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Abstract

Methods for medical image registration infer geometric transformations that align pairs,
or groups, of images by maximising an image similarity metric. This problem is ill-posed
as several solutions may have equivalent likelihoods, also optimising purely for image sim-
ilarity can yield implausible deformable transformations. For these reasons regularization
terms are essential to obtain meaningful registration results. However, this requires the
introduction of at least one hyperparameter, often termed A, that serves as a trade-off
between loss terms. In some approaches and situations, the quality of the estimated trans-
formation greatly depends on hyperparameter choice, and different choices may be required
depending on the characteristics of the data. Analyzing the effect of these hyperparame-
ters requires labelled data, which is not commonly available at test-time. In this paper, we
propose a novel method for evaluating the influence of hyperparameters and subsequently
selecting an optimal value for given pair of images. Our approach, which we call Hyper-
Predict, implements a Multi-Layer Perceptron that learns the effect of selecting particular
hyperparameters for registering an image pair by predicting the resulting segmentation
overlap and measures of deformation smoothness. This approach enables us to select op-
timal hyperparameters at test time without requiring labelled data, removing the need
for a one-size-fits-all cross-validation approach. Furthermore, the criteria used to define
optimal hyperparameter is flexible post-training, allowing us to efficiently choose specific
properties (e.g. overlap of specific anatomical regions of interest, smoothness/plausibility
of the final displacement field). We evaluate our proposed method on the OASIS brain
MR standard benchmark dataset using a recent deep learning approach (cLapIRN) and an
algorithmic method (Niftyreg). Our results demonstrate good performance in predicting
the effects of regularization hyperparameters and highlight the benefits of our image-pair
specific approach to hyperparameter selection.

Keywords: Deformable Image Registration, Hyperparameter Selection, Regularization.

1. Introduction

Deformable image registration has been an active field of research for decades, as it is a fun-
damental process utilized in various medical imaging studies. The process involves aligning
images of different modalities and time points for comparison and measurement of changes
over time. It is very common for medical images to vary in their spatial resolution and
orientation; as a result, non-linear image registration plays a vital role in various clinical
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applications such as image-guided treatment delivery, pre-operative/post-operative assess-
ment comparison, disease monitoring, disease diagnosis, and population analysis (Meng
et al., 2022).

In medical images, the quality of registration largely depends on two conditions: (a)
accurate alignment of anatomical structures, (b) a smooth and plausible displacement field.
Achieving a balance between these factors is accomplished by utilizing hyperparameters
that act as a trade-off between both objectives. Hence, selecting optimal hyperparameter
values is a critical aspect when evaluating image registration methods.

The most quantitative method of selecting these hyperparameters is by performing grid
or random search on the validation data using a discrete set of hyperparameter values. In
this approach, additional data containing anatomical annotations is employed. By com-
puting segmentation overlap of anatomical regions between the ground truth labels and
the inferred registration, an “optimal” value is selected based on the hyperparameter that
maximizes a criteria across the entire population. We argue that this approach may lead
to sub-optimal choice as data-specific optimal hyperparameter differ significantly depend-
ing on various factors such as, the morphological similarity between the images and the
anatomical structure of interest, among other factors. Furthermore, researchers may be
inclined to adopt values from existing literature that may not be suitable for their specific
dataset or registration task, equally leading to sub-optimal results.

In this paper, we present a novel method, HyperPredict, an efficient tool for instance-
specific optimal hyperparameter selection in registration tasks. Our proposed approach
enables greater flexibility at test time and can be leveraged in scenarios where labelled
scans are scarce. In summary our contributions are as follows:

e We propose a novel and efficient method of learning the effect of registration hyper-
parameters. This is achieved by learning the parameters of a network that maps a
set of hyperparameters and image pair to desired evaluation metrics (derived from
segmentation overlap and smoothness of deformation field).

e Our method is flexible and allows the efficient choice of optimal parameters based on
a defined criteria.

e We test our proposed method using two different registration algorithms (cLapIRN
and Niftyreg), our code is publicly available at https://github.com/aisha-lawal/
hyperpredict.

The structure of the paper is as follows. Section 2 introduces deformable image regis-
tration, it’s mathematical formulation and hyperparameters in medical image registration
tasks, Section 3 describes related work. In Section 4 we present our method. Sections 5
and 6 describe experimental results and discuss insights. Finally, we present limitations of
our method and conclude in Sections 7 and 8 respectively.

2. Background

Deformable Image Registration: Conventional registration algorithms (Ashburner,
2007; Beg et al., 2005; Avants et al., 2008b; Modat et al., 2014) solve the optimization

687


https://github.com/aisha-lawal/hyperpredict
https://github.com/aisha-lawal/hyperpredict

SHUAIBU AND SIMPSON

problem for each volume pair by iteratively improving estimates for the desired transfor-
mation such that the loss function is minimized. However, solving a pairwise optimization
problem is computationally expensive and can be very slow in practical medical applications.
Over the years, deep learning image registration methods (DLIR) (Mok and Chung, 2020b,
2021a; Balakrishnan et al., 2019) have been introduced to circumvent this by optimizing the
parameters of a network, the general process aims to establish a dense, non-linear correspon-
dence between pairs of images, such as magnetic resonance (MR) images or computerised
tomography (CT) scans, by learning the optimal spatial transformation between the image
pair that enhances similarity. The process of registering two images can be formulated as
an optimization problem generally expressed as:

* = argminLgy (f, m o @) (1)
¢

Equation 1 seeks to minimize a loss that consists of two parameters, f and m o ¢. Where m
and f denote the moving and fixed image respectively, ¢ represents the deformation field,
¢* is the optimal registration field that maps the pixels/voxels from m to f.

Intuitively, deformable image registration poses a significant challenge due to its inher-
ently ill-posed nature. Reliance solely on surrogate measures such as image similarity can
be insufficient as they do not have the ability to differentiate between accurate and inaccu-
rate registrations (Rohlfing, 2011). For example, given an image pair, m and f, registration
algorithms seek to find the transformation that deforms the moving image, mapping the
coordinates of m to f; however, ground-truth deformation fields do not exist to serve as
a reference point, and without any restrictions placed on the transformation properties,
the cost function becomes poorly conditioned. Thus, to ensure tractability, registration
algorithms employ some regularization that imposes a constraint on the estimated defor-
mation field - reducing the set of possible solutions. The quality of the registration largely
depends on the regularization weight, X\, that serves as a trade-off between the quality of
the registration and how smooth the deformation field is. Thus, the cost function can be
reformulated as follows:

¢* = arg;ninﬁsim(fv mo ¢) + )‘Lreg(gb) (2)

Description of the notation is similar to Equation 1, with A denoting the regularization
weight, Lgm and Lies represent the dissimilarity and imposed regularization function re-
spectively. The aim is to optimize both the registration quality, Lsm, while having a smooth
deformation field, L;es. The choice of loss function for L, depends on various factors in-
cluding the intensity distribution and contrast of the image. Commonly used functions are
mean squared error, mutual information (Viola and Wells III, 1997), and normalized cross
correlation (Avants et al., 2008a), which capture different aspects of similarity. For L,
a diverse range of regularisers can be employed to enforce spatially smooth deformations,
examples include, linear elasticity, bending energy, and learned priors.

Evaluation Metrics: Quantifying the accuracy of non-rigid image registration is inher-

ently difficult. As such, no gold standard for evaluating deformable registration exists.
However, with additional labelled data, we can make an effort to quantify the quality of the
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registration with some degree of confidence. A common approach as a means of evaluation
is to compute the segmentation overlap of different anatomical regions between m and f.
The Dice score (Dice, 1945) is one way to do this. While the Dice score between anatomical
structures is a reliable proxy for evaluation, a high Dice score does not imply a biologi-
cally plausible registration. This is because a deformation field with overlapping voxels can
still yield a high Dice score despite potentially unrealistic deformations (Rohlfing, 2011).
Therefore, in addition to the Dice score, assessing the deformation’s diffeomorphic property
is equally important in order to preserve the topology of the features in the transformed
image. Hence, the determinant of the Jacobian |Jy| serves as a measure of smoothness of
the deformation field.

The experiments presented in this paper employ the Dice score and number of folded
voxels (derived from |.Jy4|) as the desired evaluation metrics. However, it is worth emphasiz-
ing that our methodology is not limited to these specific choices. Our approach is flexible
and can be easily extended to accommodate a wide range of hyperparameters and evalua-
tion metrics. Depending on specific application or research objective, our method can be
adopted to fit the desired metrics, such as Hausdorff distance and Target Registration Error
(TRE) amongst others.

Hyperparameter Selection: Hyperparameter optimization algorithms tackle the chal-
lenge of jointly optimizing both model hyperparameters and model weights through a vali-
dation and training objective respectively. The simplest approach involves treating model
training as a “block-box” function and employing methods such as grid search, random
search, or sequential search (Bergstra and Bengio, 2012). Other methods include manual
fine-tunning and Bayesian optimization (Bergstra et al., 2011; Turner et al., 2021; Snoek
et al., 2012; Mockus, 1998). Although effective, these methods can be inefficient as they
require repetitive optimization procedures for each hyperparameter value. We describe
existing methods in Section 3.

Hyperparameters in Registration: In non-rigid image registration, the number of hy-
perparameters to be optimized depends on the specific registration algorithm and objective.
For example, cLapIRN, (Mok and Chung, 2021a) regulate the smoothness of the deforma-
tion field using a single registration hyperparameter, denoted as A. On the other hand,
algorithms such as ConvexAdam, (Siebert et al., 2021) and Niftyreg, (Modat et al., 2014)
employ a set of hyperparameters to optimize the registration process. In Niftyreg, spacing
for spline interpolation, bending energy, and linear elasticity are some of the regularization
options to govern the diffeomorphic properties of the deformation field. In such scenarios,
especially when dealing with algorithms with high computational complexity, employing
the above methods to tune multiple parameters becomes impractical.

Motivated by the challenge above, HyperPredict presents a more efficient method for
selecting optimal hyperparameter values. During training, HyperPredict learns the effect
of the hyperparameter on the evaluation metrics. By utilizing a registration algorithm, the
target values of both metrics (described above) are obtained for backpropagation. At test
time, given an input {m, f, A\}, and without having true segmentation, the model predicts
the metrics associated with the input. Based on a specific criteria (defined in method
section), we select optimal parameter, \*, and use that for registration.
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3. Related Work

As described in Section 2, registration methods typically optimize a data term and a
weighted regularization term. Hence, to be able to minimize the error of the registered
results, it becomes crucial to optimize the independent hyperparameters of the registration
model. Despite the advantages that come with DLIR methods, they still face challenges in
navigating the trade-off parameter within the objective function. Traditionally, the selection
of regularization parameter values relied on a trial and error approach (Ashburner, 2007;
Andersson et al., 2007; Rueckert et al., 1999). In this, users manually search for parameters
that yield satisfactory results for a given dataset. This process often involves fine-tuning
multiple parameters, which can be time consuming, particularly in hierarchical registra-
tion methods. An example is studies conducted in (Rithaak et al., 2017), their registration
method utilized four distinct parameters. To capture the effect of each parameter, they
conducted separate experiments, in each, one parameter was varied while the other three
remained fixed. This iterative process allowed them to empirically determine an “optimal”
value for all four parameters. Although ad hoc parameter-tuning may produce satisfactory
outcomes, it requires expert domain knowledge to effectively guide the tuning process (Joshi
et al., 2004; Vialard et al., 2011; Ma et al., 2008; Wang et al., 2019).

Cross-validation is another standard practice employed for selecting registration hyper-
parameters (Balakrishnan et al., 2019; Mok and Chung, 2020a). Using grid search, the
parameters that yield the best performance on a given dataset is selected for subsequent
registrations. As a result, it utilizes a fixed level of regularization across the entire set of
image pairs, with the assumption that all image pairs require the same degree of regu-
larization. Additionally, this process necessitates availability of manually labelled dataset
that accurately represents the testing data of interest. This method of parameter selec-
tion requires substantial computational resources and human effort, which may result in
sub-optimal parameter choices.

Employing a hierarchical Bayesian model to infer the regularization parameter is an-
other method demonstrated in studies by (Risholm et al., 2012) and (Simpson et al., 2012).
The general strategy of Bayesian approach leverages a probabilistic model to explore and
evaluate the performance of hyperparameters that result in improved registration. This is
achieved by characterising the posterior distribution using techniques like Markov Chain
Monte Carlo (MCMC) or Variational Inference. (Risholm et al., 2013) considered scenarios
where the confidence of both observed data and model priors are unknown, aiming to tackle
the challenge of finding an objective trade-off between the two terms. They characterised
the posterior distribution using Metropolis-Hastings and treated the hyperparameters as
latent variables approximately marginalized over. A similar approach is proposed in (Wang
and Zhang, 2021; Zhang et al., 2013). Given sufficient samples, MCMC yields a good charac-
terization of the posterior, however, the computational demands and complexity of Markov
chain is a restricting factor that limits the feasibility of this approach. While Variational
Bayes(VB) has less computational burden, it may compromise on the quality of estimates.
(Simpson et al., 2015) utilized a spatially adaptive prior to limit unwanted regularization on
the estimated transformation. One limitation is that the uncertainty estimates quantify the
variability in the displacement field based on the inferred hyperparameters, but they do not
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account for the uncertainty in the registration caused by variations in the hyperparameters
themselves (Le Folgoc et al., 2016).

Recent advancements in deep learning registration methods such as HyperMorph, (Hoopes
et al., 2021) and cLapIRN, (Mok and Chung, 2021b) propose an approach that eliminates
the need for repeatedly training models in search of hyperparameters that boost model per-
formance. They do this by learning the effect of hyperparameters on the deformation field.
Specifically, cLapIRN proposes a conditional image registration method that learns the
conditional features that are strongly correlated with specific regularization values. On the
other hand, HyperMorph leverages a secondary network to generate conditioned weights for
the primary network, in order to learn the impact of registration hyperparameters on the de-
formation field. To quantify the choice of hyperparameter (selected arbitrarily), registration
methods require labels. Rather than learning the entire registration process, (Niethammer
et al., 2019), focus on learning a spatially adaptive regularizer within a registration model
to preserve the desired level of regularity, however, this is not done on a pair-wise basis. A
similar method is adapted in (Vialard and Risser, 2014) using a learning based approach.

To summarize the challenges above; depending on the selected method, tuning and se-
lection of optimal hyperparameters involves dealing with one or more of the following (a)
computational expense, (b) time consuming nature of the process, (c) requires labelled data
at test time which involves human effort and may not readily available, (d) ineffective in
selecting optimal hyperparameter (assumes a fixed value throughout the entire dataset).
While both amortized inference and algorithmic approaches to registration allow for hyper-
parameter selection at test time, efficiently selecting an optimal value at test time remains
a challenge, which we aim to solve with our proposed HyperPredict.

We emphasize that the goal of HyperPredict is not to function as a registration tool or to
directly compare it with existing ones, but rather to serve as a means of aiding registration
algorithms in selecting appropriate hyperparameters.

4. Method

Current unsupervised learning-based image registration methods that learn the effect of
hyperparameters define a network hy(m, f, \) = ¢, where hy, is parameterized by a con-
volutional neural network (CNN). Our presented approach takes advantage of these regis-
tration algorithms but uniquely learns a function gy that captures the correlation between
a hyperparameter value and the evaluation metric for an image pair. Given e,(an encoded
representation of m and f) and sampled hyperparameter value, A (drawn from a log-normal
distribution, i.e., A ~ LogNormal(u, o)), we parameterize our proposed method as a func-
tion, gg(eo, A) with a Multi-Layer Perceptron (MLP). The proposed method works with any
registration algorithm that incorporates a regulariser in its smoothness during optimization.

Figure 1 presents an overview of our method. The network architecture during training
is comprised of an encoder, a registration algorithm, and the MLP. At train time, we freeze
the pretrained weights of the encoder and registration algorithm. Based on the encoded
representation and hyperparameter passed as input, the MLP learns to predict the Dice
coefficient and number of folded voxels as the evaluation metrics. We use the deformation
field, ¢, from the registration algorithm and the Dice score between the warped moving
label, s(m)o ¢, and fixed label, s(f), to enable the computation of the loss. At test time,
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given unseen images and regularization weight, {m, f, A}, we obtain the predicted metrics
by evaluating gg(e,, A). All notations are illustrated in Figure 1.

MSE L
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Figure 1: Overview of the method: (a) We learn the parameters gy (yellow box) of an
MLP that maps the encoded representation (e,) of an image pair (m, f) and a set
of hyperparameters (\) to evaluation metrics (Dice and folded voxels). At train
time, we optimize gy by computing the target metrics of the input (blue boxes
and dashed blue lines) using a registration algorithm. (b) At test time, given
a set of input, we predict the effect for each hyperparameter value. We select the
optimal hyperparameter, A*, and use that in the registration algorithm to obtain
a desired warped image (red box). The green shapes (encoder and registration)
are pretrained.

When inferring the optimal weight, \* (as in Figure 1(b)), we can impose selection
criteria. For instance, we can consider only results that restrict significant discontinuities in
the deformation field. This is achieved by constraining the percentage of number of folded
voxels (nfv) allowed. Based on this constraint, the optimal weight, A\*, that corresponds to
the highest Dice score is obtained (across image pairs or selected labels). Mathematically,
this can be expressed as;

A* = arg max(Dice(A\)1[nfv < N0.5%]) (3)
A

Equation 3 determines the optimal value, (A*) by maximizing the Dice score while ensuring
Ynfv is less than 0.5% of total folded voxels (N). The derived A\* is used for registration. In
the following sections, we describe our method in detail.

4.1 HyperPredict Architecture

This section describes the architecture used in our experiments. Let moving image, m and
fixed image, f represent an image pair, each defined over a 3D spatial domain, Q C R3. Since
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CNNs capture abstract representation of images (Szeliski, 2022), we leverage this to define
our encoder. The encoder takes m and f as input and outputs an encoded representation,
€0, of the image pair. For simplicity, our experiments utilize two pre-trained registration
models as encoders; Symnet, (Mok and Chung, 2020a) and cLapIRN, (Mok and Chung,
2021a). It is important to note that we need an encoder that could take in a pair of 3D-
volumes, the conventional approach of dealing with this is by utilizing a registration model.
We performed preliminary experiments using 2D implementation of masked autoencoder
(He et al., 2022) to learn a self-supervised encoding, we found this very slow since they are
not designed to work with 3D data.

The encoder is represented as RY:Cm:Dm Hm:Wmy RN.Cp.DpHp, Wy _y RN:CegrDeorHeo:Weo
With N, C, D, H, W, indicating the batch size, channels, depth, height and width re-
spectively. The subscripts m, f, e,, denote moving, fixed and encoded representation re-
spectively. Using Symnet as an encoder, the resulting representation, e, has dimensions
of 1x56x10x12x14. We flatten the last three dimensions (D,H,W) and compute the mean
across the channels. The result is concatenated with A and passed as input to the MLP. We
explored other summary statistics, such as concatenating the mean, max, and min across
the channels, comparable results are presented in Appendix C.

Throughout our experiments, we parameterize the function hy(.,.) with two different
registration algorithms; cLapIRN, and Niftyreg. Both of which accept hyperparameters as
input that condition the smoothness of the registered image. At each iteration, the same
set of image pair and hyperparameter is passed to the encoder and registration algorithm
simultaneously, the loss is computed between the predicted values from the MLP and target
values from the registration.

4.2 Loss Functions

In this section, we describe the loss function and evaluation metrics of the model. We
optimize the MLP parameters, gg using stochastic gradient descent to minimize the loss.
Mathematically, the objective function at each iteration is defined as;

L= Eoverlap + aﬁnfv (4)

Loverlap and Ly, are the two components of the loss L, representing the Dice loss and nfv
loss respectively. This is a multitask learning problem, hence we define « as a weighting
term, balancing the relative magnitude of both losses, Appendix F shows the relative effect
of training with different values of a. From the figure, 1.0 proves to be optimal for learning
the metrics of both cLapIRN and Niftyreg registration methods. Both components of the
loss are evaluated using the mean squared error defined in Equations 6 and 7 below.

Assessing the quality of registration is non-trivial due to competing objectives. Low reg-
ularization parameter can allow for close matching of appearance at the cost of anatomically-
implausible and highly irregular deformations. Similarly, high value of smoothness regu-
larization enables smooth deformations with sub-optimal alignment. In practice, amongst
other evaluation metrics, the Dice score and |Jg| are used to access the result of the regis-
tration. In our method, we focus on these two metrics.

Dice score: Acquiring accurate human annotated anatomical segmentations is a te-
dious task, hence the annotations available are leveraged during training. For a well aligned
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image, regions in f and m o ¢ corresponding to the same anatomical region should overlap
well. The Dice score quantifies the overlap between the structures. Let s(f); and s(m);
represent labels of volumes f and m of structure i respectively, we define the target Dice
score as;

|s(f)i N (s(m)i 0 §)|
|s(F)il + [s(m)i o ¢|
Where a score of 1 indicates a perfect match between anatomical labels, and 0 means there
is no overlap. Thus, we can mathematically define Loyerap as MSE between the predicted
Dice, y; and the target Dice, y; given as;

Dice(s(f )i, s(m); o ¢) = 2 *

= Ui (5)

1 N
»Coverlap = W Z(yl - 91)2 (6)
iEN

Since we also aim to evaluate the effect of hyperparameter on each label, we predict 35
different Dice scores, each representing the degree of overlap for an anatomical region in
the brain.

Number of folded voxels: We obtain the target number of folded voxels from the
registration by computing the Jacobian determinant of the deformation field |Jy| for each
input, this gives us an understanding of its diffeomorphic properties. Where negative values
of |J4| indicates non-plausible mapping, values less than 1 means contraction around that
local region and values greater than 1 denotes expansion within that region. In practice, the
displacement field is represented in an n 4+ 1D image, meaning for each voxel p within the
spatial domain, €2, the displacement u(p) represents a shift that aligns f(p) and [m o ¢](p)
to corresponding anatomical regions. The target number of folded voxels, x;, is derived
by computing the sum where |Jy| < 0 acorss the entire displacement field. Hence, Lys, in
Equation 4 can be formally defined as;

1 .
Lty = W Z(xz - $i)2 (7)
1EN
Where z; and #; denote the predicted and target nfv respectively. Throughout our
experiments, we express nfv as a percentage, i.e., %nfv.

5. Results

We evaluate our method on 3D brain MR scans. To demonstrate our contributions, we train
and evaluate HyperPredict models using two pre-trained convolutional encoders and two
registration models as previously mentioned. Subsequent sections provide a comprehensive
description of the experimental setup and the experiments conducted.

Dataset and Pre-processing: We demonstrate our method on brain MRI registration
task. We use 414 T1-weighted brain scans from the OASIS dataset (Brains, 2020; Marcus
et al., 2007). The dataset contains cross-sectional collection of subjects (men and women)
aged from 18 to 96. The pre-processed version of OASIS dataset is obtained from (Hoopes
et al., 2021). They performed standard pre-processing steps using FreeSurfer, (Fischl, 2012)
including; affine spatial normalization, skull stripping, sub-cortical structures segmentation,

694



HYPERPREDICT: ESTIMATING HYPERPARAMETER EFFECTS IN DIR

and finally, cropping the resulting images to 160 x 192 x 224. The dataset includes sub-
cortical segmentation maps of 35 different anatomical structures for each volume, generated
by FreeSurfer. We consider Freesurfer a silver-standard method for generating automatic
brain segmentations (Puonti et al., 2016). We used the resulting segmentation maps during
training to compute the target segmentation overlap between the image pair. We divide
this dataset into train, validation and test sets of sizes 254, 80, and 80 respectively.

Implementation: To improve the computational efficiency of our experimental process,
we precompute registrations using both cLapIRN and Niftyreg between all images pairs
using randomly selected regularization weights, sampled from a log-Normal distribution.
We save the resulting metrics of these registrations in a csv file, which is used to train the
MLP network.

The parameterization of gy is based on three linear layers, each followed by a LeakyReLLU
(Maas et al., 2013) activation function except the final layer. Our proposed method is
implemented in PyTorch, we adopt Adam optimizer, (Kingma and Ba, 2014) with a learning
rate of 1074, The training process follows the description in Section 4.1.

We ran our model using both the SymNet and cLapIRN encoders. The results presented
in Appendix C demonstrates that SymNet achieved a lower Mean Absolute Error for both
the Dice score and %nfv. Hence, for all experiments detailed in this section, we show
results for Symnet as an encoder. To experiment HyperPredict’s ability to generalize across
different registration methods, we show results for HyperPredict on cLapIRN and Niftyreg
registration methods separately. We label HyperPredict trained with both methods as
HyperPredictela, and HyperPredict,,, respectively. We denote cLapIRN single registration
hyperparameter as A. Niftyreg offers various regularization options, we use spacing, sz,
bending energy, be, and linear elasticity, le in our experiments.

5.1 Experiment 1: Accuracy of HyperPredict

This experiment aims to validate our proposed method by assessing if, and how accurately
a HyperPredict model is able to predict the desired evaluation metrics. We check to see
if through the registration algorithms, HyperPredict learns to capture the effect of a wide
range of hyperparameter values simultaneously. We present a validation plot that shows
our ability to predict over both metrics for selected values of hyperparameters on the test
dataset. Additionally, we present Bland-Altman plots to evaluate the agreement between
predicted values from HyperPredict and the resulting registration metrics.

Experiment Setup and Results: First, we separately train two HyperPredict models,
one for each registration algorithm (cLapIRN and Niftyreg) using the steps outlined in
method section. To measure the models predictive performance, we analyze the residual
plots between the predicted and target metrics. To do this, we sample arbitrary discrete
values of hyperparameters; A € [0.05, 0.075, 0.1, 0.125, 0.150, 0.2, 0.5, 1], and be € [0.0001,
0.001, 0.0075, 0.05, 0.075, 0.1, 0.125], we observed more variance with smaller values of
bending energy. We use the sampled hyperparameter values to run image pairs in the test
set on HyperPredictc,p, and HyperPredict,, respectively. Similarly, for each test pair and
hyperparameter value, we derive the corresponding target metrics from both registration
methods. Finally, for the range of hyperparameter values selected, we compute the difference
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Figure 2: Error Distribution Plots on Both HyperPredict Models. Left: Difference in pre-
dicted and target dice coefficients for selected hyperparameter values. Right:
Difference in predicted and target %nfv for selected hyperparameter values. For
visualization purpose, we display results for selected values.

between the predicted and target for both metrics on each HyperPredict model. We present
the error distribution plots in Figure 2.

To assess the agreement between the predicted and target metrics, we use Bland-Altman
plots. For HyperPredictclap,, we generate 200 log-linearly spaced values between -10 and
0, A € [-10,0]. Similarly, for HyperPredicty,,, we sample 200 log-linearly spaced values
for the bending energy, be € [—10,0], we use a fixed value of 5 for the spacing, sz €
[5] (Segmentation overlap metrics indicate that the smallest spacing is better in Niftyreg,
see Figure 9 (left) in Appendix A, but we compromise for computational efficiency), and
a fixed value of 0.01 for linear elasticity, le. For image pairs in the test dataset, with
HyperPredictgjap, we run each of the 200 sampled hyperparameter value, A with the pair to
obtain the predicted metrics. Next, we select the optimal A value per image pair and pass
it to the cLapIRN registration to obtain the target metrics. The same procedure is done
for HyperPredict,,, using sampled be, and fixed values of le and sx as parameters.

In Figure 3 we present the pairwise differences between the predicted and target metrics
plotted against their average, for both HyperPredictgjap (top) and HyperPredicty, (bottom).
The plots reveal a close agreement between results from the predicted and target metrics
for HyperPredictap, with narrow upper and lower boundaries, indicating that majority of
the differences fall within an acceptable range. Furthermore, the figure demonstrates that

696



HYPERPREDICT: ESTIMATING HYPERPARAMETER EFFECTS IN DIR

Dice Coefficient Yonfv

0.100
+1.96

0.075

0.050

0.025

HyperPredictg|ap

0.000

-0.025

Predicted Dice - Target Dice
Predicted %nfv - Target %nfv

—0.050

==+ Mean Difference A ---- Mean Difference
---- Lower Limit - ---- Lower Limit
-==- Upper Limit . -==- Upper Limit

—0.075

—0.100
0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.1 0.2 0.3 0.4 0.5 0.6
Mean Mean

0.075
+1.96,

0.050

0.025

0.000

HyperPredicty,, —0.025

-0.050

Predicted Dice - Target Dice

-0.075

Predicted %nfv - Target %nfv

—0.10071 ____ Mean Difference ---- Mean Difference

-=-- Lower Limit =061 ---- Lower Limit
—0.1259 ---- Upper Limit ---- Upper Limit

0.70 0.75 0.80 0.85 0.1 0.2 0.3 0.4 0.5 0.6
Mean Mean

Figure 3: Validating HyperPredict. Left: Bland-Altman plots showing the agreement be-
tween the predicted vs target Dice scores across the entire population for both
models (each point represents the average Dice for a particular image pair).
Right: Bland-Altman plots showing the agreement between the predicted vs
target %nfv for the entire population.

our method is able to yield metrics similar to those obtained through cLapIRN registration
for each image pair. We found an average difference in the predicted and target Dice scores
to be 0.0154+0.014 and 0.028+0.026 for the %nfv.

Using HyperPredicty,,, we observe reasonable agreement between the predicted and tar-
get dice scores (bottom left), however, our model exhibits some limitations in accurately
predicting %nfv (bottom right). The determined difference is 0.018+0.013 and 0.09940.109
for Dice and %nfv respectively.

5.2 Experiment 2: HyperPredict vs Cross-Validation

The standard approach to obtaining an optimal hyperparameter is by performing cross
validation. Hence, this section aims to evaluate the effect of inferring instance specific hy-
perparameters using HyperPredict. We achieve this by comparing the results obtained from
our method with standard cross-validation.

Experiment Setup and Results: In this section, we conduct three experiments.
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Step 1: In the first experiment, we compare the Dice scores obtained using our
method on selected anatomical structures and %nfv with that of cross-validation. For
HyperPredictel,p and cross-validation on cLapIRN, we leverage the low computational bur-
den offered by HyperPredict to test multiple hyperparameter values on a single pair. The
sampling method is similar to the previous experiment. At test time, we run the sampled
values for each subject in the test set through the trained HyperPredictja, network. Using
the criteria defined in Equation 3, we select the optimal hyperparameters across specific
labels. Finally, we register the image pair using the derived optimal values to obtain the
corresponding target Dice coeficient and %nfv.
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Figure 4: HyperPredict vs Cross-Validation. Left: Comparison of the Dice Coefficient on
both methods for selected labels across the population. Right: Comparison of
the %nfv on both methods across the population.

Since in practice it is not feasible to run 200 hyperparameter values per image pair on a
registration algorithm in search of the optimal hyperparameter, we perform cross-validation
using 8 discrete values of A selected arbitrarily, A € [0.05, 0.075, 0.1, 0.125, 0.150, 0.2, 0.5,
1], cross-validation on cLapIRN found optimal value, A\*, to be 0.075. We use this for
registration at test time across the entire test dataset.

We repeat steps the above steps using HyperPredict,, and Niftyreg registration algo-
rithm. For cross-validation, we maintain a fixed spacing value of 5, a fixed linear elasticity
of 0.01, and discretely sample the bending energy, be € [0.0001, 0.001, 0.0075, 0.05, 0.1, 0.2,
0.5, 1]. Cross-validation on Niftyreg found optimal value, be, to be 0.0075.

We compare the results of HyperPredict and cross-validation for both experiments us-
ing the Dice coefficient scores and %nfv. In Figure 4 (top row), we present results of
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HyperPredictga, vs cross-validation on cLapIRN for both metrics. The bottom row of the
figure depicts results obtained from Niftyreg.

From the Figure, HyperPredict.),, demonstrates comparable Dice scores with those ob-
tained through cross-validation, with HyperPredict slightly outperforming cross-validation
on a few anatomical structures. Interestingly, we find that our method of selecting optimal
hyperparameter values leads to a reduction in folded voxels, indicating more desirable (plau-
sible) registrations (top right). Similarly, the experiment with Niftyreg shows comparable
dice scores between both methods, and the image pair with the highest %nfv has a value
less than that of cross-validation.

Dice Coefficient %nfv

HyperPredictgjap

HyperPredict,,

HyperPredict Dice Coefficient

04 06
Cross Validation %nfy.

Figure 5: HyperPredict vs Cross-Validation. Top: Worse case analysis on HyperPredict jap
Bottom: Worse case analysis on HyperPredicty,.

Step 2: For the second experiment, we perform a best and worst case analysis in Figure
5, where we plot the value of the metric derived from HyperPredict against cross-validation
for each image pair. We present results for HyperPredictga, and HyperPredict,,. For all
four plots depicted in the figure, the best cases are represented with a blue marker, indicating
samples where HyperPredict out-performs cross-validation, red markers represent regions
where cross-validation surpasses our proposed method, and equal cases are represented as
black points that lie on the dotted slope.

Step 3: In the final experiment comparing cross-validation with HyperPredict, we run
the registration of a single image pair using the optimal A\* = 0.075 derived from cross-
validation on cLapIRN. Similarly, we perform the registration on the same pair using the
optimal A* = 0.102 obtained from HyperPredictga, for that specific pair. The outcomes
of these two approaches are illustrated in Figure 6. We record the dice score prior to
registration as 0.425. The dice scores of both methods after registration are 0.755 and 0.751
respectively, and their corresponding folded voxels as 0.73% and 0.48%.
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Moving Image( ™) Fixed Image(f) Warped Image( m o ¢)

Cross Validation

A" =0.075

HyperPredict

A* =0.102

Figure 6: Cross Validation vs HyperPredict on cLapIRN registration: Top: Using optimal
value of A* = 0.075 derived from cross validation to register an image pair. Bot-
tom: Using optimal value of A* = 0.102 derived from HyperPredict,,p, to register
the same image pair.

5.3 Experiment 3: Analyzing the Distribution of Hyperparameters

The objective of this experiment is to assess the distribution of regularization values for the
two variants of HyperPredict: HyperPredictg,, and HyperPredict,,, and also identifying
the best values to utilize for registration. We present the results obtained when optimizing
for two instance-specific cases; across structures and across subjects. For visualization pur-
poses, we present results of selected sub-cortical anatomical regions (Thalamus, Caudate,
Putamen, Pallidum, Hippocampus, Amygdala, Accumbens).

Experiment Setup and Results: Maintaining the defined criteria and experimental
setup in previous experiments, this section is subdivided into two distinct experiment.

Step 1: The first experiment seeks to validate our hypothesis that optimal values
differ on a subject and structure basis. We infer the results of HyperPredictc,, and
HyperPredict,, using the test dataset and sampled values of A and be respectively. From
the result, we obtain the distribution of optimal hyperparameters across subjects (right)
and selected labels (left) presented in Figure 7.

Step 2: In the second experiment we identify label specific optimal regularization
weights. For an image pair, HyperPredict derives 35 different Dice scores, each for an
anatomical region. We leverage on this to observe the effect of utilizing instance-specific op-
timal values on corresponding regions. With the test results obtained from HyperPredictciap,
we compute the optimal Dice scores across each label. Figure 8 (right) illustrates the vary-
ing optimal weights for selected structures. We visualize registration results (left) for two
regions; Thalamus and Amygdala, using their optimal values, 0.09 and 0.16 respectively. In
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Figure 7: Distribution of Optimal Regularization Weights. Left: across labels Right:
across subjects. For HyperPredictgjap (top row) and HyperPredicty, (bottom row).
The black-dashed lines in the plot represents the optimal value obtained through
cross-validation method on both registration.
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Figure 8: Varying regularization weights per anatomical structure. Right: Average Dice
scores plotted against sampled regularization weights for selected anatomical re-
gions. Left: Registration of an image pair using optimal parameters, with Tha-
lamus and Amygdala as intended regions of interest.

both registrations, we obtain an overall dice score of 0.75 and 0.73 across the entire image.
However, when optimizing for Thalamus (using 0.09), the Dice score of Thalamus yields 0.89
and that of Amygdala was 0.80. Similarly, when optimizing for Amygdala (using 0.16), we

701



SHUAIBU AND SIMPSON

obtained 0.78 and 0.80 for Thalamus and Amygdala respectively. Notice we obtain higher
Dice scores for the specific region we optimize for, showing the significance of instance-
specific regularization. The red-dashed line in the figure represents the optimal value ob-
tained through cross-validation method, 0.075. We present result for HyperPredict,, in
Appendix A, Figure 9 (right).

5.4 Computational Efficiency at Test Time

HyperPredict demonstrates notable computational efficiency at test time. A single model
is capable of evaluating the effects of hundreds of hyperparameter values without imposing
significant computational burden. In Table 1, we present a summary that compares the test
time of HyperPredict with other baseline registration methods. It is important to note that
while HyperPredict by itself is not a registration method, it acts as a tool that facilitates
the selection of optimal hyperparameters. Therefore, the purpose of the comparison is
to highlight that unlike HyperPredict, baseline methods are unable to infer the effect of
hundreds (or thousands) of hyperparameters within a short period of time - which is a
hindrance when trying to select the optimal hyperparameter.

The runtime for methods under our proposed framework (utilizing Symnet encoder)
is presented, with testing conducted using 8000 distinct hyperparameter values (HP) and
includes the time it takes with and without registration (w/reg). HyperPredict with reg-
istration (w/reg) is the time it takes to run all 8000 values and using the optimal for
registrating the image pair (either with cLapIRN or Niftyreg method), while HyperPredict
without registration (w/o reg) is the time taken to test HyperPredict with 8000 values.
We also present results of HyperMorph (Hoopes et al., 2021), highlighted in Section 3 as
an additional baseline method, we asterisks it to show that the result is adopted from the

paper.

Table 1: Comparison between HyperPredict and other registration methods at test time.
Results are presented in seconds.

Method Test Time(1HP) Test Time(8000 HP)
w/o reg w/reg
HyperMorph* 2.1 - 16800
Niftyreg 15.0 - 120000
HyperPredict,,, - 0.84 15.84
cLapIRN 0.10 - 800
HyperPredictciap | - 0.84 0.94

6. Discussion

Our experiments demonstrated for the first time that the effects of a regularization hyper-
parameters can be predicted for pairwise image registration. We employ two metrics as a
means of evaluating the registration; the dice score (for each segmented region), and the
number of folded voxels (nfv), however, our framework could be extended to incorporate
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additional registration quality metrics.

Accuracy of HyperPredict: In our experiments, we utilize two registration algorithms:
cLapIRN and Niftyreg to derive target values for training HyperPredict. Analysis from the
residual plots in Experiment 1 reveals that the difference between the predicted and true
values are centered around zero. This suggests that on average, our predictive model is
making unbiased predictions and does not consistently overestimate or underestimate the
predicted metrics. Similarly, the Bland-Altman plots show a good correlation between Hy-
perPredict and cLapIRN registration. With Niftyreg, we find comparable results between
the predicted and target dice coefficients, however, our model demonstrates sight limita-
tions in accurately predicting the %nfv. We hypothesize that this effect may be as a result
of the use of a more complex similarity function (normalised mutual information) and the
algorithmic heuristics, that makes it less predictable than cLapIRN. Another contribution
to the sub-optimal predictive performance on %nfv may be the choice of encoder. Cur-
rently, we employ two off-the-shelf convolutional encoders. The experiment presented in
Appendix C shows that the choice of encoder influences how effective HyperPredict is in
estimating the desired metrics, it may be that: (a) the encoded representation itself does
not contain sufficient information for HyperPredicty, to infer the %nfv and/or (b) the use
of a fixed convolutional encoder limits its ability to capture certain representations of the
input specific to the task. In future, it is worth investigating the restrictions associated
with encoder choice.

HyperPredict vs Cross-Validation: Cross-validation is the principle existing method for
hyperparameter selection. The experiment results in Figure 4 comparing HyperPredict and
cross-validation show comparable dice scores using HyperPredictga, and HyperPredicty,,
with both HyperPredict approaches deriving slightly better results on a number of anatom-
ical regions (Pallidum and Amygdala). We also find that HyperPredictgja, produces regis-
tration with substantially less voxel folding than cross-validation (Figure 4 top-right). This
implies that our approach is able to capture the variability between subjects and identify
an improved instance-specific level of regularization.

We perform an additional comparison between both methods by investigating the pro-
portion of examples where HyperPredict over-performs, under-performs, or yields compara-
ble results to cross validation, presented in Figure 5, we term this as “better”, “worse” and
“equal” cases respectively in the Figure. For both HyperPredictg,, and HyperPredict,,, the
Dice coefficient are comparable with HyperPredicty,, having slightly more cases where Hy-
perPredict performs better. HyperPredictj,, demonstrates a significant improvement over
cross-validation in terms of %nfv, exhibiting lower %nfv values for nearly all subjects (top-
right). On the other hand, when comparing HyperPredict,, with cross-validation, there
are slightly more instances where cross-validation outperforms HyperPredict,, (bottom-
right), the reason for this may be attributed to the limitation in the predictive ability of
HyperPredicty,.

Finally, the registration of the same image pair using the regularization weight of 0.102
and 0.075 derived from HyperPredictcl,p and cross-validation shows (in Figure 6) that while
we arrive at a comparable dice score of 0.751 and 0.755 respectively, our method performs
better in terms of %nfv, with corresponding values of 0.48% and 0.73% respectively. This
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shows that utilizing HyperPredict enables us to arrive at more plausible deformation fields.

Distribution of Regularization Weights: Our study finds that different regularization
weights yield optimal results depending on the subject and specific anatomical regions of
interest. Our proposed framework has the flexibility of selecting such task-specific regular-
ization values at test time as shown in Figures 7 and 8 (right), that can then be used for
registration. The effect of such instance specific values is observed in Experiment 3 (Figure
8, left). When we apply the optimal regularization weight of independent anatomical re-
gions (Thalamus and Amygdala) during registration, we derive higher dice scores for that
particular region of interest.

We conduct an additional supplementary experiment presented in Appendix A that
learns the effect of multiple hyperparameters. We utilize the Niftyreg algorithm due to
its ability to incorporate a diverse range of regularization parameters, specifically we learn
the effect of two of them simultaneously; bending energy (be), and linear elasticity (le).
We present a heat map in Appendix A, Figure 10 depicting the combined impact of both
parameters on the quality metrics across subjects. We observe from the figure that lower
values of bending energy and linear elasticity results in our method predicting higher dice
scores with more irregularities in the deformation field and vice-versa.

Computational Efficiency: Finally, we analyse the computational efficiency of Hyper-
Predict at test time. Exploiting a single trained HyperPredict model at test time means
that for any arbitrary image pair, we are able to infer the effect of a range of hyperparam-
eter values from a continuous interval without the need of labelled data while limiting the
computational burden. It is important to note that our method is an amortized inference
approach that incurs an initial computational cost at train time, but results in a com-
putationally efficient prediction at test time. Additionally, without our method a typical
approach of selecting an optimal value at test time would involve running multiple indepen-
dent registrations with different values. This approach becomes impractical as it restricts
the search space of values and incurs additional computational costs for each independent
registration.

Comparing the run time of a registration model using a single hyperparameter on an
image pair to HyperPredict (testing thousands of values on the same image pair) reveals a
notable difference in computational efficiency at test time. Table 1 shows that HyperPredict
takes less than 0.84 seconds to predict the registration metrics for a single image pair with
8000 different hyperparameter values. This is approximately 8 times less the time it takes
a cLapIRN registration model to derive the results from a single hyperparameter value.
The first column on the table presents the run time using a single hyperparameter value
on various registration methods, the aim of HyperPredict is to test multiple values, hence
we don’t show results for our method in this column. In the second column, we show
the run time with and without registration for 8000 distinct hyperparameter values. With
HyperPredict, we can efficiently test and select the best value from all 8000 options. On the
other hand, baseline registration methods necessitate more computational resources since
the registration using all 8000 values need to be executed and the optimal one chosen based
on the registration outcomes. Evidence of this is shown in the last column (w/reg), where it
takes approximately 16800 seconds for HyperMorph to run 8000 distinct values on a single
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image pair, Niftyreg takes around 120000s (compared to HyperPredict,, that takes 0.84
seconds to run all 8000 values and an additional 15s to run registration on the optimal
value). A similar pattern can be observed between cLapIRN and HyperPredictclap, with
runtime of 800 seconds and 0.94 seconds, respectively. HyperPredict enables a fast and
more efficient method of hyperparameter selection at test time based on a flexible criteria,
presenting a substantial advantage over baseline parameter selection methods.

7. Limitations and Future Work

The findings from HyperPredict demonstrate the efficacy of our approach in aiding the selec-
tion of hyperparameters that align with the unique attributes of the input. One limitation
of our approach is the computational cost during training, as it involves running multiple
registrations to optimize the MLP. Although, we perform further experiment presented in
Appendix E that illustrates that HyperPredict can learn from 25% of the available data
while achieving satisfactory result. This significantly decreases the overall registrations that
need to be run when utilizing our approach. To circumvent this computational cost at train
time and for reproducibility, we ran multiple registrations (for both cLapIRN and Niftyreg)
across all image pairs with sampled hyperparameter values. We have made the csv files
containing registration results publicly accessible in our GitHub repository.

Our findings indicate that regularization weights vary across different anatomical struc-
tures, it is also likely that narrower regions in the brain are more difficult to register, future
works will look into learning the importance of different regions and the effect it has on
registration. Additionally, we plan to explore other hyperparameters, such as cost func-
tions, as well as incorporating diverse datasets like Alzheimer’s and lung data to generalize
HyperPredict. Furthermore, experiments in Appendix B and C depicts the influence of
model architecture and encoded representations on metric prediction, we intend to explore
alternative encoded representations of image pairs. This can include deriving an image rep-
resentation from a network that predicts the overlap between pairs of images, fine-tuning
existing models, or utilizing self-supervised representation learning, we can then analyze the
effect any of the methods have on the predicted result. Finally, in computing the number of
folded voxels, we considered the entire image - including regions outside the labels, another
problem formulation could be to learn the diffeomorphic properties of the image for only
regions in the image where anatomical structures exist.

We have made our code, registration results and guidelines available on GitHub and we
invite the community to contribute by replicating our experiments on different datasets,
conducting further evaluations on new experiments, or expanding the applicability of Hy-
perPredict to different use-cases.

8. Conclusion

The accuracy of non-linear registration algorithms heavily depends on the choice of hyperpa-
rameter values, which may vary based on various factors. Thus, selecting a hyperparameter
depending on specific use-case is an essential component of image registration. In this study,
we propose HyperPredict, an efficient method of learning the effect of hyperparameters on
registration, one that eliminates the need of running multiple registrations at test time in
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search for an optimal hyperparameter. HyperPredict utilizes an MLP that takes an im-
age pair and desired set of hyperparameter as input and in return, predicts the evaluation
metric that corresponds to the input. Our experiments show that by training a single Hy-
perPredict model, we capture the effect of a range of hyperparameter values on an image
pair. With this ability, at test time HyperPredict is able to predict the registration results
of an image pair with thousands of registration hyperparameter values, giving us the ability
to select the optimal value for a specific use-case. In summary, we have presented a novel
approach we believe is more efficient in aiding the selection of optimal hyperparameter in
image registration. While the experiments presented in this paper is specific to the domain
of medical imaging, the general idea of HyperPredict can be adopted in other applications.
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Appendix A. Experiments on Niftyreg
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Figure 9: Left: Niftyreg yields higher Dice coefficients with smaller spacing values. Right:
Varying optimal bending energy across selected labels.
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Figure 10: Heatmap depicting the combined effect of both hyperparameters; bending energy
and linear elasticity on the dice score and %nfv across subjects.

Figure 10 is a supplementary experiment to investigate the combined effect of multi-
ple regularization on each subject. To conduct this experiment, we train an additional
HyperPredict,, model following the methodology outlined in Section 5. However, in this
iteration the model specifically focuses on learning the influence of both the bending energy
and linear elasticity. Both of which are sampled from a log-normal distribution and serve as
input to the MLP at train time. At test time, for both be and le, we sample 200 log-linearly
spaced values between -10 and 0 for each hyperparameter; this means each subject is tested
with a combination of 40,000 values. Without a selection criteria, we present a heatmap
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shows the simultaneous effect of both bending energy and linear elasticity on

the Dice coefficient and the folded voxels across subjects.
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Applying No Restriction on %nfv: Since the criteria used to define an
optimal value is flexible after training, we change our criteria to consider no
restrictions on the %nfv in this experiment, and compare the results with the
constrained version. Bottom Left: Dice scores plotted against values of A, the
red line is the optimal value inferred with restriction on %nfv for this specific
image pair (Pair 1). Bottom Right: Comparing warped images with and
without restricted %nfv for image Pair 1. The non-constrained warped image
(brain image on the right) has a closer similarity to the fixed image compared to
the constrained warped image (brain image on the left), this is made evident by
the presence of a higher dice score (the red marker depicts visual similarities).
However, we expect a less smooth warped image, as highlighted by the increased
Y%onfv from 0.4% to 2.1%, we depict this visually using blue markers.
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Appendix B. HyperPredict Architecture
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using HyperPredicty,

713



SHUAIBU AND SIMPSON

Appendix C. Comparing Summary Statistics and Encoder type
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Comparing summary statistics and encoder types. Mean absolute error (MAE)
of Dice scores (left) and %nfv (right) using two different summary statis-
tics (taking the mean across the channels compared to concatenating the min,

mazx, and mean across the channels) and two different convolutional encoders
(cLapIRN and Symnet).

Appendix D. Combined Evaluation of Dice Coefficient and %nfv
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Figure 14: Distribution plot of Dice coefficient and %nfv on selected values of A (left) and

bending energy (right), for HyperPredictga, and HyperPredicty,, respectively.
We show results of a sub-sample for visualization purpose. Both HyperPredict
methods predict higher irregularities in the deformation field as the hyperpa-
rameter value gets smaller.
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Appendix E. Data Size
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and 25% of image pairs) Top: Mean absolute error of dice coefficient and %nfv
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Appendix F. Sensitivity Analysis
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