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Abstract

Typical methods for semantic image segmentation rely on large training sets compris-
ing per-pixel semantic segmentations. In medical-imaging applications, obtaining a large
number of expert segmentations can be difficult because of the underlying demands on the
experts’ time and the budget. However, in many such applications, it is much easier to
obtain image-level information indicating the class labels of the objects of interest present
in the image. We propose a novel deep-neural-network (DNN) framework for the semantic
segmentation of images relying on weakly-and-semi-supervised learning from a training set
comprising (i) very few images having per-pixel semantic segmentations and (ii) all images
having class labels for the objects of interest present within. To enable weakly-and-semi-
supervised learning, our framework proposes to couple the tasks of semantic segmentation
and image classification by incorporating a semantic-segmenter DNN followed by a transla-
tor DNN with end-to-end learning. We propose variational learning relying on Monte-Carlo
expectation maximization, infering a posterior distribution on the hidden variable that mod-
els the segmenter-DNN’s latent space. We propose a Metropolis-Hastings sampler for the
posterior distribution, along with sample reparametrizations to enable end-to-end back-
propagation. Results on three publicly available real-world microscopy datasets show the
benefits of our framework over existing methods, along with empirical insights into the
workings of various approaches.

Keywords: Semantic segmentation , Monte-Carlo EM , variational learning , Metropolis-
Hastings sampling , weakly-and-semi-supervised learning.

1. Introduction

In the field of medical image analysis, semantic image segmentation is an important task
with widespread applications in digital pathology, radiology, and endoscopy. Such applica-
tions include diagnosis, radiotherapy, and image-guided intervention. Semantic image seg-
mentation involves predicting class-label probabilities for every pixel in the image. In the
broader field of image analysis, key approaches to semantic image segmentation have relied
on several principles including (i) automatic feature extraction from images (Yao et al., 2012;
Mostajabi et al., 2015), (ii) hierarchical conditional random fields (CRFs) (Ladicky et al.,
2009; Lempitsky et al., 2011; Vemulapalli et al., 2016; Chandra and Kokkinos, 2016) that
hierarchically model the local and global dependencies between the pixel labels, (iii) region
proposals (Arbelaez et al., 2012; Li et al., 2013; Ren et al., 2015; He et al., 2017; Hariharan
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et al., 2014, 2015) that are ranked based on the target class labels, (iv) spatial pyramid
pooling (He et al., 2015; Zhao et al., 2017; Chen et al., 2018), (v) scale-aware attention
(Chen et al., 2016), and (vii) hierarchical feature learning including encoder-decoder based
fully convolutional deep neural networks (DNNs) like SegNet (Badrinarayanan et al., 2017),
U-Net (Ronneberger et al., 2015), FCN (Long et al., 2015), DeepLabV3 (Chen et al., 2018),
and FRRN (Pohlen et al., 2017). Within the field of medical image analysis, key approaches
to semantic or binary image segmentation include (i) the one by Ciresan et al. (2012), (ii) U-
Net (Ronneberger et al., 2015; Ö Çiçek et al., 2016) and its extensions (Xu et al., 2021; Fu
et al., 2019) based on feature fusion, and (iii) VA MaskR-CNN (Wang et al., 2019) that
extends MaskR-CNN (He et al., 2017) to 3D volumes.

Closely related to the image-segmentation task are the tasks of image classification and
object detection/recognition. Image classification involves predicting one or more class
labels associated with the image. Popular methods for image classification include AlexNet
(Krizhevsky et al., 2012), VGG-Net (Simonyan and Zisserman, 2015), ResNet (He et al.,
2016), and DenseNet (Huang et al., 2017). Object detection/recognition often involves
predicting a bounding box as well as a class label for every object of interest present in
the image. Popular methods for object detection/recognition include Faster R-CNN (Ren
et al., 2015), YOLO9000 (Redmon and AFarhadi, 2017), SSD (Liu et al., 2016), and M2Det
(Zhao et al., 2019). The knowledge of the image class, or the classes of objects in the image,
can help semantic image segmentation.

Typical methods for semantic image segmentation rely on a training set with per-pixel
semantic segmentations associated with all images. For instance, learning a MaskR-CNN
(He et al., 2017) requires a large training set of images along with bounding-box segmen-
tations, per-pixel object segmentations within each bounding box, and object-class labels
for each bounding box. Similarly, typical methods using fully convolutional DNNs, e.g.,
SegNet (Badrinarayanan et al., 2017), U-Net (Ronneberger et al., 2015), FCN (Long et al.,
2015), DeepLabV3 (Chen et al., 2018), and FRRN (Pohlen et al., 2017), rely on large
expert-segmented training sets and full supervision.

For medical applications, it is often infeasible to obtain (i) a large training set, be-
cause of unavailability of data that can be made available for studies, and (ii) a sufficiently
large number of expert segmentations, because of limitations on experts’ time and bud-
gets. A typical DNN learned from a small training set and even fewer expert-segmented
images is unable to learn well, leading to large errors in segmentation as well as object
detection/recognition. On the other hand, many medical applications involve images with
objects of interest (e.g., a cell or an organ) where the image-level information about the
types/classes of objects is readily available within typical clinical workflows/protocols, and
at a small fraction of expert time. More specifically, in the case of blood-tissue miscroscopy
images the class-label information of the form of (i) type of WBCs, (ii) classes of nuclei or
(iii) level of infection in RBCs is readily available.

This paper makes novel contributions. We propose a novel DNN framework for seman-
tic segmentation of blood-tissue microscopy images relying on weakly-and-semi-supervised
learning from small training sets comprising (i) very few images having per-pixel semantic
segmentations and (ii) all images having class labels for the objects of interest present within.
To enable weakly-and-semi-supervised learning, our framework proposes to couple the tasks
of semantic segmentation with image classification, with end-to-end learning; this coupled
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framework first outputs a (probabilistic) semantic segmentation that is then concatenated
with the observed image and passed as input to a translator DNN to produce (probabilistic)
class labels indicating the classes of objects present in the image. One of the important
goals of our method is to infer the uncertainty during inference, in both the segmenta-
tion and recognition. Capturing uncertainty is especially important in challenging training
scenarios, e.g., where models train using very small amounts of data and/or supervision.
This requires the modeling of a distribution on output segmentations/probability-maps and
output classifications/probability-vectors during inference/deployment; such a distribution
gives a family of outputs rather than a single output. Furthermore, Bayesian/variational
modeling can, in addition to modeling uncertainty, also improve model learning itself (Wells
et al., 1996; Allassonniere et al., 2010). We propose a variational learning framework relying
on Monte-Carlo expectation maximization (MCEM), infering a posterior distribution on the
hidden variable modeling the segmenter DNN’s latent space. During the learning phase, we
design a Metropolis-Hastings (MH) sampler for the posterior distribution, along with sample
reparametrizations to enable end-to-end backpropagation. By the design of this posterior
distribution, the segmenter receives additional information about the objects present in
the image based on the class-label data associated with the image, thereby enabling weak
supervision. During inference on test images, our variational framework can inform about
the uncertainty associated with the probabilistic per-pixel semantic segmentation and the
probabilistic image-level classification. We employ three publicly available real-world mi-
croscopy datasets to show the benefits of our framework over existing approaches, along
with empirical insights into the workings of various methods.

The rest of the paper is organized as follows. Section 2 describes the related works in-
cluding the recent methods that rely on weakly-and-semi-supervised learning. Section 3 de-
scribes our novel DNN framework (Section 3.1) for semantic segmentation of images, which
relies on coupling semantic segmentation with image classification to leverage the weakly-
labeled images; Section 3.2 describes the segmentation framework and Section 3.3 describes
the classification framework. Section 3.4 describes the novel MCEM-based variational-
learning framework. Section 3.5 describes the MH sampling algorithm and the reparametriza-
tion scheme. Section 3.6 describes the inference strategy on test data. Section 4 describes
three publicly available real-world datasets for evaluation, with results and empirical in-
sights comparing our method with existing methods. Section 5 concludes the paper.

2. Related Work

This section describes related works in semantic image segmentation relying on semi-
supervised learning, weakly-supervised learning, weakly-and-semi-supervised learning, and
variational learning.

Semi-supervised learning refers to learning instances where the training set has a subset
for which all types of ground-truth annotations are available (e.g., in our context, image-
level class labels as well as per-pixel semantic segmentations) and the remaining subset
that is devoid of any kind of annotation. Typical methods for semi-supervised learning for
semantic segmentation (Mittal et al., 2019; Hung et al., 2018; Souly et al., 2017) rely on
a segmenter and a discriminator, where the latter discriminates between the distribution
of predicted segmentations and the distribution of ground-truth segmentations available in
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the training set. The discriminator then aids in learning to segment images for which the
ground-truth segmentation is unavailable. However, learning such a discriminator usually
requires large training sets of images with per-pixel segmentations (e.g., tens of thousands of
segmented images), which may be unavailable in many clinical/scientific application scenar-
ios. Some methods (Mittal et al., 2019; Hung et al., 2018) may counter the limited size of the
training subset having per-pixel segmentations by assuming the availability of a pre-trained
discriminator, but pre-training a reliable discriminator itself will need a large training set.
In contrast, our framework focuses on learning semantic segmentation from significantly
smaller training sets (e.g., a few tens of segmented images) by leveraging weakly-supervised
learning relying on image-level class labels indicating the classes of the objects of interest
present in the image.

Weakly-supervised learning for image segmentation refers to learning from ground-truth
information that is devoid of per-pixel segmentations, but comprises other annotations that
typically have lesser information. For instance, many weakly-supervised methods for se-
mantic segmentation (Li et al., 2021; Lee et al., 2021; Wang et al., 2020; Zhang et al.,
2020a; Chang et al., 2020; Fan et al., 2020; Chen et al., 2020; Zhang et al., 2019; Ahn
and Kwak, 2018) use image-level class labels along with the class-activation-map (CAM)
approach of Zhou et al. (2016) to estimate semantic segmentations for the images. Our
framework assumes that (i) a fraction of the training set has images with per-pixel segmen-
tations available, whereas (ii) the rest of the training set has images with only class labels
available but no per-pixel segmentations available. In addition, our framework does not rely
on CAM which itself requires a classifier to be pre-trained using a large training set.

This section, so far, has described (i) learning in the purely semi-supervised scheme:
where a subset of the training-set images have per-pixel segmentations and the remaining
images are devoid of any kind of annotations, and (ii) learning in the purely weakly-supervised
setting: where none of the training-set images have per-pixel segmentations and all of the
images have the class labels available. Learning in the weakly-and-semi-supervised setting
is essentially a combination of these two aforementioned cases, i.e., where a subset of the
training-set images have per-pixel segmentations and all of the images in the training set
have class labels. Curating such a training set takes limited expert time, and such datasets
are readily available through typical clinical workflows. There are many instances of such
methods, e.g., some using CAMs (Lee et al., 2021; Yao and Gong, 2020; Ahn et al., 2019;
Hong et al., 2015; Lee et al., 2021; Ouali et al., 2020; Lee et al., 2019; Wei et al., 2018), and
others (Pan et al., 2022; Zhou et al., 2019; Xu et al., 2015; Papandreou et al., 2015).

For weakly-and-semi-supervised segmentation, one group of methods (Lee et al., 2021;
Yao and Gong, 2020; Hong et al., 2015; Ouali et al., 2020; Ahn et al., 2019; Lee et al.,
2019; Wei et al., 2018) leverage class labels through a pre-trained classifier/discrminator,
to estimate missing segmentations. For instance, the methods in Yao and Gong (2020) and
Hong et al. (2015) use a DNN pair, where there is (i) a primary DNN that predicts class
labels, followed by (ii) another branched DNN that outputs a segmentation by leveraging
the CAMs (corresponding to the predicted class labels) to restrict the search space during
semi-supervised segmentation. These methods evaluate on datasets where the object class
informs on the object shape that helps in object segmentation, unlike some of the medical
datasets in this paper where the shape of objects is similar across classes. Unlike these
methods, our end-to-end-learned DNN first produces a probabilistic semantic segmentation

720



Deep MCEM for Semantic Segmentation

that is then combined with the observed image to produce class labels for the underlying
objects of interest. The other methods (Lee et al., 2021; Ouali et al., 2020; Ahn et al., 2019;
Lee et al., 2019; Wei et al., 2018) incorporate CAMs to simulate a segmentation for those
training-set images that are devoid of ground-truth segmentations, where the CAMs are
derived from an independently learned DNN for image classification. However, it is well
known that CAMs often differ significantly from the ground-truth segmentations (Kang
et al., 2021; Dunnmon et al., 2019; Wei et al., 2018; Lu et al., 2020), leading to many
false positives and false negatives. Although some methods like Wei et al. (2018); Lu et al.
(2020) attempt to enhance the CAMs using prior information (e.g., on smoothness and
size), they are typically unable to estimate high-quality segmentations. Unlike these CAM-
based methods, (i) we leverage class labels to infer a posterior distribution on the semantic
segmentations using a joint framework for segmentation and image classification, (ii) we
design a MH sampler for the posterior distribution for use within MCEM-based learning,
and (iii) we employ end-to-end variational learning. A group of methods (Zhou et al., 2019)
propose to learn an adversarial DNN to discriminate between the distribution of predicted
segmentations and the distribution of expert segmentations. However, effective learning of
the discriminator in the high-dimensional space of image segmentations typically requires
a large set of expert segmentations. In contrast, our scheme proposes a novel variational
MCEM method to leverage a small training set along with a tiny set of expert segmentations.

For weakly-and-semi-supervised segmentation, other methods rely on a variety of schemes
to estimate pseudo-ground-truth segmentations for images devoid of expert segmentations.
Xu et al. (2015) employ a max-margin clustering framework to learn from several types of
weak labels for semantic segmentation. Unlike Yao and Gong (2020); Ouali et al. (2020);
Lee et al. (2019); Ahn et al. (2019); Zhou et al. (2019); Wei et al. (2018); Hong et al. (2015);
Xu et al. (2015), our framework (i) involves weakly-and-semi-supervised learning, (ii) in-
volves variational modeling and MCEM inference, and (iii) infers a posterior distribution on
the missing segmentations by leveraging the training-set images, their available segmenta-
tions, and their class labels. Papandreou et al. (2015) propose weakly-and-semi-supervised
learning for semantic segmentation by using a CRF model to couple the image-level labels
with the prediced segmentation. Unlike Papandreou et al. (2015), our approach (i) couples
the image-level labels to both the predicted segmentation and the observed/input image,
(ii) employs a DNN for this coupling, and (iii) proposes MCEM learning by sampling the
missing segmentations from their posterior distribution. Unlike our MCEM framework, their
scheme for learning relies on a two-stage algorithm that first uses their CRF to construct a
pseudo-ground-truth segmentation and then uses the pseudo-ground-truth to optimize DNN
parameters; our empirical analysis shows that the generated pseudo-ground-truth segmenta-
tions can have serious flaws, in which case their algorithm causes the pseudo-ground-truths
to misled their DNN optimization. Pan et al. (2022) propose weakly-and-semi-supervised
learning for semantic segmentation using self-supervised low-rank network with fixed multi-
view transforms of the image along with a classification loss. They employ multi-view
mask calibration along with a refinement module to construct pseudo-ground-truths for the
missing segmentations. It uses matrix decomposition based approach for low-rank repre-
sentation. Unlike Pan et al. (2022), our approach (i) proposes MCEM learning by sampling
the missing segmentations from their posterior distribution and (ii) employs a (translator)
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DNN for learning class probabilities. Our empirical analysis in Section 4.11 shows that
these pseudo-ground-truths have several flaws that can mislead the DNN learning.

Weakly-supervised learning for object detection typically refers to learning from ground-
truth information of the form of, say, points or object class labels, which are not only devoid
of per-pixel segmentations but also devoid of bounding boxes of the objects. Weakly-and-
semi-supervised learning for object detection typically relies on a subset of the training set
with bounding boxes, and an absence of per-pixel segmentations available for any image
in the training set. Typical methods like Zhang et al. (2022b,c); Chen et al. (2021); Yan
et al. (2017); Zhang et al. (2020b), and methods discussed in Zhang et al. (2022a) rely on
such weakly-and-semi-supervised learning mechanisms where their outputs lack per-pixel
semantic segmentation of objects of interest in the image. Thus, we do not consider these
methods for evaluation against weakly-and-semi-supervised learning for semantic segmenta-
tions as they would probably underperform severely when we construct per-pixel semantic
segmentations from their outputs. Also, it is unfair/irrelevant to compare the network ar-
chitectures for semantic segmentation (e.g., U-Net (Ronneberger et al., 2015), FCN (Long
et al., 2015), DeepLabV3 (Chen et al., 2018)) with architectures for bounding-box pre-
diction (e.g., FasterR-CNN (Ren et al., 2015), YOLO9000 (Redmon and AFarhadi, 2017),
SSD (Liu et al., 2016), M2Det (Zhao et al., 2019)).

The class of methods relying on Bayesian or variational inference for semantic segmen-
tation rely on outputing a distribution on the segmentations. For instance, some DNN
methods (Kendall and Gal, 2017; Lakshminarayanan et al., 2017; Rupprecht et al., 2017)
model a mean segmentation map along with a model for the per-pixel variability that is fac-
tored across pixels. Other schemes (Batra et al., 2012; Kirillov et al., 2015, 2016) generate
a set of diverse (by design) semantic segmentations; such segmentations can be insightful
when they are considered separately, but cannot be used as a group for deriving a single
semantic segmentation from them. Some methods (Kohl et al., 2018) for semantic seg-
mentation employ principles in variational DNN learning (Kingma and Welling, 2014) to
model a distribution in latent space and, thereby, are able to model the inter-pixel spatial
dependencies in the distribution on segmentations. Unlike these variational DNN methods,
our method (i) focuses on weakly-and-semi-supervised learning for semantic segmentation
and (ii) proposes a novel statistical framework for variational learning relying on MCEM.

Our preliminary work (Gaikwad and Awate, 2021) using weakly-and-semi-supervised
learning focuses on the joint tasks of (i) binary segmentation, to separate the object/foreground
from the background, and (ii) object recognition, unlike the work in this manuscript that
focuses on semantic segmentation. Specifically, (Gaikwad and Awate, 2021) models each
image to have either (i) a single connected region of interest or (ii) multiple regions of inter-
est of the same class. Unlike Gaikwad and Awate (2021), our framework in this manuscript
outputs a per-pixel semantic segmentation, indicating the type of class (including the back-
ground) at every pixel. To enable weakly-and-semi-supervised learning with limited avail-
ability of expert segmentations, it leverages a translator DNN that maps the segmenter
DNN’s output (concatenated with the input image) to the ground-truth image-level class
labels, and thereby implicitly infuses the information contained in the image-level class la-
bels into the segmenter DNN. Unlike Gaikwad and Awate (2021), this manuscript models
each image to allow multiple objects/regions of interest, where each can belong to one of
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many classes. In these ways, our theoretical framework in this manuscript significantly
extends, and differs from, the framework in Gaikwad and Awate (2021).

� This manuscript extends the single-level variational modeling of the latent space in
Gaikwad and Awate (2021) to a multi-level variational modeling of the latent space.

� Second, this paper presents new empirical results using the new theoretical framework.

� Third, this paper also presents empirical analysis with six additional baseline methods,
i.e., four additional baselines for weakly-and-semi-supervised learning, i.e., Wei et al.
(2018), Ouali et al. (2020), Lee et al. (2021), Pan et al. (2022), one additional base-
line for weakly-supervised learning proposed in Lee et al. (2021), and one additional
baseline for semi-supervised learning proposed in Ouali et al. (2020).

� Fourth, the empirical analysis in this paper sheds key insights into the model de-
signs and capabilities underlying various methods (ours and baselines) by visualizing
intermediate outputs of the DNNs underlying various methods.

� Fifth, this paper shows uncertainty maps underlying the segmentation produced by
our variational framework.

3. Methods

We describe our novel framework for the task of semantic image segmentation using weakly-
and-semi-supervised variational DNN learning based on MCEM. The framework assumes
that expert-provided image-level class-label information is present for every image in the
training set, but that expert-provided per-pixel semantic segmentations are available for
only a subset of images in the training set. Our variational framework jointly learns (i) a
variational segmenter DNN and (ii) a translator DNN. The variational segmenter DNN
models a distribution over a multiscale latent-space variable (which is a natural result of
our variational modeling strategy on UNet-style architectures that involve skip connections
across multiple spatial scales between the encoder and the decoder), and outputs a distri-
bution on the semantic probability maps. The translator DNN outputs image-level class
probabilities corresponding to a pair of an input image and a segmentation probability map
output by the segmenter, enabling weak supervision. During training, the framework infers
a posterior distribution on the latent-space variable of the variational segmenter.

3.1 Joint Statistical Modeling of Semantic Segmenter and Translator

Let random field X model the input image with V pixels/voxels. The input image may
contain zero or multiple objects of interest, where any object of interest is known to belong
to one of K classes. The pixels not belonging to any object of interest may be termed as
“background” pixels, i.e., the (K+1)-th class; note that the background region may indeed
comprise other objects not belonging to the K classes of interest. Examples of objects of
interest include cells, structures, organs, infected regions, etc., each of which can belong to
different medical types (e.g., classes within normal and abnormal cases).

Let random field Z model the semantic segmentation of image X. Within random
field Z, each pixel v has an associated categorical random variable that indicates whether
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Figure 1: Our Variational DNN framework for Semantic Segmentation using
Weakly-and-Semi-Supervised Learning with MCEM. The training data
comprises the set of images {X1, X2, · · · }, the set of expert-given semantic seg-
mentations {Z1, Z2, · · · } (with some segmentations missing), and the set of
expert-given class-label vectors {Y1, Y2, · · · }. H is the hidden random variable
modeling the multi-scale latent space within the segmenter DNN. The details
of the semantic-segmenter DNN appear later in Figure 2. The details of the
translator DNN, outputing image-level class labels, appear later in Figure 3.

pixel v belongs (i) to the background or (ii) to one of the K classes of the objects of
interest. We represent every pixel of semantic segmentation Z by a one-hot binary random
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vector of size K + 1. Let Z[v] be the one-hot-encoded vector at pixel v, with components
[Z[v][1], Z[v][2], · · · , Z[v][K + 1]]. Thus, if pixel v belongs to an object of class k, then
Z[v][k] = 1 and other values Z[v][j], ∀j 6= k, equal 0. If pixel v does not belong to any
object class of interest, then Z[v][K + 1] = 1 and other values Z[v][j], ∀j ≤ K, equal 0.

Let the binary random vector Y , of size K, model the image-level class labels indicating
the classes of the objects of interest present in the image X. In general, Y is a multi-hot
vector. Y does not provide any information about the objects’ locations within the image.
If the image contains at least one object of class k, then Y [k] = 1, otherwise Y [k] = 0.

Let the joint distribution P (X,Y, Z) model the statistical dependencies between the
input image X, its semantic segmentation Z, and its class-label vector Y . During learn-
ing, we model the joint distribution P (X,Y, Z) through the conditional distribution of the
semantic segmentation P (Z|X) and the conditional distribution of the class-label vector
P (Y |X,Z). While the choice of factors follows from the standard probability chain rule,
the factors are also motivated by a generative model of the triplet (X,Z, Y ) as follows.
Starting with the input-datum image X, we can generate (using the segmenter that models
P (Z|X)) the semantic segmentation Z which gives per-pixel information of the labels over
the entire spatial domain of the input image X. Then, given X and the segmenter (and
thereby Z that is a produced by the segmenter using X), the translator aggregates the in-
formation across the spatial domain to generate a single probability vector that denotes the
class probabilities at the image level. During inference, for input image x′, the variational
framework allows us to infer a distribution over semantic probability maps P (Z|x′); and
also infer a distribution over class-label probability vectors P (Y |x′). Figure 1 shows the
joint DNN model for semantic segmentation and image-level classification.

In the fully-supervised learning mode, a DNN would rely on a training set of triples
(X,Y, Z), where X is an input image, Z is the associated semantic segmentation, and
Y the associated class-label vector. However, for image X, obtaining a per-pixel expert
semantic segmentations Z is laborious and expensive. Thus, in practice, a large part of
the training set will be devoid of the semantic segmentations Z and only comprise pairs
(X,Y ). This paper focuses on weakly-and-semi-supervised learning, where the training set
T := {(xs, ys, zs)}Ss=1 ∪ {(xu, yu)}Uu=1, with S � (S + U) (Figure 1).

3.2 Variational Segmenter DNN’s Statistical Model

We propose a DNN-based variational model P (Z|X), corresponding to the segmenter com-
ponent in Figure 1, to generate a semantic segmentation for the input image X. We propose
to model P (Z|X) relying on two components: (i) an encoder mapping ΦE(·;αE) parameter-
ized by αE , and (ii) a decoder mapping ΦD(·;αD) parameterized by αD. Let α := αE ∪αD.
Let a multiscale random vector H model the latent space of the segmenter (Figure 2).

First, to model the latent-space distribution, the encoder ΦE(·;αE) maps the image X
to a factored multivariate Gaussian distribution over the latent-space, with factor means
Φmean
E (X;αE) and factor log-variances Φlog-var

E (X;αE), i.e.,

P (H|X;αE) := G(H; Φmean
E (X;αE),Φlog-var

E (X;αE)), (1)

where G(·;µ, λ) is a factored multivariate Gaussian with means in the vector µ and the
variances as the exponentials of the components in the vector λ. Such a factored model
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Figure 2: Our Variational Segmenter DNN Component within the framework shown
earlier in Figure 1. For each input image X, the multiscale latent-space hidden
random variable H is modeled by a input-image-specific Gaussian distribution.
Variational learning entails sampling from this distribution coupled with sample
reparametrization to enable end-to-end backpropagation based optimization. The
variational-segmenter output is a distribution over semantic probability maps that
are represented as (K + 1) scalar-valued images, where the k-th image represents
the per-pixel probability map indicating the presence of objects of class k in the
input image X. When the expert segmentation is available, the DNN learning
relies on matching the semantic probability maps to the expert segmentation.

is a valid modeling approach because the encoder is designed to be highly nonlinear (as
in typical DNNs) and can easily learn to map the distribution of input images to an axis-
aligned (un-rotated) zero-mean multivariate Gaussian in the latent space (this is equivalent
to a factored multivariate Gaussian). In fact, if at all some hypothetical encoder mapped the
input distribution to a general multivariate Gaussian, then simple linear transformations of
a translation and a rotation can transform any arbitrary multivariate Gaussian to a factored
multivariate Gaussian. Thus, the actual DNN encoder can easily learn to include this linear
transformation (implicitly) into its nonlinear mapping to output a factored multivariate
Gaussian in latent space.

Second, the decoder ΦD(·;αD) maps latent-space random-vector instances h to K prob-
ability maps underlying the semantic segmentation, where the probability of the v-th pixel
in image X belonging to an object of class k is given by ΦD(h;αD)[v][k]. Thus, at each pixel
v of the segmenter output, ΦD(h;αD)[v] is a (K+1)-length vector of class probabilities such
that

∑K+1
k=1 ΦD(h;αD)[v][k] = 1. Also, for a fixed class k, the map ΦD(h;αD)[·][k] gives the

probability of each pixel belonging to an object of class k. We model the distribution on the
semantic segmentation image Z at every pixel using a categorical/Multinoulli distribution
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Figure 3: Our Translator DNN Component within the framework shown earlier in
Figure 1. The DNN model for image classification takes as input a pair of images
comprising (i) the image X and (ii) the semantic-segmentation probability maps.
For each class k, the translator DNN takes the input as the image X pixel-wise
multiplied with the semantic-segmentation probability map, and subsequently
maps it to the image-level class-label probability that is matched with the expert
class-label Y [k].

with parameters given by the probability maps ΦD(h;αD). Thus,

P (Z|H;αD) :=

V∏
v=1

K+1∏
k=1

(ΦD(H;αD)[v][k])Z[v][k]. (2)

Finally, the conditional distribution of the semantic segmentation Z is

P (Z|X;α) =

∫
h
P (Z|h;αD)P (h|X;αE)dh ≈ 1

R

R∑
r=1

P (Z|hr;αD), (3)

where hr are sampled independently in the multiscale latent space from the Gaussian
P (H|X;αE). In this way, for each input X, the Gaussian model P (H|X;αE) over the
latent space along with the nonlinear transformation ΦD(·;αD) on H together implicitly
model a distribution over the semantic probability maps P (Z|X;α), incorporating both
inter-pixel and intra-pixel dependencies of the class probabilities associated with the se-
mantic segmentation.

3.3 Translator DNN’s Statistical Model

We propose a DNN-based statistical model P (Y |X) (Figure 3) to relate the image-level
class labels Y for image X; while this enables weakly-and-semi-supervised learning, it also
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aids during supervised learning. Given X and the probability maps ΦD(H;αD), we assume
conditional independence of the set of image-level class labels {Y [k]}Kk=1. So, we model

P (Y |X,H;αD, β) :=

K∏
k=1

P (Y [k]|X,ΦD(H;αD)[·][k];β). (4)

Let a DNN model a mapping Ψ(·;β), parameterized by β, from each image pair (X,ΦD(H;αD)[·][k])
to an associated parameter Ψ(X,ΦD(H;α)D[·][k];β) underlying a Bernoulli random variable
associated with image-level class label Y [k]. Thus,

P (Y [k]|X,ΦD(H,X;αD)[·][k];β) :=

(Ψ(X,ΦD(H,X;αD)[·][k];β))Y [k](1−Ψ(X,ΦD(H,X;αD)[·][k];β))1−Y [k]. (5)

Finally,

P (Y |X; θ) :=

∫
h
P (Y |X,h;αD, β)P (h|X;αE)dh ≈ 1

Q

Q∑
q=1

P (Y |X,hq;αD, β), (6)

where hq is sampled in latent space from the Gaussian distribution P (H|X;αE).
During learning, promoting logP (Y |X,H;αD, β) penalizes (for all classes k) the cross

entropy between the ground-truth Bernoulli distribution with probabilities [Y [k], 1− Y [k]]
and the DNN-output Bernoulli distribution with probabilities [Ψ(.;β), 1 − Ψ(.;β)]. The
translator DNN Ψ(.;β) plays a crucial role in implicitly infusing the information within
the ground-truth class-label vector Y into the learning of the segmenter DNN, irrespective
of whether the expert segmentation Z is present or absent in the training set. First, the
translator DNN informs the learning of the segmenter-DNN’s decoder by functionally con-
necting the segmenter output to the image-level class-labels Y . Furthermore, our MCEM
learning framework (Section 3.4) leverages the translator-based model P (Y |X,H;αD, β) to
inform the sampling of the hidden random variable H from its posterior distribution using
a Markov-Chain Monte Carlo (MCMC) algorithm (Section 3.5); the hidden H relates to the
segmenter-encoder’s output. Thus, the translator DNN allows us to leverage the information
in the image-level class-labels for backpropagation-based optimization (end-to-end learning)
of the segmenter-DNN’s decoder as well as the encoder (after sample reparametrization, de-
scribed later in Section 3.5).

3.4 Monte-Carlo EM for Weakly-and-Semi-Supervised Learning

Given training-set T , we propose a MCEM framework for joint DNN learning of the seg-
menter and the translator. Let the DNN parameters be θ := α∪ β. For images Xs and Xu,
we model the hidden latent-space representations as Hs and Hu, respectively. The complete
data T complete := {(xs, ys, zs, Hs)}Ss=1 ∪ {(xu, yu, Hu)}Uu=1. The complete-data likelihood is

P (T complete; θ) :=

U∏
u=1

P (xu, yu, Hu; θ)

S∏
s=1

P (xs, ys, zs, Hs; θ). (7)

E Step. At iteration i, with parameter estimates θi, EM designs a minorized version of
the log-likelihood function as the expectation of the complete-data log-likelihood over the
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posterior distribution
∏U
u=1 P (Hu|xu, yu; θi)

∏S
s=1 P (Hs|xs, ys, zs; θi) of the missing latent-

space encodings Hu and Hs, i.e.,

Q(θ; θi) :=E∏U
u=1 P (Hu|xu,yu;θi)

∏S
s=1 P (Hs|xs,ys,zs;θi)

[
U∑
u=1

logP (xu, yu, Hu; θ) +

S∑
s=1

logP (xs, ys, zs, Hs; θ)
]
. (8)

MCEM approximates the analytically intractable expectation as a Monte-Carlo average us-
ing an independent and identically distributed (i.i.d.) sample {(htu) ∼ P (Hu|xu, yu; θi)}Tt=1∪
{hts ∼ P (Hs|xs, ys, zs; θi)}Tt=1, to give

Q̂(θ; θi)

:=
U∑
u=1

1

T

T∑
t=1

logP (xu, yu, h
t
u; θ) +

S∑
s=1

1

T

T∑
t=1

logP (xs, ys, zs, h
t
s; θ)

:=
U∑
u=1

1

T

T∑
t=1

log
(
P (yu|xu, htu;β ∪ αD)P (htu|xu;αE)P (xu)

)
+

S∑
s=1

1

T

T∑
t=1

log
(
P (ys|xs, hts;β ∪ αD)P (zs|hts;αD)P (hts|xs;αE)P (xs)

)
. (9)

We sample the latent-space encodings htu and hts, from P (Hu|xu, yu; θi) and P (Hs|xs, ys, zs; θi),
using a MH sampler incorporating an efficient proposal distribution, as described later in
Section 3.5.

M Step. At iteration i, EM maximizes Q̂(θ; θi) over parameters θ leading to the
updated parameters θi+1. Selecting a sufficiently large Monte-Carlo sample, MCEM inherits
the behaviour of EM that leads to convergence to a stationary point of the log-likelihood
function of the observed training set T . The terms P (xu) and P (xs), involving the prior
model on input images, are independent of the DNN parameters θ, and thereby can be
ignored during DNN optimization.

3.5 Efficient MH Sampling of Hidden Latent-Space Encodings

Within iteration i of MCEM, we propose a MH sampling algorithm to (i) sample the
encodings hu from the posterior distribution P (Hu|xu, yu; θi), and (ii) sample the encodings
hs from the posterior distribution P (Hs|xs, ys, zs; θi).

The MH sampling strategy is a MCMC method that, given a current state, first generates
a candidate by sampling from a proposal distribution and then, based on some probability,
either updates the state to the candidate or retains the current state. For sampling H,
we now consider several strategies to generate candidates and propose one that is compu-
tationally straightforward and leads to a good probability of acceptance of the generated
candidate. First, it is well known that the naive strategy of sampling from a simple (fixed
parametric) proposal distribution over latent space P (H) is inefficient, because it would fail
to capture (i) the true distribution of H and (ii) the dependencies between the latent-space
encoding H and the datum X that are present in the posterior distribution that we desire
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to sample from. Second, modeling a realistic proposal distribution is difficult because of the
unavailability of the required observations for the hidden variables H; moreover, sampling
from such a distribution would continue to lead the sample being independent of the input
datum X. Third, some schemes aim to improve the aforementioned strategy by adapting
the covariance of the proposal distribution to the local structure of the (posterior) distribu-
tion that we desire to sample from. However, such schemes often add significant complexity
in reliably modeling the local covariance using the Hessian of the distribution. Rather, we
design an improved proposal distribution that leverages the DNN model learned at iteration
i, as follows.

For the term P (Hu|xu, yu; θi), Bayes rule factors it, upto a normalizing constant, into
the form P (yu|xu, Hu;αiD, β

i)P (Hu|xu;αiE), where (i) the first factor P (yu|xu, Hu;αiD, β
i)

is modeled using the segmenter’s decoder ΦD(·;αiD) and the translator Ψ(·;βi), and (ii) the
second factor P (Hu|xu;αiE) is modeled using the segmenter’s encoder ΦE(·;αiE) as a factored
Gaussian. Within the Markov chain in the MH sampler, when the current latent-space
encoding (state) is h, we propose to use the candidate-proposal distribution P (Hu|xu;αiE)
to draw a candidate latent-space encoding (state) h′. Sampling the encoding h′ from the
factored Gaussian distribution P (Hu|xu;αiE) on latent space is computationally efficient
because it needs only a single forward pass through the segmenter’s encoder. Also, this
proposal distribution is effective because it is (i) informed by the training dataset through
the usage of the current parameter estimates θi, (ii) informed by the specific input datum
xu, and (iii) is closely related to the posterior distribution P (Hu|xu, yu; θi) that we desire
to sample from. In this way, the proposal candidates tend to have a good acceptance
probability within the MH sampler. The MH sampler’s acceptance probability for candidate
h′ is

min

(
1,
P (h′|xu, yu; θi)

P (h|xu, yu; θi)

P (h|xu;αiE)

P (h′|xu;αiE)

)
= min

(
1,
P (yu|xu, h′;αiD, βi)
P (yu|xu, h;αiD, β

i)

)
. (10)

Thus, at iteration i, while the candidate generation relies on the learned segmenter’s en-
coder ΦE(·;αiE), the candidate acceptance relies on, both, the learned segmenter’s decoder
ΦD(·;αiD) and the learned translator Ψ(·;βi). In this way, for training-set images xu devoid
of expert segmentations, the corresponding observed class-labels yu help the MCEM to se-
lect an informative sample {htu}Tt=1 that, in turn, improves the learning of the translator
and the segmenter.

We use an analogous strategy for sampling from P (Hs|xs, ys, zs; θi), where latent-space
hidden variable Hs is associated with those images xs for which an expert segmentation zs is
available. Here, Bayes rule refactors P (Hs|xs, ys, zs; θi) , upto a normalizing constant, into
the form P (ys|xs, Hs;α

i
D, β

i)P (Hs|xs, zs; θi) ∝ P (ys|xs, Hs; θ
i)P (zs|Hs;α

i
D)P (Hs|xs;αiE),

where, at iteration i, (i) the first factor P (ys|xs, Hs;α
i
D, β

i) is modeled by the mapping
ΦD(·;αiD) underlying the segmenter’s decoder and the mapping Ψ(·;βi) underlying the
translator, (ii) the second factor P (zs|Hs;α

i
D) is modeled by the mapping ΦD(·;αiD) un-

derlying the segmenter’s decoder, and (iii) the third factor P (Hs|xs;αiE) is modeled by the
mapping ΦE(·;αiE) underlying the segmenter’s encoder. In this case, within the Markov
chain in the MH sampler, when the current latent-space encoding (state) is h, we propose
to use the candidate-proposal distribution P (Hs|xs;αiE) to draw a candidate latent-space
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encoding (state) h′. The MH sampler’s acceptance probability for the candidate (h′) is

min

(
1,
P (h′|xs, ys, zs; θi)
P (h|xs, ys, zs; θi)

P (h|xs;αiE)

P (h′|xs;αiE)

)
= (11)

min

(
1,
P (ys|xs, h′;αiD, βi)P (zs|h′;αiD)

P (ys|xs, h;αiD, β
i)P (zs|h;αiD)

)
(12)

Thus, our candidate generation relies on the learned segmenter’s encoder model ΦE(·;αiE) at
iteration i, and our candidate acceptance relies on the segmenter’s decoder model ΦD(·;αiD)
and the translator model Ψ(·;βi) at iteration i.

In this paper, we sample each encoding ht by (i) initializing the Markov chain to a state
from the previous iteration t−1 and (ii) running the Markov chain through a burn-in period
that uses a different pseudo-random number sequence for each t. In this paper, we find that
a burn-in of 10 iterations and a sample size T = 20 works reasonably with the stochastic
optimization.

To enable end-to-end learning, while sampling h ∼ P (H|x;αiE), we reparameterize its
d-th component as

h[d] := Φmean
E (X;αE)[d] + η exp(0.5Φlog-var

E (X;αE)[d]), (13)

where η is a random draw from a standard normal distribution. Such a reparameterization
of h, in terms of the DNN parameters αE , allows backpropagating the loss-function gradients
through h to αE .

Algorithm 1 summarizes the training algorithm.

3.6 Deep-MCEM based Inference for Test Images

We perform the inference on test images using the optimal DNN model parameters θ∗ =
α∗ ∪ β∗ obtained using the weakly-and-semi-supervised learning.

For a test image x′, we propose to infer the pixel-wise distribution of probability values
P (Z[v][k]|H;α∗D), resulting from the underlying distribution over H that depends on x′.
As described in Equation 3, we obtain the mean µseg[v][k] of the distribution of probability
values P (Z[v][k]|H;α∗D) using Monte-Carlo sampling of the latent-space encoding h from
the Gaussian P (H|x′;α∗E), i.e.,

µseg[v][k] := P (Z[v][k]|x′;α∗) :=
1

T ′

T ′∑
t=1

P (Z[v][k]|ht;α∗D), (14)

with independently sampled ht ∼ P (H|x′;α∗E). We obtain a hard semantic segmentation,
by computing, at each pixel v, a class label k∗ for which the mean probability µseg[v][k]

is the highest. We obtain the variance
(
σseg[v][k]

)2
of the distribution of the probability

values P (Z[v][k]|H;α∗D) as,

(
σseg[v][k]

)2
:=

1

T ′

T ′∑
t=1

(P (Z[v][k]|ht;α∗D)− µseg[v][k])2, (15)
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Input Training Set T complete := {(xs, ys, zs, Hs)}Ss=1 ∪ {(xu, yu, Hu)}Uu=1

DNN parameters to optimize θ := α ∪ β.
Random initialization of DNN parameters θ as θ0.
bestV al = 0
for i = 1 : I do

% E step for iteration i.
% MH sampling within E step, as described in Section 3.5.
for t = 1 : T do

% Sample latent-space vectors hs for images xs.
for s = 1 : S do

hts ←MHSampler(xs, ys, zs; θ
i−1)

end
% Sample latent-space vectors hu for images xu.
for u = 1 : U do

htu ←MHSampler(xu, yu; θi−1)
end

end

% This implicitly gives us the function Q̂(θ; θi−1), as described in Equation 9.
% M step for iteration i.
Optimize Q̂(θ; θi−1) over DNN parameters θ using stochastic gradient descent
to give θi.

end
Algorithm 1: Pseudo-code of Deep MCEM based Variational Learning for Semantic
Segmenation.

with independently sampled ht ∼ P (H|x′;α∗E). We propose to treat the standard deviation
σseg[v][k] as the uncertainty in the prediction of the segmentation probability P (Z[v][k]|H;α∗D).
In this paper, we use a sample size of T ′ = 128.

For the test image x′, we propose to infer the image-level distribution of class probability
values P (Y [k]|H;α∗D, β

∗), resulting from the underlying distribution over H that depends
on x′. As described in Equation 6, we get the mean µclass[k] of the distribution of probability
values P (Y [k]|H;α∗D, β

∗) using Monte-Carlo sampling of the latent-space encoding h from
the Gaussian P (H|x′;α∗E), i.e.,

µclass[k] := P (Y [k]|x′; θ∗) :=
1

T ′

T ′∑
t=1

P (Y [k]|ht;α∗D, β∗). (16)

Equation 5 and Equation 16 indicate that µclass[k] relates to the probability of the image
having an object of class k. Thus, we get the hard image-level class labels by selecting
those classes for which µclass[k] ≥ 0.5. We get the variance

(
σclass[k]

)2
of the distribution of

probability values P (Y [k]|H;α∗D, β
∗) as,

(
σclass[k]

)2
:=

1

T ′

T ′∑
t=1

(P (Y [k]|ht;α∗D, β∗)− µclass[k])2, (17)
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using independently sampled ht ∼ P (H|x′;α∗E). We propose to treat the standard deviation
σclass[k] as the uncertainty in the prediction of the segmentation probability P (Y [k]|H;α∗D, β

∗).
In this paper, we use a sample size of T ′ = 128.

During inference on a test image x′, sampling the latent space variable H from the
Gaussian distribution P (H|x′;α∗E) is computationally efficient as it needs a single forward-
pass through the segmenter’s encoder to get the distribution P (H|x′;α∗E) , followed by
draws from a standard normal to sample h.

4. Results and Discussion

We evaluate our method described in Section 3 for weakly-and-semi-supervised semantic
segmentation WeakS-Ours that leverages (i) the fully-supervised S images from the training
set having both expert segmentations and image-level class labels as well as (ii) the weakly-
supervised U images the training set having only image-level class labels without any expert
segmentations. For WeakS-Ours,

(i) the segmenter Φ(·;α) relies on the standard U-Net architecture for semantic seg-
mentation (Ronneberger et al., 2015) and (ii) the translator Ψ(·;β) relies on the standard
ResNet architecture for classification (He et al., 2016).

The U-Net architecture of the DNN for semantic segmentation (Figure 2) takes as input
an RGB image and produces as output a K + 1-channel semantic probability map. The
U-Net architecture comprises (i) the encoder, (ii) the multiscale latent-space encoding H,
and (iii) the decoder. The encoder has four blocks (colored blue in Figure 2) performing
convolutions and max-pooling, followed by convolutional layers (colored yellow in Figure 2)

that outputs two vectors φmeanE and φlog−varE (at each of the four scales) to parametrize the
Gaussian distribution of the multiscale latent-space variable H. The multiscale latent-space
variable H combines four output vectors, one at each of the four scales, of lengths 2048,
1024, 512, and 256. The decoder has four convolutional layers that take the sampled latent-
space encodings as input (colored pink in Figure 2), followed by blocks (colored purple in
Figure 2) performing interpolation-based up-sampling and convolutions. The segmenter
finally applies a softmax function to get the probability maps for each of the K + 1 classes.

The input to the translator is a pair of images comprising (i) the original RGB image
and (ii) its semantic probability map output by the segmenter. We propose to leverage
the per-class semantic probability maps as attention maps (for spatial per-pixel rescal-
ing/reweighting) for the original RGB image (Figure 3). Each of the K attention-weighted
images forms an input to the translator DNN that relies on the standard ResNet50 archi-
tecture. The translator outputs a K-length probability vector, where the value of the k-th
component indicates the probability of the original image containing an object of class k.

4.1 Baseline Methods for Comparison

We compare our method with seven baseline methods including: (A) five baselines for
weakly-and-semi-supervised semantic segmentation, i.e., (i) WeakS-CRF proposed in Pa-
pandreou et al. (2015), (ii) WeakS-CAM-Dil proposed in Wei et al. (2018), (iii) WeakS-
CAM-CCT proposed in Ouali et al. (2020), (iv) WeakS-AdvCAM-CCT proposed in Lee
et al. (2021), and (v) WeakS-SLRNet proposed in Pan et al. (2022); (B) one baseline for
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weakly-supervised learning Weakly-AdvCAM proposed in Lee et al. (2021); (C) one baseline
for semi-supervised learning Semi-CCT proposed in Ouali et al. (2020). All the baselines for
weakly-and-semi-supervised learning train using (i) S images having both expert segmen-
tations and image-level class labels and (ii) U images with image-level labels and without
expert segmentations. The baseline Weakly-AdvCAM for weakly-supervised learning trains
using (ii) S+U images with image-level labels and without expert segmentations. The base-
line Weakly-AdvCAM for weakly-supervised learning trains using (i) S images having both
expert segmentations and image-level class labels and (ii) U images without any supervision
that is without image-level labels and without expert segmentations.

Across all the baseline methods, as well as our method, we ensure consistent designs of
the DNN architectures for fair comparisons. All the baseline methods employ a DNN for
semantic segmentation which uses the same (standard) backbone U-Net architecture in our
framework. The weakly-and-semi-supervised learning methods WeakS-CAM-Dil, WeakS-
AdvCAM-CCT, and WeakS-CAM-CCT; and the weakly-supervised learning method WeakS-
AdvCAM rely on a pre-trained DNN classifier to produce CAMs, where the classifier DNNs
rely on the same backbone ResNet architecture as in our framework. WeakS-CRF enables
weakly-and-semi-supervised learning by coupling the semantic segmentation to the image-
class labels using a CRF instead of a DNN.

4.2 Real-World Microscopy Datasets

The BCCD histopathology dataset (github.com/Shenggan/BCCD_Dataset) shows blood
tissue including white blood cells (WBCs) of four classes, i.e., eosinophil, lymphocyte,
neutrophil, and monocyte. We have a set of 410 image tiles of size 480×640 pixels. Because
of very limited examples (only around 20) of monocytes for reliable training and evaluation,
we remove the instances of the monocyte class from the dataset. Thus, the curated dataset
has K = 3 classes. From this set, we randomly select (i) S + U = 150 tiles for training,
(ii) 50 tiles for validation (to tune free parameters for all methods), and (iii) 190 tiles
for testing. Because of the small size of this dataset, during training, we augment the
dataset by including a randomly flipped (horizontally or vertically) version of each image
tile, effectively making the training-set size as S + U = 300.

The Malaria histopathology dataset (data.broadinstitute.org/bbbc/BBBC041) has
image tiles showing Giemsa-stained microscopy images of blood tissue infected by the malar-
ial parasite plasmodium vivax. The dataset consists of WBCs, non-infected red blood cells
(RBCs), and infected RBCs. The infected RBCs are differentiated into different classes
that indicate the life-cycle stage of the malarial parasite within the RBC. The goal for
image analysis is to detect the infected RBCs and indicate their classes. We have data
from K = 3 such infected-RBC classes, i.e., ring, trophozoite, and schizont. We generate
multiple cropped image tiles from the original image. While generating such image tiles we
ensure the dataset property of have multiple types of cells is maintained. We have a set of
1273 image tiles of size 600×450. From this set, we randomly select (i) S +U = 500 image
for training, (ii) 200 image for validation (to tune free parameters for all methods), and
(iii) 573 tiles for testing. Each tile can contain zero or more number of infected RBCs. For
tiles containing multiple infected RBCs, each infected RBC can belong to a different class.
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The Lizard histopathology dataset provided by Graham et al. (2021) (https://warwick.
ac.uk/fac/cross_fac/tia/data/lizard) has histopathology microscopy images of blood
tissues. The dataset consists of colon nuclei semantic segmentation where, the nuclei’s are
classified into the 6 categories as (i) epithelial, (ii) lymphocyte, (iii) plasma, (iv) neutrophil,
(v) eosinophil, and (vi) connective. The goal for image analysis is to segment the foreground
nuclei regions in the image and indicate their classes. We have data from K = 3 such classes,
i.e., epithelial, lymphocyte, and connective. We generate multiple cropped image tiles from
the original image. We have a set of 1349 image tiles of size 256×256. From this set, we
randomly select (i) S +U = 800 images for training, (ii) 200 images for validation (to tune
free parameters for all methods), and (iii) 349 tiles for testing. Each tile can contain zero
or more nuclei of different classes.

For all the datasets, we obtain manual expert segmentations of the cells of interest. These
data originate from multiple clinical sites and, thereby, despite standard staining protocols,
are susceptible to natural staining variation. Thus, we perform stain normalization Reinhard
et al. (2001) during pre-processing. All the input images shown in this paper are stain
normalized.

4.3 Training Strategy for All Methods

We ensure consistency in DNN-training schemes across all three baselines as well as the
methods within our framework. For all methods, we train using stochastic gradient de-
scent (Robbins and Monro, 1951; LeCun et al., 1998) with the learning-rate parameter set
to 0.01 and the momentum parameter set to 0.9; we find that the results of all methods are
insensitive to small changes in these values. To reduce overfitting for all methods, we follow
the following strategy: (i) during training, after every few iterations, we save the model
parameters and (ii) after the training finishes, we pick the model parameters that perform
the best on the validation set.

4.4 Evaluation Strategy for All Methods

We evaluate performance using the mean intersection-over-union (mean-IoU; equivalently
mean-Jaccard) between (i) manual segmentations provided by the expert and (ii) the hard
segmentation image produced by the methods (e.g., as described in Section 3.6 for our
methods). We evaluate each method by varying the number of the training-set images
having expert segmentations, i.e., we change the level of supervision γ := 100 ·S/(S +U)%
from 10% (indicating a very low level of supervision; S � U) to 100% (indicating full
supervision; S � U = 0). We also evaluate our two methods for their accuracy in predicting
the image-level class labels. We evaluate the variability in the performance of each method
by performing multiple repeated experiments involving a random selection of the training
set, the validation set, and the test set.

In addition to the comparative analysis across methods, we present empirical insights
into some of the key aspects of the weakly-and-semi-supervised learning mechanisms of all
methods, i.e., (i) the posterior sampling for methods within our framework, (ii) efficacy
of CAM-based approaches in estimating missing segmentations, (iii) the role of the CRF
model within Papandreou et al. (2015) to couple their DNN segmentation with the image-
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level class labels and , (iv) the method in Pan et al. (2022) that uses multi-view based
self-supervised learning.

4.5 Scheme for Qualitative Visualization of Results

This section describes our schemes for visualizing (i) probabilistic semantic segmentations,
(ii) hard semantic segmentations, and (iii) uncertainty estimates underlying semantic seg-
mentations. All our datasets involve K = 3 classes of the objects of interest. First, to
visualize a probabilistic semantic segmentation, in our case of K = 3, at each pixel, we
embed the information in the (K + 1)-length vector of class probabilities into the three
channels of a RGB image. Specifically, we use the first three values in this vector to assign
values to the color components corresponding to red, green, and blue. Second, to visualize a
hard semantic segmentation, at each pixel, we embed the information in the (K+ 1)-length
one-hot vector of class labels into the three channels of a color/RGB image. Specifically, we
indicate each of the (K + 1) = 4 classes, by the colors red, green, blue, and yellow. Third,
to visualize the uncertainty maps underlying the K object classes of interest, in our case
of K = 3, at each pixel, we embed the information in the K-length uncertainty vector into
the three channels of a RGB image. Specifically, we use the three values in this uncertainty
vector to assign values to the color components corresponding to red, green, and blue.

(a) Image (c1) Accepted (c2) Accepted (c3) Accepted (c4) Accepted
Sample Sample Sample Sample

(b) Expert (d1) Rejected (d2) Rejected (d3) Rejected (d4) Rejected
Segmentation Sample Sample Sample Sample

Figure 4: Empirical Insights Into the MH-Sampling Within Our Framework:
BCCD Dataset (a) Input RGB Image from the training set, and (b) its expert-
given semantic segmentation. (c1)–(c4) Examples of semantic probability maps
resulting from the candidates h, in latent space, accepted by the MH sampler
described in Section 3.5. (d1)–(d4) Examples of semantic probability maps
resulting from the candidates h, in latent space, rejected by the MH sampler
described in Section 3.5. The visualization scheme for the semantic probability
maps in (c1)–(c4) and (d1)–(d4) is described in Section 4.5.
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(a) Image (c1) Accepted (c2) Accepted (c3) Accepted (c4) Accepted
Sample Sample Sample Sample

(b) Expert (d1) Rejected (d2) Rejected (d3) Rejected (d4) Rejected
Segmentation Sample Sample Sample Sample

Figure 5: Empirical Insights Into the MH-Sampling Within Our Framework:
Malaria Dataset The description is the same as in Figure 4.

4.6 Empirical Insights Into the MH-Sampling Within Our Framework

We provide some insights into the MH-sampling scheme described in Section 3.5; qual-
itatively (Figure 4, Figure 5 and Figure 6) and quantitatively (Table 1). For a typical
image x in the training set, Figure 4 and Figure 5 show examples of semantic probabil-
ity maps, i.e., ΦD(h, x;αiD), produced by the decoder corresponding to the MH-sampler-
accepted and MH-sampler-rejected candidates of the latent-space encoding h drawn from
the posterior distribution (P (hu|xu, yu; θi) or P (hs|xs, ys, zs; θi)). The accepted sampled
latent-space encodings h typically lead to semantic probability maps that are more simi-
lar to the expert-given semantic segmentation, and, thereby, also more consistent with the
expert-given image-level class labels. In other words, the MH sampler tends to reject those
candidates h that lead to (i) a semantic probability map having larger discrepancy with re-
spect to the expert segmentation Z and/or (ii) image-level class-label probabilities that are
lower for the expert-given image-level class labels Y . For instance, in Figure 4 and Figure 5,
the accepted cases had an h that lead to the probabilities P (y|x, h;αD, β) of the image-level
multi-hot class-label vector y in the range [0.979, 0.989], whereas the same probabilities for
the rejected cases were in the lower range of [0.921, 0.949]. In this way, during training, the
MH sampler produces the set of accepted latent-space encodings {ht}Tt=1 that are informed
by the expert-given image-level class labels as well as the expert-given semantic segmenta-
tion (when one is available). The accepted sampled set, in turn, informs and improves the
encoder model through the subsequent sample reparametrization and backpropagation.

We evaluate the MH sampler (quantitatively in Table 1 and qualitatively in Figure 6)
by using three different strategies of generating the proposal distribution: (i) when the dis-
tribution is modeled by the currently-learned encoder (our MH-sampler, where the encoder
is being dynamically updated during data-driven learning); (ii) when the distribution is an
isotropic Gaussian with the mean set to the current state and the variances fixed to large
values (this risks producing many candidates in regions where the posterior distribution
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Table 1: Empirical Insights Into the MH-Sampling: Quantitative analysis. Ac-
ceptance rate of the MH sampler, in DNNs trained at different supervision levels,
using different proposal distributions (manually tuned versus learned).

Fraction of
training-set with
expert segmenta-
tions

Acceptance rate for
isotropic-Gaussian
proposal with
manually-tuned
large variance

Acceptance rate for
isotropic-Gaussian
proposal with
manually-tuned
small variance

Acceptance rate
for our factored-
Gaussian proposal
with learned vari-
ances

10% 72.73% 95.14% 90.69%

50% 70.11% 94.89% 85.02%

100% 69.81% 94.62% 83.34%

(a) Image (c1) Low (c2) Low (c3) Low (c4) Low
Variance Variance Variance Variance

(b) Expert (d1) Learned (d2) Learned (d3) Learned (d4) Learned
Segmentation Variance Variance Variance Variance

(e1) High (e2) High (e3) High (e4) High (e5) High
Variance Variance Variance Variance Variance

Figure 6: Empirical Insights Into the MH-Sampling: Qualitative analysis. Ac-
cepted latent-space proposals from the MH sampler, visualized as semantic-
probability maps after decoder transformation, using final trained DNNs (at 50%
supervision) using different proposal distributions (as described in Table 1).

has low probability mass); and (iii) when the distribution is an isotropic Gaussian with the
mean set to the current state and the variances fixed to small values (this risks limiting the
exploration of the state space). Table 1 shows the acceptance rates of samples generated
using the final trained DNNs at different supervision levels. In general, it is very difficult
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to manually tune the per-dimension variances of the proposal distribution in latent space,
with the risks involving (i) low acceptance rate of the proposal candidates, (ii) poor explo-
ration by the sampler of the high-probability regions, and (iii) having the sampler stuck in
low-probability regions. Figure 6 shows the semantic-probability maps corresponding to the
accepted samples generated using the final trained DNNs at the supervision level of 50%.
The accepted samples of the MH sampler using proposals from a isotropic Gaussian with
small variance (Figure 6(c1)-(c4)) shows imperceptible variability (poor exploration) across
the semantic-probability maps. The accepted samples of the MH sampler using propos-
als from a isotropic Gaussian with large variance (Figure 6(e1)-(e5)) indicates the sampler
leading to low-probability regions (semantic-probability maps far from ground-truth) and
getting stuck there. The accepted samples of the MH sampler using proposals from a
factored-Gaussian with variances learned from our framework (Figure 6(d1)-(d4)) show a
high acceptance rate and good variability in the resulting semantic-probability maps that
remain close to the ground-truth. Thus, our MH-sampler is able to sample from a pro-
posal distribution that: (i) is computationally efficient and straightforward to sample from,
(ii) leads to a high rate of acceptance of the proposed candidates, and (iii) leads to accepted
candidates that are good representatives of the variability modeled by the distribution.

4.7 Evaluation of All Methods on Datasets

We evaluate and compare all the methods quantitatively (Figure 7; Table 2, Table 3, Table 4)
and several methods qualitatively (Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Fig-
ure 13). For instance, for all the datasets, in the case where very few expert segmentations
are available, i.e., when S � (S + U), WeakS-Ours outperforms all other methods, quan-
titatively and qualitatively, in weakly-and-semi-supervised learning. Qualitatively, WeakS-
Ours produces higher-quality segmentations compared to all other methods, at virtually
all the levels of supervision, by reducing errors in class-label predictions for objects as well
as the background, as seen in Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Fig-
ure 13. WeakS-Ours performs better than all baselines (which rely on either CAM-based
schemes or a CRF-based scheme for weakly-and-semi-supervised learning) for theoretical
reasons detailed in Section 2. Nevertheless, detailed empirical insights into those theoreti-
cal arguments appear later in Section 4.10 (for CAM-based schemes), Section 4.9 (for the
CRF-based scheme) and Section 4.11 (for WeakS-SLRNet Pan et al. (2022)). Figure 7
(along with Table 2, Table 3, Table 4) shows that WeakS-SLRNet is the best performing
method among the baselines for most of the supervision levels and for all the datasets.
WeakS-CRF also shows promising results quantitatively and qualitatively despite being
an older method as compared to the other baseline methods. WeakS-AdvCAM-CCT per-
forms better than WeakS-CAM-CCT for BCCD dataset, but performs worse for the Malaria
dataset, mainly because of the inclusion of a lot of false positives for Malaria dataset dur-
ing anti-adversarial learning for WeakS-AdvCAM-CCT. The weakly-and-semi-supervised
methods WeakS-CAM-CCT, WeakS-AdvCAM-CCT almost always perform better than the
semi-supervised method Semi-CCT, by leveraging the weakly labelled data. The weakly-
supervised learning method Weakly-AdvCAM is unable to utilize the semantic segmenta-
tions available for a part of the training set, and thus shows a constant performance across
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(a) BCCD Dataset (b) Malaria Dataset

(c) Lizard Dataset

Figure 7: Results: Semantic Segmentation for BCCD, Malaria and Lizard
Datasets; Quantitative Analysis. Performance of all the baseline methods
compared with WeakS-Ours, measuring the mean-IoU between (i) the (hard)
semantic segmentation output by the method and (ii) the expert semantic seg-
mentation, employing models trained across varying levels of supervision γ. Box
plots show variability in test-set performance over randomly selected sets (with
fixed cardinality) for training, validation, and testing.

the levels of supervision; it performs better than the other baseline methods only at very
low supervision level (10%), but shows lower performance as compared to WeakS-Ours.

We visualize sampled semantic-probability maps and the uncertainty maps (as detailed
in Section 4.5) for the test images in Figure 8; Figure 9; Figure 10; Figure 11, Figure 12,
Figure 13. The uncertainty map models the per-pixel ambiguity/variability in the estima-
tion of the semantic probability map. For the BCCD dataset, the uncertainty maps (Fig-
ure 8(d); Figure 9(d)) show very less uncertainty overall, with some uncertainty near the
WBC boundary. In contrast, for the Malaria dataset, the uncertainty maps (Figure 10(d);
Figure 11(d)) show much higher values; this is consistent with our qualitative perception
of the semantic segmentation task in the Malaria dataset being more difficult than the
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Table 2: Results: Semantic Segmentation for BCCD; Quantitative Analysis. The
median values for the boxplots shown in Figure 7(a).

Supervision Levels
→

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

WeakS-Ours 44.7 49.4 57.9 59.0 60.7 65.4 65.8 71.8 76.2 76.5

WeakS-SLRNet 36.7 42.6 50.2 53.9 56.1 62.6 64.6 68.7 72.8 74.1

WeakS-CRF 23.6 30.3 46.8 49.9 59.3 59.6 63.9 63.1 69.9 72.5

WeakS-CAM-CCT 33.5 33.0 39.1 44.8 50.7 61.2 64.7 70.2 71.1 75.0

WeakS-AdvCAM-
CCT

33.7 35.5 42.5 55.2 59.9 62.1 66.4 71.8 72.2 73.8

WeakS-CAM-Dil 39.7 39.3 44.5 47.3 47.4 52.3 57.5 71.0 73.9 75.0

Semi-CCT 27.5 30.1 34.1 40.4 47.9 58.4 63.7 69.0 70.2 75.0

Weakly-AdvCAM 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5

Table 3: Results: Semantic Segmentation for Malaria; Quantitative Analysis.
The median values for the boxplots shown in Figure 7(b).

Supervision Levels
→

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

WeakS-Ours 46.0 49.9 52.5 55.2 55.8 56.6 56.8 57.3 58.0 58.5

WeakS-SLRNet 27.1 44.8 48.9 50.6 51.7 53.0 53.5 54.5 55.1 56.2

WeakS-CRF 31.3 44.8 48.5 49.8 51.0 51.4 52.5 53.8 54.7 56.7

WeakS-CAM-CCT 39.8 44.8 46.5 49.3 50.5 52.0 53.4 54.0 55.5 56.7

WeakS-AdvCAM-
CCT

35.6 41.3 43.7 47.2 49.6 50.4 51.9 52.8 54.4 56.6

WeakS-CAM-Dil 37.6 41.9 44.7 47.5 49.0 49.8 51.0 51.8 53.6 56.1

Semi-CCT 33.9 38.9 41.9 46.0 48.6 49.8 51.7 52.7 54.5 56.4

Weakly-AdvCAM 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9 41.9

task in the BCCD dataset, which also reflects in the quantitative analysis in Figure 7 and
Table 2, Table 3. To give some insights, for the two infected RBCs in Figure 10(a), the
uncertainty in segmentation, as seen in Figure 10(d), is significantly higher for the RBC
that has very subtle low-contrast textures without a clear separation between the RBC and
its surrounding. Indeed, the semantic segmentation maps (in the second row and third row
in Figure 11), across all methods, clearly indicate more errors in pixels corresponding to
this particular RBC. We give another example from Figure 11(a), where the three infected
RBCs belong to the same class (as seen in the expert segmentation in Figure 11(b)). How-
ever, while two of those three RBCs have an appearance that is typical of their class, one
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Table 4: Results: Semantic Segmentation for Lizard; Quantitative Analysis. The
median values for the boxplots shown in Figure 7(c).

Supervision Levels
→

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

WeakS-Ours 35.9 41.3 43.5 45.3 46.3 47.0 47.5 48.2 49.5 50.0

WeakS-SLRNet 32.6 38.4 40.5 43.9 45.5 46.7 47.4 47.7 48.9 49.6

WeakS-CRF 26.4 38.1 41.5 44.6 46.2 46.8 47.6 48.5 49.4 50.3

WeakS-CAM-CCT 29.5 37.5 40.4 43.4 45.2 46.2 47.0 47.8 48.7 49.5

WeakS-AdvCAM-
CCT

29.5 37.5 40.4 43.4 45.2 46.2 47.0 47.8 48.7 49.5

WeakS-CAM-Dil 31.9 38.8 41.5 44.2 45.8 46.6 47.3 48.2 48.9 50.0

Semi-CCT 26.8 36.2 39.6 42.5 44.7 45.8 46.5 47.3 48.4 49.1

Weakly-AdvCAM 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2

of the RBCs has a darker and denser texture that leads to relatively higher uncertainty for
pixels within that RBC (Figure 11(d)). Indeed, the semantic segmentation maps (in the
second row and third row in Figure 11), across all methods, clearly indicate more errors
in pixels corresponding to this particular RBC. In case of Lizard dataset, the uncertainty
values (Figure 12(d); Figure 13(d)) are higher and distributed across the image; this is
consistent with our qualitative perception of the semantic segmentation task in the Lizard
dataset being even more difficult than the task in the Malaria dataset, which also reflects
in the quantitative analysis in Figure 7 and Table 4. To give some insights, the uncertainty
in Figure 12(d); Figure 13(d) is observed to be higher in value in and around the nuclei.
Indeed, the semantic segmentation maps (in the second row and third row in Figure 12
and Figure 13), across all the methods, show that WeakS-Ours shows better classification

Table 5: Results: Computational Costs. Time taken (in minutes) for training DNNs
over the Lizard dataset for all methods at 20% and 100% supervision levels. We ran
the optimizer for each method for 50 epochs that was sufficient for the optimizers
to converge for all methods.

Super-
vision
Level

WeakS-
Ours

WeakS-
SLRNet

WeakS-
CRF

WeakS-
CAM-
CCT

WeakS-
AdvCAM-
CCT

WeakS-
CAM-
Dil

Semi-
CCT

Weakly-
AdvCAM

20% 125 25 12 140 140 12 138 9

100% 96 25 9 83 83 12 82 9
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(a) Image (b) Expert (c1) Sampled (c2) Sampled (d)Uncertainty
Segmentation Semantic Prob- Semantic Prob- in Semantic Prob-

ability Map ability Map ability Map

(e1) WeakS- (e2) WeakS- (e3) WeakS- (e4) WeakS- (e5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(40%) (40%) (40%) (40%) (40%)

(f1) WeakS- (f2) WeakS- (f3) WeakS- (f4) WeakS- (f5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(20%) (20%) (20%) (20%) (20%)

Figure 8: Results on BCCD Dataset: Qualitative Analysis. (a) Input RGB image
and (b) its expert-given semantic segmentation. (c1)-(c2) Semantic probability
maps resulting from sampled latent-space encodings h at γ = 40% supervision
for WeakS-Ours. (d) Uncertainty map at γ = 40% supervision for WeakS-Ours.
(e1)–(e5) show the results across all methods at γ = 40% supervision. (f1)–
(f5) show the results across all methods at γ = 20% supervision. The visualization
scheme for all semantic segmentations and semantic probability maps is described
in Section 4.5.

of foreground cells at lower lower supervision levels (speficially for the red class label) and
better precision in locating the boundaries of nucleis’.

We also compare WeakS-Ours with all the baseline methods with respect to the time
taken for training and inference on the Lizard dataset (Table 5). For inference, for the
entire test set, WeakS-Ours takes 116 seconds, whereas all the baseline methods take around
20 to 30 seconds. The methods involving sampling, i.e., WeakS-Ours and all CCT-based
methods (WeakS-CAM-CCT, WeakS-AdvCAM-CCT, and Semi-CCT), have higher training
time. However, the training-time for WeakS-Ours is lower as compared to the CCT based
methods, i.e., WeakS-CAM-CCT, WeakS-AdvCAM-CCT, and Semi-CCT. For inference,
WeakS-Ours takes more time as compared to the baseline methods owing to sampling
(Section 3.6).
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(a) Image (b) Expert (c1) Sampled (c2) Sampled (d)Uncertainty
Segmentation Semantic Prob- Semantic Prob- in Semantic Prob-

ability Map ability Map ability Map

(e1) WeakS- (e2) WeakS- (e3) WeakS- (e4) WeakS- (e5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(40%) (40%) (40%) (40%) (40%)

(f1) WeakS- (f2) WeakS- (f3) WeakS- (f4) WeakS- (f5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(20%) (20%) (20%) (20%) (20%)

Figure 9: Results on BCCD Dataset: Qualitative Analysis on another example. The
description is the same as in Figure 8.

We also provide a preliminary glimpse into the calibration error of various methods
by evaluating their expected calibration error (ECE) (Guo et al., 2017) over the Malaria
dataset. We evaluate ECE using 10 bins. The observed ECE values at 20% supervision level
for the different methods are: Semi-CCT 0.142, WeakS-AdvCAM-CCT 0.147, WeakS-CAM-
CCT 0.152, Weakly-AdvCAM 0.157, WeakS-Ours 0.161, WeakS-SLRNet 0.173, WeakS-
CRF 0.207 and WeakS-CAM-Dil 0.223. Lower the ECE, better the calibration. Thus,
WeakS-Ours tends to be a bit better calibrated as compared to WeakS-SLRNet, WeakS-
CRF, and WeakS-CAM-Dil. The CCT-based methods give a bit lower error ECEs than
WeakS-Ours. We also observed that ECE typically decreases with increasing supervision.

4.8 Evaluation of Ablated Versions of Our Method

We construct three ablated versions of our method WeakS-Ours as follows: (i) WeakS-
Ours-SingleLevelVariational restricting the variational modeling only for the coarsest level
of the latent-space encoding (as it was there in our preliminary work in), but including
modeling each missing segmentation as a random variable within MCEM; (ii) WeakS-Ours-
NonVariational that removes the ability from WeakS-Ours to learn a variational model,
i.e., removes modeling each missing segmentation as a random variable and also removes
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(a) Image (b) Expert (c1) Sampled (c2) Sampled (d)Uncertainty
Segmentation Semantic Prob- Semantic Prob- in Semantic Prob-

ability Map ability Map ability Map

(e1) WeakS- (e2) WeakS- (e3) WeakS- (e4) WeakS- (e5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(30%) (30%) (30%) (30%) (30%)

(f1) WeakS- (f2) WeakS- (f3) WeakS- (f4) WeakS- (f5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(10%) (10%) (10%) (10%) (10%)

Figure 10: Results on Malaria Dataset: Qualitative Analysis. (a) Input RGB image
and (b) its expert-given semantic segmentation. (c1)-(c2) Semantic probability
maps resulting from sampled latent-space encodings h at γ = 30% supervision
for WeakS-Ours. (d) Uncertainty map at γ = 30% supervision for WeakS-
Ours. (e1)–(e5) show the results across all methods at γ = 30% supervision.
(f1)–(f5) show the results across all methods at γ = 10% supervision. The
visualization scheme for all semantic segmentations and semantic probability
maps is described in Section 4.5.

modeling latent-space of the segmenter as a random variable; (iii) S-Ours-NonVariational
further removes the ability from WeakS-Ours-NonVariational to leverage weak supervision
in the form of the image-level class labels in the absence of the per-pixel segmentation.

The quantitative results over the ablated versions of our method in Figure 14, show
that, compared to WeakS-Ours, there is: (i) a large drop in performance in WeakS-Ours-
NonVariational, indicating the importance of the variational learning within our framework;
(ii) a huge drop in performance in S-Ours-NonVariational, indicating the utility of weak
supervision in the form of image-level labels; and (iii) a statistically significant drop, at low
levels of supervision, in performance in WeakS-Ours-SingleLevelVariational, indicating the
benefits of multi-level variational modeling in latent space.
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(a) Image (b) Expert (c1) Sampled (c2) Sampled (d)Uncertainty
Segmentation Semantic Prob- Semantic Prob- in Semantic Prob-

ability Map ability Map ability Map

(e1) WeakS- (e2) WeakS- (e3) WeakS- (e4) WeakS- (e5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(30%) (30%) (30%) (30%) (30%)

(f1) WeakS- (f2) WeakS- (f3) WeakS- (f4) WeakS- (f5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(10%) (10%) (10%) (10%) (10%)

Figure 11: Results on Malaria Dataset: Qualitative Analysis on another example.
The description is the same as in Figure 10.

Although the key focus of the proposed approach is on semantic segmentation, to gain
further insights into the working of translator, we provide some empirical analysis for the
image-level classification task. Figure 15 shows the evaluation of the accuracy of image-level
class-label outputs produced by the translator within our framework; for all the datasets,
WeakS-Ours improves over S-Ours for the task of classification by leveraging weakly-and-
semi-supervised learning through the training-set images xu paired with their image-level
class labels yu (without the associated expert segmentations). We also analyzed the image-
level class-probability vectors along with their uncertainty vectors, associated with the test
images in Figure 8, Figure 9 for BCCD dataset; and Figure 10, Figure 11 for Malaria
dataset. For the BCCD-dataset example in Figure 8, the image-level class-probability vector
and the associated uncertainty values output by WeakS-Ours were: [0.008, 0.005, 0.992] and
[0.003, 0.001, 0.003]. For another example of BCCD-dataset in Figure 9, the values were:
[0.991, 0.011, 0.014] and [0.003, 0.006, 0.008] respectively. For the Malaria-dataset example
in Figure 10, the image-level class-probability vector and the associated uncertainty values
output by WeakS-Ours were: [0.994, 0.962, 0.021] and [0.001, 0.092, 0.041]. For another
example of Malaria-dataset in Figure 11, the image-level class-probability vector and the
associated uncertainty values were: [0.026, 0.999, 0.049] and [0.018, 0.0007, 0.08] respectively.
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(a) Image (b) Expert (c1) Sampled (c2) Sampled (d)Uncertainty
Segmentation Semantic Semantic in Semantic

Probability Probability Probability
Map Map Map

(e1) WeakS- (e2) WeakS- (e3) WeakS- (e4) WeakS- (e5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(20%) (20%) (20%) (20%) (20%)

(f1) WeakS- (f2) WeakS- (f3) WeakS- (f4) WeakS- (f5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(10%) (10%) (10%) (10%) (10%)

Figure 12: Results on Lizard Dataset: Qualitative Analysis. (a) Input RGB image
and (b) its expert-given semantic segmentation. (c1)-(c2) Semantic probability
maps resulting from sampled latent-space encodings h at γ = 20% supervision
for WeakS-Ours. (d) Uncertainty map at γ = 20% supervision for WeakS-
Ours. (e1)–(e5) show the results across all methods at γ = 20% supervision.
(f1)–(f5) show the results across all methods at γ = 10% supervision. The
visualization scheme for all semantic segmentations and semantic probability
maps is described in Section 4.5.

As compared to the Malaria dataset examples, the examples from the BCCD dataset
show a higher confidence in the image-level class predictions, as indicated by (i) higher
probabilities output for the classes of objects present in the image, (ii) lower probabilities
output for the classes of objects absent in the image, and (iii) lower uncertainty values
associated with all the classes. For the Malaria-dataset example in Figure 10, compared
to the other classes, there is larger uncertainty in the trophozoite class associated with the
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(a) Image (b) Expert (c1) Sampled (c2) Sampled (d)Uncertainty
Segmentation Semantic Semantic in Semantic

Probability Probability Probability
Map Map Map

(e1) WeakS- (e2) WeakS- (e3) WeakS- (e4) WeakS- (e5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(20%) (20%) (20%) (20%) (20%)

(f1) WeakS- (f2) WeakS- (f3) WeakS- (f4) WeakS- (f5) WeakS-
Ours SLRNet CRF CAM-CCT CAM-Dil
(10%) (10%) (10%) (10%) (10%)

Figure 13: Results on Lizard Dataset: Qualitative Analysis on another example.
The description is the same as in Figure 12.

RBC at the top of the image (labeled green in the expert segmentation in Figure 10(b)),
which stems from the semantic probability maps for that RBC being more imprecise (Fig-
ure 10(c1)-(c2),(e1)) and more variable (Figure 10(d)), which in turn is because of the
subtle and low-contrast textures in that RBC (Figure 10(a)). For the Malaria-dataset ex-
ample in Figure 11, despite the higher uncertainty in the per-pixel semantic-segmentation
probabilities for one of the three trophozoite RBCs, the uncertainty in the image-level prob-
ability vector for the trophozoite class remains low because, for the other two trophozoite
RBCs, the per-pixel semantic probabilities are accurate (Figure 11(c1)-(c2)) consistently
(Figure 11(d)).
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(a) BCCD Dataset (b) Malaria Dataset

Figure 14: Results: Results on Ablated Versions of Our Method. Performance of
the ablated versions of WeakS-Ours, i.e., WeakS-Ours-SingleLevelVariational,
WeakS-Ours-NonVariational, and S-Ours-NonVariational, measuring the mean-
IoU at increasing levels of supervision γ.

(a) BCCD Dataset (b) Malaria Dataset

Figure 15: Results: Classification for BCCD and Malaria Datasets, Quantitative
Analysis. Performance of our methods, measuring the accuracy in predicting
the image-level class labels, employing models trained across varying levels of
supervision γ. The box plots show the variability in the test-set performance
over randomly selected sets (with fixed cardinality) for training, validation, and
testing.

4.9 Empirical Insights into CRF-Based Baseline WeakS-CRF (Papandreou
et al., 2015)

WeakS-CRF (Papandreou et al., 2015) leverages the image-level class label for weak supervi-
sion and semi supervision by designing a bias function using a CRF to estimate the missing
expert segmentation. However, the CRF-based scheme, while having the advantage of sim-
plicity relative to other DNN-based models, has some major limitations as shown in the
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(a1) Input (a2) Input (a3) Input (a4) Input (a5) Input
Image Image Image Image Image

(b1) Expert (b2) Expert (b3) Expert (b4) Expert (b5) Expert
Segmentation Segmentation Segmentation Segmentation Segmentation

(c1) DNN (c2) DNN (c3) DNN (c4) DNN (c5) DNN
Segmentation Segmentation Segmentation Segmentation Segmentation

(d1) (d2) (d3) (d4) (d5)
PseudoGT PseudoGT PseudoGT PseudoGT PseudoGT

Figure 16: Empirical Insights into CRF-Based Baseline WeakS-CRF (Papan-
dreou et al., 2015). (a1)–(a5) Input RGB images, and (b1)–(b5) their
expert-given semantic segmentations. (c1)–(c5) Semantic segmentations pro-
duced by the DNN component in the WeakS-CRF model trained at the level of
supervision γ = 30%. (d1)–(d5) Pseudo-ground-truth semantic segmentations
estimated using the CRF component, through its bias-introduction scheme, in
the WeakS-CRF model trained at the level of supervision γ = 30%.

several representative examples in Figure 16. First, for the images in Figure 16(a1) and Fig-
ure 16(a5), the expert segmentations (Figure 16(b1),(b5)) indicate the presence of the classes
depicted by the colors blue (for the object) and yellow (for the background). Thus, the
CRF-introduced bias (desirably) modifies the predicted segmentations (Figure 16(c1),(c5))
to promote the blue and yellow classes and, thereby, removing/reducing the erroneous red
region; WeakS-CRF then employs the resulting modified discrete segmentation (a “pseudo
ground-truth”; (Figure 16(d1),(d5))) for further training of the DNN. However, the same
strategy fails to work well in the examples in Figures 16(a2)–(d2), Figures 16(a3)–(d3),
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and Figures 16(a4)–(d4) because, first, the DNN segmentation detects a large object of
a class that is absent in the image and, subsequently, the bias modification scheme only
marginally shrinks the object size in the pseudo-ground-truth without being able to remove
it completely. Now that the pseudo-ground-truth indicates an object of a class that is
contradictory to that indicate by the expert, this pseudo-ground-truth can seriously mis-
lead the subsequent DNN training. In addition, in the examples in Figures 16(a3)–(d3) and
Figures 16(a4)–(d4), the DNN first fails to detect an object (green) that is present in the im-
age, and, subsequently, the bias modification is unable to insert any pixel corresponding to
the missing object (green) on the pseudo-ground-truth. Now that the pseudo-ground-truth
fails to indicate any pixel belonging to an object class (green) that should be present in the
image (as per the expert), this pseudo-ground-truth can seriously mislead the subsequent
DNN training. The methods within our framework avoid creating such pseudo-ground-truth
estimation that are contradictory to the image-level class labels, and leverages the trans-
lator to continuously maintain a differentiable functional connection between the semantic
probability maps and the image-level class label for reliable end-to-end learning.

4.10 Empirical Insights into CAM-Based Baselines

The CAM based methods of WeakS-CAM-Dil (Wei et al., 2018), WeakS-CAM-CCT (Ouali
et al., 2020), WeakS-AdvCAM-CCT (Lee et al., 2021), and Weakly-AdvCAM (Lee et al.,
2021) rely on CAMs, during training, to estimate the missing segmentations by first comput-
ing the CAMs for all classes (using a pre-trained classifier DNN and the known image-level
class labels) and subsequently using the CAMs to generate a discrete pseudo-ground-truth
semantic segmentation. Figure 17 shows some examples of CAM-based pseudo-ground-truth
segmentations. For WeakS-CAM-Dil and WeakS-CAM-CCT, the generation of CAMs re-
lies on the same pre-trained ResNet classifier employing dilated convolutions. For WeakS-
AvdCAM-CCT and WeakS-AdvCAM, the generation of CAMs relies on the pre-trained
ResNet classifier employing adversarial climbing using the CAM outputs by the DNN.

For the images in Figure 17(a1)-(a2), compared to their expert segmentations (Fig-
ure 17(b1)-(b2)), the generated pseudo-ground-truth segmentations in Figure 17(c1)-(c2)
show regions in the background mistakenly labeled as parts of objects. Such errors in the
pseudo-ground-truth segmentations can seriously mislead the DNN training. On the other
hand, for the images in Figure 17(a3)-(a4), compared to their expert segmentations (Fig-
ure 17(b3)-(b4)), the generated pseudo-ground-truth segmentations in Figure 17(c3)-(c4)
show parts of objects mistakenly labeled as background, effectively shrinking the object size
in the pseudo-ground-truth segmentation. Such errors in the pseudo-ground-truth segmen-
tation also mislead the DNN training. Figure 17(a5)-(c5) show another kind of error in
generating the CAM-based pseudo-ground-truth segmentation when the object of interest
is misclassified. Because all such pseudo-ground-truth segmentations, across various exam-
ples in Figure 17, are pre-computed before DNN training, the resulting mis-training of the
DNNs can outweigh the benefits of incorporating the weak/semi supervision.

For training images with missing segmentations, in addition to the CAM-based pseudo-
ground-truth segmentation, WeakS-CAM-Dil employs a heuristic to iteratively recreate an-
other hard pseudo-ground-truth segmentation from the DNN-output probability maps by
eliminating pixel labels outside the set of labels in expert-given image-level class labels. Such
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(a1) Input (a2) Input (a3) Input (a4) Input (a5) Input
Image Image Image Image Image

(b1) Expert (b2) Expert (b3) Expert (b4) Expert (b5) Expert
Segmentation Segmentation Segmentation Segmentation Segmentation

(c1) (c2) (c3) (c4) (c5)
PseudoGT PseudoGT PseudoGT PseudoGT PseudoGT

Figure 17: Empirical Insights into CAM-Based Baselines. (a1)–(a5) Input RGB
images, and (b1)–(b5) their expert-given semantic segmentations. (c1)–
(c5) Pseudo-ground-truth semantic segmentations estimated from the CAMs
obtained using a pre-trained classifier.

an operation fails to lead to a differentiable objective function for backpropagation based
optimization. In contrast, our framework employs a translator DNN to connect the seman-
tic probability maps with the image-level class labels producing a differentiable objective
function (using MH sampling and reparametrization) for end-to-end learning.

WeakS-CAM-CCT, in addition to the CAM-based pseudo-ground-truth segmentation,
employs a heuristic in their cross-consistency training strategy that relies on applying a ran-
dom perturbation using adhoc schemes. WeakS-AdvCAM-CCT follows WeakS-CAM-CCT
for weakly-and-semi-supervised learning, but constructs the CAM-based pseudo-ground-
truth segmentation after employing adversarial climbing on the CAM outputs of the DNN.
In contrast, our variational framework relies on random sampling from the posterior dis-
tribution of the latent-space hidden variable, which follows naturally from our design of
the EM optimization framework. Moreover, unlike our framework, WeakS-CAM-CCT and
WeakS-AdvCAM-CCT rely on many auxiliary decoders within their segmenter, thereby
increasing the number of DNN parameters in their model.
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4.11 Empirical Insights into WeakS-SLRNet (Pan et al., 2022)

WeakS-SLRNet (Pan et al., 2022) leverages image-level class labels for weak-and-semi-
supervision by having an image-level classification loss on the class-wise prediction of seg-
mentation masks summed across pixels. For the images with missing expert segmentations,
WeakS-SLRNet uses a refinement module on top of multi-view masks calibration to gener-
ate a pseudo-ground-truth segmentation. WeakS-SLRNet employs a low-rank module that
maps the high-dimensional latent vector to a lower dimension by decomposing it into lower
dimensional dictionary matrix and encoding matrix. The image-level class probabilities are
constructed using per-pixel segmentation outputs of the DNN which are prone to errors
when learned using a training set with low-supervision level. In contrast, our framework
relies on a classifier DNN that is learned using the entire training set and takes as input the
combination of original image and the semantic probability maps to provide concrete class
probabilities that are also indicative of the quality of segmentation. WeakS-SLRNet uses
a heuristic approach to generate pseudo-ground-truths using a cross-view based refinement
module. Moreover, unlike our framework that has straightforward neural-network layers at
each level for mapping features to a low-dimensional latent vector, WeakS-SLRNet uses a
complex cross-view based low-rank-factorization module for reducing the dimension of the

(a1) Input (a2) Input (a3) Input (a4) Input (a5) Input
Image Image Image Image Image

(b1) Expert (b2) Expert (b3) Expert (b4) Expert (b5) Expert
Segmentation Segmentation Segmentation Segmentation Segmentation

(c1) (c2) (c3) (c4) (c5)
PseudoGT PseudoGT PseudoGT PseudoGT PseudoGT

Figure 18: Empirical Insights into WeakS-SLRNet (Pan et al., 2022). (a1)–
(a5) Input RGB images, and (b1)–(b5) their expert-given semantic segmen-
tations. (c1)–(c5) Pseudo-ground-truth semantic segmentations estimated by
WeakS-SLRNet.
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latent vector. WeakS-SLRNet relies on fixed multi-view approach for self-supervision. In
contrast, our variational framework has a theoretically sound way of handling missing seg-
mentations through expectation over the samples generated from the posterior distribution
of the latent-space hidden variable. WeakS-SLRNet does a fairly good job in estimating the
pseudo-ground-truth segmentations, but it has some limitations as shown in the several rep-
resentative examples in Figure 18. For the images in Figure 18(a1)-(a2), compared to their
expert segmentations (Figure 18(b1)-(b2)), the generated pseudo-ground-truth segmenta-
tions in Figure 18(c1)-(c2) show background regions mislabeled as object parts. For the
images in Figure 18(a3)-(a5), compared to their expert segmentations (Figure 18(b3)-(b5)),
the generated pseudo-ground-truth segmentations in Figure 18(c3)-(c5) show that a part of
the object is incorrectly labelled. Figure 18(a5)-(c5) show another kind of error in generat-
ing pseudo-ground-truth segmentations, when one of the objects of interest is misclassified.
All such errors in the pseudo-ground-truth segmentations can seriously mislead the DNN
training. Even though the class labels are known for all the images, the classification loss has
hardly any impact for large misclassifications because the classifier aggregates the probabil-
ities of all the pixels class-wise; thus, the weakly-supervised examples are unable to guide
the DNN towards much better learning. Our method uses the translator DNN to effectively
reject the sampled segmentations depicting incorrect regions and misclassifications, as well
as the false prediction of foreground object in-place of background.

5. Conclusion

We propose a novel variational DNN framework for the semantic segmentation of blood-
tissue microscopy images relying on weakly-and-semi-supervised learning from a training
set comprising (i) a few images having per-pixel semantic segmentations and (ii) all im-
ages having class labels for the objects of interest present within. To enable weakly-and-
semi-supervised learning, our framework couples semantic segmentation with image clas-
sification, with end-to-end learning. We propose a novel variational framework relying on
MCEM based learning, infering a posterior distribution on the hidden variable modeling
the segmenter-DNN’s multiscale latent space. We propose a MH sampler for the posterior
distribution, along with sample reparametrizations to enable end-to-end backpropagation.
During inference on test images, our variational framework can inform about the uncer-
tainty associated with the probabilistic per-pixel semantic segmentation and the probabilis-
tic image-level classification. We provide empirical analysis that sheds key insights into
the model designs and capabilities underlying various weakly-and-semi-supervised learn-
ing schemes by visualizing intermediate outputs/images of the DNNs underlying various
methods. Results on three publicly available real-world datasets show the benefits of our
framework.
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