on clinical scans (Hssayeni et al.,
2020; Alis et al., 2022; Salehinejad et al., 2021). To overcome the limitations of CNNs in
encoding long-range spatial information due to limited field of view, which may impact the
accuracy of ICH detection and subtyping, particularly in cases where the spatial location
of hemorrhage is crucial for diagnosis, the Vision Transformer (ViT) (Dosovitskiy et al.,
2021) has emerged as a promising solution. The ViT utilizes multi-head attention mech-
anisms to capture contextual relationships among spatially distributed image patches and
has attracted great interest for vision tasks, including medical imaging applications (Dai
et al., 2021; Dalmaz et al., 2022). However, by removing convolutions, the ViT possesses
low locality inductive biases, such as translation invariant features. To address this, a re-
cent variant called the Swin transformer (Liu et al., 2021) was introduced as an efficient
hierarchical transformer, addressing the need for both long-range spatial encoding and lo-
cal feature representation. It achieves the goal by gradually reducing the number of tokens
by merging image patches and computing attention in non-overlapping local windows to
mitigate the drawback of the ViT.

Training CNNs and Transformer-based models require a significant amount of data,
but annotating medical images is a laborious and time-consuming process, particularly for
segmentation tasks. Among various strategies, including semi-supervised learning, weakly
supervised methods (Zhou, 2017) offer alternative solutions to address such challenges by de-
riving fine-grained image segmentation from coarse and more accessible image annotations,
such as bounding boxes, scribbles, and categorical labels. Among these typical choices, as
categorical labels require the least time and effort, obtaining pixel-wise segmentation from
them is highly attractive. This is especially true for our target application, where image
classification is also needed, but such approaches have rarely been attempted. In this study,
we intend to propose and validate a novel weakly supervised ICH segmentation technique
by taking advantage of the Swin transformer.

In our previous work (Rasoulian et al., 2022), we employed a Swin transformer to per-
form CT-based detection and weakly supervised segmentation of ICH for the first time.
More specifically, we obtained ICH segmentation by fusing hierarchical self-attention maps
generated from a Swin transformer that was trained using categorical labels for ICH detec-
tion. Furthermore, comparing the proposed weakly supervised ICH segmentation frame-
work for two Swin transformers based on (1) binary classification (presence of hemorrhage
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or not) and (2) multi-label classification (detailed ICH subtypes and with/without ICH),
we found that binary classification helped better focus the network attention on the ICH
regions. In this paper, we further extended our previous study (Rasoulian et al., 2022)
with three main contributions. First, inspired by the gradient-weighted class activation
mapping (Grad-CAM) (Selvaraju et al., 2017), we proposed a novel attention visualization
technique, called HGI-SAM (Head-wise Gradient-infused Self-Attention Mapping), by per-
forming head-wise weighing of self-attention obtained from the Swin transformer using the
gradient of the target class. We further demonstrated the benefit of incorporating HGI-SAM
in our weakly supervised ICH segmentation framework over the original proposal (Rasoulian
et al., 2022). Second, by inspecting the characteristics of the gradient-weighted attention
maps obtained from ICH detection, we proposed tailored post-processing methods to op-
timize the segmentation accuracy. Lastly, with the publicly available RSNA 2019 Brain
CT hemorrhage (Flanders et al., 2020) and PhysioNet datasets (Hssayeni et al., 2020), we
conducted a comprehensive evaluation of the new method against our previous approaches,
popular U-Net and Swin-UNETR models with full supervision, and a similar weakly super-
vised segmentation method leveraging the popular Grad-CAM technique, in the tasks of
ICH segmentation and detection.

2. Related Works

There have been several variants of the Swin transformer model for medical image segmen-
tation tasks. Heidari et al. (2023) introduced a model with an encoder that combines feature
maps from a CNN and a Swin transformer, to achieve accurate segmentation of skin lesions,
multiple myeloma cells, and abdominal CT scans. Cao et al. (2023) proposed a Swin-based
U-Net-like model to segment abdominal CT images and cardiac MRI scans. Hatamizadeh
et al. (2022) proposed a hybrid Swin-encoder-CNN-decoder model to segment brain tumor
MRI images. Finally, Lin et al. (2022) introduced a dual Swin transformer model with
different patch sizes to segment endoscopic images. Although all these methods showcase
promising results to demonstrate the capability of the Swin transformer architecture, they
all require full supervision.

To overcome the challenge of limited, well-annotated training data in developing deep
learning techniques for medical image segmentation, a number of semi-supervised and
weakly supervised algorithms have been proposed (Wang et al., 2022; Qureshi et al., 2023;
Syed et al., 2023). Semi-supervised strategies leverage a small number of images with re-
fined labels, along with unlabeled or weakly labeled data. In this domain, Yurt et al. (2022)
used Generative Adversarial Networks (GANs) for MRI contrast translation with under-
sampled k-space data. Chen et al. (2019) employed attention-based multi-task learning that
simultaneously optimizes a supervised segmentation and an unsupervised reconstruction for
brain tumor segmentation. Finally, Zhou et al. (2019) incorporated collaborative learning
for diabetic retinopathy grading and lesion segmentation. On the other hand, weakly su-
pervised techniques rely entirely on coarse labels in the formats of bounding boxes (Rajchl
et al., 2017), scribbles (Liu et al., 2022a), points (Roth et al., 2021), or even categorical
labels (Lin et al., 2018). As these coarse-level labels are more economical to acquire, weakly
supervised segmentation techniques can further reduce the need for refined pixel/voxel-level
annotations. With simple bounding boxes, Rajchl et al. (2017) proposed DeepCut, an ap-
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proach that combined a CNN segmentation model with a densely-connected conditional
random field (CRF) in an iterative training process to achieve pixel-level segmentation.
Their method was tested on brain and lung segmentation for fetal MRI datasets. Following
the approach, Kervadec et al. (2020) employed global constraints derived from box an-
notations, including tightness prior and global background emptiness, to achieve improved
segmentation results over DeepCut (Rajchl et al., 2017) on the PROMISE12 dataset (Litjens
et al., 2014). Previously, scribble and point annotations have been widely used in interactive
segmentation. In weakly supervised segmentation, Roth et al. (2021) employed the random
walker algorithm to generate coarse image-level labels from anatomical landmarks, which
were used in combination with the point clouds to refine the segmentation results. More
recently, Liu et al. (2022a) proposed a weakly supervised COVID-19 infection segmentation
method based on image scribbles and an uncertainty-aware mean teacher framework.

To further alleviate the need for pixel/voxel-wise manual annotation, weakly supervised
segmentation methods that solely rely on categorical labels are highly attractive. With the
assumption that deep neural networks in image classification tasks should have a local focus
on the target objects, this type of approach was made possible by the latest techniques that
provide an intuitive visual explanation of the reasoning process for DL algorithms through
saliency, class activation, and attention maps. In this domain, Han et al. (2022) proposed a
weakly supervised segmentation model based on class residual attention for the lung adeno-
carcinoma and breast cancer datasets. Chen et al. (2022) developed a novel class activation
mapping for weakly supervised segmentation for MRI datasets that achieves state-of-the-art
accuracy, and similarly, Viniavskyi et al. (2020) utilized class activation maps (CAM) for
Chest X-Ray segmentation. More recently, Yu et al. (2022) further modified CAMs by scale
feature adaptation and soft-erase modules to segment thyroid ultrasound images. With the
transformer model, Li et al. (2023) utilized a self-attention mechanism in multiple instances
learning for weakly supervised segmentation of histopathology images while Zhang et al.
(2022) used CAM and a refinement segmentation decoder for the same task.

Almost all previous reports on automatic ICH detection and/or segmentation primar-
ily relied on supervised learning strategies. Hssayeni et al. (2020) recently conducted a
comprehensive review of these techniques in both semi-automatic and automatic manners,
and binary classification (ICH versus non-ICH) achieved an area-under-the-curve (AUC)
of 0.846∼0.975, while more fine-grained ICH subtyping achieved an AUC of 0.93∼0.96.
Deep learning-based approaches in ICH detection typically used fully convolutional net-
works (FCNs) (Cho et al., 2018) and recurrent neural networks (RNNs) (Ye et al., 2019),
and their accuracy was generally higher for ICH versus non-ICH classification than for
ICH subtyping. Following the trend in explainable artificial intelligence (XAI), attention
mechanisms have been employed to both boost detection accuracy and visually illustrate
classification results. Saab et al. (2019) and Salehinejad et al. (2021) utilized ResNet-like
architectures for binary ICH detection with attention layers and Grad-CAM techniques,
respectively, but they only visualized attention and class activation maps for qualitative
assessment of their methods. Furthermore, very limited attempts were also made to apply
the attention/class activation in weakly supervised brain lesion and hemorrhage segmenta-
tion (Wu et al., 2019; Nemcek et al., 2021; Liu et al., 2022b). Specifically, Wu et al. (2019)
used refined 3D CAMs to segment stroke lesions from the Ischemic Stroke Lesion Segmen-
tation (ISLES) dataset (multi-spectral MRI), and achieved a 0.3827 mean Dice score. Liu
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Figure 1: Overview of the proposed weakly supervised segmentation method using hierar-
chical fusion of gradient-weighted self-attention maps.

et al. (2022b) used multi-scale CAMs and a Mixed-UNet model with two decoder branches
on top of a VGG-based binary classification CNN. They trained the network based on a
private MRI dataset and achieved a 0.56 mean Dice score for ICH segmentation on a small
CT dataset. Likewise, Nemcek et al. (2021) found the location of ICH as bounding boxes
in axial brain CT slices based on the regional extrema of attention maps acquired from a
ResNet-like binary classification CNN. In their approach, a mean Dice of 0.58 was reached
for the lesion bounding boxes. Unfortunately, to the best of our knowledge, aside from our
earlier work (Rasoulian et al., 2022), self-attention, especially with a Swin transformer, has
not yet been explored for weakly supervised ICH segmentation, and we intend to further
improve our proposed framework to boost the performance.

3. Methods

An overview of our proposed weakly supervised technique for ICH segmentation is depicted
in Fig. 1, which comprises two major components. First, a Swin transformer was trained
through an ICH detection task using categorical labels to classify input images into ICH
vs. without ICH. Then, during test time, the segmentation module utilized hierarchical
attention maps from the Swin transformer blocks along with their corresponding gradients
to predict the hemorrhage segmentation map. Due to the high variability in slice thicknesses
among the CT data, we decided to implement our algorithm based on 2D axial slices. The
details of the methodology are provided in the following sections.

3.1 ICH detection with a Swin transformer

In our proposed technique, we employed the Swin-Base transformer architecture, which
divides an input image into 4 × 4 patches before passing their embedding through 4 lay-
ers/hierarchies to predict the existence of hemorrhages. Unlike the ViT, which computes
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the multi-head self-attention (MSA) between all image patches, in Swin-Base transformer,
self-attention is derived within non-overlapping windows of 12× 12 patches, which consid-
erably reduces the computational cost. Here, for simplicity, we will refer to the Swin-Base
transformer as “Swin transformer” from this point on. Two main mechanisms help estab-
lish the associations between patches across different windows. First, the Patch-Merging
module at the beginning of each Swin transformer layer combines and encodes every 2× 2
neighboring patches into one. Second, every two consecutive transformer blocks apply
window-based multi-head self-attention (W-MSA) and shifted window-based multi-head
self-attention (SW-MSA) units to input tokens (see Fig. 2a). The self-attention per head
within each window is computed as:

Attention (Qh,Kh, Vh) = wh × Vh,

wh = Softmax

(
QhK

T
h√

d
+Bh

)
,

(1)

where Q, K, and V denote query, key, and value vectors, respectively. w is the window
attention weight that we use to derive the attention map, h denotes the head index of
multi-head self-attention, d is the dimension of the query or key, and B is the positional
embedding matrix. Here, since the dimension of the window is 12× 12, the dimension of w
is 144 × 144. Note that w shows the relevance score of key tokens with query tokens. For
more information on how the attention weight within each window is computed, we refer
the readers to the original Swin transformer paper (Liu et al., 2021).

In our earlier study (Rasoulian et al., 2022), we discovered that providing additional
information (hemorrhage subtypes) to “ICH vs. without ICH” classification during training
can distract the network attention in the Swin transformer. As a result, for our new
method with HGI-SAM, we decided to establish the backbone of our algorithm based on
simple binary ICH detection. To benefit from the target class gradient, instead of using one
output neuron to represent the classification outcome, we framed the final network with a
two-class setup (i.e., positive and negative ICH detection). Further information on network
training is detailed in Section 4.2.

3.2 Hemorrhage Segmentation

In our previous study (Rasoulian et al., 2022), we have qualitatively demonstrated the
superior performance of self-attention maps than the class-activation maps obtained with
Grad-CAM in visually explaining the ICH detection process in Swin transformers. There-
fore, we continued to take advantage of self-attention maps, with a novel formulation to
perform weakly supervised ICH segmentation.

Previous attempts to visualize attention weights in the ViT involved inserting an extra
classification token into the image patches and then extracting the attention weight of this
token after multiplying the weights of all layers (Chefer et al., 2021; Dosovitskiy et al.,
2021). However, this approach is not feasible for the Swin transformer due to its window
division mechanisms for both regular and shifted windows. Additionally, multiplying differ-
ent attention weights is challenging due to two reasons. First, at different layers/hierarchies,
Patch-Merging results in a different feature map resolution and number of tokens. Second,
every two successive Swin transformer blocks have attention weights corresponding to regu-
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Figure 2: Demonstration of head-wise gradient-infused layer attention map generation in
the proposed Swin transformer in categorical learning

lar and shifted image patches that do not match. To address these challenges, we calculated
the attention map at each block by averaging over all query tokens with additional opera-
tions of the window and shift reversal, and then the interpolated maps at different layers
are multiplied.

3.2.1 Layer Attention Map Generation

There has been recent research that leverages model classification scores for attention ex-
plainability. For instance, Chefer et al. (2021) utilize the Taylor Decomposition principle
to assign and propagate a local relevance score through the layers of a ViT model. Sim-
ilarly, Sun et al. (2021) and Barkan et al. (2021) employ attention gradient weighting on
ViT and BERT models, respectively. However, these approaches primarily focused on the
attention weight of the “cls” token, and the latter two methods weighed each token’s at-
tention weight through element-wise multiplication. In contrast, our work places emphasis
on weighing different heads in multi-head self-attention, and we performed the operation
on the more complex Swin Transformer for the first time.

The use of multiple heads in the self-attention mechanism enhances the representational
capacity and robustness of the transformer model, as each head can focus on different
aspects of the input and learn a unique set of attention weights, thus capturing more
complex relationships among the tokens. However, this critical fact was overlooked in most
previous attention map generation methods (Gao et al., 2021), including our own previous
work (Rasoulian et al., 2022). In the existing literature, naive averaging is often applied to
the attention weights of all heads to obtain an overall weight representation. However, as
proved by Voita et al. (2019), some heads have more contribution to the output prediction.
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In this work, we weighed each head by the norm of its gradient regarding the classification
score of positive ICH detection, which caused the attention weights of the heads that are
more strongly associated with hemorrhage detection to have a heavier influence on the
final attention weight representation. This is similar to Grad-CAM, where the target class
gradient is used to weigh the associated activation map to enhance its specificity. In a Swin
transformer, attention weights are computed within non-overlapping local windows while the
W-MSA and SW-MSA units in two successive blocks establish cross-window connections.
To encode the full attention information from local windows and cross-window connections,
we multiply the attention maps from the original and shifted versions. Thus, we produce
one map per every two consecutive blocks. As illustrated in Fig. 2, the layer attention map
is created as follows:

W i =
1

H

H∑
h=1

∥∥∥∥ ∂Y 1

∂wi
h

∥∥∥∥ · wi
h,

M i =
1

Q

Q∑
k=1

W i
k,

L = BI
(
WR

(
W i

)
⊗ RS

(
WR(W i+1)

))
(2)

where wi is the Multi-head window Self-Attention (MSA) weight of block i, H is the number
of heads in the MSA unit, M i is the window attention map of block i which is derived by
averaging the window attention weight over its query tokens’ dimension, and L is the layer
attention map. BI refers to bilinear interpolation, which is utilized to upsample the map
to the image size. WR stands for Window Reverse operation, which involves concatenating
maps of all windows to create a full image map. Also, RS denotes the reverse shift operation,
which is used to reposition the shifted patches of the SW-MSA unit to their original locations
in the image. It is good to mention that for Layer 3 in our Swin transformer, which consists
of 18 blocks, the final layer map is obtained by averaging the results of 9 maps computed
as above.

3.2.2 Segmentation Module

In the segmentation module, the final ICH segmentation was obtained by thresholding the
pixel-wise multiplication result of the attention maps from different hierarchical layers in
the Swin transformer. Note that the attention map generated by the last layer in the
Swin transformer tends to be much more coarse due to the interpolation of a 12× 12 pixel
map to the image size, resulting in reduced resolution and potential loss of fine-grained
details. Therefore, unlike our previous approach (Rasoulian et al., 2022), which used the
attention of Layer 4 to compensate for its limited ability to capture relevant features in
earlier layers, with the new technique using HGI-SAM, we used the attention maps from
the first 3 layers to generate the final ICH segmentation (Zhou et al., 2021). Furthermore,
as demonstrated in Fig. 1, we employed an additional post-processing step in our approach.
This involved multiplying the final fused attention map with a brain binary mask, removing
any irrelevant attention weights to ICH segmentation outside the brain region. The skull-
stripping procedure was conducted following the recommended steps outlined by Muschelli
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Figure 3: A comparison of the proposed head-wise gradient-infused self-attention mapping
(HGI-SAM) and the original self-attention maps (Swin-SAM) from the Swin
transformer model is shown for two axial CT slices. Along with the maps at
different hierarchies, the fused attention maps and the derived binary ICH seg-
mentation (in red) are also shown over the ground truths (in green). Note that
the yellow color shows the overlapping area (true positive regions of segmentation
results).

(2019). Lastly, the refined attention map was binarized using a simple thresholding method,
which was demonstrated to be more robust than K-means or Otsu’s method in our previous
study (Rasoulian et al., 2022), resulting in a discrete segmentation mask. To determine
the optimal threshold value, we conducted a grid search using the validation data. More
specifically, to evaluate a fold in 5-fold cross-validation, we chose a best-performing threshold
value from 0 to 1 with a step size of 0.01 that obtained the best segmentation on the
remaining folds based on Dice scores.

4. Experiments and Evaluation

To investigate the performance of the proposed weakly-supervised ICH segmentation method
using our new HGI-SAM technique, in addition to the approaches from our previous pub-
lication (Rasoulian et al., 2022), we also implemented three baseline models, including a
fully supervised U-Net, a fully supervised Swin-UNETR, and a similar weakly supervised
segmentation method based on binary ICH detection using class activation maps from
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Grad-CAM. To facilitate the discussion of these methods, we refer the weakly supervised
segmentation techniques with Grad-CAM, self-attention maps in multi-label learning (ICH
subtyping), self-attention maps in binary ICH detection, and head-wise gradient-infused
self-attention maps in binary ICH detection as Swin-Grad-CAM, Swin-SAM Multi-label,
Swin-SAM Binary, and Swin-HGI-SAM, respectively. All our networks were trained on a
desktop computer with an Intel Core i9 CPU and an NVIDIA GeForce RTX 3090 GPU with
24 GB of memory. The following sections provide detailed information about the dataset,
model training techniques for various segmentation methods, and evaluation metrics.

4.1 Dataset

To train and evaluate our models, we used two public datasets, the RSNA ICH CT dataset
(Flanders et al., 2020) and the PhysioNet CT dataset (Hssayeni et al., 2020). The RSNA
dataset contains 752,803 CT slices, with each slice annotated only with ICH subtypes, and
the PhysionNet dataset has 2,814 CT slices (75 subjects) with both manual ICH segmen-
tation and ICH subtypes. For all weakly supervised methods, the deep learning models
were trained only using the RSNA dataset, which was randomly split into 90% and 10% for
training and validation sets. We used the validation set to early stop training when its loss
stops decreasing. Their testing was performed only using the PhysioNet dataset. To train
and test the fully supervised U-Net and Swin-UNETR networks (Hatamizadeh et al., 2022),
subject-wise five-fold cross-validation was used on the PhysioNet dataset, where we ensure
that no slices from the same subject exist across different folds. Finally, we incorporated
the same data splitting to evaluate all techniques. We published our data splitting along
with our code at https://github.com/HealthX-Lab/HGI-SAM.

To prepare the data, for each CT slice, brain, subdural and bone windows created
using the suggested parameters provided in the relevant data publications (Flanders et al.,
2020; Hssayeni et al., 2020) were stacked to create a three-channel image, downsampled to
384×384 pixels, and normalized using min-max scaling to the range of [0,1].

4.2 Implementation details

4.2.1 ICH segmentation with Swin-SAM Multi-label and Swin-SAM Binary

In our previous work (Rasoulian et al., 2022), two Swin transformers (Wightman, 2019)
were trained with categorical learning to provide self-attention maps for ICH segmentation,
with one for binary ICH detection and the other for binary ICH detection and full subtyp-
ing. When training both models, we used the AdamW optimizer with an initial learning
rate of 1e-5 and early stopping with a patience of 3 to avoid overfitting. To address the class
imbalance (ICH vs. without ICH) issue in the dataset, we used the focal cross-entropy loss
function. Finally, we employed data augmentation techniques, including random left-right
flipping, image rotation, and Gaussian noise addition, to improve the capacity and robust-
ness of the trained models. At test time using the PhysioNet data, the binary hemorrhage
segmentation was obtained using the same post-processing step as described in Section 3.2.2.
More specifically, a five-fold cross-validation approach was used to determine the optimal
threshold to generate binary ICH segmentation masks from the fused attention maps. The
fold-wise average of threshold values for Swin-SAM Multi-label and Swin-SAM Binary were
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0.11 and 0.07, respectively. Additionally, the division of the five folds was made consistent
with the training and testing of the supervised U-Net and Swin-UNETR models.

4.2.2 ICH segmentation with HGI-SAM

The Swin transformer for our new weakly supervised ICH segmentation using HGI-SAM
was established based on that of the Swin-SAM Binary technique, following our previous
insight regarding the benefit of binary classification on self-attention maps (Rasoulian et al.,
2022). To allow the computation of class-specific gradients for HGI-SAM, instead of one
neuron to represent binary ICH detection outcomes, the new model was equipped with
two output neurons to represent the ICH positive class and ICH negative class. To take
advantage of our existing work, the new model was fine-tuned based on the Swin transformer
backbone of Swin-SAM Binary, using the AdamW optimizer with a learning rate of 1e-6
and early stopping. Here, data augmentation with random spatial transformations and
Gaussian noise addition was used during training. Furthermore, with the cross-entropy
loss function, during training, we adopted data sampling that drew training data samples
with probabilities that were inversely proportional to their label frequencies to handle the
class imbalance issue in the datasets. Upon completing the training, pixel-wise ICH masks
were obtained in the same manner as described in the previous section to allow a consistent
comparison for all techniques. The obtained fold-wise average threshold value for this model
was 0.06.

4.3 Baseline models

4.3.1 ICH segmentation with Grad-CAM

As most existing weakly supervised segmentation techniques relied on Grad-CAM (Selvaraju
et al., 2017), we implemented a baseline technique of this category, where we employed the
class activation map on the same Swin transformer that we trained with the binary ICH
detection task for Swin-HGI-SAM. Following the suggestion by Gildenblat and contributors
(2021), we applied the Grad-CAM target layer to the output of the first norm layer in the
final block of the Swin transformer. Similar to the proposed self-attention-based method,
the activation map was first multiplied by the brain mask and then thresholded to achieve
the final hemorrhage segmentation as described in Section 4.2. The obtained fold-wise
average threshold value for this model was 0.80.

4.3.2 Fully supervised U-Net

The U-Net is one of the most popular DL models in medical imaging applications. Therefore,
we implemented a fully supervised U-Net model with a lighter architecture than that in
the PhysioNet ICH data paper (Hssayeni et al., 2020), which has four hierarchies in the
encoding and decoding paths, but less embedding dimension. Each hierarchy consists of two
Convolutional layers with ReLU activation function, a Max-Pooling layer in the encoding
branch, and Transposed Convolutional layer in the decoding branch. We used the AdamW
optimizer with an initial learning rate of 1e-3, the same sampling and augmentation strategy
as our weakly supervised models, and a loss function made of Dice coefficient and cross-
entropy, in a five-fold cross-validation setup.
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4.3.3 Fully supervised Swin-UNETR

Swin-UNETR (Hatamizadeh et al., 2022) is one the most popular Swin-based segmentation
models that takes advantage of Swin transformer and CNN techniques at the same time.
Specifically, it is a U-Net-like architecture, where the encoder is a Swin transformer, the
decoder is a CNN, and skip connections pass through convolutional residual blocks. To
mitigate overfitting considering the size of the PhysioNet dataset, we adopted a lighter
version of its original model that has 4 layers/hierarchies, an initial embedding dimension
of 12, and 2, 4, 8, and 16 heads in multi-head self-attention units of Layer 1 to 4. Here, we
used the same training parameters and strategies as the U-Net model, which also offers the
best outcome for this method, to train the network.

4.4 Evaluation metrics

For all the proposed and implemented methods, we evaluated their segmentation perfor-
mance using Dice coefficient and Intersection over Union (IoU). In addition, to assess the
performance of binary ICH detection, we also computed a range of metrics, including ac-
curacy, area under the curve (AUC), precision, F1-score, recall, and specificity for all al-
gorithms. Note that for Swin-SAM Multi-label, where the designated Swin transformer
was trained for both binary ICH classification and subtyping, the performance was assessed
only based on the binary detection results. For the U-Net and Swin-UNETR models, ICH
detection was recorded as whether the network provided a hemorrhage segmentation for a
given image since a similar approach was also used for assessing aneurysm detection in the
ADAM MICCAI Challenge (Timmins et al., 2021). It is worth mentioning that to make the
performance of these models in ICH detection more robust, we do not consider tiny fore-
grounds as positive ICH (< 10 pixels). As the data division for five-fold cross-validations
for different techniques was the same, we reported the ICH segmentation and detection
accuracy for all folds. We also report the model’s overall performance by considering the
accuracy of all slices. Lastly, two-sided paired sample t-tests were performed to further
confirm the performance of our newly proposed segmentation method based on HGI-SAM
against the rest of the comparing group.

5. Results

To demonstrate the impact of gradient-weighing for self-attention maps and thus the final
hemorrhage segmentation, we illustrate the layer-wise attention maps, along with the com-
bined map and the binary segmentation in Fig. 3 for the axial CT slices of two patients.
From Fig. 3, it is evident that the proposed head-wise gradient-infused self-attention maps
(HGI-SAM) provided more attention weights with higher specificity for the hemorrhage
regions, especially at the first two layers with higher resolutions. This, in turn, provided
final binary segmentations with a better agreement with the ground truths. To showcase
the segmentation performance of the proposed method, the results of all mentioned tech-
niques are shown for four different patients in Fig. 4. When comparing Swin-Grad-CAM
and the self-attention-based results, we can see that while Swin-Grad-CAM could focus on
the general region-of-interest correctly, it often provided much larger segmentations than
needed. Between Swin-SAM Multi-label and Swin-SAM Binary, as we discovered in the

349



Rasoulian et al.

previous study (Rasoulian et al., 2022), binary classification helped better focus the model
attention in the hemorrhage region than the multi-label counterparts, thus offering more
accurate segmentation. Finally, in contrast to the rest of the weakly supervised methods,
Swin-HGI-SAM gave the most similar results to the fully supervised models, and notably,
in Cases 2 and 4, the U-Net missed the small ICH that Swin-HGI-SAM and Swin-UNETR
were able to identify.

Following the qualitative demonstration of the segmentation performance, the Dice co-
efficient and IoU metric for all methods are listed in Table 1 for all five folds from the
experiments, with their overall slice-wise mean±SE. While the Swin-UNETR achieved a
Dice of 0.455±0.019 and an IoU of 0.355±0.016 in a fully supervised setting, Swin-HGI-
SAM was able to offer the second best results, with a 0.444±0.014 Dice. With Swin-
Grad-CAM as the worst method, Swin-SAM multi-label and Swin-SAM binary performed
worse than the newly proposed technique. In terms of statistical tests for segmentation
metrics, Swin-HGI-SAM outperformed all weakly supervised methods (p = 10−37 < 0.05
compared with Swin-Grad-CAM, p = 10−29 < 0.05 compared with Swin-SAM Multi-label,
p = 0.0029 < 0.05 compared with Swin-SAM Binary) while producing similar segmentation
accuracy as the fully supervised U-Net (p = 0.829 > 0.05) and fully supervised SwinUNETR
(p = 0.6184 > 0.05)

Finally, in Table 2, we listed the full assessment of ICH detection for Swin-SAM multi-
label, Swin-SAM binary, Swin-HGI-SAM, U-Net, and Swin-UNETR. Despite the strong
performance of fully supervised U-Net and Swin-UNETR models in ICH segmentation,
their ICH detection accuracy falls short when compared to weakly supervised models trained
with categorical labels. For all Swin transformer models, they offered similar ICH detection
performance across all evaluation metrics. By comparing Table 1 and Table 2 across different
data folds, we noticed that the detection results align with segmentation performance,
especially for weakly supervised based models. This is expected due to the nature of the
proposed weakly supervised segmentation framework.

6. Discussion

In recent years, the urgent need to enhance the transparency of deep learning algorithms has
encouraged the development of various techniques to visualize network activation/attention
maps in vision tasks. Among them, Grad-CAM (Selvaraju et al., 2017) has gained pop-
ularity to reveal the regions of interest in image classification tasks for CNNs, thanks to
its simplicity and flexibility. Furthermore, extending its original purpose, it has also been
adopted in weakly supervised image segmentation based on categorical and metric learning
to generate pixel-level semantic labels (Chen et al., 2022), including applications for stroke
lesion segmentation (Wu et al., 2019; Nemcek et al., 2021). Compared with Grad-CAM and
its variants, the more recent attention mechanisms, especially self-attention from trans-
former models, can identify more discriminative, task-related regions and features while
improving the performance of the DL models (Liang et al., 2022; Dosovitskiy et al., 2021).
This was confirmed in this study when comparing the segmentation performance of the pro-
posed weakly supervised ICH segmentation approaches with Grad-CAM and self-attention
maps. As for the self-attention mechanism, different learning strategies may influence the
positioning and tightness of network attention with respect to the target objects, and thus
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Table 1: Assessment of ICH segmentation performance for Swin-Grad-CAM, Swin-SAM
Multi-label, Swin-SAM Binary, Swin-HGI-SAM, U-Net, and Swin-UNETR algo-
rithms, using Dice coefficient and Intersection over Union (IoU). All results are
reported as mean±SE. Note the overall metrics are reported based on all cases
across the folds.

Fold
Dice Coefficient

Swin-Grad-CAM
Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM
Fully supervised

U-Net
Fully supervised
Swin-UNETR

1 0.174 ± 0.025 0.223 ± 0.029 0.337 ± 0.031 0.354 ± 0.040 0.302 ± 0.045 0.281 ± 0.044

2 0.219 ± 0.024 0.319 ± 0.021 0.433 ± 0.025 0.505 ± 0.026 0.336 ± 0.036 0.434 ± 0.044

3 0.189 ± 0.032 0.276 ± 0.032 0.347 ± 0.033 0.414 ± 0.034 0.442 ± 0.047 0.399 ± 0.045

4 0.268 ± 0.022 0.322 ± 0.025 0.400 ± 0.025 0.451 ± 0.029 0.555 ± 0.036 0.571 ± 0.034

5 0.307 ± 0.026 0.338 ± 0.029 0.407 ± 0.022 0.481 ± 0.030 0.491 ± 0.040 0.522 ± 0.037

Overall
slice-wise

0.237 ± 0.012 0.299 ± 0.012 0.387 ± 0.012 0.444 ± 0.014 0.438 ± 0.019 0.455 ± 0.019

Fold
Intersection over Union

Swin-Grad-CAM
Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM
Fully supervised

U-Net
Fully supervised
Swin-UNETR

1 0.107 ± 0.017 0.143 ± 0.020 0.226 ± 0.024 0.255 ± 0.031 0.228 ± 0.036 0.210 ± 0.035

2 0.136 ± 0.017 0.200 ± 0.015 0.295 ± 0.020 0.360 ± 0.022 0.238 ± 0.029 0.338 ± 0.038

3 0.127 ± 0.023 0.185 ± 0.024 0.240 ± 0.026 0.294 ± 0.027 0.352 ± 0.041 0.308 ± 0.038

4 0.171 ± 0.015 0.214 ± 0.018 0.275 ± 0.019 0.328 ± 0.024 0.453 ± 0.033 0.458 ± 0.030

5 0.199 ± 0.019 0.226 ± 0.022 0.270 ± 0.018 0.347 ± 0.026 0.381 ± 0.035 0.403 ± 0.033

Overall
slice-wise

0.151 ± 0.008 0.196 ± 0.009 0.263 ± 0.010 0.319 ± 0.012 0.343 ± 0.016 0.355 ± 0.016

Table 2: Assessment of ICH detection performance for Swin-SAM Multi-label, Swin-SAM
Binary, Swin-HGI-SAM, U-Net, and Swin-UNETR algorithms, using accuracy,
AUC, precision, F1-score, recall, and specificity. Note the overall metrics are
reported based on all cases across the folds.

Fold
Accuracy AUC

Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM U-Net Swin-UNETR
Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM U-Net Swin-UNETR

1 0.948 0.953 0.946 0.572 0.654 0.821 0.874 0.904 0.731 0.785

2 0.958 0.964 0.958 0.751 0.816 0.851 0.891 0.902 0.830 0.845

3 0.934 0.928 0.928 0.674 0.589 0.712 0.701 0.731 0.765 0.732

4 0.967 0.965 0.953 0.692 0.685 0.932 0.950 0.948 0.805 0.810

5 0.959 0.954 0.938 0.515 0.660 0.935 0.939 0.937 0.721 0.788

Overall
slice-wise

0.953 0.953 0.945 0.639 0.679 0.858 0.879 0.891 0.770 0.793

Fold
Precision F1-score

Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM U-Net Swin-UNETR
Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM U-Net Swin-UNETR

1 0.735 0.724 0.657 0.166 0.201 0.699 0.750 0.742 0.282 0.331

2 0.894 0.870 0.803 0.304 0.369 0.792 0.832 0.817 0.458 0.520

3 0.862 0.800 0.737 0.226 0.191 0.575 0.545 0.583 0.359 0.315

4 0.893 0.849 0.784 0.322 0.319 0.888 0.888 0.856 0.482 0.483

5 0.767 0.731 0.652 0.183 0.238 0.830 0.814 0.768 0.308 0.381

Overall
slice-wise

0.830 0.796 0.725 0.231 0.253 0.780 0.789 0.770 0.370 0.398

Fold
Recall (Sensitivity) Specificity

Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM U-Net Swin-UNETR
Swin-SAM
Multi-label

Swin-SAM
Binary

Swin-HGI-SAM U-Net Swin-UNETR

1 0.667 0.778 0.852 0.926 0.944 0.976 0.970 0.956 0.537 0.625

2 0.712 0.797 0.831 0.932 0.881 0.989 0.985 0.974 0.728 0.808

3 0.431 0.414 0.483 0.879 0.914 0.992 0.988 0.980 0.651 0.551

4 0.882 0.929 0.941 0.965 0.988 0.982 0.971 0.955 0.645 0.632

5 0.903 0.919 0.935 0.984 0.952 0.966 0.958 0.938 0.457 0.624

Overall
slice-wise

0.736 0.783 0.821 0.940 0.940 0.981 0.974 0.960 0.600 0.645
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Swin-Grad-CAM
Swin-SAM
Multi-label

Swin-SAM
Binary

Fully supervised
U-Net

Swin-HGI-SAM

1)

2)

3)

4)

Fully supervised
Swin-UNETR

Figure 4: Qualitative comparison of segmentation performance for the proposed weakly su-
pervised ICH segmentation methods (Swin-Grad-CAM, Swin-SAM Multi-label,
Swin-SAM Binary, and Swin-HGI-SAM), fully supervised U-Net, and fully super-
vised Swin-UNETR for four different cases. Here, red=automatic segmentation,
green=ground truths, and yellow=true positives.

the downstream segmentation outcomes in the proposed framework. As an ablation study
of our previous work (Rasoulian et al., 2022), we examined the impact of binary (presence
of hemorrhage or not) versus multi-label classifications (ICH subtypes and with/without
ICH) on self-attention maps from Swin transformers. Using segmentation accuracy as a
metric, we found that binary classification helped the network better focus on the hem-
orrhage regions while both strategies offer similar performance for ICH detection. In the
new segmentation method with HGI-SAM, we followed our earlier insights to build our
algorithm.

Inspired by the popular Grad-CAM technique (Selvaraju et al., 2017), we incorporated
head-wise gradient-weighing for self-attention maps to boost the presentation of the weights
relevant to specific class activation for the first time. Compared with other attention map-
ping techniques (Chefer et al., 2021; Sun et al., 2021) that relied on the ViT, we were
also the first to implement it on the more complex Swin transformer that was intended
to improve upon the ViT. The enhanced visualization of the attention maps and ICH seg-
mentation accuracy are evident in Fig. 3 and Fig. 4, respectively. Among the obtained
attention maps at different hierarchies, those from the earlier layers contained the relevant
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attention weights at higher resolutions, and thus were more helpful to delineate the regions
of interest (i.e., hemorrhages) through the ICH classification task. In our experiment, the
head-wise gradient-infused self-attention map (HGI-SAM) from Layer 4 possesses relatively
less discriminative power primarily due to much lower resolution and the adverse cascading
effect of transformer architecture (Zhou et al., 2021). Therefore, we chose to fuse those from
the first three layers for our proposed method. In fact, with a few cases, we found that the
fused attention map from the first 3 layers offered better segmentation accuracy than using
those from all 4 layers. In our original study that relied on self-attention maps alone, fusing
all 4 layers was more beneficial. To obtain discrete ICH segmentation from the HGI-SAM,
we applied additional post-processing steps. One major procedure that was different from
our original article was multiplying the brain mask before ICH mask binarization. When
closely inspecting the attention maps from ICH classification, we noticed that skull frac-
tures were also identified in addition to the hemorrhage. This is likely because, for many
ICH patients, the condition may result in accidental falls that cause additional injury, such
as skull or spine fractures. This phenomenon perfectly showcased the power of attention
visualization in explaining the decision-making process in DL models. By constraining the
post-processing in the brain region, we intended to exclude the attention weights regarding
skull fractures and were able to further improve the segmentation accuracy. Finally, differ-
ent from our previous approach (Rasoulian et al., 2022), where the denoised brain window
was multiplied to the attention map, our new method directly performed thresholding on
the gradient-weighted map to avoid potential intensity inconsistency within the hemorrhage
and multi-center imaging protocols. This also allowed us to directly probe the quality of
activation/attention maps with respect to their specificity in focusing on ICH.

To provide baselines for our weakly supervised segmentation framework, we have trained
a U-Net and a Swin-UNETR with full supervision using the PhysioNet data to perform
ICH segmentation. By using data sampling to tackle class imbalance in training, our U-Net
model has achieved an improved mean Dice score of 0.438 over that of 0.315 reported for
the U-Net in the original data paper (Hssayeni et al., 2020). In comparison, our proposed
method has achieved similar results to our baseline supervised U-Net and Swin-UNETR (p >
0.05) with the mean Dice scores slightly lower than the Swin-UNETR and higher than the
U-Net, showcasing the feasibility and excellent potential of weakly supervised segmentation
with much more accessible categorical labels. In terms of computational cost, U-Net was the
most efficient model, taking only around 10ms/sample, likely due to its simple convolutional
layer architecture. On the other hand, Swin-UNETR took around 15ms/sample, Swin-
SAM models took around 30ms/sample, and Swin-HGI-SAM and Swin-Grad-CAM took
approximately 60ms and 90ms per sample, respectively. The longer inference time is because
the latter two required backward operations for gradient computation, which is a key step
for the proposed framework. However, all these models are still relatively fast and suitable
for clinical setups, offering practical benefits.

While there is still room for improvement in our future work, ICH segmentation from
clinical scans remains a challenging task at the moment. In our proposed framework,
extracting meaningful pixel-wise attention maps is crucial. We admit that the exploration of
self-attention in this study may be data-, application- and model-specific while the baseline
supervised models have been tested in various applications. By using categorical learning to
obtain attention and saliency maps for segmentation, depending on the data and application,
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it is possible that the local regions that the network focuses on for image classification may
not fully overlap with the segmentation ground truths. In our application, the derived
self-attention maps focused on both ICH lesions and skull fractures in some cases, and
we used skull stripping to tackle this. In the future, we will continue to investigate the
characteristics of self-attention in different learning strategies, extended applications, and
other Transformer models. These would be greatly beneficial to improve weakly supervised
medical image segmentation based on categorical labels. Incorporating inter-slice or 3D
spatial information may be beneficial to the designated tasks, especially for 2D slices that
contain a few pixels of ICH, but the high variability of CT slice thickness in the public
datasets has posed challenges in the 3D approach. Recent developments in resolution-
agnostic brain image segmentation (Billot et al., 2023) and image super-resolution (Sui
et al., 2021) through generative DL models have allowed high-quality interpretation of
clinical scans with diverse imaging protocols (e.g., different image resolutions). We will seek
to adapt these frameworks for CT images in the task of ICH detection and segmentation in
future work.

7. Conclusion

To mitigate the requirement of expensive training data for intracranial hemorrhage seg-
mentation, we have proposed a weakly supervised framework by using a novel hierarchical
combination of head-wise gradient-infused self-attention maps from a Swin transformer
through categorical learning. By using two public CT databases, we further demonstrated
the benefits of head-wise gradient-weighing of derived attention maps to further boost ICH
segmentation performance for the first time. In the future, we will further explore the
proposed HGI-SAM technique and the application of the proposed weakly supervised seg-
mentation framework in extended applications and other Transformer models.
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