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Vincent Noblet https://orcid.org/0000-0002-3655-3163 vincent.noblet@unistra.fr
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Abstract

This study evaluates the performance of conventional SyN ANTs and learning-based reg-
istration methods in the context of pediatric neuroimaging, specifically focusing on intra-
subject deformable registration. The comparison involves three approaches—without (NR),
with rigid (RR), and with rigid and affine (RAR) initializations. In addition to initial-
ization, performances are evaluated in terms of accuracy, speed, and the impact of age
intervals and sex per pair. Data consists of the publicly available MRI scans from the
Calgary Preschool dataset, which includes 63 children aged 2-7 years, allowing for 431 reg-
istration pairs. We implemented the unsupervised deep learning (DL) framework with a
U-Net architecture using DeepReg and it was 5-fold cross-validated. The evaluation in-
cludes Dice scores for tissue segmentation from 18 smaller regions obtained by SynthSeg,
analysis of log Jacobian determinants, and registration pro-rated training and inference
times. Learning-based approaches, with or without linear initializations, exhibit slight su-
periority over SyN ANTs in terms of Dice scores. Specifically, DL-based implementations
with RR and RAR initializations significantly outperform SyN ANTs. The lower Dice
scores of SyN ANTs are likely due to its lack of population-based optimization, unlike the
DL methods which learn optimal parameters through training. Both SyN ANTs and DL-
based registration involve parameter optimization, but the choice between these methods
depends on the scale of registration—network-based for broader coverage or SyN ANTs
for specific structures. Learning-based registration offers fast inference times but needs
training, whereas SyN ANTs requires manual fine-tuning, with less clear guidelines, par-
ticularly for younger cohorts. Both methods face challenges with larger age intervals due
to greater growth changes. Future work will extend the framework to younger populations
and explore models that better separate different levels of transformations for improved
local brain region registration. The main takeaway is that while DL-based methods show
promise with faster and more accurate registrations, SyN ANTs remains robust and gen-
eralizable without the need for extensive training, highlighting the importance of method
selection based on specific registration needs in the pediatric context. Our code is available
at https://github.com/neuropoly/pediatric-DL-registration.
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1. Introduction

Deformable image registration involves the alignment of a pair of images to establish a
shared coordinate reference framework. It is used for both intra and inter-subject analy-
ses within the medical domain, playing a vital role in achieving normalized visualizations
across brain scans (Uchida, 2013). This research focuses on the fact that so far, deformable
image registration is less adapted to pediatric data, this can arise from bigger volume dif-
ferences when analyzing longitudinal data of a subject’s brain at two different time-points,
but also the lack of pediatric data availability (Barkovich et al., 2019). However, improv-
ing registration performed on neuroimaging data of pediatric populations remains essential
for template creation as well as different diagnostic pipelines. Currently, conventional de-
formable registration methods such as ANTs (Avants et al., 2011), NiftyReg (Modat et al.,
2010) or Elastix (Klein et al., 2010) are functional. Nonetheless, when dealing with ex-
tensive datasets, the iterative optimization-based estimation of deformation fields makes
the process time-intensive. The emerging deep learning (DL)-based techniques, incorpo-
rating convolutional neural networks (CNN), can allow faster registrations by applying a
learning-based approach instead. In essence, these recently devised techniques enable the
direct estimation of deformation fields from input 3D volume pairs. This study aims to
evaluate registration implementations in the pediatric context, comparing the conventional
SyN ANTs method with DL-based approaches, with a focus on their performance in terms
of accuracy, speed, initialization, and the impact of age intervals per pair and separated by
sex within intra-subject pediatric data.

1.1 Current DL-based Registration Frameworks for Deformable Registration
and Its Evaluation in the Pediatric Context

A popular DL-based registration approach is VoxelMorph (Balakrishnan et al., 2019), which
is designed for brain MRI applications. It uses a U-Net-like architecture (encoder-decoder
with skip-connections)(Ronneberger et al., 2015) and employs the scaling and squaring in-
tegration method on computed velocity fields to obtain diffeomorphic deformation fields.
Kuang et al.(Kuang and Schmah, 2019) developed the fast image registration (FAIM) algo-
rithm, which showed superior results to VoxelMorph. FAIM, composed of a spatial deforma-
tion module largely inspired by the spatial transformer networks (STN) (Jaderberg et al.,
2015), stacks moving and fixed images as input for the network and uses a training loss
composed of a cross-correlation metric and regularization to ensure smooth, non-negative
Jacobian determinants. Similarly, Zhang (2018) introduced the inverse-consistent deep net-
work (ICNet) with inverse-consistent and anti-folding constraints added to a mean squared
distance similarity metric. Also using a U-Net like architecture and STN, their method out-
performed Demons-based registration (Thirion, 1998) as well as symmetric normalization
(SyN) based registration (Avants et al., 2008).

All these DL-based registration frameworks often use U-Net-like architectures which
frequently outperform conventional registration methods and are trained on adult MRI brain
data. Now, these tools are even incorporated into popular neuroimaging analysis tools such
as FreeSurfer. EasyReg (Iglesias, 2023) implements SynthSeg’s (Billot et al., 2023a) model
to predict forward and backward nonlinear fields, achieving symmetric and diffeomorphic
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transformations. This approach is the first learning-based registration algorithm publicly
available via FreeSurfer (Fischl, 2012).

However, few of these registration implementations have been evaluated in the pediatric
longitudinal context (Ghosh et al., 2010). Efficient and accurate registration algorithms
could facilitate the comprehensive analysis of longitudinal changes in deformation fields
across a larger number of subjects, particularly when handling extensive neuroimaging
datasets. This gap presents an opportunity to analyze neurodevelopment in young chil-
dren, where these advanced DL-based registration methods could be particularly impactful.
Recently, Hoffmann et al. (2023) use SynthMorph to evaluate affine and joint registra-
tion (affine+deformable) across six different datasets, including only two that encompass
pediatric subjects aged 5-21 years from the Lifespan Human Connectome Project Devel-
opment (HCPD) and MASiVar (MASi) datasets (total of 100 pediatric images). Notably,
these pediatric datasets were not used for training, which was conducted solely with adult
populations. Moreover, the pediatric datasets did not undergo any preprocessing steps
such as skull-stripping or N4 correction, which could impact the registration results. De-
spite these limitations, SynthMorph demonstrated successful generalization, achieving Dice
scores between 0.85 and 0.90 on 23 bilateral brain regions within these pediatric datasets.
Nevertheless, further evaluation of learning-based methods contrasted to conventional ones
is needed, as significant neurodevelopmental changes can be revealed in longitudinal toddler
imaging (Barkovich et al., 2019).

1.2 Importance of Longitudinal Changes

Characterizing longitudinal changes is more present in other applications such as disease
detection using normative modeling (Bethlehem et al., 2022; Rutherford et al., 2022; Chen
et al., 2021) in adult populations. For example, Alzheimer’s disease has been one of the
most studied neurodegenerative diseases to characterize those morphological transforma-
tions happening through time (Gafuroglu et al., 2018; Ouyang et al., 2021, 2022). Usually,
from the presence of atrophy measured by hippocampal volume or cortical thickness mea-
sures extracted from structural MRI images, normative measures can be distinguished from
pathological cases (Jang et al., 2022).

The deformation field or hidden transformation between two time points contains re-
gions of contraction and expansion as well as potentially being a growth indicator. Hence,
neurodevelopmental evolution trajectories could be extracted in the pediatric context. In-
deed, changes are exponentially variable from 0 to 6 years of age, where a 6-year-old brain
resembles at 95% to an adult brain (Phan et al., 2018). Being dependent on the age interval,
an analysis on deformable intra-subject registration performance can be of value to dissect
developmental patterns.

The primary aim of this study is to conduct a detailed comparative analysis between
SyN ANTs, a conventional registration algorithm and an unsupervised neural network. This
involves evaluating the potential of a deep learning framework for intra-subject registration
on pediatric longitudinal brain data when separating global and local transformations. Cen-
tral to our objectives are: 1) examining the performance of unsupervised neural networks,
with and without initialization registration tasks, and 2) analyzing how intra-subject age
intervals and sex impact the performance metrics used to assess the DL-based registration.
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This comparative analysis will inspect the advantages and disadvantages of each method
in terms of performance, training, age intervals, and inference times, thereby placing a
significant focus on the distinctions between SyN ANTs and a Voxelmorph-like DL-based
approach. Hence, one of the contributions of this study is to compare SyN ANTs (Avants
et al., 2008) and DL-based methods in achieving a complete deformable registration task
on pediatric longitudinal brain magnetic resonance (MR) images when using three pre-
alignment approaches. This work builds upon a previous short paper that was presented at
the WBIR Workshop (Dimitrijevic et al., 2022). While the primary goal remains consistent,
our approach differs in terms of the methodology, and we have introduced a comparative
analysis with SyN ANTs, a conventional registration algorithm. The prior paper enabled a
comparison between 1.5 mm and 2.0 mm isotropic images, revealing that the 1.5mm version
yielded superior registration accuracy. Furthermore, we have expanded our investigation
to incorporate age and sex-related analyses, capitalizing on the available longitudinal data
to assess performance metrics with respect to age intervals in-between pairs. Additionally,
this work includes an extended review of relevant literature.

2. Methods

As illustrated in Figure 1, our investigation explores three initialization approaches: NoReg
(NR), which involves no pre-alignment; RigidReg (RR), consisting of a rigid pre-alignment;
and RigidAffineReg (RAR), incorporating both rigid and affine pre-alignments. These serve
as inputs to either a U-Net for learning-based deformable registration (DL Reg) or SyN
ANTs, serving as the conventional state-of-the-art comparison. SyN ANTs was selected
due to its widespread use in the literature for various registration tasks in medical imag-
ing (Tustison et al., 2021) and its benchmark performance in numerous competitions (Menze
et al., 2015; Murphy et al., 2011). On the other hand, the learning-based architecture
and loss function was inspired by Voxelmorph (Balakrishnan et al., 2019), but specifically
trained on pediatric data. It is crucial to highlight that the U-Net architectures main-
tain consistent layer structures (as detailed in section 2.1), ensuring consistent compari-
son across all three initialization techniques. The exact parameters used for rigid as well
as rigid and affine initializations are available in section A.1 in the supplementary ma-
terial. The reproducible pipeline is also available on the open-source Github repository
at https://github.com/neuropoly/pediatric-DL-registration.

2.1 Chosen Architecture

This subsection focuses on the unsupervised chosen DL framework to accomplish the full
non-rigid registration task. Taking as input a moving (M) and fixed (F) image pair, the
network computes a dense displacement field (DDF) which allows the creation of a moved
image also called warped moving image or predicted fixed image. This moved image is
obtained from aligning the moving image to the fixed image. All calculations are done
with 3D volumes as input. The selected CNN is a U-Net for which training optimizes a set
of learnable parameters denoted as θ, corresponding to the kernel weights of the network.
More specifically, the U-Net architecture which generates the deformation fields is a 3-
layer encoder and decoder with 8, 16 and 32 channels each with skip connections. The
specific parameters for the architecture are available in the config files on Github which are
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Figure 1: Illustration of the three initialization strategies, NoReg (NR), RigidReg (RR) as
well as RigidAffineReg (RAR), (blue) used for comparing deep learning (green)
and conventional SyN ANTs (red) registration approaches.

reproducible when using DeepReg. A stochastic gradient descent method is used to find the
optimal parameters of the network. In our case, an ADAM optimizer with a learning rate set
to 1.0e-4 is used. Each training split was trained for 250 epochs and a batch size of 2 pairs
of moving/fixed images. Figure 2 illustrates the loss function of the unsupervised network.
This loss function comprises two terms: the first term, the local normalized cross-correlation
(LNCC) similarity measure, selected for its robustness to local intensity variations. The
second term represents L2-norm gradient regularization, with its weighting factor set to 1
based on an optimal value from the literature (Balakrishnan et al., 2019). While exploring
different L2-norm gradient regularization factors for realistic deformation fields would be
insightful, this study’s primary focus remains on assessing various initialization approaches.
The training procedure and architecture initialization are facilitated by the version named
develop 0.0.0 from DeepReg (Fu et al., 2020), a DL-based registration framework. A 5-fold
cross-validation scheme is used for train and test splits. Finally, training is executed on
a system equipped with Ubuntu 18.04.5 (amd64), featuring an octa-core Intel i7-9700KF
CPU, 62.7 GB of RAM, and a GeForce RTX 2080 Ti GPU.

3. Data

The chosen publicly available Calgary Preschool dataset (Reynolds et al., 2020) was ob-
tained using a General Electric 3T MR750w system and 32-channel head coil (GE, Wauke-
sha, WI) at the Alberta Children’s Hospital in Calgary, Canada. This acquisition process
received approval from the University of Calgary Conjoint Health Research Ethics Board.
The dataset comprises T1-weighted MRI brain scans from 96 children aged 2 to 8 years.
These scans were obtained using an FSPGR BRAVO sequence with the following param-
eters: TR = 8.23 ms, TE = 3.76 ms, TI = 540 ms, flip angle = 12 degrees, voxel size =
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0.4492x0.4492x0.9 mm³, 210 slices, matrix size = 512x512, and a field of view = 23.0 cm.
It includes multiple scans at different time points for 96 subjects, an essential element for
single-modality intra-subject DL registration. Given the inherent challenges in obtaining
pediatric datasets, the dataset size is particularly noteworthy, especially as it offers longitu-
dinal samples (Lebel and Deoni, 2018). It also includes age, biological sex, handedness, and
other parameters which can be further analyzed. From the 96 subjects, it was necessary
to choose children with two or more time-point scans from the acquired data. Hence, 64
subjects respected those conditions which brings the used data to a total of 247 T1-weighted
images allowing 434 combinations of moving/fixed registration pairs.

Table 1 displays the dataset characteristics and relevant parameters. A graphical repre-
sentation of the longitudinal age and sex parameters is also available in Figure 7. Addition-
ally, the remaining 64 subjects were inspected for image quality. Each image in the dataset
was verified to possess the stated matrix dimension of 512x512x210. For the data prepro-
cessing details, refer to section A.1 in the supplementary material. A full pipeline including
steps from data preprocessing to training is also available in Figure 8 in the supplementary
material.

4. Experiments

4.1 Segmentations Retrieval

For segmentations, SynthSeg+ (Billot et al., 2023a), also referred as SynthSeg in the follow-
ing analyses, was used to obtain 32 labels representing various brain structures, resulting
in a total of 18 regions for segmentation. Subsequent analyses focus on both the 18 regions
individually and globally on three primary tissues: white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF). For global tissues, WM encompasses cerebral white mat-
ter, brain stem, cerebellum white matter, pallidum, and ventral DC; GM includes cerebral
cortex, crebellum cortex, accumbens area, caudate, thalamus, putamen, hippocampus, and
amygdala; and CSF comprises the lateral ventricle, inferior lateral ventricle, 4th ventricle,
3rd ventricle and CSF regions. For QC, initially, three pairs out of the 64 available pairs
were excluded using SynthSeg’s QC scores, as one subject within each pair had values lower
than 0.6 (Billot et al., 2023b). Subsequently, a visual QC check was performed, and no
images were excluded.

4.2 Validation Process

Validating registered images is challenging due to the absence of common and normalized
decision metrics (Christensen et al., 2006). In this work, we inspect two types of Dice
scores and the influence of age interval per pair and sex-specific differences on performances,
pro-rated training and inference times, percentage of negative Jacobian determinant (JD)
and sum of absolute log JD values. A detailed overview is present for each metric below.
Additionally, the equations used for Dice scores and JD related metrics are detailed in
section A.2 in the supplementary material.

Unweighted and Weighted Dice Scores: As depicted in Figure 2, the validation
process in terms of Dice scores is represented in black dashed lines. Indeed, moving seg-
mentations are warped using the network’s output DDFs and then compared to the fixed
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Table 1: Characteristics of the chosen subset from the Calgary Preschool dataset. SD is for
standard deviation.

Calgary Preschool subset

No. of subjects 64

No. of images 247

No. of scans/subject

Average (SD) 3.86 (1.59)

Min 2

Max 10

Total no. of possible combination pairs 434

Age of all time point scans (years)

Average (SD) 4.49 (1.00)

Min 1.97

Max 6.90

Sex no. of (%)

Female 107 (∼43)

Male 140 (∼57)

Handedness no. of (%)

Right 214 (∼87)

Left 25 (∼10)

Both 8 (∼3)

segmentations with the Dice score as the performance metric. Maximal region overlap is
indicated by a Dice score of 1 and no overlap by 0. It’s crucial to highlight that when av-
eraging Dice scores across regions of different sizes, larger regions like CSF, cerebral white
matter, and cerebral cortex may dominate the results. Indeed, overlap scores of small and
localized anatomical regions are to be prioritized as reliable indicators that can differentiate
between plausible and inaccurate registrations (Rohlfing, 2012). To reduce the influence of
larger regions, a weighted Dice score is calculated with the weight consisting of the inverse
number of voxels per region. This weighted Dice score is used to assess performances for each
one of the 18 available regions. SyN ANTs and DL-based approaches were also compared
in terms of the commonly used Dice score in the literature, referred as unweighted Dice
score, on each of the 18 regions and on WM, GM and CSF by averaging sub-regions within
these tissues from the total 18 regions available from SynthSeg+ (Billot et al., 2023a). Un-
weighted Dice scores for each of the 18 regions and for the three global tissues are plotted
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against age intervals in years per pair to measure the influence of age. Additionally, the
same age-related analyses are performed separately for each sex.

Pro-rated Training and Inference Times: In our evaluation, we employ the concept
of pro-rated training time as a key metric for assessing the computational efficiency of model
training relative to dataset size. Pro-rated training time is calculated by dividing the total
training time by the number of pairs present in the dataset. Regarding inference times,
they denote the duration required to generate a warp field, either through prediction using
the trained U-Net model or via running the SyN ANTs algorithm for each pair. They were
performed on each pair five times and averaged across the five folds.

Negative JD and Sum of Absolute Log JD values: Calculated deformation fields
from both DL-based and SyN ANTs registration methods were evaluated for foldings us-
ing the percentage of negative JD values and the average sum of absolute log JD for all
initialization approaches. These metrics assess invertibility and local topology preserva-
tion of deformation fields, which are crucial for adequate registration quality. To verify if
those properties are ensured, the percentage of negative JD and the sum of absolute log
JD values are computed on each DDF generated per registration pair. A negative JD indi-
cates non-invertibility properties due to the presence of unwanted local folding. As for log
normalized JD values, they show volumetric changes post-registration: negative values in-
dicate local volume contraction, while positive values indicate local volume expansion. For
the average sum of absolute log JD over all pairs, it is calculated within local sub-regions
extracted from SynthSeg and encompassing global WM, GM, and CSF regions, excluding
background regions. Finally, the distribution of the sum of absolute log JD values within
the whole brain region is inspected for both DL Reg and SyN ANTs to compare their regu-
larization strengths. These metrics offer insights into the deformation characteristics within
specific brain regions and potential distortions, helping assess deformation smoothness or
regularization strengths between methods.

5. Results

Figure 3 illustrates Dice scores averaged across all 18 segmented regions for the three ini-
tialization methods: NR, RR, and RAR for DL-based registration (in green), contrasted
with the results obtained using SyN ANTs (in red). Initial Dice scores prior to both SyN
ANTs and U-Net processing are shown in blue. Dice scores weighted based on the inverse
number of voxels per region and normalized by the sum of weights for all 18 regions from
SynthSeg are available on supplementary Figure 9 which exhibit similar trends as in Figure
3. For comprehensive Dice score breakdowns across the segmented regions and comparisons
to SyN ANTs, refer to Table 2 and Figure 10 for results across WM, GM and CSF obtained
by averaging SynthSeg sub-regions within these tissues from the total 18 regions avail-
able. Figure 11 in the supplementary material also shows Dice scores for all 18 segmented
regions separately averaged over all subjects for all three initialization scenarios. Addi-
tionally, Table 2 presents a comparison of pro-rated training time and inference durations
between DL-based and ANTs registration pipelines. Notably, for all three initialization
approaches, the DL-based method demonstrates markedly faster inference times per pair
when the model is trained, between 22 to 74 times faster, compared to the required SyN
ANTs registration time. However, when comparing pro-rated training times to the same
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Figure 2: Schema of the training procedure to obtain a deformation field (ϕ) with given
moving (M) and fixed (F) 3D pair of images. The validation technique using
WM, GM and CSF segmentations (WM depicted in this figure) to calculate Dice
scores is also shown in the black dashed region as well as the loss function in the
upper right corner where v indicates voxels for the L2 norm of the displacement
gradient, ∇u, which encourages a smooth deformation field. ϕ is calculated by
adding the identity transform to the displacement field (ϕ = Id + u). Image
inspired by (Balakrishnan et al., 2019).

SyN ANTs registration times per pair, SyN ANTs is around 1.4 times faster for both RR
and RAR initializations.

Furthermore, due to the non-parametric nature of the data, two-sided Wilcoxon tests
have been conducted for all three initialization approaches between DL Reg and SyN ANTs.
For NoReg, the median results from DL-based approaches are not statistically different
from those of SyN ANTs across all three segmented regions (p-values > 0.18, p > 0.05).
In contrast, for RigidReg and RigidAffineReg, the results from DL-based approaches show
a statistically significant difference from those of the corresponding ANTs pipelines in all
three regions (p-values < 1.27e-17, p < 0.05). As shown in Table 2, for both RR and RAR
initializations, DL Reg outperforms SyN ANTs for all three segmented regions. However,
SyN ANTs has decreased performances compared to the initial alignment. As for NR, only
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Figure 3: Dice score results on the test sets represented as boxplots for each initialization ap-
proach (NoReg, RigidReg and RigidAffineReg) for DL-based methods compared
to the initial Dice scores pre-conducting the registration steps. Each method is
also compared to the SyN ANTs registration. The Dice scores are averaged over
all 18 segmented regions. The table in the lower right corner shows the mean±SD
Dice scores for all scenarios.

the average Dice score calculated on CSF tissues for DL Reg are equal in comparison to
SyN ANTs however with a smaller standard deviation. When examining each of the 18
segmented regions individually, p-values and statistical significance (p<0.05) were deter-
mined from Wilcoxon tests, which compare SyN ANTs Dice scores to initial Dice scores
before any initialization (Figure 13), DL Reg Dice scores to initial Dice scores before any
initialization (Figure 14) and DL Reg Dice scores to SyN ANTs Dice scores (Figure 15), all
of which are presented in the supplementary material. Learning-based results show a sta-
tistically significant difference across all 18 regions when compared to the initial alignment
for NR. However, there are some exceptions for the two other initialization approaches:
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for RR initializations in regions such as the caudate, 3rd ventricle, and amygdala, and for
RAR initializations in the putamen, pallidum, 3rd ventricle, hippocampus, amygdala, and
accumbens area. Also, the percentages of instances where SyN ANTs outperforms DL Reg
for NR (64.1%), RR (28.6%), and RAR (10.8%) initializations were calculated across all 18
regions, considering a total of 431 pairs.

Table 2: Dice scores and average sum of absolute log JD values per segmented regions,
white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) by averaging
SynthSeg sub-regions within these tissues from the total 18 regions available for
all three proposed approaches and their comparison to SyN ANTs as well as the
initial alignment. This average is calculated by dividing by the number of voxels
per region. Pro-rated training (divided by the number of pairs) and inference
registration time per pair are shown. Values are presented as mean ± SD.

Also, Table 2 highlights the average sum of absolute log JD values for all three segmen-
tation regions for both DL-based and SyN ANTs approaches. Also, it is to be noted that
the percentage of negative JD values is 0% for all initialization approaches. As visible on
Table 2, NR contains the larger sum of absolute log JD values for all segmented regions,
but remains lower than 0.387. DL Reg seems to lead to more unrealistic deformations
compared to SyN ANTs when no prior intialization is done. This is the opposite when
looking at RR and RAR initializations, where DL Reg has on average smaller values than
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SyN ANTs except in the CSF region. It suggests that the deformation fields are relatively
smoother for DL Reg whilst still achieving higher Dice scores. As expected, RR and RAR
seem to be more robust to local foldings as their average sum of absolute log JD over all
pairs, no matter the segmented region, are always below 0.155 for both DL Reg and SyN
ANTs. For further regularization analysis, boxplots in Figure 6 depict the distribution of
the sum of absolute log JD values within the whole brain region. This graphical representa-
tion highlights that, with the exception of NR, both DL-based registration and SyN ANTs
exhibit comparable average absolute sums of log JD for all initialization methods. In the
case of NR, DL Reg shows larger values, just as the trends observed in segmented tissues.
Lastly, refer to supplementary Figure 12 for an illustration of warped segmentations and
their corresponding warping fields for each initialization method and DL-based registration,
allowing for a visual examination of their smoothness.

Figure 4 displays an example of registration results on two subjects for all three proposed
approaches as well as SyN ANTs counterparts. Moved images are obtained by warping the
moving image with the obtained DDFs for both DL-based and SyN ANTs approaches using
antsApplyTransforms function from ANTs. Red arrows in the images indicate regions where
the warping did not go as expected. On the other hand, green arrows indicate relatively good
reproductions of the desired fixed image when inspecting the moved image. Yellow arrows
identify areas in proximity to the structures from the fixed image. However, these areas
may display blurriness or slight deviations from the expected alignment, indicating regions
that are not perfectly matched. For both age intervals, in the RR and RAR scenarios, DL
Reg seems to attain similar results as SyN ANTs visually.

To better consider the influence of age intervals on Dice score outcomes, refer to Figure
5, which depicts Dice scores for individual segmented regions against age intervals measured
in years per pair. The green data points and corresponding trendlines illustrate outcomes
from the proposed initialization followed by DL-based registration. These are contrasted
with SyN ANTs Dice scores, represented by red data points and trendlines for all three
initialization approaches considered: NR, RR and RAR. The trendlines, visualized through
linear regressions, were obtained using ordinary least squares estimation, with the R-squared
value reflecting squared linear correlation. In the learning-based context, the average coef-
ficient of determination stands at 0.707. This signifies that, on average, more than 70.7% of
the explained Dice score variance is attributed to age interval fluctuations, irrespective of
the initialization method employed. Comparatively, the state-of-the-art SyN ANTs pipeline
exhibits a slightly lower percentage, with an average R-squared value of 0.653. This discrep-
ancy is primarily due to diminished coefficients when no initialization is applied. In terms of
performance, the green trendlines for RR and RAR approaches consistently surpass the red
counterparts associated with the conventional ANTs pipeline, across all three segmented
regions, except for the CSF and GM in the NR approach. For smaller age intervals, SyN
ANTs demonstrates enhanced performance in this particular scenario, specifically for an
age interval less than 0.6 for GM and less than 1.6 for CSF. A Plotly HTML displaying
trendlines of Dice scores versus age intervals for each one of the 18 segmented regions can
be accessed on the GitHub repository.

The same analyses were performed by separating sex information and seeing if it has an
impact per initialization approach. These are available in supplementary figures 16 through
18.
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Figure 4: Visual representation of the results obtained with all three DL-based approaches
(moved network) compared to SyN ANTs (moved ANTs) results with an age
interval between moving and fixed images of 0.116 years on the left and 3.37
years on the right. Red arrows highlight instances of misalignment, yellow arrows
indicate blurriness or minor deviations from the fixed image, and green arrows
denote successfully aligned areas.

6. Discussion

In this discussion, we examine the registration results obtained using the conventional SyN
ANTs alignment method and the U-Net learning-based method. Initially, we analyze Dice
scores across all 18 segmented regions, and afterward, we focus on sub-regions within these
18 regions that are included in WM, GM and CSF global tissues. Then, the average sum
of absolute JD values are inspected for the whole brain, but also per segmented tissues.
Subsequently, we highlight the disparities in both pro-rated training and inference times
required for registering intra-subject pairs. Moving forward, we inspect age-related analyses,
considering age intervals per pair and any sex-specific differences. We finish by touching
upon the generalization capacities of each registration approach and some recommendations
for applying intra-subject registration in the pediatric context.

Dice Scores Across All 18 Regions: When applying a pre-alignment strategy before
undergoing an unsupervised U-Net, both RR and RAR DL-based approaches exhibit similar
performances to the conventional ANTs algorithm in terms of Dice scores. However, when
the network is trained, they are faster in terms of registration times compared to the con-
ventional approach. These two DL-based approaches can register two intra-subject images
with great quality proven by the high average Dice score results obtained (0.825±0.024 and
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Figure 5: Dice scores against age intervals for all initialization methods compared to SyN
ANTs. The three rows correspond to NoReg, RigidReg, and RigidAffineReg, and
the three columns represent WM, GM, and CSF segmentations. SyN ANTs Dice
scores are shown in red, while the results of DL-based approaches are in green,
with corresponding trendlines in the same color. Dice scores in global regions
are calculated by averaging SynthSeg sub-regions within these tissues from the
total 18 regions available. Figure titles include coefficients of determination (R-
squared) for reference. Note: the y-axis scale for NoReg differs due to a distinct
range of Dice scores.

0.913±0.018 for RR and RAR respectively) as seen in Figure 3 whilst operating 22 times
faster than the SyN ANTs algorithm. Nevertheless, when comparing pro-rated training
times to the corresponding SyN ANTs registration times per pair, SyN ANTs demonstrates
approximately 1.4 times greater speed for both RR and RAR initializations. For the NR
approach, SyN ANTs achieved an average Dice score of 0.591±0.332, and DL Reg achieved
0.617±0.180. Both are higher than the initial Dice score of 0.231±0.131. Interestingly, al-
though SyN ANTs exhibited a lower mean Dice score, its higher median Dice score (0.806)
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Figure 6: Average sum of absolute Log Jacobian determinants for all three initialization
approaches with DL-based in green and SyN ANTs in red. This average is cal-
culated by dividing the sum by the total number of voxels in the brain region
per volume. In the upper right corner, a table of the average over all pairs is
presented.

compared to DL Reg (0.676) suggests a more robust performance with occasional complete
registration failures, highlighting the trade-off between consistency (higher mean) and the
potential for superior performance (higher median). It’s also crucial to note that for NR,
there is no statistical difference between SyN ANTs and DL Reg median Dice scores. This
observation may explain why, in Figure 9, the only initialization for which the trend differs
from Figure 3 is NR. In this case, when more weight is given to smaller regions based on
their number of voxels, SyN ANTs has a mean Dice score of 0.532±0.331, while DL Reg
has a mean Dice score of 0.488±0.205, even though SyN ANTs maintains a higher median
weighted Dice Score (0.73). For RR, SyN ANTs has the same mean Dice score of 0.735 as
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after initial alignment with a smaller standard deviation. Whilst for the unweighted Dice
score, SyN ANTs achieved a Dice score of 0.818±0.017, and DL Reg achieved 0.825±0.024
for the RR approach. Again, both are higher than the initial Dice score of 0.816±0.034.
Finally, for the RAR approach, SyN ANTs achieved a Dice score of 0.895±0.023, and DL
Reg achieved 0.913±0.018. This time, only the DL Reg Dice score is higher than the initial
Dice score of 0.907±0.025, not SyN ANTs. It is noteworthy that while SyN ANTs has lower
Dice scores for RR and RAR initializations, it demonstrates fewer outliers compared to DL
Reg and the initial alignment. Examining more localized regions as illustrated in Figure
11, DL Reg exhibits slightly superior performance compared to SyN ANTs across all 18
regions. Notably, CSF, the 3rd ventricle, and the 4th ventricle show the lowest Dice Scores,
while the hippocampus, caudate, and putamen exhibit the highest scores. Frequently, in the
context of RR and RAR initializations, SyN ANTs fails to achieve higher Dice scores than
those obtained during the initial alignment. Particularly in the case of RAR initialization,
where images share substantial similarity in intra-subject registration, SyN ANTs struggles
to detect local changes associated with neurodevelopment. This suggests that SyN ANTs
may benefit from more nuanced fine-tuning tailored to specific age ranges or individual pairs
of images, rather than employing a global approach across a target population. Indeed, to
fine-tune ANTs more appropriately for specific age ranges, the primary approach involves
using distinct registration parameters tailored to the age group and individual in question.
This, however, entails a lengthy and manual process. In contrast, DL-based registration
streamlines this by enabling the network to learn and adapt through the training process,
eliminating the need for manual adjustments specific to age ranges, although it is trained
only for a specific population. Considering the instances where SyN ANTs outperforms DL
Reg with NR (64.1%), RR (28.6%), and RAR (10.8%) initializations across all 18 regions
and 431 pairs, a hybrid approach could be beneficial. Initially, employing the DL-based
approach for all pairs, followed by using SyN ANTs for cases where the registration is un-
successful, could mitigate processing time while ensuring satisfactory registration results.
It is also crucial to note that while all segmentations generated using the DL-based Synth-
Seg segmentation method underwent quality control evaluation, they still do not constitute
ground truth labels. Nevertheless, the method’s robustness is evident as it was trained and
validated on diverse clinical datasets (Billot et al., 2023b).

Dice Scores in Global Tissues: When examining each segmented tissue separately
within the smaller set of 18 regions derived from SynthSeg, where WM and CSF each
constitute 27.8% of the total regions, and GM makes up the remaining 44.4%, DL Reg
using the RAR initialization outperforms RR for WM (0.928±0.016 vs. 0.865±0.021), GM
(0.934±0.014 vs. 0.865±0.022) and CSF (0.721±0.037 vs. 0.866±0.030) segmentations.
However, CSF Dice scores consistently tend to be lower compared to WM and GM for both
DL Reg and SyN ANTs across all three initialization approaches. Our interpretation is that
CSF is more susceptible to the effects of minor misregistration, given its predominantly
thin structure around the brain, encompassing the CSF and ventricles. In contrast, WM
and GM comprise larger, internal structures, such as the brain stem and cerebral white
matter within WM, and the cerebellum cortex within GM. These superior results from RAR
are to be expected as all global transformations (rotation, translation, shear, and scaling)
are accounted for by the rigid and affine registration pre-alignment steps used for RAR.
Therefore, as visualized in Figure 4, the RAR method can uncover local modifications on the
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moved image after passing through the network. Contrary to RAR, NR has difficulties doing
both local and global transformations as no initialization was applied. Indeed, as presented
in Figure 4, parts of the brain microstructures are an unrealistic warping combining both
elements from the moving and fixed images for the example pair with an age interval of
3.37 years. The local transformations are not reproduced as well as when using the two
other initialization approaches (RR and RAR). Indeed, as visible on both examples in
Figure 4, using only a SyN transformation does also not reproduce smaller microstructures
correctly, sometimes completely warping incorrectly (for the lower age interval), as no global
transformation is done beforehand.

The lower Dice scores for both RR and RAR initialization for each of the 18 regions and
looking at the three global tissues may be attributed to the non-optimization of SyN ANTs
in a population-based manner, unlike the network. Indeed, the network-based registration
relies on learning optimal parameters through training from the provided input population.
In contrast, SyN ANTs necessitates individual tweaking for each pair, demanding more
human effort. Therefore, the key takeaway is that both SyN ANTs and DL Reg require
parameter optimization, but the chosen method varies based on whether registration needs
to be performed at a larger scale (encompassing all local regions and multiple subjects)
or more locally for a specific small structure. Network-based registration proves fast at
inference time, adapting quickly to a given input population, but requires training, poten-
tially adding processing time while being more accurate for the studied population. On
the other hand, SyN ANTs requires manual fine-tuning, and clear guidelines are lacking,
particularly for younger cohorts, regarding whether to choose age-specific parameters or
normalize across ages.

Negative JD and Average Sum of Absolute JD Values: As for the percentage
of negative JD values, evaluating if the deformation fields are realistic, the regularization
factor of one seems to be sufficient in keeping this percentage to zero for all three approaches.
The findings regarding the average sum of absolute log JD values indicate comparability
in regularization strengths between DL Reg and SyN ANTs methods, both within the
brain region (Figure 6) and for each segmented region (Table 2). Part of the success
in DL-based approaches can be attributed to the fact that unsupervised learning is used
instead of supervised learning. Indeed, supervised learning, particularly the attempt to
predict ANTs-generated deformation fields, might have imposed restrictions on DL-based
algorithms by confining their evaluation solely to a comparison with pre-existing ANTs-
generated deformation fields.

Pro-rated Training and Inference Times: For the required inference times per
pair presented in Table 2, the DL-based methods notably outpace the conventional ANTs
pipelines, achieving a speedup of 22 to 74 times once the models are trained. However,
the slightly improved Dice scores for RAR initialization compared to RR, observed in both
DL Reg and SyN ANTs, come at the cost of doubling the initialization registration times.
Concerning the pro-rated training time for DL Reg, calculated by dividing the total training
time by the number of training pairs, it averages around 127.51±2.37 across all initialization
approaches. In contrast, SyN ANTs doesn’t undergo training but necessitates parameter
adjustments when a predefined set fails to achieve optimal performance. This process lacks
explicit guidelines, usually initiating with default parameters or values recommended by the
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literature for the specific population dataset, and subsequently adjusting parameters per
pair through quality control procedures.

Age-related Analyses: In Figure 5, as the age interval in-between moving/fixed pairs
increases, the Dice score decreases for all three explored initialization approaches for both
DL Reg and SyN ANTs. Indeed, comparing how much of explained Dice score variance is
due to the age interval when averaging over segmented regions for DL Reg versus SyN ANTs
using NR (67.0% vs 50.8%), RR (72.5% vs 72.7%) and RAR (72.4% vs 72.3%) initializations,
it shows similar results regardless of the approach. One could think this decrease in Dice
score performance is due to the bigger proportion of examples with lower age intervals which
the unsupervised network trains on (average age interval of 1.152±0.684, max age interval
of 3.372 and min age interval of 0.114). However, the conventional iterative method which
takes independent pairs also seems to be following the same negative trend between Dice
scores versus age intervals negating this hypothesis. This potentially shows an intrinsic
difficulty in registering brains which are quite different in age because of their topology, size
and growth factors especially in the pediatric context.

Sex-Specific Differences in Age-related Analyses: As for the supplementary Fig-
ures 16 to 18, showing Dice scores versus age intervals separated by sex (45% female pairs
and 54% male pairs of total intra-subject pairs) for each initialization approach, the same
trends seem to be followed where learning-based registration outperforms SyN ANTs, but
both performances diminishing as the age interval increases. The exceptions are for NR,
where for all three regions for males, DL Reg does not seem to vary with the age interval,
whilst SyN ANTs is slightly more performant for small age intervals and decreases as the
age interval increases. However, it’s crucial to acknowledge that these differences are based
on trendlines reflecting Dice scores, which exhibit significant variability due to the absence
of prior initialization. This trend shift is also visible for RR, but this time only for the
CSF region only for males, where SyN ANTs is slightly more performant for age intervals
bigger than 1.25 years. The coefficients of correlation lie in the same range of around 72%
explained variance for all three initialization approaches versus SyN ANTs averaged over
regions no matter the sex. The only exception is for NR, where the linear trend is much
more visible for the DL Reg approach for males (average of 71.0% explained variance) than
females (61.8%). In contrast, for SyN ANTs, the linear trend explains only 48.8% for males
and 53.4% for females when averaged across all three segmented regions.

Recommendations: In light of the recommendations for pediatric longitudinal reg-
istration, it is crucial to acknowledge the trade-offs between speed, accuracy, and ease of
use when selecting an appropriate registration method. Both the RR + ANTs and RAR +
ANTs methods provide rapid registration times, approximately 1.5 minutes per pair. Nev-
ertheless, SyN ANTs frequently demands more individualized fine-tuning per pair compared
to DL-based approaches, which, in contrast, leverage learned information from a specific
population dataset all at once during the training process. It’s important to note that the
time spent on tuning SyN ANTs parameters is often not accounted for in provided times.
Indeed, SyN ANTs exhibited lower performance as it wasn’t precisely tuned for each region.
For specific small structures like the caudate, amygdala, or pallidum, where precise regis-
tration accuracy is crucial, tweaking ANTs parameters might be relevant. On the other
hand, if the objective involves studying multiple regions, both local and global, DL-based
registration approaches offer a compelling alternative in terms of accuracy and efficiency
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when considering no fine-tuning is required when the network is trained for RR and RAR
initializations. Figure 11 demonstrates that DL-based methods consistently slightly outper-
formed ANTs for almost all regions, as they were tailored for the specific population under
consideration. It is also to be noted that there are no specific guidelines on how to pick SyN
ANTs parameters which makes this task less reproducible. For younger cohorts, where the
brain rapidly develops, a question that often arises is, should the parameters be optimized
for each developmental stage or age range or standardized across stages? (Turesky et al.,
2021). The answer depends on the dataset’s characteristics, including available age ranges
and the registration requirements, whether it involves segmenting all structures or only a
smaller subset of local regions.

Limitations: Finally, it is worth noting that in comparison to SyN ANTs, learning-
based algorithms exhibit a notable reliance on their training set, while SyN ANTs proves
effective with any intra-subject image pair. The average pro-rated training time for DL
Reg, obtained by dividing the total training time by the number of training pairs, is ap-
proximately 127.51±2.37 across all initialization approaches. In contrast, SyN ANTs has a
zero-second training time since registration is conducted individually for each pair and no
learning process is involved. However, achieving optimal registration alignments in terms of
Dice scores requires manual tweaking of the SyN parameters. Despite longer inference times,
SyN ANTs demonstrates greater generalizability. It is essential to acknowledge the gener-
alization limitations of learning-based algorithms, as the trained network exhibits faster
inference times specifically for the chosen pediatric dataset within the provided age range
of 2-7 years old subjects. Assessing these strategies on new pediatric MRI datasets within
the same age range would shed light on their adaptability to entirely unseen data. While 5-
fold cross-validation offers insights into generalization capabilities, testing on a new dataset
would provide a more robust assessment. However, given the challenges of obtaining mul-
tiple longitudinal time-points in pediatric datasets (Wang et al., 2023), especially within
specific age ranges with limited data availability, testing these learning-based strategies on
new data becomes notably challenging.

After comparing both DL Reg and SyN ANTs for all three initialization approaches, it
is noteworthy that DL-based approaches with RR and RAR initializations, show promising
results, delivering Dice scores comparable to SyN ANTs but at significantly faster inference
times. However, ANTs’ advantage is that it does not require training. RR and RAR
excel in registering intra-subject images, particularly due to RAR’s robust pre-alignment
strategy. On the other hand, NR encounters challenges in capturing both local and global
transformations. Age-related analyses reveal a consistent trend of decreasing Dice scores
with larger age intervals, a phenomenon observed across all methods. There are some sex-
specific shifts in performance noted for NR in all three tissues for males where SyN ANTs
is slightly better than DL Reg for smaller age intervals. The exact extent and significance
of this influence would require further investigation and analysis. Finally, recommendations
highlight the trade-offs between speed, accuracy, and ease of use, providing insights into
the suitability of DL-based versus conventional SyN ANTs registration methods for specific
applications. The generalization capabilities of learning-based algorithms and the challenges
of testing on new pediatric datasets are acknowledged.
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7. Conclusion

This study compared the conventional state-of-the-art SyN ANTs registration method with
a DL-based approach, evaluating their performance in terms of accuracy, speed, initializa-
tion, and their influence on age intervals per pair within the intra-subject pediatric context.
Three initialization approaches were explored: NR (without initialization), RR (rigid ini-
tialization) and RAR (rigid and affine initialization). Registration quality was evaluated
using both unweighted and weighted Dice scores for WM, GM, and CSF segmentations,
averaged from corresponding sub-regions of the 18 available regions, while also assessing
the individual performance of each region. Additionally, we computed the average sum of
absolute log JD values to assess the regularity of the obtained deformation fields for both
DL Reg and SyN ANTs methods. These two methods showed comparable regularization
strengths for both within the brain region and per segmented region. We demonstrate
that learning-based approaches, both with linear pre-alignments (RR and RAR) and with-
out (NR), exhibit slight superiority over the SyN ANTs registration method in terms of
Dice scores. Regarding registration quality, the DL-based approaches, specifically with RR
and RAR initializations, significantly outperform (p < 0.05) SyN ANTs, showing mean
Dice scores across all 18 regions of 0.825±0.024 versus 0.818±0.017 and 0.913±0.018 versus
0.895±0.023, respectively. In RR and RAR initializations, SyN ANTs often falls short of
surpassing Dice scores achieved during the initial alignment, especially in RAR, indicating
challenges in detecting local changes related to neurodevelopment. The main takeaway
is that DL-based methods offer faster and more accurate registrations, while SyN ANTs
is robust and works well without needing extensive training. Choosing the right method
depends on the registration scale needed. DL-based registration adapts quickly but needs
training, which can take time, while SyN ANTs requires manual adjustments and lacks clear
guidelines, particularly regarding parameter choices for younger cohorts. Both conventional
and unsupervised DL-based approaches had their Dice scores decrease as the age interval
increased showing intrinsic difficulties to register greater growth changes. Hence, faster
registration steps of pairs closer in time can be used to uncover growth characterizations
for future pediatric neurodevelopmental pipelines.

Future work will apply this framework on younger populations (0-2 years) from other
datasets where the developmental factor is greater. These changes can be inspected in terms
of their obtained DDFs to uncover growth patterns in the intra-subject context. It would
also be useful to decompose the network into both global and local elements to be able to
more accurately register fine-grained and more local brain regions.
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Appendix A. Supplementary Material

A.1 Data Preprocessing

Prior to using DL models, preprocessing of MR images is crucial. This involves N4 bias
correction for intensity uniformity and skull-stripping for isolating the brain region. Skull-
stripping was done by first doing rigid, affine and SyN registration steps to the Montreal’s
Neurological Institute (MNI) 4.5-8.5 template (Fonov et al., 2011) to obtain a brain mask for
each subject scan. For rigid and the affine transforms, the parameters used are a gradient of
0.1, mattes similarity metric, 1000x11110x11110 multi-resolution steps, a threshold of 1e-7
for 20 iterations as a convergence criteria, 3x2x1 shrink factors and 4x2x1 voxels as smooth-
ing sigmas. As for SyN, its gradient step, updateFieldVarianceInVoxelSpace and parameters
are respectively 0.2, 3 and 0. A cross-correlation similarity metric is used with 100x100x50
multi-resolution steps, a threshold of -0.01 for 5 iterations as a convergence criteria, 4x2x1
shrink factors and 1x0.5x0 voxels as smoothing sigmas. The registrations performed were
done at full resolution to ensure better alignment results. However, keeping the images at
full resolution also increases registration time. Paniukov et al. (2020)’s techniques, executed
through Nipype in Python pipelines (Gorgolewski et al., 2021), were adopted for these tasks,
as the analysis was successfully done on the same dataset. Moreover, a manual quality con-
trol (QC) step was incorporated to ensure accurate registration-based skull-stripping for
each scan, and no pairs were excluded as a result. The final skull-stripped images were
used as inputs to both SyN ANTs and the U-Net after rescaling them to 1.5x1.5x1.5 mm
isotropic.

As for the parameters used for rigid as well as rigid and affine initializations, they are
a gradient of 0.1, mattes similarity metric, 500x250x100 multi-resolution steps, a threshold
of 1e-6 for 10 iterations as a convergence criteria, 4x2x1 shrink factors and 2x1x0 voxels
as smoothing sigmas. If some registrations failed with specific image pairs with the given
parameters, the multi-resolution steps were increased, and the threshold decreased. For
SyN ANTs, we employed a gradient step of 0.1, and updateFieldVarianceInVoxelSpace and
totalFieldMeshSizeAtBaseLevel parameters were respectively set to 3 and 0.

A.2 Metrics

A.2.1 Unweighted and Weighted Dice Scores

We use the term unweighted Dice score to refer to the Dice score equation commonly used
in registration studies, which assesses registration performance in terms of volume overlap
between the warped image and ground truth. This metric is also interchangeably referred
to as simply the Dice score throughout the article. These unweighted Dice scores are also
inspected with respect to the age interval per pair and separated by sex. Dice scores are
calculated in the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF)
by averaging SynthSeg sub-regions within these tissues from the total 18 regions available.
Given v, the voxels for the fixed (F) and moved volume (M), the Dice score for a region, r
is calculated as follows:

Dice(vrF, v
r
M ◦ ϕ) = 2 ·

|vrF ∩ (vrM ◦ ϕ)|
|vrF|+ |vrM ◦ ϕ|

(1)
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An additional analysis was introduced to reduce the influence of larger regions, pre-
venting them from disproportionately elevating the mean Dice score across all 18 regions
segmented using SynthSeg. Hence, a weighted Dice score, Dweighted, is calculated per re-
gion, r, using a weight, wr by incorporating the inverse number of voxels as presented in
the equations 2 to 4 below. The average weighted Dice scores are obtained by summing the
scores across all 18 segmented regions and subjects.

Dweighted =

18∑
r=1

wr ×Dunweighted(r) (2)

wr is calculated as such per region where the denominator ensures that the weights collec-
tively add up to 1 per subject,

wr =
Wr∑18
r=1Wr

, (3)

and the main weighting factor is the inverse of the number of voxels in that specific region
as follows,

Wr =
1

Vr
(4)

A.2.2 Negative JD and Sum of Absolute Log JD values

We compute two key metrics related to the JD to assess deformation fields within local
sub-regions extracted from SynthSeg and encompassing global white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) regions, excluding background regions. The
JD quantifies volumetric changes following registration processes. The sum of absolute log
JD values allows us to have a measure of the spread of the distribution of the JDs. For
a volume of size mxnxp, it is calculated as represented in equation 5 below. The average
absolute sum of log Jacobian determinants is obtained by dividing the sum by the total
number of voxels in the brain region per volume.

m∑
i=1

n∑
j=1

p∑
k=1

| log(JD(i, j, k))| (5)

As a negative JD signifies non-invertible properties, indicating the presence of undesired
local folding, we also quantify the number of negative JDs using the following expression:

% of Negative JD values =

∑m
i=1

∑n
j=1

∑p
k=1 1(JD(i, j, k) < 0)

m · n · p
· 100 (6)
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A.3 Representation of the Longitudinal Data

Figure 7: Representation of the 64 subjects used with age at scans and biological sex infor-
mation, image inspired by (Reynolds et al., 2019).
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A.4 Full Pipeline

Figure 8: Full pipeline: 247 images from the longitudinal Calgary Preschool dataset are first N4 bias field corrected then non-
linearly registered to the MNI 4.5-8.5 template to obtain skull-stripped. These skull-stripped images are segmented
by DL-based SynthSeg+ (Billot et al., 2023a), a robust segmentation method, then resampled to 1.5 mm isotropic
resolution. All longitudinal pairs per subject (average: 3.86±1.59 time points/subject) are pre-aligned considering
three initialization approaches (NoReg, RigidReg and RigidAffineReg). Deformations obtained by a unsupervised reg-
istration scheme using DeepReg are compared to the conventional SyN ANTs method using Dice scores.
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A.5 Weighted Dice Scores Across All 18 Regions

Figure 9: Weighted Dice score results on the test sets represented as boxplots for each ini-
tialization approach (NoReg, RigidReg and RigidAffineReg) for DL-based meth-
ods compared to the initial Dice scores pre-conducting the registration steps.
Each method is also compared to the SyN ANTs registration. The weighting is
determined by the inverse number of voxels per region, normalized by the sum of
weights for all 18 regions, ensuring they collectively add up to 1 per subject. The
average weighted Dice scores are computed by summing across all 18 segmented
regions and subjects, considering their respective weights. The table in the lower
right corner provides the mean±SD Dice scores for all scenarios.
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A.6 Dice Scores in Global Tissues

Figure 10: Dice score results on the evaluation set represented as boxplots for each method
(NoReg, RigidReg and RigidAffineReg indicated as respectively orange, light
green or light blue braces) compared to the initial Dice scores pre-conducting
the registration steps. Each method is compared to SyN ANTs registration
(refer to Figure 1). Dice scores are computed for the white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) by averaging SynthSeg sub-regions
within these tissues from the total 18 regions available.

A.7 Dice Scores per Region
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Figure 11: Boxplots depict Dice score results on the evaluation set for each method (NoReg, RigidReg, and RigidAffineReg
denoted by orange, light green, or light blue braces, respectively) in comparison to the initial Dice scores before
executing the registration steps. Each method is contrasted with SyN ANTs registration (refer to Figure 1). Dice
scores are computed for every region amongst the 18 regions extracted from SynthSeg, averaging left and right brain
hemisphere labels for all structures except brain stem and CSF. Regions are arranged in ascending order according to
the Dice scores obtained with DL-based RigidAffineReg. For reference, the 18 brain regions, ordered from smallest to
largest by the number of voxels, are as follows: 3rd ventricle, inferior lateral ventricle, accumbens area, 4th ventricle,
amygdala, pallidum, ventral DC, hippocampus, caudate, lateral ventricle, putamen, thalamus, brain-stem, cerebellum
white matter, cerebellum cortex, CSF, cerebral white matter, and cerebral cortex.
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A.8 Visualisations of Example Pairs

Figure 12: Illustration of overlaid moving, fixed, and transformed segmentations on the
intensity volumes for each of the three initialization methods (NoReg, RigidReg
and RigidAffineReg) and both ANTs and DL-based pipelines for a subject with
an age interval of 0.31. The fourth and fifth columns depict the warping grid
overlaid with the RGB image of displacement values in each spatial dimension
and the RGB image itself, respectively.
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A.9 P-Values and Statistical Significance Analysis

Figure 13: P-values and statistical significance (p<0.05) derived from a Wilcoxon test com-
paring SyN ANTs Dice scores to initial Dice scores before any initialization,
across all 18 individual regions. The colors in the table correspond to global re-
gions, with white matter in yellow, gray matter in turquoise, and cerebrospinal
fluid in purple, matching the color scheme outlined in Table 2. Each set of two
columns represents data from one of the three initialization approaches (NoReg,
RigidReg, and RigidAffineReg).
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Figure 14: P-values and statistical significance (p<0.05) derived from a Wilcoxon test com-
paring DL Reg Dice scores to initial Dice scores before any initialization, across
all 18 individual regions. The colors in the table correspond to global regions,
with white matter in yellow, gray matter in turquoise, and cerebrospinal fluid
in purple, matching the color scheme outlined in Table 2. Each set of two
columns represents data from one of the three initialization approaches (NoReg,
RigidReg, and RigidAffineReg).
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Figure 15: P-values and statistical significance (p<0.05) derived from a Wilcoxon test com-
paring DL Reg Dice scores to SyN ANTs Dice scores, across all 18 individual
regions. The colors in the table correspond to global regions, with white matter
in yellow, gray matter in turquoise, and cerebrospinal fluid in purple, match-
ing the color scheme outlined in Table 2. Each set of two columns represents
data from one of the three initialization approaches (NoReg, RigidReg, and
RigidAffineReg).
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A.10 Sex-Specific Age-Related Analyses

Figure 16: Dice score results compared to the age interval between moving and fixed pairs
calculated on the test set separated by sex, females on the first row and males
on the second for no prior initialization and DL-based registration (DL Reg) in
green compared to SyN ANTs registration in red. The Dice scores are calculated
in the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) by
averaging SynthSeg sub-regions within these tissues from the total 18 regions
available and are presented on each column. Coefficients of determination (R-
squared) are also presented in each figure title.
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Figure 17: Dice score results compared to the age interval between moving and fixed pairs
calculated on the test set separated by sex, females on the first row and males on
the second for rigid initialization and DL-based registration (DL Reg) in green
compared to SyN ANTs registration in red. The Dice scores are calculated in
the white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) by
averaging SynthSeg sub-regions within these tissues from the total 18 regions
available and are presented on each column. Coefficients of determination (R-
squared) are also presented in each figure title.

953



Dimitrijevic, Noblet and De Leener

Figure 18: Dice score results compared to the age interval between moving and fixed pairs
calculated on the test set separated by sex, females on the first row and males
on the second for rigid and affine initialization and DL-based registration (DL
Reg) in green compared to SyN ANTs registration in red. The Dice scores
are calculated in the white matter (WM), gray matter (GM) and cerebrospinal
fluid (CSF) by averaging SynthSeg sub-regions within these tissues from the
total 18 regions available and are presented on each column. Coefficients of
determination (R-squared) are also presented in each figure title.
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