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Abstract

Congenital Heart Disease (CHD) is a group of cardiac malformations present already dur-
ing fetal life, representing the prevailing category of birth defects globally. Our aim in this
study is to aid 3D fetal vessel topology visualisation in aortic arch anomalies, a group which
encompasses a range of conditions with significant anatomical heterogeneity. We present
a multi-task framework for automated multi-class fetal vessel segmentation from 3D black
blood T2w MRI and anomaly classification. Our training data consists of binary manual
segmentation masks of the cardiac vessels’ region in individual subjects and fully-labelled
anomaly-specific population atlases. Our framework combines deep learning label propaga-
tion using VoxelMorph with 3D Attention U-Net segmentation and DenseNet121 anomaly
classification. We target 11 cardiac vessels and three distinct aortic arch anomalies, in-
cluding double aortic arch, right aortic arch, and suspected coarctation of the aorta. We
incorporate an anomaly classifier into our segmentation pipeline, delivering a multi-task
framework with the primary motivation of correcting topological inaccuracies of the seg-
mentation. The hypothesis is that the multi-task approach will encourage the segmenter
network to learn anomaly-specific features. As a secondary motivation, an automated di-
agnosis tool may have the potential to enhance diagnostic confidence in a decision support
setting. Our results showcase that our proposed training strategy significantly outperforms
label propagation and a network trained exclusively on propagated labels. Our classi-
fier outperforms a classifier trained exclusively on T2w volume images, with an average
balanced accuracy of 0.99 (0.01) after joint training. Adding a classifier improves the
anatomical and topological accuracy of all correctly classified double aortic arch subjects.

Our code is available at
https://github.com/SVRTK/MASC-multi-task-segmentation-and-classification.
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Multi-task learning for anomaly segmentation

1. Introduction

Congenital heart disease (CHD) is the leading cause of mortality related to congenital de-
fects (Mendis et al. (2011)). Accurate CHD diagnosis before birth is essential to inform
appropriate early postnatal management, which is known to lead to improved patient out-
comes both in terms of mortality and long-term morbidity (Brown et al. (2006); Mazwi
et al. (2013)).

We present a fully automated weakly-supervised multi-task tool for multi-class fetal
cardiac vessel segmentation and anomaly classification in 3D T2w MRI. Our intention is
to facilitate fetal cardiac vessel visualisation for prenatal diagnostic reporting purposes,
and provide the groundwork for automated vessel biometry and detection. We target three
aortic arch anomalies: Right Aortic Arch (RAA), Double Aortic Arch (DAA), and suspected
Coarctation of the Aorta (CoA).

In current clinical practice, vessel segmentation in fetal cardiac MRI is a time-consuming
process based on thresholding followed by manual correction, resulting in a binary mask of
fetal heart and vessels. An expert fetal cardiac clinician generally takes 1-2 hrs to complete
the binary mask, which is a significant hurdle to wider translation outside the research
setting. In addition, more refined multi-label segmentation would provide clinicians with
better visualisation of individual vessels, and facilitate automated quantitative analysis, thus
reducing reporting time and potentially improving the prediction of outcomes. However,
manual multi-label segmentation would bring extra clinical burden and is therefore not
currently performed in clinical practice. This is partly due to the image quality available,
paired with the small fetal vessel size (often only 1-2 voxels wide).

Our proposed weakly supervised deep learning framework is able to leverage existing
binary manual segmentations in conjunction with a small number of condition-specific multi-
label atlases, to provide a fully automated and accurate multi-label segmentation of individ-
ual cardiac vessels. The technique is adaptable to clinical workflows as it does not require
any manual input at inference time. We incorporate an aortic arch anomaly classifier into
our framework, with the intention of both providing a clinically useful diagnostic tool and
improving segmentation performance.

1.1 Imaging the fetal heart

2D Fetal echocardiography is commonly used for detecting CHD before birth, as it of-
fers clear discernment of the cardiac chambers and cardiac functional measurements using
Doppler flow. Extracting vessel positional and topological information from 2D echocar-
diography images alone is an extremely challenging task, requiring highly trained experts.
Although 3D STIC (DeVore et al., 2003) is available in many clinical settings, the corruption
by fetal motion renders this imaging modality less viable for clinical assessments.

Recently, fetal cardiac MRI has shown the potential as an adjunct to echocardiography
in the detection of CHD prenatally (Lloyd et al., 2019), and its use is becoming widespread
(Dong and Zhu, 2018; Salehi et al., 2021; Dong et al., 2020). State-of-the-art motion cor-
rection algorithms (Uus et al., 2020) address fetal CMR motion challenges, allowing the
generation of high-quality 3D MRI of fetal cardiac vessels. T2w black blood 3D MRI offers
excellent vascular visualisation (Lloyd et al., 2019), as the vessels appear dark in contrast
with surrounding tissue such as the lungs. This is the principal motivation behind the choice
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of imaging modality used in the present work, given the aim is segmentation of vascular
structures in aortic arch anomalies.

1.2 Deep learning segmentation

In order to provide a robust assessment of the cardiovascular anatomy in CMR, anatomical
structures require segmentation, i.e. voxelwise classification into an anatomical class. Deep
learning has become widespread for automated segmentation (Hesamian et al., 2019) and
adult CMR segmentation (Chen et al., 2020).

U-Net-based architectures (Ronneberger et al., 2015; Isensee et al., 2018) have been
successfully employed for fetal brain and thorax MRI segmentation (Salehi et al., 2018; Uus
et al., 2021). The fetal brain is the most commonly targeted fetal organ for automated
segmentation in recent works (Keraudren et al., 2014; Khalili et al., 2019; Ebner et al.,
2020; Payette et al., 2020; Salehi et al., 2018), due to the growing interest in early brain
development. In addition, as a rigid, heterogeneous organ constrained with the fetal skull
the brain represents an attractive target for these methods, compared to the fetal heart
which regularly deforms with the rapid fetal cardiac cycle. Most forms of CHD also present
significant anatomical variation in terms of vessel sizes and relative positions, making the
application of the methods particularly challenging.

Deep learning has been extensively applied to adult CMR segmentation in CHD (Arafati
et al., 2019). Yu et al. (2016) present a 3D fractal network for whole heart and great vessel
segmentation, while Rezaei et al. (2018) propose a framework comprising a three-stage
cascade of conditional GANs. Xu et al. (2019) address the anatomical variability challenge
in CHD by employing deep neural networks to segment the myocardial blood pool and
chambers, coupled with graph matching for vessel identification. Fetal cardiac datasets,
however, differ significantly from those acquired in postnatal life. For example, motion
corruption is particularly common in fetal imaging, due to gross fetal, fetal cardiac and
maternal respiratory motion. The fetal cardiac structures are also diminutive (most vessels
are only millimetres in diameter), and are subject to low signal-to-noise ratio (SNR) and
resolution with no option for intravenous contrast-enhancing agents. There is also differing
baseline contrast due to the heart being surrounded by fluid filled lungs, as well as issues
around temporal resolution due to the rapid fetal cardiac cycle. The technical approaches
required for fetal cardiac imaging, such as fast acquisition sequences (Patel et al., 1997;
Semelka et al., 1996) and high quality slice-to-volume registration algorithms (Kuklisova-
Murgasova et al., 2012; Uus et al., 2020) are therefore highly specialised for this application,
and generate unique output data which are not comparable to postnatal imaging methods.
A bespoke approach for the application of deep learning methods is therefore required.

1.3 Atlas-guided segmentation

Our training dataset consists of partially labelled subjects (binary manually segmented
labels) and fully-labelled atlases (Fig. 1). This type of setup is not uncommon in the
medical imaging field, with exhaustive works addressing this challenge (Peng and Wang,
2021).

Atlas-based label propagation has been widely used for medical image segmentation
(Aljabar et al., 2009; Heckemann et al., 2006). It uses image registration to transfer labelling
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(a) Fully-labelled atlas (b) Partially-labelled training subject

Figure 1: Illustration of our dataset setup.

information from a given atlas to individual subjects. We propose to use VoxelMorph
(Balakrishnan et al., 2019) for propagating multi-class labels from anomaly-specific atlases
to fetal subjects.

Deep learning atlas-based segmentation approaches include Dinsdale et al. (2019), which
presents a binary mask warping framework based on spatial transformer networks; Xu and
Niethammer (2019) propose to jointly train registration and segmentation networks to tackle
partially labelled data. Similarly, in Sinclair et al. (2022), registration and segmentation are
performed within the same framework, with the notable addition of a population-derived
atlas being constructed in the process. Alternative strategies include one-shot or few-shot
segmentation techniques (Zhao et al., 2019), where synthetic labelled data is generated
using VoxelMorph and used to deal with partially labelled datasets.

However, label propagation strategies are always limited by registration accuracy, hence
in this work we propose to combine the benefits of atlas-based and deep learning based
segmentation and use the atlas-propagated labels to train a convolutional neural network
(CNN) for the task of fetal heart segmentation.

1.4 Anomaly classifier

We also propose to leverage the notable topological distinction between aortic arch anoma-
lies (Fig. 2) to explore the addition of an anomaly classifier into our framework, based
on the pipeline presented by Puyol-Antón et al. (2021) which included a race classifier in
combination with a segmentation network. A similar approach has been taken by Mehta
et al. (2018), who address joint segmentation and classification of breast biopsy images,
with a U-Net-based network predicting both a standard segmentation and discriminative
map which are combined for tissue classification.

The benefits of joint classifier and segmenter network training have also been evidenced
in the field of computer vision. Liao et al. (2016) propose an approach which in essence is
the reverse of our strategy, namely, features from a classifier network are used to train a
scene segmentation network. MultiNet (Teichmann et al. (2018)) also follows an analogous
architecture to ours, combining a shared encoder with a task-specific decoder.

Our primary motivation is to explore whether the addition of a classifier can improve
segmentation performance, in particular ensuring the correct topology of the automated
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segmentation outputs. As a secondary motivation, we explore the possibility automated
diagnosis of aortic arch anomalies as a potential aid to clinical decision making.

1.5 Contributions

In this work, we present a weakly supervised multi-task framework for automated
multi-class fetal cardiac vessel segmentation and anomaly classification from 3D
reconstructions of T2w black blood MRI images. We propose a deep learning framework,
addressing three aortic arch anomalies.

We expand on our prior research (Ramirez Gilliland et al., 2022) by incorporation of an
anomaly classifier which improves segmentation discernment between anomalies. We also
include detailed ablation studies to validate individual elements of our multi-task framework,
which now consists of training using labels propagated from the anomaly-specific atlases
and manual labels in individual images, while simultaneously classifying the anomaly from
the predicted segmentation. This way we can leverage valuable anomaly-specific features
learnt from a classifier to improve our segmentation output. A key novelty is the application
of our framework to fetal Cardiac Magnetic Resonance (CMR) data, which is to date largely
unexplored. Our framework expands on our previous work (Uus et al., 2022b), which for
the first time proposed an automated segmentation of fetal cardiac vessels by training a
CNN on labels propagated from anomaly-specific atlases.

Our clinical contribution is to aid 3D vessel topology visualisation for clinical report-
ing and training purposes and to increase confidence in diagnostic accuracy. We propose
a multi-class approach to enable isolated visualisation of the anomaly area and affected
vessels. Our approach does not require a fully-labelled training set, only subject-specific
binary labels alongside multi-class anomaly-specific atlases; and thus is adaptable to clinical
environments. These labels are only required for training, segmentation during inference is
carried out on fully unlabelled data, from a single network.

2. Methods

2.1 Dataset description

2.1.1 Aortic arch anomalies

Our automated segmentation tool is aimed at subjects with Right Aortic Arch (RAA)
with aberrant left subclavian artery (ALSA), Double Aortic Arch (DAA), and suspected
Coarctation of the Aorta (CoA). These three distinct anomalies are depicted in Fig. 2.

Briefly, in CoA, there is a narrowing of the distal aortic arch which can require urgent
postnatal intervention if severe. In RAA the aortic arch passes to the right of the trachea
(as opposed to the normal position on the left) with an associated risk of airway and/or
oesophageal compression, particularly when associated with an ALSA. In DAA, both right
and left aortic arches are present, forming a ”vascular ring” around the trachea and oesoph-
agus, which in turn is associated with a higher risk of postnatal symptoms requiring surgical
intervention. Whilst each of these categories presents a distinct topological phenotype, there
is significant heterogeneity within each group in terms of vessel size and morphology.
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Our dataset is representative of patients that are referred to a specialist fetal cardiac ser-
vice, and therefore no controls are included in this study. Nonetheless, cases with Suspicion
of CoA have the same vessel topology as healthy controls.

Trachea

Aorta

Healthy Coarctation of the Aorta 
(CoA)

Right Aortic Arch (RAA) with Aberrant Left 
Subclavian artery (ALSA) Double Aortic Arch 

(DAA)

Aorta to the right 
of the trachea

Aorta branches into 
two around the 

trachea

Narrowing in the 
aorta

Trachea

Trachea

ALSA

Figure 2: Aortic arch anomaly illustration (atlases by Uus et al. (2022b)).

2.1.2 Data specifications

We employ 3D reconstructions of T2w black blood MRI. Our dataset consists of 195 fetal
subjects with suspected coarctation of the aorta (CoA, N=94), Right Aortic Arch (RAA)
with ALSA (N=72) and Double Aortic Arch (DAA, N=29), 31.4±1.5 weeks mean ges-
tational age (min=29 weeks, max=36 weeks). In addition to the primary diagnosis of
suspected CoA, RAA, or DAA, 56 cases presented secondary diagnoses affecting additional
anatomical areas, outside of the segmentation area (aside from RAA>DAA). These are
included in Table 1.

The datasets were acquired at Evelina London Children’s Hospital using a 1.5 Tesla In-
genia MRI system and a T2-weighted SSFSE sequence (RT=20,000 ms, ET=50ms, FA=90◦,
voxel size=1.25 × 1.25 mm, slice thickness=2.5 mm and slice overlap=1.25 mm). All re-
search participants provided written informed consent. The raw datasets consisted of six
to 12 multi-slice stacks of 2D images, covering the fetal thorax in three orthogonal planes.
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(a) 3D reconstructed T2w MRI images
with binary manually segmented labels.

(b) 3D T2w MRI aortic arch anomaly atlases with
multi-class vessel segmentations

Figure 3: Depiction of our two dataset groups: individual fetal subjects with binary masks
(3a), and multi-class anomaly-specific atlases (3b)

Table 1: Number of cases with an additional diagnosis. AVSD: atrioventricular septal defect,
VSD: ventricular septal defect, MV: mitral valve, PAPVD: partial anomalous pulmonary
venous drainage, LV/RV: left/right ventricle, AS: aortic valve stenosis, DV: ductus venosus,
BAV: bicuspid aortic valve, R/LAD: right/left arterial duct, R/LAA: right/left aortic arch,
?=suspected.

Primary diagnosis Additional diagnosis Number of cases

Suspected CoA

(unbalanced) (A)VSD 17
?Parachute MV 1
Small pericardial effusion 1
PAPVD 1
LV < RV 1
(aneurysmal) AS 3
Aberrant DV 1
Aneurysm 2
(?)BAV 3

RAA with ALSA
(?) VSD 4
RAD 1

DAA

RAA>LAA 10
LAD 9

Retro-aortic innominate vein 1
VSD 1

We use images reconstructed both with Slice-to-Volume Registration (SVR) (Kuklisova-
Murgasova et al., 2012; Kainz et al., 2015) and Deformable SVR (Uus et al., 2020, 2022a)
(DSVR, higher quality, N=49) to 0.75 mm isotropic resolution, to ensure a varied dataset.
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Trained clinicians manually segmented a binary vessels label for the majority of our
subjects (N=181), Fig. 3a. We employ propagated atlas labels exclusively for the remaining
unsegmented cases (N=14, Sec. 2.2). In order to achieve our multi-class output, we employ
three fully-labelled atlases1 (Uus et al. (2022b), see Fig. 3b), one per anomaly (RAA, DAA
and CoA). These include 11 manually segmented vascular regions for RAA and DAA, and
10 for CoA cases.

We affinely register all subject images to the pertinent anomaly-specific atlas prior
to training via MIRTK2 (Schnabel et al., 2001; Rueckert et al., 1999b,a), and crop to a
standardised cardiac vessels region after affine alignment (see Fig. 3). We split the subjects
into a training set (NCoA=71, NRAA=54, NDAA=21), validation set (NCoA=3, NRAA=3,
NDAA=3), and testing set (NCoA=20, NRAA=15, NDAA=5). We normalise and rescale the
intensities to between 0 and 1, and use a weighted random sampler to correct for the class
imbalance problem.

2.2 Multi-task segmentation framework

Our benchmark framework is based on Ramirez Gilliland et al. (2022), where Attention
U-Net (Oktay et al., 2018) is trained using both manual binary labels and multi-class labels
propagated from an atlas (Uus et al., 2022b).

The input to the network is an MRI image, and the output is a multi-class segmentation
(see Fig. 4). We use VoxelMorph (Balakrishnan et al., 2019) for label propagation, defining
our atlases as moving images (m), and fetal subject images as fixed images (f).

Subsequent to VoxelMorph training, we generate our propagated labels and use these
to train a CNN for segmentation. We keep the weights of VoxelMorph label propagation
frozen while training our segmentation network. We train our proposed network with two
losses: (1) a multi-class loss between the propagated labels and the network output; (2) a
binary loss between the multi-class network output joined into a binary segmentation and
the manual binary labels.

Finally, we attach a DenseNet121 (Huang et al., 2017) classifier to our softmax segmen-
tation output, which predicts one out of three possible diagnoses (CoA, RAA or DAA). We
train Attention U-Net and DenseNet121 jointly. This classifier has the option of incorpo-
rating the image as an extra channel, to make the classification less dependent on accurate
segmentation.

2.3 Label propagation

We use VoxelMorph (Balakrishnan et al., 2019) for label propagation. We warp the la-
bels from the pertinent anomaly-specific atlas (moving images, m) into each subject space
(fixed images f), using the prior anomaly diagnosis knowledge to select the relevant atlas.
Note that at testing or inference time, no prior diagnosis knowledge is required, and our
framework offers an automated diagnosis prediction.

1. https://gin.g-node.org/SVRTK/
2. https://github.com/BioMedIA/MIRTK
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Figure 4: Our proposed segmentation framework (Attention U-Net LP + Man + Classifier)
is trained with both a multi-class propagated labels loss, and a binary loss employing the
manual binary masks. We use three atlases: CoA, RAA and DAA, and train our segmen-
tation network jointly with an anomaly classifier. No labelling information (segmentation
or diagnosis) is required during inference.

2.3.1 Label propagation loss functions

Our similarity reconstruction loss function (Lsim) is Local Normalised Cross Correlation
loss (LNCCloss) (Balakrishnan et al., 2019). We employ bending energy BE loss (LBE),
as described in Grigorescu et al. (2020) as a displacement field regulariser. The total
registration loss Lreg may be expressed as

Lreg = Lsim(f,m · ϕ) + λ1LBE(ϕ), (1)

where λ1 is a loss weight.
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2.3.2 Registration network implementation details

We employ a U-Net-based encoder-decoder architecture. We use blocks of 3D strided con-
volutions with leaky ReLU activations. We illustrate our architecture in Fig. 5.

Figure 5: CNN architecture used for registration. The numbers under each convolution
representation indicate the volume spatial resolution relative to the input volume. k=kernel
size, s=stride.

We train a single CNN on all diagnoses, appropriately pairing each subject to its cor-
responding atlas. We train the VoxelMorph registration network until convergence (81,653
iterations, NVIDIA GeForce RTX 3090 GPU), using a linearly decaying learning rate ini-
tialised at 5×10−4 and an Adam optimiser (default β parameters, weight decay of 1×10−5).
We use Project MONAI spatial and intensity data augmentation3.

2.4 CNN segmentation

3D Attention U-Net is our backbone segmentation architecture, due to its success in seg-
menting multi-class structures of varying locations and sizes (Oktay et al., 2018).

2.4.1 Segmentation loss function

We use the soft dice and cross-entropy loss (DiceCEloss, Hatamizadeh et al. (2022)) for
all our segmentation experiments, with both cross entropy and dice loss weighted equally.

We additionally investigated network performance using both Generalised Dice loss
(GDL, Sudre et al. (2017)), and GDL+Focal loss (Lin et al., 2017). However, we found
very poor performance when using both these losses, such as unlearnt small vessels.

Our proposed framework Attention U-Net LP + Man is trained using a combined loss

3. https://github.com/Project-MONAI/MONAI/.
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Lseg = λ3DiceCEloss(predmulti, [mlab · ϕ]) +
λ2DiceCEloss(predjoined, flab)

(2)

where predmulti are the multi-class Attention U-Net predictions, predjoined are binary label
predictions (multi-class output labels joined together), [mlab · ϕ] are the propagated atlas
labels, flab are the manual binary labels, λ2 is the binary loss weight, and λ3 the multi-class
loss weight. The proposed losses are schematically presented in Fig. 4.

2.4.2 Segmentation network implementation details

We use a 3D Attention U-Net (Oktay et al., 2018) implemented in Project MONAI3 for
automated segmentation, with five encoder-decoder blocks (output channels 32, 64, 128,
256 and 512), convolution and upsampling kernel size of 3, ReLU activation, dropout ratio
of 0.5, batch normalisation, and a batch size of 12. We employ an AdamW optimiser
with a linearly decaying learning rate, initialised at 1 × 10−3, default β parameters and
weight decay=1×10−5. We use intensity and spatial augmentations from Project MONAI3,
including random intensity shifts, Gaussian smoothing, Gaussian noise, sharpening, contrast
adjustments and bias field.

We train our proposed method (Attention U-Net LP + Man, NVIDIA GeForce RTX
3090 GPU) by increasing the binary weight (λ2) by 0.05 every 50 epochs until convergence
(15809 iterations), with the propagated labels weight set to a fixed value (λ3=1). This is
to ensure accurate vessel classification while increasing the accuracy of the whole vessels
region of interest (ROI).

2.5 Classification

We train an anomaly classifier to discern between three classes: CoA, RAA and DAA. We
employ DenseNet121 (Huang et al., 2017) as our backbone classifier architecture.

DenseMulti is our classifier trained jointly with a segmenter network (Attention U-Net
LP + Man). This is a multi-task framework, where we update the weights of both networks
simultaneously and use the features learnt from the segmenter to train the classifier. The
inputs to the classifier are the output softmax features from the segmenter network. Fig. 6
illustrates our joint training framework. We aim to explore whether combined training will
encourage the segmenter to learn the characteristic features of each anomaly.

We additionally explored training a classifier on the latent space of the segmenter net-
work. However, we did not find a significant segmentation improvement.

2.5.1 Classification loss function

We employ different optimizers for classifier and segmenter networks and perform back-
propagation using the same total loss for both networks. This is expressed as

Ljoint = Lseg + λ4Lclass. (3)

Lseg is the weighted sum of DiceCEloss between propagated labels and predictions
(multi-class output) and between manual binary labels and predictions (binary output),
see Sec. 2.4.1. Lclass is the classification cross entropy loss; and λ4 is a tunable loss weight.
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Figure 6: DenseMulti: our classifier experiment trained on the output softmax segmen-
tation prediction.

2.5.2 Classification implementation details

We pre-train our segmentation networks prior to the addition of the classifier (with both
propagated and binary labels), as described in Sec. 2.4.2. The classifier is also pre-trained
(on the softmax segmentation output) keeping the segmenter network weights fixed. This
is to ensure that the classifier only learns highly representative features of each anomaly;
and that the classifier does not degrade the segmenter network performance.

We repeat each joint training experiment three times, employing an independently
trained segmentation network each time (the same repeated Attention U-Net LP+Man
experiments described in Sec. 3.1). We use the latest binary weight (λ2) from the best
pre-trained network (on our validation set) in each case; and tune the classifier weight (λ4

in Eq. 3), with the optimal weight being between 6 and 12 for DenseMulti, and 0.1 to 1 for
DenseBin and DenseImgMulti, which is a classifier trained only on binary segmentation
output (see Sec. 3.3). We find the weight balancing to be very important and tune this
parameter for each training experiment (which employs an independently trained segmen-
tation network each time) by observing segmentation loss convergence, classifier validation
set scores and visual segmentation inspection on our validation set. We train until reaching
the best performance on our validation set (lowest multi-class DiceCEloss on validation set).

3. Experiments

3.1 Training label type ablation study

As presented in Ramirez Gilliland et al. (2022) we conduct ablation studies on the inclu-
sion of each type of labelling information, e.g. manual binary labels in individual subject
images and multi-class labels propagated from the anomaly-specific atlases. We evaluate
segmentation performance in the following experiments:

• LP : Label Propagation using VoxelMorph.

• Attention U-Net LP : Attention U-Net trained exclusively with propagated labels
(λ2 = 0 in Eq. 2).

• Attention U-Net Man : Attention U-Net trained exclusively with manually seg-
mented binary labels (λ3 = 0).

• Attention U-Net LP+Man : Attention U-Net trained with both manual binary
labels and propagated labels (Eq. 2).
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Expanding on our previous work (Ramirez Gilliland et al., 2022), we repeat our seg-
mentation experiments three times, to account for network stochasticity.

3.2 Weak supervision

We study the impact a varying amount of manually generated labels have on segmentation
network performance. In this ablation study, we solely examine the weak binary manual la-
bels as they are meticulously created by expert fetal cardiac clinicians, while the propagated
labels are automatically derived.

Six segmentation experiments are compared, with varying percentages of manual binary
labels (Man) included: 0% Man (no manual binary labels in training, i.e. Attention U-Net
LP), 5% Man, 25% Man, 50% Man, 75% Man, and 100% Man (i.e. our proposed Atten-
tion U-Net LP + Man). These percentages are computed for each anomaly (out of their
respective total number of training cases). In all these experiments the propagated labels
are fully used. The same implementation details as described in Sec. 2.4.2 are employed.

3.3 Classification experiments

We conduct four main experiments to evaluate our aortic arch anomaly classifiers.

DenseMulti is a DenseNet121 trained from the softmax output of the multi-class
segmenter network (Attention U-Net LP + Man, see Fig. 6).

DenseBin is a DenseNet121 trained from the softmax output of our binary segmenter
network (Attention U-Net Man).

DenseImage, is a DenseNet121 trained exclusively on the volume images as input.

DenseImgMulti, is a DenseNet121 trained on the multi-class softmax output of At-
tention U-Net LP + Man, concatenated with the input T2w image.

We pre-train DenseBin, DenseMulti and DenseImgMulti using the frozen weights
of each respective segmenter network (Attention U-Net Man, and Attention U-Net LP +
Man). We report these results under each classifier name followed by Separate. We
then train our pre-trained classifier and segmenter networks jointly, which is our multi-task
approach, and report results under the title Joint.

We repeat each experiment three times, employing our three independently pre-trained
segmenter network rounds.

3.4 Evaluation metrics

3.4.1 Quantitative analysis

We manually generated multi-class ground truth (GT) labels for our test set (N=40) via
ITK-SNAP (Yushkevich et al., 2006). We report similarity metrics including multi-class
Dice scores, recall, precision, average surface distance (ASD), and 95th percentile of the
Hausdorff Distance (HD95). We repeat our segmentation experiments three times and
average results. We also include a short analysis studying the impact of image quality on
performance.

418



Multi-task learning for anomaly segmentation

3.4.2 Qualitative analysis

There are inherent limitations to conducting a quantitative analysis exclusively, particularly
given the quality of our data and the task at hand. We find the topological correctness of
the anomaly area, our key segmentation objective, to not be reflected in our quantitative
metrics described above. We thereby devise a qualitative analysis strategy, which involves
manual inspection and scoring of the anomaly area of each test set subject.

We assess the topological correctness of the aortic arch (anomaly area), as described
in Table 2, where a score of 1 (best) represents an aortic arch with topologically correct
anomaly delineation, and a score of 3 (worst) indicates topologically incorrect delineation.
Types of topological errors for segmentations with a score of 3 include split aortic arch,
indiscernible aortic arch (merged), an unsegmented or partially segmented right arch in a
DAA case (split arch), a segmented left arch for RAA cases (double arch segmented), and a
segmented right arch for CoA cases (double arch segmented). The term oversegmentation
refers to erroneously labelling background voxels as an anatomical structure, while rarely
labelling structure as background. This typically results in erroneously thick vessels.

Table 2: Description of our anomaly area topological assessment. HN refers to head and
neck vessels, and AD arterial duct.

Aortic arch score

1 Topologically correct aortic arch
2 Oversegmented aortic arch merging into HN vessels or AD.
3 Topologically incorrect aortic arch

4. Results

4.1 Training label type ablation study

Here we present metrics comparing our proposed segmentation framework which learns
from both binary individual labels and multi-label atlases, against the inclusion of just
one type of labelling (see Sec. 3.1). Differences to Ramirez Gilliland et al. (2022) are due
to adaptations made to the atlas in pulmonary arteries and exclusion of pulmonary veins
(following discussions with clinicians), and stochasticity due to network retraining. All
metrics displayed are on unseen test set, comparing to our manually generated GT.

4.1.1 Whole vessel ROI

Here we present metrics for the whole vessels’ ROI in violin plots in Fig. 7. In the case of
multi-label segmentation, the vessels were joined into a single region prior to the metrics
calculations.

Attention U-Net Man, which is the network trained on binary labels, displays the
highest mean vessels’ ROI dice (0.83 ± 0.03). However, further analysis reveals a much
higher average recall (0.87± 0.05) than precision (0.79± 0.07), which points to significant
oversegmentation. This is clearly visible in Fig. 8. We can observe that oversegmentation
results in the merging of the neighbouring vessels, obstructing the visualisation of the fetal
cardiac vessels’ anatomy.
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Conversely, the proposed network Attention U-Net LP + Man has a more balanced
performance with a mean Dice = 0.79± 0.03, a mean precision = 0.80± 0.05, and a mean
recall = 0.78±0.05. The resulting segmentations (Fig. 8) offer a clear depiction of individual
vessels, which is required for our clinical application.

Attention U-Net Man also has the lowest mean ASD of 0.51± 0.091 mm, which increases
to 0.55±0.08 for the proposed Attention U-Net LP + Man. However, Attention U-Net Man
presents outliers with ASD even greater than LP, whereas Attention U-Net LP + Man is
much more consistent across cases.

The network trained on propagated labels only Attention U-Net LP has the lowest
performance in all the metrics.
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Figure 7: Quantitative ROI metrics for our labelling ablation experiments. The horizontal
lines represent the means.

4.1.2 Individual fetal cardiac vessels

Table 3 displays metrics comparing our multi-class experiments. We compare our full ap-
proach (Attention U-Net LP + Man) to Attention U-Net trained exclusively on propagated
labels (Attention U-Net LP) and VoxelMorph label propagation (LP). These results in-
dicate that adding the binary labels to the training of the segmentation network offers a
significant improvement for Dice and ASD metrics for all vessels. Further, Attention U-Net
trained on propagated labels improves on label propagation alone.

4.1.3 Visual inspection

Nevertheless, we find these quantitative metrics to not be fully descriptive of the anatomical
correctness of the segmentation, a decisive feature when segmenting anomalies. Following
visual inspection, we can conclude two main advantages of our multi-class approach: At-
tention U-Net LP + Man is more consistent in both small vessel detection and
topological correctness of the anomaly area compared to Attention U-Net Man .
The latter is quantified in Sec. 4.4. Fig. 8 includes a depiction of these two prominent issues
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Table 3: Similarity metrics between our multi-class experiment predictions and our manually
generated GT. We highlight the best scores in bold. HN indicates the head and neck vessels
(LSA, LCCA, BCA, RSA). The three bottom rows report metrics averaged over all vessels.
We highlight with an * the vessels with a p-value< 0.05 (Mann-Whitney U test) (non-
parametric) compared to Attention U-Net LP + Man.

LP Attention U-Net LP
Attention U-Net

LP + Man

Vessel Dice ASD Dice ASD Dice ASD

SVC 0.65 (0.15)* 0.88 (0.60)* 0.70 (0.06)* 0.70 (0.20)* 0.76 (0.06) 0.56 (0.16)
LPA 0.58 (0.15)* 0.88 (0.93)* 0.63 (0.08)* 0.72 (0.30)* 0.65 (0.08) 0.68 (0.29)
RPA 0.55 (0.12)* 0.80 (0.44)* 0.61 (0.07)* 0.71 (0.23) 0.63 (0.07) 0.67 (0.21)
Aortic arch 0.58 (0.13)* 0.87 (0.46)* 0.62 (0.06)* 0.79 (0.16)* 0.76 (0.04) 0.54 (0.08)
AD 0.70 (0.16)* 0.66 (0.57)* 0.76 (0.07)* 0.49 (0.11)* 0.78 (0.07) 0.44 (0.12)
DAO 0.77 (0.11)* 0.63 (0.40)* 0.81 (0.04)* 0.52 (0.20)* 0.84 (0.04) 0.43 (0.18)
MPA 0.74 (0.11)* 0.71 (0.25)* 0.76 (0.06)* 0.68 (0.16)* 0.81 (0.05) 0.55 (0.13)
HN 0.31 (0.21)* 1.50 (1.27)* 0.38 (0.20) 1.24 (0.94)* 0.40 (0.19) 1.20 (0.93)

Avg. Dice 0.54 (0.24) 0.59 (0.20) 0.63 (0.21)
Avg. HD95 3.14 (1.07) 2.71 (1.81) 2.50 (1.87)
Avg. ASD 2.26 (0.97) 0.85 (0.63) 0.77 (0.63)

observed across Attention U-Net Man experiments: undetected small vessels, and merging
of the aorta into surrounding vessels.

Aorta merged into MPA 

and AD

Undetected vessel

Attention U-Net LP + Man Attention U-Net ManGT

Figure 8: Depiction of aorta topological inaccuracies and undetected small vessels commonly
occurring in Attention U-Net Man.

4.1.4 Visualisation of the latent representation

We inspect the anomaly-specific discernment of our labelling ablation networks by visual-
ising t-SNE reduced latent space features (Fig. 9). With this, we can easily examine the
effect multi-class and binary labels have on anomaly distinction for our networks.

We can conclude that our multi-class network Attention U-Net LP + Man offers highly
clustered groups for anomalies even in the bottleneck features, contrarily to our binary
network (Attention U-Net Man) which especially struggles to discern between RAA and
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Figure 9: t-SNE bottleneck reduced features for one training round of our combined label
framework (multi-class, Attention U-Net LP + Man) and our binary network (Attention
U-Net Man).

DAA cases, as supported by our qualitative analysis (Sec. 4.4). We include further t-SNE
plots comparing our various experiments in Appendix B.2.

4.1.5 Weak supervision ablation

Fig. 10 includes Dice and ASD scores for the vessels’ ROI and aortic arch label, for an
increasing number of training cases with manually generated binary labels. Our findings
indicate that including binary labels in training results in a statistically significant improve-
ment in segmentation performance (p-value < 0.05, Mann-Whitney U test) compared to
not including any binary labels (0%, Attention U-Net LP) when 25% or more of the manual
labels were included. For 5% of included manual labels, the improvement in Dice and ASD
is only significant for the aortic arch region, not the whole ROI.

4.2 Classification of anomalies

4.2.1 Classification performance

Table 4 presents accuracy and balanced accuracy scores (average recall obtained on each
class) for each classifier experiment, as well as recall scores for each individual anomaly. In
addition to comparing different types of features for classification (multi-label segmentation,
binary segmentation and original image), we also compare separate and joint training of
segmenter and classifier networks. The confusion matrices are provided in Appendix B.

We observe that while joint training of the classifier with binary segmentation improves
the classification results, this is not the case for multi-class segmentation. For multi-class
segmentation, the differences in classification performance in jointly and separately trained
frameworks are caused by a small number of subjects, with three misclassifications (two
individual subjects) over the three training rounds in the joint framework (one misclassifi-
cation per round), and two misclassifications in a single subject in the separate framework.
There is therefore no clear improvement with joint training in the multi-label case, however,
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(a) ASD scores (lower = better).
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(b) Dice scores (higher = better).

Figure 10: Test set metrics for the vessels’ ROI, and aortic arch predicted label comparing
the impact of adding binary manual labels (Man) during training. Error bars represent the
95% confidence interval, computed via bootstrapping (non-parametric uncertainty repre-
sentation).

the classification performance is high, with an accuracy of 0.97 for DenseMulti and 0.99
for DenseImgMulti.

In general, CoA cases are always correctly classified, while the misclassifications happen
between RAA and DAA cases.

Overall, the anomaly classification from multi-label segmentation clearly outperforms
the classification from binary segmentations or directly from the images. However, when
incorporating image information concatenated with the output segmentation, the classifier
achieves the highest performance. This image data inclusion allows the network to focus on
global features and becomes less reliant on topologically accurate segmentation predictions
compared to DenseMulti. Consequently, DenseImgMulti’s high accuracy is not truly
reflective of segmentation performance, as correct classification can still occur even with
important topological errors in the anomaly area.

We display our DenseMulti class probabilities in Fig. 11 for each anomaly (one vs.
rest). These include the results of our three training rounds. We observe a higher number
of cases with a lower softmax probability for RAA and DAA groups, meaning that our
classifier is less confident when distinguishing between RAA and DAA and the rest of our
groups, however very confident for CoA predictions. This is understandable, given the
anatomical similarities between RAA and DAA subjects (Fig. 2).

4.2.2 Analysis of misclassified cases

Here we provide further detail on ourDenseMulti andDenseImgMultimisclassifications.
We obtain one misclassified case per round withDenseMulti, with one case repeated across
two of our training rounds. This same case is the one misclassification forDenseImgMulti.
This case is an RAA subject erroneously classified as DAA due to the double arch being
wrongly segmented (Fig. 12). This particular case presented lower visibility in the anomaly
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Table 4: Accuracy and recall scores for our classifier experiments, averaged over all three
training rounds. Separate = prior to joint segmenter and classifier training, Joint = after
joint training. Bl. Acc. = balanced accuracy.

Accuracy Bl. Acc. Recall CoA Recall RAA Recall DAA

DenseMulti
Separate 0.98 (0.01) 0.95 (0.04) 1.0 (0.0) 1.0 (0.0) 0.87 (0.11)
Joint 0.97 (0.0) 0.98 (0.0) 1.0 (0.0) 0.93 (0.0) 1.0 (0.0)
DenseBin
Separate 0.88 (0.01) 0.90 (0.01) 0.95 (0.0) 0.75 (0.04) 1.0 (0.0)
Joint 0.92 (0.02) 0.91 (0.05) 0.97 (0.03) 0.89 (0.10) 0.81 (0.17)
DenseImgMulti
Separate 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0) 1.0 (0.0)
Joint 0.99 (0.01) 0.99 (0.01) 1 (0.0) 0.98 (0.04) 1.0 (0.0)
DenseImage 0.82 (0.07) 0.79 (0.09) 0.98 (0.03) 0.64 (0.01) 0.62 (0.30)
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Figure 11: Count of probability distributions for all three rounds of DenseMulti classifier
experiment on our test set.

area, with more than one independently trained network partially segmenting (erroneously)
the left arch. We highlight the blurriness in this region causing the oversegmentation. This
particular case already presented topological issues prior to adding the classifier (Fig. 12,
left). The addition of the classifier clearly tries to erroneously correct this initial error, by
fully segmenting the double arch, i.e. by pushing the segmentation prediction closer to one
of the aortic arch anomalies. Importantly, this case presents topological issues for one of
our joint DenseImgMulti experiments but was correctly classified. These findings suggest
DenseImgMulti to be a more reliable classifier when the segmentation is faulty, as it
incorporates image information. Consequently, it cannot be utilized as a quality control
tool to identify erroneous segmentations.

Our second misclassification is another RAA case mislabelled as DAA due to poor image
quality and misalignment to the atlas (Fig. 13). Our segmentation here is accurate, however,
the aortic arch and AD are highly elevated compared to the atlas (Fig. 13). This may have
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Before classifier addition

Figure 12: Arrow signals the double arch erroneously segmented in an RAA subject, re-
sulting in misclassification. We highlight the blurrier region where this error occurs in the
image with a rectangle.

been misclassified after joint training due to slight overfitting to the training data. However,
it is only one case (out of 120 in total).

Elevated

 vessels (GT)

Misclassified RAA case RAA atlas

Figure 13: Mislabelled RAA as DAA in one of our rounds due to low image quality and
misalignments to the atlas, with a highly elevated aorta and AD compared to the atlas.

4.2.3 Segmentation improvements due to anomaly classifier

Regarding segmentation network gains, we find meaningful improvements in our multi-class
framework, particularly regarding the completeness of double arch segmentation (Figs. 15
and 14). Although our DAA test set comprises only five cases, we repeat this experiment
three times, with independently trained segmenter networks, and find that in all correctly
classified DAA subjects where the right arch was originally partially segmented
or unsegmented, adding a classifier (DenseMulti and DenseImgMulti) resolved
this. The double arch vessel thickness is also improved. This constitutes eight subjects
with a notable improvement over the three rounds. We report topological improve-
ments in our overall qualitative analysis, Sec. 4.4, Fig. 19.
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Fig. 14 depicts a clear example of improved segmentation performance via our multi-task
framework, consequently correcting the predicted anomaly class.

GT Before joint training: 

Attention U-Net LP + Man

After joint training: 

Attention U-Net LP + Man + Classifier

Predicted diagnosis: RAA Predicted diagnosis: DAATrue diagnosis: DAA

Split and partially 

segmented double 

arch

Fully 

segmented 

double arch

Figure 14: Test case where we find a significant topological improvement of the double arch,
resulting in a corrected anomaly prediction.

Attention U-Net LP + Man 

without classifier 

Attention U-Net LP + Man 

with classifier 

Figure 15: Arrow signals the double arch in a DAA subject, a large portion unsegmented
prior addition of the classifier network. The GT is overlaid without filling, i.e. just the
contours, while the predictions are filled.

We find marginal improvements in aorta metrics for DAA cases (see Tab. 5). The fact
that these improvements are marginal is likely due to the small surface area the anomaly
location comprises, despite being key for robust segmentation.

Table 5: Marginal improvements in Dice and ASD metrics of the aorta, observed after our
joint training. These contain our averaged results for all three training rounds. We highlight
in bold our best metrics (higher=better for dice, lower=better for ASD).

Attention U-Net LP + Man Attention U-Net LP + Man + Classifier

Aorta Dice Aorta ASD Aorta Dice Aorta ASD

CoA 0.74 (0.04) 0.82 (0.15) 0.74 (0.04) 0.81 (0.14)
RAA 0.77 (0.02) 0.83 (0.10) 0.77 (0.03) 0.85 (0.11)
DAA 0.76 (0.02) 0.91 (0.09) 0.77 (0.02) 0.87 (0.07)
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Regarding our binary framework (Attention U-Net Man), we find that adding a classifier
(DenseBin) affects the segmentation output with both improvements observed in double
arch segmentation (Fig. 16) and degradation in certain cases such as heightened vessel
merging.

GT Attention U-Net Man Attention U-Net Man + Classifier 

Double arch Unsegmented Fully 

segmented

Figure 16: Improvements observed in double arch segmentation after adding a classifier
(DenseBin) to our binary framework.

We postulate that this difference in performance is due to both (a) the anomaly clas-
sifier being presented with a more challenging task (harder to identify aorta and anomaly
area from a single vessel), and (b) labelling variations due to inter-observer variability,
contrasting with our propagated atlas labels.

4.3 Image quality analysis

In order to study the impact image quality has on our predictions, a concise analysis of
image quality against quantitative network performance is included here.

Two factors are considered: the reconstruction process (SVR Kuklisova-Murgasova et al.
(2012); Kainz et al. (2015) or DSVR Uus et al. (2020)), and a manual image quality as-
sessment. The latter consists of manually revising and scoring the test set images from
1-3 (best to worst), based on image noise, visibility, and vessel sharpness, with 1 being the
highest quality, 2 being average quality, and 3 being poor quality and visibility.

A note of consideration is that our test set is majoritarily formed of SVR reconstructions
(lower quality, N=102 across all three repeated training rounds), with only 18 DSVR cases.

Fig. 17b includes precision and sensitivity scores of the vessels’ ROI comparing perfor-
mance for our manual image quality assessment, with Fig. 17a depicting Dice scores for the
vessels’ ROI and aortic arch region. We generally observe a higher number of lower-scoring
outliers in lower-quality images (score = 3), however, we find differences between groups to
be statistically non-significant.

Regarding performance on image reconstruction type (Fig. 18), we find a statistically
significant difference (p-value = 3.97 × 10−4 for a Mann-Whitney U test) in performance
in HD95 of the vessels’ ROI (Fig. 18b), with DSVR cases presenting lower scores (better
performance).

Concerning classifier performance, we find all misclassifications from DenseMulti and
DenseImgMulti to be exclusively SVR reconstructions.
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(a) Dice scores.
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(b) Precision and sensitivity.

Figure 17: Test set metrics comparing the impact image quality (1→3 = best→ worst) has
on network performance.
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(a) Dice scores.
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(b) HD95 (lower=better) scores.

Figure 18: Test set metrics comparing performance for DSVR and SVR reconstructions.

4.4 Qualitative results

We find that the quantitative metrics presented in previous sections do not always capture
the topological and anatomical correctness of the anomaly area, which is key for our clinical
application. Accordingly, we present a qualitative topological anomaly area analysis for our
segmentation predictions (Sec. 3.4 Tab. 2). Fig. 19 compares our main ablation studies for
classifier inclusion and labelling information for all diagnoses, with our full framework being
Attention U-Net LP + Man + Classifier . We include the performance on DAA test
set exclusively in Fig. 19 left. See Appendix B.1 for similar CoA and RAA plots.

Figs. 19 clearly demonstrate the added value of using multi-class propagated labels, as
Attention U-Net LP + Man increases the number of topologically correct segmentations
over Attention U-Net Man by 68%.
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Figure 19: Qualitative analysis results on topology correctness of the anomaly area (aortic
arch) on our test set for all diagnoses (left), and for DAA cases only (right). Each training
experiment was repeated three times, and we include all of our results here (i.e. we have
three sets of results for each of our 40 test set cases, one for each round, so the total number
of values for each technique is 120)

.

The top performing experiment regarding the topological correctness of the
anomaly area is Attention U-Net LP + Man + Classifier (DenseMulti), our
final framework. We find important improvements by adding a classifier to our multi-class
framework, particularly regarding cases with a score of 3. These improvements are predom-
inantly DAA cases which initially present a split or unsegmented double arch, corrected by
adding a classifier (see Fig. 19 (right) and Sec. 4.2.3).

Overall, we still observe some cases with a score of 2, and one with a score of 3 (which
includes misclassified subjects) in our full framework (Attention U-Net LP + Man + Clas-
sifier). We inspect these cases and find that they are the same three subjects with poor
segmentation performance across the three experiment training rounds, presenting both
poor image quality and misalignments to the atlases. See Appendix B.1 for extended anal-
ysis and visualisation of these cases.

An important disadvantage of the binary segmentation network is vessel merging, in
extreme cases producing an indiscernible aorta (Fig. 20). Interestingly, we find the addition
of a classifier (DenseBin) to our binary framework (Attention U-Net Man + Classifier)
to generally degrade performance by heightening this aortic merging problem. Nonetheless,
we do observe improvement in certain correctly classed DAA cases (see Sec. 4.2.3), albeit
not being as consistent and robust as our multi-class improvement.
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GTAttention U-Net Man

Merged aortic arch

Figure 20: Extreme test set case with aortic merging issue observed.

5. Discussion

We present a multi-task deep learning framework for multi-label fetal cardiac vessel seg-
mentation and anomaly classification in T2w 3D fetal MRI.

Fetal CMR has only recently demonstrated its potential (Lloyd et al., 2019), due to
the highly specific challenges this data presents. Given this, the field standards regarding
automated segmentation performance have yet to be set. Notably, our dataset requires
fast acquisition protocols and motion correction and reconstruction algorithms (Uus et al.,
2020), due to the inherent motion corruption present in fetal imaging (fetal motion, rapid
fetal heartbeat, maternal motion), as well as poor resolution and contrast.

Additionally, there is a range of anatomical variability within each anomaly, as well as
differing vessel sizes, from the descending aorta which is easily discernible to small head
and neck vessels which are sometimes absent even in the GT due to low visibility.

Our specific dataset presents a range of image qualities. We manually score our test set
images (based on vessel visibility, artefacts and noise), to provide further explainability into
potential failed cases. Our test set comprises 12 high quality subjects, 16 average quality,
and 12 low quality images. Therefore, a high segmentation scoring performance is extremely
challenging, particularly for small vessels in low quality images, or for cases with important
anatomical variability.

5.1 Segmentation training label type ablation

Our labelling experiments highlight two important points: (1) adding manual labels sub-
stantially increases network performance, and (2) multi-class information is crucial for small
vessel detection, as well as anomaly area segmentation. We find significantly increased sim-
ilarity metrics after including the binary manual labels, with a similar qualitative topology
score.

We find important anatomical inconsistencies in our binary segmentations, including
merged vessels, contrary to our proposed multi-class networks. We postulate that this
is due to our multi-class network learning each label individually, therefore ensuring that
each vessel is present and distinguishable in the final network. The consistency in our
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propagated atlas labels may also contribute towards this, which contrasts with the inter-
observer variability present in the binary manual labels.

The oversegmentation we observed both qualitatively and quantitatively from our binary
network is detrimental to clinical usability, as this causes vessel merging which creates
indistinguishable vessel topology.

An important point from our analysis is that we find commonly used quantitative metrics
to not be fully descriptive of segmentation performance regarding topological and anatom-
ical correctness, hence our qualitative evaluation. Therefore there is a need for future work
to explore more fitting topological metrics (Hu et al., 2019). The inclusion of topology-
aware losses (Clough et al., 2020; Byrne et al., 2021; Clough et al., 2019; Hu et al., 2019) is
also an important aspect for future work to interrogate, given the importance of generating
topologically correct predictions for our task.

Noteworthy, the segmentation task in the present paper could have been tackled fol-
lowing alternative training strategies. A potentially simple solution could be to leverage
propagated labels to train a splitting network to convert binary labels to multiple labels.
Appendix A contains two additional experiments, that utilise such splitting network. In
the first experiment, the splitting network is applied to binary labels predicted by Attention
U-Net Man, while in the second experiment, the splitting network converts manual binary
labels to multi-label segmentations to provide training data for a simple supervised Atten-
tion U-Net. We found these strategies to generally lead to more topological errors in vessel
segmentations than for our proposed framework, see Fig. 24. In particular, we observed
more mislabelled vessels in regions with poor visibility due to imaging artefacts.

5.2 Weak supervision

The weak supervision ablation study demonstrates that, although our manually generated
labels are not fully labelled (as the vessels are represented as a single entity, as opposed to
multi-class labels), their addition to the segmenter training framework improves segmenta-
tion performance. Even the addition of manually generated labels to only 5% of the training
data (for each diagnosis) supposes a statistically significant improvement for the aortic arch
label.

The highest performance is achieved via our proposed segmentation framework: Atten-
tion U-Net LP + Man.

5.3 Classification of anomalies

We find one explainable mislabelled test case per training round for our DenseMulti
classifier (multi-class), and one misclassification overall for DenseImgMulti, with notable
improvements in the anomaly area segmentation after joint network training. The addition
of a classifier to our multi-class segmentation pipeline consistently improves the topological
correctness of all correctly classified DAA cases with segmentation issues, as reflected by
our qualitative analysis. It is important to note that the stability of our multi-task training
framework depends on accurate hyperparameter tuning of the loss weight balancing in each
experiment.

Prior knowledge of the anomaly will always exist in a clinical situation, and therefore
misclassifications in DenseMulti aid the identification of cases with faulty segmentation
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predictions. DenseImgMulti, although being the most accurate classifier, would there-
fore be less relevant to this application, given its inability to detect topologically incorrect
segmentation predictions. It is therefore more suitable as a diagnostic support tool.

An inherent limitation of our approach is the fact that the classifier learns distinc-
tive anomaly-specific features, which restricts the flexibility of the segmentation topology.
Therefore, this framework may not generalise well to data which deviate strongly from the
training data regarding image quality or anatomical variations. The generalisability of our
framework to out-of-distribution cases is therefore a valuable avenue for future work to
explore.

The worst performing cases in our test set comprise lower quality SVR reconstructions,
that only correct rigid motion, and therefore do not account for deformations in fetal move-
ment, which may result in blurring of the reconstructed 3D images. This was combined
with noticable anatomical deviation from the atlases. We find one extreme case where the
addition of a classifier accentuated an initial segmentation issue, by fully segmenting the
left arch in an RAA case (Fig. 12). This is an extreme case where we observe the limitation
of somewhat topologically constraining our segmentation to a set of learnt distinct features:
if there is a low quality case, with poor visibility, the addition of the classifier will push
the segmentation towards pertaining to one specific anomaly. Recent advancements in re-
construction techniques (Uus et al., 2020) may ameliorate this problem, as we find that all
of our high quality DSVR reconstructions achieve high accuracy in both segmentation and
anomaly classification.

Highly consistent multi-class labels are a key contributor towards our success. We
observe a performance degradation in our binary framework (Attention U-Net Man + Clas-
sifier), likely due to the more challenging anomaly classifier task: the aorta is not classed as
an individual vessel, and the anomaly area occupies a relatively small region in the whole
vessels’ ROI label. Additionally, the consistency divergence between manually segmented
binary labels (inter-observer variability, shortened vessel length for lower quality images)
and propagated atlas labels, as well as the lower-quality segmentation predictions of Atten-
tion U-Net Man (vessel merging and undetected head and neck vessels) contribute towards
making our classifier (DenseBin) training data more varied. This impedes the classifier
from learning representative aortic arch anomaly features.

Although our work is developed to suit a very specific dataset situation (DSVR and SVR
fetal CMR reconstructions, anomaly-specific atlases, and partially labelled training set), our
joint classification and segmentation framework may be applicable to many environments
with a dual task, or for segmentation improvements in a network trained on distinctly varied
data. We note also that our task has highly specific challenges, and therefore success in our
application is promising for generalisation to less challenging tasks (e.g. fewer label classes,
larger segmentation area, less diverging anomalies). Additionally, our work addresses a
partially labelled dataset, largely common in the medical imaging field.

6. Conclusion

We present a multi-task approach for joint fetal cardiac vessel segmentation and aortic arch
anomaly classification from T2w 3D MRI. We combine deep learning label propagation from
anomaly-specific atlases with Attention U-Net segmentation and DenseNet121 classification.
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We demonstrate a potential application of our segmentation tool for automated diagnosis,
by jointly training an anomaly classifier on our output segmentations. Our multi-task
approach improves the anomaly area segmentation performance, providing both multi-class
segmentations and aortic arch anomaly classification. Our strategy is simple and innovative,
and our work has strong clinical applicability, being highly novel regarding our dataset. Our
clinical contribution is both to aid vessel visualisation for clinical reporting purposes and to
aid diagnostic confidence and efficiency. Our automated multi-task tool may also be useful
in training non-expert clinicians, which is challenging due to the highly specific cardiac
anomalies, low dataset visibility, and anatomical variability between cases.
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Appendix A. Alternative segmentation strategies

Here we present two additional approaches to our proposed segmentation strategy. These
represent the alternative way of combining our dataset labels (multi-class propagated labels
and manually generated binary labels). The strategy behind these new approaches is to
learn to split binary labels into multi-class labels. We examine the following:

1. Attention U-Net Man + Split : Attention U-Net that splits the predicted CNN
binary labels from Attention U-Net Man into multi-class labels.

2. Attention U-Net Split : two-step strategy, that involves first splitting the manu-
ally segmented binary labels into multi-class (with a CNN), followed by training an
additional Attention U-Net using these split labels.

Both these approaches rely on a trained splitting network. This splitting network is
trained on joined propagated labels as input (binary) and learns to split these into multi-
class, thereby learning to preserve the shape of the input segmentation.

For Attention U-Net Man + Split, we use Attention U-Net Man to generate the binary
labels at inference time, see Fig. 21.

T2w 3D input image

Attention U-Net Man Attention U-Net 

Man + Split

Binary prediction
Multi-class prediction 

(split vessels)

Figure 21: Inference time predictions for Attention U-Net Man + Split, which does not
require any labels. A binary prediction is generated for the input image, which is then split.

In accordance with our other segmentation experiments, we repeat each experiment
three times, to account for network stochasticity.

A.1 Quantitative Results

An important training disadvantage of these two approaches is that they require twice the
computational time compared to our proposed method (Attention U-Net LP + Man), given
that two CNNs are required instead of just one.

Attention U-Net Man + LP and Attention U-Net Man + Split are compared in Fig. 22
for the aortic arch (key anomaly area). These results display more extreme results for
Attention U-Net Man + Split. A Mann-Whitney U test reveals a statistically significant
difference (p-value=8.23×10−9) between Attention U-Net LP + Man and Attention U-Net
Man + Split, however not between Attention U-Net Split and Attention U-Net LP + Man.

A.2 Qualitative Results

The inherent topological issues observed in the binary network (Attention U-Net Man) are
propagated to its subsequent segmentation splitting variant, Attention U-Net Man + Split.
This causes vessel misclassification, as displayed in two independent test set cases in Fig. 23.
Undetected small vessels are also signalled.
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(a) ASD scores (lower = better).
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(b) Dice scores (higher = better).

Figure 22: Quantitative scores for the aortic arch (anomaly area) on test set comparing our
proposed labelling type training combination (Attention U-Net LP + Man) to Attention
U-Net Man + Split. We repeat each experiment three times and include all results here.

Attention U-Net Man + Split takes the output of Attention U-Net Man as input and
performs vessel splitting, learning to preserve the shape of the input segmentation. This
leads to the perpetuation of the existing topological problems in the predicted segmentation.
Moreover, when vessel merging occurs, the splitting network further hampers performance
by misclassifying merged vessels. This vessel misclassification issue is not as persistent in
Attention U-Net Split, the network which is trained on split manual labels, however still
occurs on lower quality cases, particularly cases presenting challenging discernment between
aorta and MPA.

We quantify this by conducting a qualitative assessment of the segmentation topology
area (see Section 3.4.2 for definition). We include scores for all vessels and for the anomaly
area in Fig. 24. This showcases the superior performance of our proposed method, followed
by Attention U-Net Split.

Appendix B. Anomaly classifier

Figs. 25a, 25b, 25c, 25e and 25d contain our classifier test set confusion matrices for our
three training rounds.

B.1 Qualitative analysis extended

Here we extend our investigation into the lower-scoring subjects of our final framework
(Attention U-Net LP + Man + Classifier with DenseMulti classifier), as assessed by our
qualitative analysis (Sec. 4.4). We include our topology scores separated for CoA and RAA
in Figs. 26.

In total, we find ten nine subjects with a topology score of 2 for the anomaly area, and
one with a score of 3. These subjects comprise our two misclassified RAA cases (due to a
partially and fully segmented double arch), as well as three CoA cases repeated across all
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Aortic arch 

correctly classified

Aortic arch 

misclassified as MPA

Figure 23: Vessel misclassification issue observed in Attention U-Net Man + Split, with
comparison to our proposed labelling combination Attention U-Net LP + Man and manually
segmented GT. Predictions are shown for two independent test set cases. Orange stars
indicate missing vessels in the splitting network, and white arrows (T2w images) indicate
the misclassification area.

three rounds. The latter cases include oversegmentation of the aorta into head and neck
vessels, and merging into AD. We inspect the images and find lower quality and alignment
compared to the atlas. Therefore we conclude that these subjects are outliers due to lower
image quality, which is supported by the fact that three independently trained networks
present segmentation issues on these subjects. Fig. 27 showcases the three CoA cases with a
score of 2, alongside a high-quality correctly segmented case, and our CoA atlas to highlight
the image quality differences.

B.2 Latent space representations

Fig. 28 contains our t-SNE reduced latent space visualisations before and after adding a
classifier to our segmentation frameworks, for one of our training rounds. We display both
our binary segmentation networks (Attention U-Net Man), and our proposed multi-class
approach (Attention U-Net LP + Man). We observe slightly further clustering after joint
training with the anomaly classifier. However, this is not as pronounced as training using
multi-class labels as opposed to binary manually segmented labels.
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Figure 24: Qualitative analysis results on topology correctness of the anomaly area (aortic
arch) on our test set for all diagnoses (left), and for DAA cases only (right). Each training
experiment was repeated three times, and we include all of our results here (i.e. we have
three results for each of our 40 test set cases, one for each round, so the total number of
cases is 120)

.
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(a)DenseMulti confusion matrix, three training
rounds (1 misclassification per round).
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(b) DenseImage confusion matrix, three train-
ing rounds.
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(c) DenseBin confusion matrix, three training
rounds.
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(d) DenseBin before joint training confusion
matrix, three training rounds.
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(e) DenseMulti before joint training confusion
matrix, three training rounds.
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Figure 26: CoA (left) and RAA (right) test set topology scores.

Figure 27: CoA test set cases with a topology score of 2 in our final framework, alongside
a high-quality example case and our CoA atlas.
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Figure 28: t-SNE visualisation of our network bottleneck features before (top row) and
after (bottom row) the addition of an anomaly classifier. This is an example of one of our
training rounds.
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