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Abstract
Score-based generative models have demonstrated highly promising results for medical image re-
construction tasks in magnetic resonance imaging or computed tomography. However, their ap-
plication to Positron Emission Tomography (PET) is still largely unexplored. PET image recon-
struction involves a variety of challenges, including Poisson noise with high variance and a wide
dynamic range. To address these challenges, we propose several PET-specific adaptations of score-
based generative models. The proposed framework is developed for both 2D and 3D PET. In
addition, we provide an extension to guided reconstruction using magnetic resonance images. We
validate the approach through extensive 2D and 3D in-silico experiments with a model trained
on patient-realistic data without lesions, and evaluate on data without lesions as well as out-of-
distribution data with lesions. This demonstrates the proposed method’s robustness and significant
potential for improved PET reconstruction.

Keywords: Positron emission tomography, score-based generative models, image reconstruction

1. Introduction

Positron Emission Tomography (PET) is a functional medical imaging technique for quantifying
and visualising the distribution of a radio-tracer within the body, and is vital in clinical practice for
accurate diagnosis, treatment planning, and monitoring of diseases. In a PET scan, radio-tracers are
injected to probe a specific biological pathway of interest. Through the decay of the radio-tracer a
positron is released, which upon annihilating with an electron produces a pair of coincident photons
that travel in approximately anti-parallel directions. These emitted photons are detected and are then
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used to reconstruct the underlying radio-tracer distribution. The relationship between the measured
emissions and the radio-tracer can be approximated with the Poisson noise model as

y ∼ Pois(ȳ), ȳ = Ax + b̄, (1)

where ȳ ∈ Rm is the expected value of the measurements (m is the number of detector bins)
and x ∈ Rn is the discrete (voxel) basis representation of the tracer distribution (n is the number
of voxels). The system matrix A ∈ Rm×n includes approximate line integrals between detectors as
well as physical phenomena such as photon attenuation, positron range, and detector sensitivity. It
should be noted that 3D measurements detect pairs of photons between detector rings, i.e. they are
not a stack of 2D measurements. The expected background b̄ ∈ Rm are estimates of scatter and
randoms events Qi and Leahy (2006). The unique challenges that distinguish PET from other imag-
ing modalities, e.g. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT), include
Poisson noise with low mean number of counts, and widely varying dynamic range of images due
to functional differences between patients.

Most inverse problems in imaging are ill-posed, in the sense that the solution may not exist,
not be unique, or not depend continuously on the measurement noise (Engl et al., 1996; Ito and
Jin, 2015). To stabilise the reconstruction process, prior knowledge is often leveraged through a
penalising functional that promotes solutions from a desirable image subset. The priors are typi-
cally hand-crafted to promote desired features in the reconstructed image, such as sparsity of edges
(Rudin et al., 1992) or smoothness. Furthermore, if an additional image is available, e.g. with
high resolution structural information, a suitable prior can promote common features between the
two images, commonly referred to as guided reconstruction (Ehrhardt, 2021). In recent years, deep
learning approaches have shown state-of-the-art performance in PET image reconstruction, see sur-
veys (Reader et al., 2021; Pain et al., 2022). Existing approaches include post-processing (Kaplan
and Zhu, 2019), to synthesise high-dose images from low-dose ones (which is akin to denoising),
and deep unrolled optimisation (Mehranian and Reader, 2021; Guazzo and Colarieti-Tosti, 2021).
However, these supervised approaches require large volumes of paired data that is often hard to
acquire, and their performance may degrade greatly in the presence of distributional shift (Antun
et al., 2020; Darestani et al., 2022).

In contrast, generative models require a dataset only of images of the target domain. These
can, for example, be high-quality reconstructions acquired from prior scans. The aim of generative
modelling is to approximate the image manifold of a given dataset (Bengio et al., 2013). There
are a variety of methods for this task, e.g. generative adversarial networks (Goodfellow et al.,
2014), variational autoencoders (Kingma and Welling, 2014) and recently Score-based Generative
Models (SGMs), which aim to generate high-quality samples, sample quickly, and have adequate
mode coverage (Xiao et al., 2022). Over recent years, SGMs have become the de facto method
for image generation due to the quality and diversity of generated images (Dhariwal and Nichol,
2021). Generative models can be integrated into the reconstruction process as data-driven priors,
through the learnt image manifold, but which are independent of the specifics of the forward model,
cf. (Dimakis, 2022). For example, a generative model trained on PET brain data would not be
appropriate for MRI reconstruction of knees, but would be appropriate for the reconstruction of
other PET brain images. In the latter case, by suitably changing the forward model, the generative
model could be used across scanners and noise levels.

SGMs have been applied to CT and MR image reconstruction (Song et al., 2022). These recon-
structions condition the SGM image generation on measurements, and balance the consistency with
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measurements versus consistency with the SGM learnt image manifold (Kobler and Pock, 2023).
There are different methods to enforce measurement consistency of the reconstructions, which can
be broadly classified into gradient based methods (Jalal et al., 2021; Chung et al., 2023a) and pro-
jection based methods (Song et al., 2022; Chung and Ye, 2022; Chung et al., 2023b). Recently,
denoising diffusion models (discrete variants of SGMs) were used for PET image denoising (Gong
et al., 2022). Instead, our work focuses on PET image reconstruction, and we present the following
contributions:

• We develop a novel algorithmic framework building upon SGMs that carefully addresses the
challenges inherent to PET. To do so, we modify the conditional sampling method (Chung
et al., 2023b; Zhu et al., 2023), recently proposed for inverse problems with Gaussian noise,
for PET image reconstruction. This is achieved with a penalised Maximum A Posteriori
(MAP) estimator computed with an accelerated algorithm that evaluates subsets of the mea-
surements.

• We leverage additional MR images to enhance the proposed framework, leading to improved
image quality that better agrees with the measured data.

• We scale the approach to 3D PET reconstruction.

The proposed method is tested on multiple noise levels, radio-tracers, and in both 2D and 3D
settings with an SGM trained on patient-realistic BrainWeb data without lesions (Collins et al.,
1998). In addition to data without lesions, we test on out-of-distribution (OOD) data with lesions to
validate method robustness. The rest of the paper is structured as follows. In Section 2 we provide
the background on PET reconstruction and SGMs. In particular, we present different methods for
using SGMs in image reconstruction. In Section 3 we propose modifications needed to apply SGMs
for PET reconstruction. We describe the experimental setting in Section 4, and present and discuss
the results in Section 5. The code is publicly available on Github 1, and the dataset on Zenodo2.

2. Background

2.1 Fundamentals of Positron Emission Tomography Reconstruction

PET measurements are the result of a low-count photon-counting process. The true forward pro-
cess, from tracer-distribution to photon detection, is approximated by the forward model defined
in Eq. (1). The likelihood of the measured photon counts, for an unknown tracer distribution, can
be modelled by an independent Poisson distribution. One of the first methods developed for esti-
mating the tracer distribution through a Poisson model was maximum likelihood. This selects an
image x ∈ Rn

≥0 by maximising the Poisson Log-Likelihood (PLL) function, given by

L(y|x) =
m∑

i=1

yi log([Ax + b̄]i) − [Ax + b̄]i − log(yi!). (2)

By maximising the PLL, the Maximum Likelihood Estimate (MLE) is obtained. A particularly
important algorithm for computing the MLE is Expectation Maximisation (EM) (Shepp and Vardi,

1. https://github.com/Imraj-Singh/Score-Based-Generative-Models-for-PET-Image-Reconstruction
2. https://zenodo.org/records/10509379
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1982). However, due to its slow convergence, acceleration is sought through splitting the PLL into
a sum of nsub ≥ 1 sub-objectives. This gives rise to the greatly sped-up Ordered Subset Expectation
Maximisation (OSEM) (Hudson and Larkin, 1994) algorithm. Because of the ill-conditioning of
PET reconstruction, the MLE tends to overfit to measurement noise. To address the ill-conditioning
and improve reconstruction quality, it is common practice to regularise the reconstruction problem
via the use of an image-based prior. This gives rise to the MAP objective

Φ(x) = L(y|x) + λR(x), (3)

where R(x) is the log of a chosen image-based prior with penalty strength λ. Block-Sequential
Regularised Expectation Maximisation (BSREM) (Pierro and Yamagishi, 2001; Ahn and Fessler,
2003) is an iterative algorithm, globally convergent under mild assumptions, that applies the subset
idea of OSEM to the MAP objective. For Φ(x) =

∑nsub
j=1 Φ j(x), where Φ j is the sub-objective Φ j(x) =

L j(y|x)+λR(x)/nsub, and L j is the likelihood for a subset of the measurements. The BSREM update
iterations are given by

xi+1 = Px≥0
[
xi + αiD(xi)∇Φ j(xi)

]
i ≥ 0, (4)

where Px≥0[·] denotes the non-negativity projection, i is the iteration number, and index j = (i
mod nsub)+1 cyclically accesses sub-objectives. The preconditioner is D(xi) = diag

(
max(xi, δ)/A⊤1

)
,

where 1 ∈ Rm denotes the vector with all entries equal to 1, δ is a small positive constant to ensure
positive definiteness, and A⊤ the matrix transpose. The quantity A⊤1 is referred to as the sensitivity
image. The step-sizes are αi = α0/(ζ⌊i/nsub⌋ + 1), where α0 = 1 and ζ is a relaxation coefficient.
A common regulariser for PET reconstruction is the Relative Difference Prior (RDP) (Nuyts et al.,
2002), see Appendix A.3 for details. The gradient of the RDP is scale-invariant as it is computed
using the ratio of voxel values. This partially overcomes the issue with the wide dynamic range
observed in emission tomography images, helping to simplify the choice of the penalty strength
across noise levels.

2.2 Score-based Generative Models

SGMs have emerged as a state-of-the-art method for modelling, and sampling from, high-dimensional
image distributions (Song et al., 2021c). They reinterpret denoising diffusion probabilistic mod-
elling (Sohl-Dickstein et al., 2015; Ho et al., 2020) and score-matching Langevin dynamics (Song
and Ermon, 2019) through the lens of Stochastic Differential Equations (SDE). SGMs are often
formulated by prescribing a forward diffusion process defined by an Itô SDE

dxt = f(xt, t)dt + g(t)dwt, x0 ∼ p0 := π, (5)

where {xt}t∈[0,T ] is a stochastic process indexed by time t and π is the image distribution. Each
random vector xt has an associated time-dependent density p(xt). To emphasise that the density is
a function of t we write pt(xt) := p(xt). The multivariate Wiener process {wt}t≥0 is the standard
Brownian motion. Starting at the image distribution π, the drift function f(·, t) : Rn → Rn and the
diffusion function g : Rn → R are chosen such that the terminal distribution at t = T approximates
the standard Gaussian, pT ≈ N(0, I). Thus, the forward diffusion process maps the image distribu-
tion π to a simple, tractable distribution. The aim of SGMs is to invert this process, i.e. start at the
Gaussian distribution and go back to the image distribution π. Under certain conditions on f and g,
a reverse diffusion process can be defined (Anderson, 1982)

dxt = [f(xt, t) − g(t)2∇x log pt(xt)]dt + g(t)dw̄t, (6)
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that runs backwards in time. The Wiener process {w̄t}t≥0 is time-reversed Brownian motion, and
the term ∇x log pt(xt) is the score function. Denoising Score Matching (DSM) (Vincent, 2011)
provides a methodology for estimating ∇x log pt(xt) by matching the transition densities pt(xt|x0)
with a time-conditional neural network sθ(xt, t), called the score model, parametrised by θ. The
resulting optimisation problem is given by

min
θ

{
LDSM(θ) = Et∼U[0,T ]Ex0∼πExt∼pt(xt |x0)

[
ωt∥sθ(xt, t) − ∇x log pt(xt|x0)∥22

]}
, (7)

where ωt > 0 are weighting factors, balancing the scores at different time steps. For general SDEs,
the loss LDSM(θ) may still be intractable, since it requires access to the transition density pt(xt|x0).
However, for SDEs with an affine linear drift function, pt(xt|x0) is a Gaussian and thus can be given
in closed form (Särkkä and Solin, 2019). Throughout the paper, we use T = 1 and the variance
preserving SDE (Ho et al., 2020) given by

dxt = −
β(t)
2

xtdt +
√
β(t)dwt, (8)

where β(t) : [0, 1] → R>0 is an increasing function defining the noise schedule. We use β(t) =
βmin+ t(βmax−βmin) giving the transition kernel pt(xt|x0) = N(xt; γtx0, ν

2
t I) with coefficients γt, νt ∈

R computed from drift and diffusion coefficients, see Appendix A.1 for details. Generating samples
with the score model sθ(xt, t) as a surrogate requires solving the reverse SDE (6), with the score
model sθ(xt, t) in place of ∇x log pt(xt)

dxt = [f(xt, t) − g(t)2sθ(xt, t)]dt + g(t)dw̄t. (9)

Drawing samples from the resulting generative model thus involves two steps. First, drawing a
sample from the terminal distribution x1 ∼ N(0, I) ≈ p1, and second, initialising the reverse SDE (9)
with x1 and simulating backwards in time until t = 0. The latter can be achieved by Euler-Maruyama
schemes or predictor-corrector methods (Song et al., 2021c).

2.2.1 Denoising diffusion implicit models

Simulating the reverse SDE can be computationally expensive as a fine time grid is often necessary
to produce realistic samples. Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2021a)
were introduced to allow faster sampling, and build upon a result by Tweedie (Efron, 2011) to
approximate the expectation E[x0|xt] via the score model sθ(xt, t) as

E[x0|xt] =
xt + ν

2
t ∇x log pt(xt)
γt

≈
xt + ν

2
t sθ(xt, t)
γt

:= x̂0(xt), (10)

where the positive scalars γt and ν2t are the coefficients for the mean and covariance, respectively,
defining the transition kernel, cf. (38) in the Appendix for details. DDIM defines a non-Markovian
sampling rule, which uses both the current sample xt and Tweedie’s estimate x̂0(xt) to create an
accelerated sampler. Let 0 = tk1 ≤ · · · ≤ tkN = 1 be the time discretisation. The DDIM sampling
update can be written as

xtk−1 = γtk−1 x̂0(xtk ) + Noise(xtk , sθ) + ηtk z, z ∼ N(0, I)

with Noise(xtk , sθ) := −νtk
√
ν2tk−1
− η2

tk sθ(xtk , tk).
(11)
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The sampling rule can be split into a denoising step (predicting x̂0(xtk ) using the score model),
and adding an appropriate amount of noise back. Thus, the sampling mimics an iterative re-
finement process, as the prediction of the denoised estimate x̂0(xtk ) will be more accurate for
smaller tk. Different choices of ηt result in different sampling schemes. We choose ηtk = ηβtk
with a hyperparameter η ∈ [0, 1], controlling the amount of stochasticity in the sampling, and βtk =

νtk−1/νtk
√

1 − γtk/γtk−1 (Song et al., 2021a).

2.3 Using Score-based Generative Models for Inverse Problems

The goal of the Bayesian framework of inverse problems is to estimate the posterior ppost(x|y), i.e.
the conditional distribution of images x given noisy measurements y. Using Bayes’ theorem the
posterior can be factored into

ppost(x|y) ∝ plkhd(y|x)π(x), ∇x log ppost(x|y) = ∇x log plkhd(y|x) + ∇x log π(x), (12)

where plkhd denotes the likelihood and π the prior given by the image distribution. We can set up
a generative model for the posterior in the same way as for the prior π in Section 2.2 by defining
a forward SDE which maps the posterior to random noise. To generate a sample from the poste-
rior ppost(x|y), we can simulate the corresponding reverse SDE

dxt = [f(xt, t) − g(t)2∇x log pt(xt|y)]dt + g(t)dw̄t, (13)

where we need access to the time-dependent posterior ∇x log pt(xt|y). Similar to Eq. (12), we use
Bayes’ theorem for the score of the posterior and decompose ∇x log pt(xt|y) into a prior and a like-
lihood term, where the former is approximated with the trained score model

∇x log pt(xt|y) = ∇x log pt(xt) + ∇x log pt(y|xt)

≈ sθ(xt, t) + ∇x log pt(y|xt).
(14)

Substituting the above approximation into (13), we obtain

dxt = [f(xt, t) − g(t)2(sθ(xt, t) + ∇xt log pt(y|xt))]dt + g(t)dw̄t. (15)

We can recover approximate samples from the posterior ppost(x|y), by simulating the reverse SDE (15).
Through iterative simulation of the reverse SDE with varying noise initialisations, we can estimate
moments of the posterior distribution. As is common practice in the field (Song et al., 2022; Chung
and Ye, 2022; Jalal et al., 2021) we use one sample for the reconstruction, due to computational
costs of repeatedly solving the reverse SDE. In addition to the score model sθ(xt, t), we need the
score of the time-dependent likelihood ∇x log pt(y|xt). At the start of the forward SDE (for t = 0),
it is equal to the true likelihood plkhd. However, for t > 0 the score ∇x log pt(y|xt) is intractable
to compute exactly and different approximations have been proposed. In (Jalal et al., 2021; Ramzi
et al., 2020), this term was approximated with the likelihood plkhd evaluated at the noisy sample xt

with time-dependent penalty strength λt

∇x log pt(y|xt) ≈ λt∇x log plkhd(y|xt). (16)

We refer to Eq. (16) as the Naive approximation. The Diffusion Posterior Sampling (DPS) (Chung
et al., 2023a) uses Tweedie’s formula to obtain x̂0(xt) ≈ E[x0|xt] and approximates ∇x log pt(y|xt)
by

∇x log pt(y|xt) ≈ ∇x log plkhd(y|x̂0(xt)), (17)

552



Score-Based GenerativeModels for PET Image Reconstruction

where ∇x denotes taking derivative in xt (instead of x̂0). It was shown that this approximation leads
to improved performance for several image reconstruction tasks (Chung et al., 2023a). However,
DPS comes with a higher computational cost, due to the need to back-propagate the gradient through
the score model.

Recently, several works proposed modifying the DDIM sampling rule in Eq. (11) for condi-
tional generation (Zhu et al., 2023; Chung et al., 2023b). These methods generally consist of three
steps: (1) estimating the denoised image x0 using Tweedie’s estimate x̂0(xtk ); (2) updating x̂0(xtk )
with a data consistency step using the measurements y; and (3) adding the noise back, according to
the DDIM update rule, in order to get a sample for the next time step tk−1. Importantly, with this
approach there is no need to estimate the gradient of the time-dependent likelihood ∇x log pt(y|xt) as
data consistency is only enforced on Tweedie’s estimate at t = 0. These conditional DDIM samplers
differ most greatly in the implementation of the data consistency update. Decomposed Diffusion
Sampling (DDS) (Chung et al., 2023b) proposes to align Tweedie’s estimate with the measurements
by running p steps of a Conjugate Gradient (CG) scheme for minimising the negative log-likelihood
at each sampling step. Let CG(p)(x̂0) denote the p-th CG update initialised with x̂0(xtk ). This can be
seen as an approximation to the conditional expectation, i.e. E[x0|xt, y] ≈ CG(p)(x̂0) (Ravula et al.,
2023). Using this approximation, the update step for DDS can be written as

xtk−1 = γtk−1CG(p)(x̂0) + Noise(xtk , sθ) + ηtk z, with z ∼ N(0, I), (18)

where the introduction of the conditional expectation offers us the possibility to explore different
approximations specific for PET image reconstruction.

3. PET-specific Adaptations for SGMs

To apply SGMs to PET reconstruction, several key components of the pipeline in Section 2.2 have to
be modified in order to incorporate PET-specific constraints. Namely, we introduce measurement-
based normalisation of the input to the score model, and explain how to apply a score model trained
on 2D slices for 3D reconstruction. Additionally, we adapt the sampling methods from Section 2.3
to incorporate the Poisson noise model. Finally, we demonstrate that the SGM framework allows
for the incorporation of additional information, e.g. MR images, by using classifier-free guidance
(Ho and Salimans, 2022). The overall adaption steps are summarised in Fig. 1.

Training

• Measurement based normalisation of the SGM
(Section 3.1)

• Incorporation of additional MR information
(Section 3.4)

Sampling

• Scaling to 3D reconstruction (Section 3.2)

• Modification of sampling rules to include the PLL
(Section 3.3)

Figure 1: Schematic illustration of the modification for training and sampling steps of SGMs.

3.1 Measurement-based Normalisation

The intensity of the unknown tracer distribution in emission tomography can significantly vary
across different scans, resulting in a high dynamic range that poses challenges for deep learning
approaches. Neural networks may exhibit bias toward intensity levels that appear more frequently
in the training set. Consequently, the network might struggle to handle new images with unseen
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intensity levels, leading to instability in the learning and evaluation process (Tran et al., 2020). For
SGMs the intensity range of images must be predefined to ensure that the forward diffusion process
converges to a standard Gaussian distribution and to stabilise the sampling process (Lou and Ermon,
2023). Input normalisation is a standard deep learning methodology to deal with intensity shifts and
normalise the inputs to the network. In a similar vein, we propose a PET-specific normalisation
method to ensure that the score model sθ(xt, t) is able to estimate the score function of images with
arbitrary intensity values. Namely, we normalise each training image x0 to ensure voxel intensities
are within a certain range. To do this we introduce a training normalisation factor ctrain that when
applied ensures the average emission per emission voxels (a voxel with non-zero intensity value)
is 1. This is computed as

ctrain = c(x0) :=

∑m
j=1[x0] j

#{ j : [x0] j > 0}
, (19)

where the numerator captures the total emission in the image, and the denominator is the number of
emission voxels. The normalisation factor is incorporated into the DSM training objective function
by rescaling the initial image, yielding the objective

Et∼U[0,T ]Ex0∼πEz∼N(0,I)Ec∼U[ ctrain
2 ,

3ctrain
2 ]

[
ωt

∥∥∥sθ (x̃t, t) − ∇x log pt(x̃t|x0/c)
∥∥∥2

2

]
, (20)

with x̃t = γtx0/c + νtz. Compared with Eq. (7), the scale-factor in range c ∼ U[ ctrain
2 ,

3ctrain
2 ] is used

to encourage the score model to be more robust with respect to misestimations of the normalisation
constant during sampling.

An analogue of Eq. (19) is unavailable during the sampling, and thus a surrogate is required.
This is obtained through an approximate reconstruction, computed using a single epoch of OSEM
from a constant non-negative initialisation. The resulting sampling normalisation factor is given by

cOSEM =

∑m
j=1[xOSEM] j

#{ j : [xOSEM] j > Q0.01}
, (21)

where Q0.01 defines the 1% percentile of xOSEM values. This threshold is heuristically chosen to
ensure that noise and reconstruction artefacts do not cause an over-estimation of the number of
emission voxels. In the reconstruction process the normalisation constant cOSEM is applied as a
factor scaling the time-dependent likelihood, giving

dxt = [f(xt, t) − g(t)2(sθ(xt, t) + ∇x log pt(y|cOSEMxt))]dt + g(t)dw̄t. (22)

At final time step t = 0, the output x is rescaled by cOSEM to recover the correct intensity level.

3.2 Scaling to 3D Reconstruction

While some SGM studies deal with fully 3D image generation (Pinaya et al., 2022), the majority
of work is restricted to 2D images. This is largely due to the fact that the learning of full 3D
volume distributions is computationally expensive and requires access to many training volumes.
Therefore, we propose to train the score model on 2D axial slices and use a specific decomposition
of the conditional sampling rules to apply the model for 3D reconstruction. Upon simulating the
conditional reverse SDE in Eq. (15) using the Euler-Maruyama approach, we arrive at the iteration

554



Score-Based GenerativeModels for PET Image Reconstruction

rule

x̃tk−1 = xtk +
[
f(xtk , tk) − g(tk)2sθ(xtk , tk)

]
∆t + g(tk)

√
|∆t|z, z ∼ N(0, I), (23)

xtk−1 = x̃tk−1 − g(tk)2∇x log ptk (y|xtk)∆t, (24)

using an equidistant time discretisation 0 = tk1 ≤ · · · ≤ tkN = 1 for N ∈ N, with a time step
∆t = −1/N. We split the Euler-Maruyama update into two equations to highlight the influences of
the score model and the measurements y. First, Eq. (23) is the Euler-Maruyama discretisation for
the unconditional reverse SDE, see Eq. (9). This update is independent of the measurements y and
can be interpreted as a prior update, increasing the likelihood of xtk under the SGM. The second step
in Eq. (24) is a data consistency update, pushing the current iterate to better fit the measurements.
Notably, this step is fully independent of the score model. This strategy was developed for 3D
reconstruction, focusing on sparse view CT and MRI (Chung et al., 2023c). It was proposed to
apply the prior update in Eq. (23) to all slices in the volume independently and use the 3D forward
model in the data consistency step. Further, a regulariser in the direction orthogonal to the slice
was introduced, to improve consistency of neighbouring slices. However, applying this approach
to the Euler-Maruyama discretisation results in slow sampling times as a small time step |∆t| is
necessary. To accelerate the sampling of high quality samples, we propose to use the DDS update
in Eq. (18) that uses a similar decomposition of independent score model updates to axial slices,
and 3D data consistency updates. Additionally, we accelerate data consistency updates by splitting
the measurement data into ordered subsets and applying the forward model block-sequentially. The
details are explained below.

3.3 Modifications of Sampling Methods

The sampling schemes and approximations in Section 2.3 were originally proposed for inverse
problems with Gaussian noise. The work on DPS (Chung et al., 2023a) also considers inverse
problems with Poisson noise, but utilises a Gaussian approximation to the Poisson noise, which
is known to be unsuitable for PET reconstruction in the event of the low photon count (Bertero
et al., 2009; Hohage and Werner, 2016). To apply the Naive approximation or the DPS approach
to Poisson inverse problems, one could simply replace the Gaussian log-likelihood with the PLL
in Eq. (16) and Eq. (17). However, PLL and its gradient are only defined for non-negative values.
Therefore, we have to introduce a non-negativity projection into the sampling to ensure that the
gradient of the PLL can be evaluated. In the context of guided diffusion, it was proposed to project
the iterates xtk to a specified domain after each sampling step (Li et al., 2022; Saharia et al., 2022).
In our case this would require thresholding all negative values. However, this creates a mismatch
between the forward and reverse SDEs. It was observed that this mismatch results in artefacts in the
reconstructions and may even lead to divergence of the sampling (Lou and Ermon, 2023). In our
experiments, thresholding all negative values of xtk leads to a divergence of the sampling process.
Therefore, we propose to only threshold the input to the PLL, i.e. with L being the PLL, see Eq.
(2), for the PET-Naive approximation we use

∇x log pt(y|xt) ≈ λNaive
t ∇xL(y|cOSEMPx≥0[xt]), (25)

and likewise for PET-DPS

∇x log pt(y|xt) ≈ λDPS
t ∇xL(y|cOSEMPx≥0[x̂0(xt)]). (26)
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Note that this leads to a perturbed likelihood gradient that is not computed on the true iterate xt, but
only on the projection. In order to reconstruct the PET image we have to solve the reverse SDE using
the specific approximation (PET-Naive or PET-DPS) as the likelihood term. This usually requires
around 1000 sampling steps to produce an appropriate reconstruction and results in impractically
long reconstruction times for 3D volumes.

To reduce the reconstruction times we propose to modify the conditional DDIM sampling rule,
which we call PET-DDS, similar to the DDS framework (Zhu et al., 2023; Chung et al., 2023b), cf.
Section 3.3. This circumvents the usage of ∇x log pt(y|xt), instead enforcing data consistency for
Tweedie’s estimate x̂0(xtk ). For PET reconstruction we propose to implement this data consistency
with a MAP objective, leading to the PET-DDS update

x0
tk = x̂0(xtk ) (27)

xi+1
tk = Px≥0

[
xi

tk + D(xi
tk )∇xΦ j(xi

tk )
]

(28)

i = 0, . . . , p − 1

xtk−1 = γtk−1xp
tk + Noise(xtk , sθ) + ηtk z, z ∼ N(0, I), (29)

where D(x) = diag
{
max(x, 10−4)/A⊤1

}
is the preconditioner and the sub-objective is

Φ j(xi) = L j(y|cOSEMxi) + (λRDPRz(xi) − λDDS∥xi − x̂0∥
2
2)/nsub. (30)

The sub-objective index j = j(i) is given by j = (p(N − k) + i mod nsub) + 1, which cyclically
accesses sub-objectives. The RDP used for 3D data Rz is applied in the z-direction, perpendicular to
the axial slice, see Appendix A.3 for more details. The prior in Eq. (30) consists of two components:
one anchoring to the Tweedie’s estimate ∥x − x̂0∥

2
2, and the other RDP in the z-direction Rz(x). The

components have associated penalty strengths λRDP and λDDS, respectively.
In a PET-DDS update we first independently compute Tweedie’s estimate based on xtk for each

axial slice (Eq. 27). Tweedie’s estimate x̂0 impacts the reconstruction in two ways: first through
the Tikhonov regulariser scaled with λDDS, and second as the initial value for the projected gradient
descent in Eq. (28). Through running p steps of projected gradient descent consistency is balanced
between a PLL on measurements, RDP in the z-direction, and Tweedie’s estimate (Eq. 30). To speed
up computation of the objective gradient, the objective is split into sub-objectives and the gradient
of the log-likelihood is evaluated using only subsets of the measurements y, similar to the BSREM
update in Eq. (4). The subsets are partitioned in a staggered configuration and are ordered with
a Herman-Meyer order (Herman and Meyer, 1993). Eq. (29) is the DDIM update applied to the
conditioned Tweedie estimate xp, where the score update is again applied independently for each
axial slice, here the notation of Noise(xtk , sθ) is overloaded. The DDIM update gives xtk−1 , and these
PET-DDS updates repeat until t0 = 0 giving reconstruction x̂.

Table 1: Summary of different sampling schemes proposed for PET.
Method Sampling type Data consistency with L in (2) Algorithm

PET-Naive Euler-Maruyama (23) L(y|cOSEMPx≥0[x]) (25) Algo. 1
PET-DPS Euler-Maruyama (23) L(y|cOSEMPx≥0[x̂0(x)]) (26) Algo. 2
PET-DDS DDIM (11) L j(y|cOSEMx) (28) and (30) Algo. 3

In Table 1, we list the details and differences of the proposed score-based schemes for PET.
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3.4 MR Image Guided Reconstruction

In recent years, several regularisation methods have been proposed which leverage the availability of
additional MR images to improve PET image reconstruction (Ehrhardt et al., 2016; Bai et al., 2013;
Somayajula et al., 2011). These studies often encode anatomical features of the MR image as edges
or level sets and build hand-crafted regularisers based on these encoded features. This is commonly
referred to as guided reconstruction (Ehrhardt, 2021), where the MR image is first reconstructed
and is then used in the PET reconstruction pipeline. The SGM approach can be modified for guided
reconstruction. In this setting we can use Bayes’ theorem to express the posterior

∇x log ppost(x|y, xMR) = ∇x log plkhd(y|x) + ∇x log π(x|xMR), (31)

assuming that both y and xMR are conditionally independent given x. Here, the likelihood plkhd(y|x)
is given by the Poisson noise model and π(x|xMR) is a prior conditioned on the MR image xMR,
which will be learned via a score model. Using this decomposition, the reverse SDE, given the MR
image, can be written as

dxt = [f(xt, t) − g(t)2 (
∇x log pt(y|x) + ∇x log π(x|xMR)

)
]dt + g(t)dw̄t. (32)

We can use PET-Naive or PET-DPS to approximate the score of the time dependent likelihood
∇x log pt(y|x). However, we have to train a score model, conditioned on the MR image, to estimate
the conditional score function

sθ(xt; t, xMR) ≈ ∇x log pt(x|xMR), (33)

where xMR is an additional input to the score model. This method was recently proposed and applied
to PET image denoising (Gong et al., 2022). To train such a score model we need a paired dataset
{(xi, xi

MR)}mi=1 of PET images and corresponding MR images. In contrast, using the Classifier Free
Guidance (CFG) framework (Ho and Salimans, 2022), we only need a partly paired dataset, i.e.
besides paired data {(xi, xi

MR)}m1
i=1 we can also make use of unpaired data {xi}

m2
i=1. In particular, CFG

trains both a conditional and unconditional score model simultaneously and utilises their combina-
tion during the sampling process. CFG uses a zero image 0 to distinguish between the conditional
and unconditional score model

sθ(xt; t, xMR) ≈ ∇x log pt(xt|xMR) and sθ(xt; t, xMR = 0) ≈ ∇x log pt(xt), (34)

yielding a conditional DSM objective

Et∼U[0,T ]Ex0,xMR∼πExt∼pt(xt |x0)Eρ∼B(q)
[
ωt∥sθ(xt, t; ρ xMR)−∇x log pt(xt|x0)∥22

]
}, (35)

where B(q) is a Bernoulli distribution with parameter q. Thus, if the additional MR input is set
to zero, the conditional DSM loss matches the unconditional DSM loss defined in Eq. (7). After
training, CFG defines a combined score model

s̃θ(xt; t, xMR) = (1 + w)sθ(xt; t, xMR) − wsθ(xt; t, 0), (36)

as a linear combination with w as the guidance strength. This combined score model sθ(xt; t, xMR)
can then be used for any of the presented sampling methods.
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4. Experimental Setup

4.1 Dataset and Evaluation Metrics

We use the BrainWeb dataset consisting of 20 patient-realistic volumes (Aubert-Broche et al., 2006).
The tracer simulated was 18F-Fluorodeoxyglucose (FDG) and the volumes were further perturbed
by three realisations of random distortions (Schramm, 2021). 19 out of the 20 volumes were used for
training. Axial slices with non-zero intensity were removed, resulting in a training dataset of 4569
slices. We conducted two simulations for the evaluation, i.e., image and measurement. The image
simulation utilised the segmentation mask of the held-out volume, subject 04. In 2D, an FDG tracer
was simulated by perturbing the contrast, applying a bias-field to grey matter, blurring and adding
noise as per Schramm (2021). In 3D, FDG and Amyloid tracers were independently simulated,
and blurring and noise were added. The Amyloid tracer was included to provide a further OOD
evaluation set. To further diversify the evaluation sets, simulated lesions were included in both 3D
simulations and added to an additional 2D evaluation set. Lesions were simulated as local regions
of ellipsoidal hyper-intensity of random size and location within soft-tissue, and allowed for local
evaluation metrics to be computed. The setting of measurement simulation is described below
separately for the 2D and 3D cases.

For 2D evaluation, resolution modelling, attenuation, sensitivity, and background contamination
were modelled and subsequently included in the forward model utilising ParallelProj (Schramm,
2022). We use 20 equidistant axial slices from the simulation of subject 04. The noise level of
simulated measurements was set by re-scaling forward projected ground truth images, where the
scale ensured that the total counts divided by emission volume was 2.5 or 10. These rescaled mea-
surements are the clean measurements, which were then corrupted with Poisson noise and constant
background contamination. In addition, 10 noise realisations were obtained. Herein, we refer to the
noise levels as 2.5 and 10, where the total true counts averaged over evaluation dataset were 122 808
and 491 232, respectively.

For the 3D evaluation, measurements of subject 04 were simulated with an Siemens Biograph
mMR scanner geometry (Karlberg et al., 2016). Measurements with detector sensitivities and at-
tenuation were simulated and included in the forward model using SIRF and STIR (Ovtchinnikov
et al., 2020; Thielemans et al., 2012). The noise level was equivalent to 40 million counts without
background, and 5 noisy realisations were obtained. Unless otherwise specified, the projector and
measurements were split into 28 ordered subsets in the experiments below.

We evaluate the performance between reconstructions and ground truths using two global met-
rics: Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) (Wang
et al., 2004). Moreover, we compute two local quality scores over a Region of Interest (ROI).
First, to quantify the detectability of lesions, we compute the Contrast Recovery Coefficient (CRC).
Second, the noise in reconstructions is estimated over background ROIs using Standard Deviation
(STD), which computes standard deviation across realisations and then averages over ROI voxels
(Tong et al., 2010). In 2D, we evaluate the reconstruction consistency by computing the Kullback-
Leibler Divergence (KLDIV) between measurements y and estimated measurements ȳ = Ax̂ + b̄,
where x̂ denotes the reconstruction. Furthermore, we include the “mean KL” between the noisy and
clean measurements across the 2D evaluation dataset. More information about quality metrics can
be found in Appendix A.4.

We present tables of best performing methods with optimal penalty strengths, as well as quali-
tative figures of reconstructed images. Furthermore, to allow direct comparison between methods,
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we give sensitivity plots of PSNR, SSIM, KLDIV or CRC vs. STDs. Since STD gives an estimate
of the noise in the image, these plots can show the effect of varying penalty strength on reconstruc-
tion quality or data-consistency. A lower STD typically corresponds to lower data-fidelity (a higher
prior strength), and the converse is true for higher STD. In practice, with a generative model as
a prior, higher penalty strengths do not necessarily lead to a lower STD as there may be multiple
reconstruction with high likelihood under the model. Variations in STD are further exacerbated by
approximate nature and stochasticity of SGM sampling.

4.2 Comparison Methods

In the 2D setting, we compare against two established supervised learning methods used in med-
ical image reconstruction: the UNet post-processing FBPConvNet (Jin et al., 2017) and unrolled
iterative learned primal dual (Adler and Öktem, 2018). We modify both models for PET reconstruc-
tion; the post-processing method is referred to as PET-UNet, and the unrolled method as PET-LPD.
Additionally we compare against a state-of-the-art SGM approach for PET image denoising (Gong
et al., 2022), referred to as Naive (OSEM). This denoising approach replaces the likelihood on the
measurements with a likelihood modelled as a Gaussian centred at the noisy reconstruction. There-
fore, Naive (OSEM) is able to use the same pre-trained score model as our proposed PET-Naive,
PET-DPS, and PET-DDS methods.

For 3D evaluation, Deep Image Prior (DIP) reconstruction was included as an unsupervised
comparison method with a 3D network architecture well-established in literature (Gong et al., 2019;
Ote et al., 2023; Singh et al., 2023). For comparison, converged MAP solutions with an RDP
regulariser were computed. BSREM algorithm was used with a range of penalty strengths, cf. PET
background Sect. 2.1.

Further details on all comparison methods can be found in Appendix A.3.

5. Numerical Experiments

The first set of experiments investigates the performance of the SGM methods (Naive (OSEM),
PET-Naive, PET-DPS, PET-DDS) against one-another and against established supervised methods
(PET-UNet, PET-LPD). This is done in 2D and at two noise levels, with and without lesions. In the
second set of experiments we present results with MR image guidance. The last set of experiments
investigates the best performing SGM method (PET-DDS) on 3D reconstruction, and provides a
comparison against classical MAP and state-of-the-art DIP reconstructions with lesions and two
simulated tracers. For all SGM results we make use of a single score model trained on the dataset of
axial BrainWeb slices described in Section 4.1. The details about the training process and network
architecture can be found in Appendix A.1. Further results can be found in the Appendix B. All
results were computed with a single NVIDIA GeForce RTX 3090.

5.1 2D Reconstruction

The aim of 2D experiments is to benchmark the SGM and supervised methods, and analyse the
stability of SGM methods with respect to the choice of different penalty strengths λNaive

t , λDPS
t and

λDDS. The penalty strengths for PET-Naive and PET-DPS depends on the time step t, and the details
about their specific choice can be found in Appendix A.2.
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Figure 2: Results for BrainWeb without lesions with noise level 2.5 for different penalty parame-
ters. Standard deviation is across reconstructions from different realisations of measure-
ments. The points represent different values of the parameter λ, and the notation and _
denote the smallest and largest value of λ, respectively.

5.1.1 Reconstruction without Lesion

The results in Fig. 2 show that the performance of the four SGM methods vary greatly for data
of noise level 2.5 with no lesions. PET-DPS is the best performing method, consistently giv-
ing high PSNR, SSIM and low KLDIV values. However, it is also computationally the most
expensive, requiring 1000 steps with back-propagation through the score model. PET-DDS pre-
forms competitively with a much lower computational overhead of 100 steps without score model
back-propagation. Naive (OSEM) performs well with regards to PSNR, but performs poorly in
terms of data-consistency (KLDIV) and SSIM. As Naive (OSEM) computes the likelihood on an
early-stopped OSEM image, increasing data-consistency ensures the reconstruction approaches the
OSEM image. The maximum achievable likelihood of Naive (OSEM) does not give a KLDIV lower
than the “mean KL”. Hence it is not deemed a strong surrogate to the true likelihood computed on
measurements. The PET-Naive reconstructions have substantially higher STD values. This is at-
tributed to instability when computing the PLL gradient due to non-negativity projection directly
applied on xt.

In Table 2 we show quantitative results of the optimal penalty strength choice for each metric,
and comparisons against PET-UNet and PET-LPD. These supervised methods are trained on data
with noise levels of 5, 10 and 50 without lesions. Using noise levels 2.5 and 10 in evaluation allows
investigating the effect of OOD noise levels on supervised methods. PET-LPD is the best perform-
ing method, giving the best SSIM at noise level 10, and best PSNR at both noise levels. Between
noise levels 10 and 2.5 PET-LPD observes a drop of 6.7% and 6.6% for PSNR and SSIM, whereas
PET-DPS exhibits a drop of 3.4% and 3.8%, respectively. PET-DPS performs competitively across
both noise levels and metrics, and gives the best SSIM value at noise level 2.5. The competitive
performance and the reduced performance drop of quality metrics, with increasing noise, provides
evidence that PET-DPS is more robust to different noise levels. This may be attributed to the unsu-
pervised nature of SGM methods. Namely, as they are not trained on data of given noise levels they
are less affected by distributional differences in noise levels at evaluation and training stages. How-
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Table 2: The mean quality score and standard error using the best hyperparameters for each
method for BrainWeb without lesions for noise level 2.5 (out-of-distribution) and 10 (in-
distribution). The penalty strength used for each SGM method is denoted by λ. The best
SGM is highlighted in grey, and overall best metric is underlined. Supervised methods are
trained on data with noise levels 5, 10 and 50.
Noise Level Model Method PSNR, λ SSIM, λ

2.5

Score-based
Generative

Naive (OSEM) 22.38±0.82, 0.527 0.770±0.02, 3.08

PET-Naive 21.52±0.84, 12.0 0.781±0.01, 12.0

PET-DPS 22.80±0.81, 650. 0.818±0.01, 750.

PET-DDS 22.46±0.82, 0.25 0.789±0.02, 0.2

Supervised
PET-LPD 23.06±0.85, N/A 0.806±0.01, N/A

PET-UNet 22.80±0.82, N/A 0.798±0.01, N/A

10

Score-based
Generative

Naive (OSEM) 23.40±0.84, 0.2 0.793±0.02, 0.9

PET-Naive 22.81±0.87, 10. 0.815±0.01, 10.

PET-DPS 23.70±0.83, 400. 0.850±0.01, 400.

PET-DDS 23.55±0.77, 0.025 0.849±0.01, 0.025

Supervised
PET-LPD 24.74±0.91, N/A 0.861±0.01, N/A

PET-UNet 24.52±0.85, N/A 0.868±0.01, N/A

Table 3: The computing time of a single reconstruction, averaged over 5 reconstructions.
Method PET-Naive PET-DPS PET-DDS

Time (s) 41.52 43.64 3.90

ever, a more comprehensive study over a wider range of noise levels is needed to robustly support
this observation. Interestingly, the standard deviation of the different samples is non-negligible in
terms of PSNR, but the SSIM is nearly independent of the samples. The larger standard deviation
for the PSNR is due to the different dynamic range, e.g., the maximum intensity varies between
11.89 and 24.15 for different slices at noise level 2.5. We leave a full investigation of uncertainty
quantification using SGM methods to future work. The supervised methods, i.e., PET-LPD and
PET-UNet, perform better than score-based models for both noise levels. Note, this margin is larger
for the in-distribution case, i.e., the noise level 10.

In the table, we also observe a pronounced change in the selected λ values between noise levels
2.5 and 10 for PET-DDS, especially when compared with other methods. This phenomenon is
attributed to the following fact. In the experiments, the BSREM-like data consistency updates are
run for p steps, with a small p (see Appendix A.2 for the heuristic rule to determine p), not giving
a converged MAP estimate, and there is an implicit regularisation that is proportional to the rate
of convergence to noisier images. Hence iterative reconstructions at the noise level 2.5 fit to noise
quicker, thereby necessitating much stronger regularisation than the noise level 10.

In Table 3, we compare the computing time for one single reconstruction. PET-Naive and PET-
DPS are largely comparable in terms of inference efficiency, and are about ten times slower than
PET-DDS. The difference in computing times can be attributed to the fact that PET-DDS requires
fewer time steps; through the use of the accelerated DDIM sampling method.
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Figure 3: Results for BrainWeb with lesions with noise level 2.5 for different penalty parameters.
Standard deviation is across reconstructions from different realisations of measurements.
The points represent different values of the parameter λ, and the notation and _ denote
the smallest and largest numerical value of λ, respectively.

5.1.2 2D Reconstruction with Lesion

As the score model was trained on data without lesions, testing on data with simulated hot lesions
gives an insight into generalisability to OOD data. The quantitative results in Fig. 3 and Table 4
show results that are consistent with those for data with no lesions in Fig. 2. CRC was computed to
quantify the detectability of hot lesions. The CRC results indicate that PET-DDS is better at resolv-
ing lesions than other SGM methods. Further, Fig. 3 shows a clear trade-off between reconstruction
quality in terms of PSNR and SSIM and visibility of lesions. Here, a lower regularisation results in
a better performance in terms of CRC. Results for noise level 10 are shown in Appendix B.1.

Comparing the results between noise levels 2.5 and 10 in Table 4, we observe that SGMs in-
crease CRC values as compared to supervised methods. SGMs also compare favourably with re-
gards to PSNR and SSIM. CRC is local metric that is more relevant than PSNR or SSIM in a clinical
setting, as it quantifies the detectability of lesions. Therefore, it is of greater interest to improve this
local metric rather than global metrics. With this perspective, SGMs outperform supervised meth-
ods, and the best-preforming SGM methods are PET-DPS and PET-DDS . Due to the performance
observed and computational overhead, PET-DDS is considered the most appropriate method to test
in guided reconstruction and in the 3D setting.

Numerically, we observe that PET-DDS performs better than PET-DPS in terms of CRC but
worse in terms of PSNR and SSIM. Note that PSNR and SSIM are global quality metrics, evaluating
the full reconstructed image relative to the reference, whereas CRC is a local quality metric that
focuses on the contrast in a specific ROI. While both global and local measures are desirable for PET
reconstructions, they are not always consistent. For example, smoothing may suppress the noise and
increase PSNR and SSIM, but it can reduce the contrast, leading to a worse CRC. Likewise, if the
method preserves details, it may increase the contrast at the expense of having a higher noise in the
image and decreasing PSNR and SSIM. Thus, the results in Table 4 indicate that PET-DDS is more
effective in enhancing the contrast of the ROIs, but less effective in suppressing the noise, when
compared to PET-DPS.
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Table 4: Results using the best hyperparameters for each method for BrainWeb with lesions for
noise level 2.5 and 10. The penalty strength used for each SGM method is denoted by λ.
The best score-based method is highlighted in grey. The overall best score per noise level
is underlined.

Noise Level Model Method PSNR, λ SSIM, λ CRC, λ

2.5

Score-based
Generative

Naive (OSEM) 27.60±0.87, 0.527 0.821±0.02, 1.71 0.891±0.02, 50.

PET-Naive 26.82±0.90, 12. 0.817±0.02, 12. 0.908±0.03, 50.

PET-DPS 27.99±0.85, 625. 0.855±0.01, 650. 0.886±0.02, 1500.

PET-DDS 27.46±0.83, 0.15 0.841±0.01, 0.15 0.977±0.01, 0.01

Supervised
PET-LPD 28.40±0.92, N/A 0.853±0.01, N/A 0.865±0.03, N/A

PET-UNet 27.74±0.83, N/A 0.836±0.01, N/A 0.805±0.03, N/A

10

Score-based
Generative

Naive (OSEM) 28.87±0.93, 0.25 0.847±0.01, 0.9 0.902±0.02, 4.

PET-Naive 28.07±0.94, 10. 0.845±0.01, 7.5 0.911±0.02, 20.

PET-DPS 29.01±0.87, 400. 0.878±0.01, 400. 0.920±0.02, 550.

PET-DDS 28.99±0.88, 0.025 0.879±0.01, 0.025 1.00±0.01, 0.3

Supervised
PET-LPD 30.07±0.96, N/A 0.894±0.01, N/A 0.904±0.02, N/A

PET-UNet 29.41±0.82, N/A 0.889±0.01, N/A 0.865±0.03, N/A

5.1.3 MR Guided Reconstruction

Experiments with and without additional MR image guidance were conducted to illustrate the flexi-
bility of the proposed approach, and tested at three guidance strengths w = 0.25, 0.5, 1.0, where the
guidance strength w closer to zero constitutes more guidance. We use high resolution, low noise T1-
weighted simulated MR image, which allows testing the worst case scenario where the MR image
misrepresents the lesions. The results with best hyper-parameters are given in Table 5. It is observed
that there are significant improvements to PSNR (> 18%) and SSIM (> 13%) with guidance. On
PET data with lesions, the lesions were only simulated for PET and not MR images. Therefore, the
data was of a worse-case scenario where clinically important features are only present in the PET
image. The results with lesions show increasing the guidance strength decreased of CRC values
and the lesions were more difficult to detect - see Fig. 13. Conversely, the PSNR and SSIM values
on with lesions data increased with w closer to zero (more guidance). This highlights the potential
dangers of guidance, as well as the importance of evaluating local and global quality metrics.

Table 5: Results using the best hyperparameters for SGM methods for noise level 2.5 with MR
image guidance. The penalty strength used for each SGM method is denoted by λ. The
best method by performance metric is highlighted in grey for with/without lesion. The
penalty strength is tuned for each method individually.

without lesions with lesions
PSNR, λ SSIM, λ PSNR, λ SSIM, λ CRC, λ

DDS (w/o MR) 22.46, 0.25 0.789, 0.2 27.46, 0.15 0.841, 0.15 0.910, 0.01

DDS w = 0.25 30.22, 0.35 0.950, 0.35 31.21, 0.15 0.954, 0.25 0.726, 0.0

DDS w = 0.5 29.32, 0.25 0.940, 0.25 31.12, 0.15 0.946, 0.25 0.778, 0.0

DDS w = 1.0 26.66, 0.15 0.899, 0.15 29.31, 0.1 0.906, 0.15 0.939, 0.0

3. Regularised due to denoised score estimate initialisation.
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Figure 4: Comparisons of single slice reconstructions with the PET-DDS MR guided vs. unguided
at noise level 2.5 without lesion (top) and with lesion (bottom).

From Fig. 4 a reconstruction without guidance and with guidance of various strengths is pre-
sented for data without and with lesions at noise level 2.5. The reconstructions indicate that MR
guidance helps to reconstruct the specific anatomical boundaries and structure, i.e., white matter
tracts. In Appendix B.2 we give additional qualitative slices with and without lesions, cf. Figs. 12
and 13, and the associated sensitivity plots in Figs. 10 and 11.

5.2 3D Reconstruction

Full 3D reconstructions were analysed for two tracers with simulated lesions. We evaluate the
performance of PET-DDS with additional RDP regularisation in the z-direction perpendicular to
axial slices (termed RDPz), and introduce subset-based data consistency updates as in Eq. (28).
Acceleration of PET-DDS was obtained through the use of subset-based data consistency updates,
see Table 6. For further experiments 28 subsets were used. We compare against a BSREM computed
MAP solution with RDP, and DIP with RDP, similar to Singh et al. (2023). In Fig. 5 we show
sensitivity plots for the FDG tracer and in Fig. 7 we plot the axial, coronal and sagittal slices
centred on the lesion location. Additionally, sensitivity curves for the amyloid tracer are given in
Fig. 6, and the associated reconstructions are available in Appendix B, see Fig. 16. In Table 6,
we present the computing time for 3D PET-DDS+RDPz versus the number of subsets. The results
indicate that the computing time decreases with the number of subsets while having minimal affect
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on evaluation metrics, indicating the preference for using more subsets for better computational
efficiency in practice.

Table 6: 3D PET-DDS+RDPz computing time with different numbers of subsets. Quality metrics
computed on the first realisation of FDG tracer measurements using 3D PET-DDS+RDPz
with λ = 158.0 and β = 21.9. Best values are highlighted in grey.

Number of subsets 1 4 7 14 28 42

Reconstruction time (min) 47.8 13.6 8.6 5.1 3.4 2.8
PSNR 25.91 25.90 25.89 25.84 25.72 25.57
SSIM 0.927 0.927 0.927 0.925 0.922 0.919
CRC 0.990 0.990 0.990 0.985 0.987 0.988

The FDG tracer sensitivity plot in Fig. 7 shows that adding RDPz into PET-DDS improves
SSIM and CRC metrics, while classical RDP provides highest PSNR values. Since PSNR is com-
puted using a mean squared reconstruction error, the resulting metric is biased toward blurrier re-
constructions. This can be observed in the qualitative images given in Fig. 7, where RDP gives
high PSNR values while the image insets show excessive blurring on the lesion. PET-DDS without
RDPz performs worse than with RDPz, since the score model only acts on axial slices and, without
RDPz, consistency in z-direction is only ensured through data consistency. Qualitatively this can
be observed in Fig. 7, where coronal and sagittal slices display discontinuities in the z-direction
whereas the axial slice is smoother. DIP reconstructions give improvements in SSIM and CRC as
compared to classical RDP results, but fail to improve PSNR. Results with OOD Amyloid tracer
show milder improvements with PET-DDS, with trends similar to those seen with the FDG tracer.

PET reconstructions by the proposed methods in Fig. 7 closely match the ground truth. How-
ever, unlike in RDP and DIP-RDP reconstructions, the results by PET-DDS and PET-DDS-RDPz
exhibit regions with much higher intensity values than in neighbouring areas. The inhomogeneity is
attributed to the presence of noise in the data, and PET-DDS without RDPz is expected to be more
inhomogenous for slices that are not axial, because the score-model was only enforced axially.

Table 7: Results using the best hyperparameters for each method for 3D BrainWeb data with FDG
and Amyloid tracers. The penalty strength used for each SGM method is denoted by λ.
The best performing method is highlighted in grey.

Tracer Method PSNR, λ SSIM, λ CRC, λ

FDG

RDP 25.74, 1.81 0.911, 2.77 0.994, 0.5

DIP+RDP 25.26, 9, 800 0.917, 10, 800 0.966, 9, 500

PET-DDS 24.83, 398 0.910, 398 1.01, 158

PET-DDS+RDPz 25.70, 158 0.922, 63.1 0.996, 158

Amyloid

RDP 24.15, 2.77 0.898, 1.81 0.996, 0.5

DIP+RDP 24.10, 10, 200 0.894, 10, 800 0.964, 9, 500

PET-DDS 23.08, 1000 0.890, 398 1.009, 10

PET-DDS+RDPz 24.15, 398 0.906, 158 0.999, 10
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Figure 5: Results for 3D reconstruction using the FDG tracer for different penalty values. PET-
DDS-RDPz β = 21.9, and DIP+RDP β = 0.1. Standard deviation is across reconstruc-
tions from different realisations of measurements. For DIP, the points corresponds to
various number of optimisation steps. For the other methods, the points represent differ-
ent values of the parameter λ, and the notation and _ denote the smallest and largest
numerical value of λ, respectively.
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Figure 6: Results for 3D reconstruction using the Amyloid tracer for different penalty values. PET-
DDS-RDPz β = 21.9, and DIP+RDP β = 0.1. Standard deviation is across reconstruc-
tions from different realisations of measurements. For DIP, the points corresponds to
various number of optimisation steps. For the other methods, the points represent differ-
ent values of the parameter λ, and the notation and _ denote the smallest and largest
numerical value of λ, respectively.

6. Conclusion

In this work we adapt SGMs for PET image reconstruction by incorporating PET specific con-
straints, e.g. Poisson noise and non-negativity, into several popular sampling techniques. We further
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Figure 7: 3D reconstruction for the different methods with FDG tracer, and metrics computed on
the inset lesion.

introduce a measurement-based normalisation technique, to improve the generalisability to differ-
ent intensity values by stabilising the dynamic range encountered by the score model. In future
work, reflected SGMs, recently proposed by Lou and Ermon (2023), could be leveraged to intro-
duce non-negativity into the sampling procedure in a more principled manner. This work provides
a first investigation of the generalisation capabilities by training the score model on patient-realistic
slices without lesions and testing on slices with lesions. However, further work is needed to com-
prehensively evaluate the generalisation performance on more diverse datasets of in-vivo data, to
investigate the biases of SGMs, which is vitally important for clinical adoption. The proposed SGM
sampling methods can produce multiple samples from the posterior p(x|y), and in this vein one can
draw multiple samples from the posterior for empirical uncertainty estimation; this is left for fu-
ture work. This work proposes guided SGM reconstruction with an additional MR guidance image
using CFG. The preliminary results are promising and further validation is required. A clinically
pertinent investigation into robustness to misregistration of the MR image could be investigated.
Furthermore, guidance could be extended to a joint PET-MRI reconstruction. Recently, Levac et al.
(2023) used similar ideas for a joint reconstruction of multi-contrast MR images.
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Appendix A. Appendix

A.1 Training of Score-based Models

Forward SDE In our experiments, we make use of the variance preserving SDE (Ho et al., 2020)

dxt = −
β(t)
2

xtdt +
√
β(t)dw, (37)

were we employ β(t) = βmin + t(βmax − βmin) as a linear schedule with βmin = 0.1 and βmax =

10 with a terminal time T = 1. The coefficients were chosen such that the terminal distribution
approximates a Gaussian, i.e. p1(x) ≈ N(0, I). We also tested the Variance Exploding (VE) SDE
(Song et al., 2021c); it was found that VE-SDE was more unstable than VP-SDE for PET image
reconstruction. The transition kernel for the variance preserving SDE is a Gaussian, i.e. pt(xt|x0) =
N(xt; γtx0, ν

2
t I), with coefficients

γt = exp
(
−

1
2

∫ t

0
β(s)ds

)
, ν2t = 1 − exp

(
−

∫ t

0
β(s)ds

)
. (38)

Using this closed form expression for the transition kernel, the denoising score matching loss can
be rewritten as

LDSM(θ) = Et∼U[0,1]Ex0∼πEz∼N(0,I)

[
ωt

∥∥∥∥∥sθ(xt, t) +
1
νt

z
∥∥∥∥∥2

2

]
, (39)

with xt = γtx0 + νtz. The weighting ωt is chosen as ωt = ν
2
t to approximate maximum likelihood

training (Song et al., 2021b).

Model Architecture We use the architecture proposed by Dhariwal and Nichol (2021)4. The
architecture is based on the popular U-Net architecture (Ronneberger et al., 2015) consisting of a
decoder implemented as a stack of residual blocks and downsampling operations and an encoder of
residual blocks and upsampling operations. At the lowest resolution (8× 8), additional global atten-
tion layers are used. To incorporate the timestep into each residual block, the authors use adaptive
group normalisation (AdaGN) layers defined as AdaGN(h, e) = esGroupNorm(h) + eb, where h are
intermediate features and e = [es, eb] is the encoded time step. The specific implementation and the
choice of our hyperparameters can be seen in our github. For the MRI guided model we apply the
clean MRI image as an additional channel to the input of the network.

A.2 Experimental Details

The sampling methods presented in Section 3 use different penalty strengths in order to scale the
likelihood term for PET-Naive and PET-DPS or to set the strength of the additional Tikhonov reg-
ularisation for PET-DDS. For Naive it is recommended to choose λnaive

t s.t. the penalty is zero at
the start of sampling and increased as t → 0 (Jalal et al., 2021). We use λt = λ(1 − t) in all our
experiments. For the PET-DPS approach (Chung et al., 2023a) define the sampling iteration as

x̃tk−1 = xtk + [f(xtk , tk) − g(tk)2sθ(xtk , tk)]∆t + g(tk)
√
|∆t|z z ∼ N(0, I),

xtk−1 = x̃tk−1 − λ
DPS
tk ∇xL(y|x̂0(xtk )).

(40)

4. available at https://github.com/openai/guided-diffusion
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This is equivalent to the classical Euler-Maruyama scheme, when λDPS
tk is chosen in such a way that

it incorporates the step size ∆t and the diffusion function g(tk)2. We follow Chung et al. (2023a)
and define λDPS

t = λ
DKL(Ax̂0 ||y) . For PET-DDS a constant penalty λDDS, without time dependency,

is used. Heuristically, the number of iterations used for data-consistency projection were adjusted
such that the results, with λDDS = 0, overfit to noise. The penalty strength λDDS was then increased
to regularise the reconstruction more. In 2D the number of projection steps for PET-DDS were set
to 4 for noise level 2.5 and 15 for noise level 10. In 3D the number of projection steps for PET-DDS
were set to 5 for both tracers. For guided reconstruction, 10 steps for noise level 2.5 and 20 steps
for noise level 10 were used for PET-DDS.

A.3 Baseline Methods

Classical Methods Relative Difference Prior (RDP) is a common penalty for PET reconstruction
(Nuyts et al., 2002), defined by

R(x) = −
n∑

j=1

∑
k∈N j

(x j − xk)2

x j + xk + ξ|x j − xk|
,

where N j is a pre-defined neighbourhood around x j, typically 3 × 3 in 2D or 3 × 3 × 3 in 3D.
Rz(x) is a variant of RDP whereby the neighbourhood is defined in the axial dimensions in 3D, i.e.
3×1×1. A Neumann boundary was chosen where neighbourhoods that were outside of the domain.
The tunable parameter ξ > 0 controls the degree of edge-preservation (ξ = 1, in-line with clinical
practice), and with its gradient given by

∂R(x)
∂x j

=
∑
k∈N j

−
(r jk − 1)(ξ|r jk − 1| + r jk + 3)

(r jk + 1 + ξ|r jk − 1|)2 , with r jk :=
x j

xk
. (41)

The penalisation is scale-invariant since the gradient is computed using the ratio of voxel values r jk.
This partially overcomes the issue with the wide dynamic range observed in emission tomography
images. For BSREM algorithm the convergence criteria was set based on the change of voxel
values within the reconstruction between iterates. Specifically, the change in mean voxel values
across non-zero voxel values was less than 0.01%, we set the relaxation coefficient to ζ = 0.1.

PET Image Denoising with SGM In PET image denoising, the goal is to sample from the poste-
rior p(x|xnoisy) of the true image x given an initial (low-count) reconstruction xnoisy. This is differs
from PET reconstruction, where the goal is to sample from the posterior ppost(x|y) conditioned on
the measurements y. In this framework the denoising likelihood is given by Gaussian noise, i.e.

p(xOSEM|x) = N(xnoisy; x, σ2
dI), (42)

with the noise level σd to be specified. Using the Naive approximation, we get the following reverse
SDE for the PET denoising likelihood

dxt = [f(xt, t) − g(t)2(sθ(xt, t) − 1/σ2
d(xnoisy − xt)]dt + g(t)dw̄t. (43)

In our implementation we estimate the initial reconstruction using OSEM with 34 subsets and iter-
ations (i.e. 1 epoch). The same score model sθ(xt, t) is used for both PET denoising and reconstruc-
tion. The noise level σd is chosen based on a held-out evaluation dataset.
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Supervised Learning We are using two popular supervised learning techniques: post-processing
and learned iterative methods. For the post-processing method we used a variant of the FBPConvNet
(Jin et al., 2017), modified to PET reconstruction. The input to the FBPConvNet was changed to
an OSEM with 34 subsets and iterations, this variation is denoted by PET-UNet. For the learned
iterative method, we adopt Learned Primal Dual (LPD) (Adler and Öktem, 2018), referred to as
PET-LPD. For PET-LPD we use the same OSEM reconstruction as initialisation for the primal
channels and include the affine forward model with sample specific attenuation maps. Note that
these sample specific factors were not included in previous implementation of learned iterative
methods for PET image reconstruction (Guazzo and Colarieti-Tosti, 2021). Three primal and dual
unrolled iterations were used. Both of these networks were implemented using DivαL (Leuschner
et al., 2021) with only minimal changes to the architecture; PET-UNet was a UNet with 1 783 249
parameters, and PET-LPD used a block of convolutional filters for each primal and dual network
with a total of 132 300 parameters. Both networks were trained using the dataset in Section 4.1
without lesions and noise levels of 5, 10, and 50. The dataset was split into training and evaluation,
and training was terminated when over-fitting was observed. Additionally, data-corrected mean
normalisation was included to promote generalisability between noise levels. The code for these
supervised learning models is publicly available at https://github.com/Imraj-Singh/pet_
supervised_normalisation and for further details see (Singh et al., in-press).

Deep Image Prior The Deep Image Prior (DIP) (Ulyanov et al., 2018) is a popular framework for
unsupervised image reconstruction, relying only on a single measurement. A common problem of
the DIP is its tendency to overfit to noise. Therefore some regularisation has to be used. We included
RDP into the objective function to elevate the need for early-stopping and prevent over-fitting to
noise. The architecture used was a three-scale U-Net (Ronneberger et al., 2015) with 1 606 899
parameters, with a rectified linear unit on the output to ensure non-negativity. This architecture is
minimally changed from previous applications of DIP to PET (Gong et al., 2019; Ote et al., 2023;
Singh et al., 2023). DIP results are computed on reconstructions along the optimisation trajectory,
every 100 iterations from 6,600 iterations to 11,600.

A.4 Evaluation metrics

In addition to peak-signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM)
(Wang et al., 2004), we compute two local quality scores over a Region of Interest (ROI). For
reconstructions with lesions a Contrast Recovery Coefficient (CRC) was computed to quantify de-
tectability of these local features. This was computed between lesion L and background B ROIs,
these have NL and NB number of elements respectively5. Additionally, there are R realisations of
the measured data. Given an ROI Z, we include subscript indices for element and realisation Zr,k,
where r is the realisation index, and k is the element index. An average over the elements of the
ROI is denoted as Z̄r =

1
NZ

∑NZ
k=1 Zr,k. The CRC is defined by

CRC :=
R∑

r=1

(
L̄r

B̄r
− 1

)
/

(
Lt

Bt
− 1

)
, (44)

where the subscript t denotes the ground truth ROIs. We study the noise over realisations of the
measured data using normalised STD (also referred to as ensemble noise, see Tong et al. (2010),

5. We use L to denote the lesion ROI in this section only; in the main manuscript L is the likelihood.
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and is reported to give a true estimate of noise in the image). We define an average over realisations
of the ROI as Z̄k =

1
R
∑R

r=1 Zr,k where STD is computed on background ROIs it is given by

STD :=
1

NB

NB∑
k=1

√√√
1

R − 1

R∑
r=1

(Br,k − B̄k)2

B̄k
. (45)

For reconstructions with lesions the background ROI was used, and without lesions a background of
the whole emission volume (defined on reference images) was used. In 2D R = 10 noise realisations
of acquisition data were used, and R = 5 in 3D. To evaluate the consistency of our reconstructions
to the true measurements, we compute the Kullback-Leibler divergence (KLDIV)

KLDIV :=
m∑

j=1

ȳ j log
(
ȳ j

y j

)
− ȳ j + y j, (46)

between measurements y and estimated measurements ȳ = Ax̂ + b̄ where x̂ denotes the reconstruc-
tion.

Appendix B. Additional Results

B.1 2D Reconstruction

We show additional sensitivity plots for 2D reconstruction. For noise level 10 these results are
presented in Fig. 8 and Fig. 9 without and with lesions, respectively. The results are similar to
the settings for noise level 2.5, as we see a clear trade-off between reconstruction quality in terms
of PSNR/SSIM and visibility of lesions in terms of CRC in Fig. 9. Here, a higher regularisation
leads to better PSNR/SSIM scores and a lower regularisation to a better recovery of lesions. A high
regularisation, i.e. a high influence of the score model, may lead to a worse reconstruction of the
lesions, as the score model was trained on images without lesions.

B.2 MR guidance

We show additional results for the MR guided model. Sensitivity plots without and with lesions are
presented in Fig. 10 and Fig. 11. These results support the findings of the paper, as the MR guided
models achieve better reconstruction quality w.r.t. PSNR and SSIM. However, the CRC is similar
to the unguided model. As the lesions were not visible in the MR image, no additional information
about the lesions are introduced through guidance. We show two more reconstruction examples
without lesions in Fig. 12 and examples with lesions in Fig. 13.

B.3 3D results RDPz sweeps

We show the sensitivity plots for different penalty values of the additional RDP regularizer in z-
direction for PET-DDS in Fig. 14 and 15 for the two different tracers. In addition, we show axial,
coronal and saggital slices of the reconstruction with the Amyloid tracer in 16.
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Figure 8: Results for BrainWeb without lesions with noise level 10 for different penalty parameters.
The Standard Deviation is computed over reconstructions of different noise realisations y.
The points represent different values of the parameter λ, and the notation and _ denote
the smallest and largest numerical value of λ, respectively.
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Figure 9: Results for BrainWeb with lesions with noise level 10 for different penalty parameters.
The Standard Deviation is computed over reconstructions of different noise realisations y.
The points represent different values of the parameter λ, and the notation and _ denote
the smallest and largest numerical value of λ, respectively.
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Figure 10: Results for 2D reconstruction guided vs unguided without lesions for noise level 2.5.
The points represent different values of the parameter λ, and the notation and_ denote
the smallest and largest numerical value of λ, respectively.
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Figure 11: Results for 2D reconstruction guided vs unguided with lesion for noise level 2.5. The
points represent different values of the parameter λ, and the notation and _ denote the
smallest and largest numerical value of λ, respectively.
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Figure 12: Comparisons of the PET-DDS MR guided vs. unguided at noise level 2.5 without le-
sions.

Algorithm 1 PET-Naive
Require: Measurements y
Require: Number of steps N ∈ N
Require: Time discretisation 0 = tk1 ≤ · · · ≤ tkN = 1

xtN ∼ p1 ▷ Sample initial noise
for k = N − 1, . . . , 1 do

sθ ← sθ(xtk+1 , tk+1)
z ∼ N(0, I)
∆t ← tk − tk+1
x̃tk ← xtk+1 +

[
f(xtk+1 , tk+1) − g(tk+1)2sθ

]
∆t + g(tk+1)

√
|∆t|z ▷ Unconditional score update

xtk ← x̃tk − g(tk+1)2λNaive
tk+1
∇xL(y|cOSEMPx≥0[xtk+1])∆t ▷ Data consistency step

end for
x̂← cOSEMxt1
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Figure 13: Comparison of the PET-DDS MR guided vs. unguided with a noise level 2.5 with
lesions.
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Figure 14: Results for 3D reconstruction using the FDG tracer for different penalty values. The
points represent different values of the parameter λ, and the notation and _ denote the
smallest and largest numerical value of λ, respectively.
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Figure 15: Results for 3D reconstruction using the Amyloid tracer for different penalty values. The
points represent different values of the parameter λ, and the notation and _ denote the
smallest and largest numerical value of λ, respectively.

Algorithm 2 PET-DPS
Require: Measurements y
Require: Number of steps N ∈ N
Require: Time discretisation 0 = tk1 ≤ · · · ≤ tkN = 1
Require: Transition density p(xt|x0) = N(xt; γtx0, ν

2
t I)

xtN ∼ p1 ▷ Sample initial noise
for k = N − 1, . . . , 1 do

s← sθ(xtk+1 , tk+1)
x̂0(xtk+1)← γ−1

tk+1
(xtk+1 + ν

2
tk+1

sθ) ▷ Compute Tweedie estimate
z ∼ N(0, I)
∆t ← tk − tk+1
x̃tk ← xtk+1 +

[
f(xtk+1 , tk+1) − g(tk+1)2sθ

]
∆t + g(tk+1)

√
|∆t|z ▷ Unconditional score update

ℓ ← L(y|cOSEMPx≥0[x̂0(xtk+1)])
xtk ← x̃tk − λ

DPS
tk+1
/ℓ ∇xL(y|cOSEMPx≥0[x̂0(xtk+1)]) ▷ Data consistency step

end for
x̂← cOSEMxt1

583



Singh, Denker, Barbano, Kereta, Jin, Thielemans, Maass and Arridge
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Reference RDP DIP+RDP PET-DDS PET-DDS+RDPz

C
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al
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gi
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al

PSNR 24.15dB
SSIM 0.895
CRC 0.950

PSNR 24.09dB
SSIM 0.894
CRC 0.959

PSNR 22.72dB
SSIM 0.890
CRC 1.005

PSNR 24.03dB
SSIM 0.906
CRC 0.997
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Figure 16: 3D reconstruction for the different method with Amyloid tracer, and metrics computed
on inset lesion.
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Algorithm 3 PET-DDS
Require: Measurements y
Require: Number of steps N ∈ N
Require: Time discretisation 0 = tk1 ≤ · · · ≤ tkN = 1
Require: Transition density p(xt|x0) = N(xt; γtx0, ν

2
t I)

Require: Number of inner optimisation steps p ∈ N, number of subsets nsub ∈ N

Require: Stochasticity {ηt}t≥0
xtN ∼ p1 ▷ Sample initial noise
for k = N − 1, . . . , 1 do

sθ ← sθ(xtk+1 , tk+1)
x̂0(xtk+1)0 ← γ−1

tk+1
(xtk+1 + ν

2
tk+1

sθ) ▷ Compute Tweedie estimate
for i = 0, . . . , p − 1 do ▷ Inner optimisation for data consistency

j← (p(N − k) + i mod nsub) + 1
Φ j(xi

tk+1
)← L j(y|cOSEMxi

tk+1
) + (λRDPRz(xi

tk+1
) − λDDS∥xi

tk+1
− x̂0(xtk+1)0∥22)/nsub

xi+1
tk+1
← Px≥0

[
xi

tk+1
+ D(xi

tk+1
)∇xΦ j(xi

tk+1
)
]

end for
z ∼ N(0, I)

Noise(xtk+1 , sθ)← −νtk+1

√
ν2tk − η

2
tk+1

sθ
xtk ← γtk x

p
tk+1
+ Noise(xtk+1 , sθ) + ηtk+1z

end for
x̂← cOSEMxt1
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