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Abstract

Vertebral fracture grading classifies the severity of vertebral fractures, which is a challenging
task in medical imaging and has recently attracted Deep Learning (DL) models. Only
a few works attempted to make such models human-interpretable despite the need for
transparency and trustworthiness in critical use cases like DL-assisted medical diagnosis.
Moreover, such models either rely on post-hoc methods or additional annotations. In this
work, we propose a novel interpretable-by-design method, ProtoVerse, to find relevant
sub-parts of vertebral fractures (prototypes) that reliably explain the model’s decision in
a human-understandable way. Specifically, we introduce a novel diversity-promoting loss
to mitigate prototype repetitions in small datasets with intricate semantics. We have
experimented with the VerSe’19 dataset and outperformed the existing prototype-based
method. Further, our model provides superior interpretability against the post-hoc method.
Importantly, expert radiologists validated the visual interpretability of our results, showing
clinical applicability.
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Figure 1: Prototype-activated regions (yellow boxes) on the fractured vertebra of a typical
test sample provides human-interpretable reasoning for its fracture grade G3.

1. Introduction

Osteoporosis is one of the most prevalent diseases among elderly people, which is clini-
cally manifested as bone fractures localised typically in the spine, hip, distal forearm, and
proximal humerus. These fractures can lead to severe pain, kyphosis, disability, as well as
approx. 12-fold increased risk for further fractures and 8-fold increased mortality (Cauley
et al., 2000). If such fractures are detected timely, they can be effectively treated to reduce
further fracture occurrences and morbidity. Unfortunately, most such cases go undetected
until the occurrence of the first acute symptoms. Vertebral Compression Fractures (VCFs)
are the most prevalent among osteoporotic fractures occurring in the vertebrae. VCFs in-
flict 30− 50% population above the age of 50 (Ballane et al., 2017) and have been reported
to be undiagnosed in 84% cases via Computed Tomography (CT) (Carberry et al., 2013).
In clinical practice, radiologists primarily rely on inspecting the sagittal plane of CT scans
for detecting VCFs. Moreover, radiologists grade the detected VCF using Genant scale
(Genant et al., 1993), which measures the reduction in vertebral height from CT images.
The scale has four grades: G0 (Healthy), G1 (Mild/ < 25% height reduction), G2 (Medium/
25 − 40% reduction), and G3 (Severe/> 40% reduction). Note that, fracture grading is a
more complex task than fracture detection since it is a fine-grained classification and relies
on radiologists’ skill and experience. Alternatively, Deep Learning (DL) has the potential to
be used as an assistive tool for overloaded radiologists to accelerate VCF detection and VCF
grading. However, the conventional DL-based method offers slim to none interpretability,
making its deployment unreliable in safety-critical systems such as clinical practice. In
order to effectively reduce the burden of radiologists and facilitate faster diagnosis, human-
interpretable DL methods are the need of the hour. In this paper, we aim to develop a novel
interpretable-by-design DL model for explainable VCF grading. Recently eXplainable AI
(XAI) methods have been developed to estimate decision-making factors of Deep Neural
Networks (DNNs) into human-interpretable formats from the learnt representations or ac-
tivations. However, what makes an explanation sufficiently human-interpretable is largely
subjective of the XAI method, use-case, and the dataset in question (Sinhamahapatra.
et al., 2023). While some initial approaches rely on post-hoc explanations, recent methods
are designed to be inherently interpretable. For critical healthcare applications, it is impor-
tant that we generate explanations that are aligned with how doctors would interpret them.
A growing direction in current XAI approaches is to learn representations that can be tied
directly to higher level human-understandable concepts. An example from natural images
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could be predicting an image of a red-billed hornbill, which depends on the presence of con-
cepts like red bill. However, an explicit identification of such concepts requires costly expert
annotations for each sample and often can be non-exhaustive. Instead, one could learn such
concepts in an unsupervised manner as prototype parts, which are semantically recurring
features for a given class in a dataset. These prototypes are representative parts sufficient
to identify the given class, e.g., if prototype parts of beaks, wings, tails are learnt, they could
together reliably predict a bird. Similarly, in VCF fracture grading (c.f. Fig. 1), detecting
G3 grade fracture relies on severe deformities in the vertebral body. While learning such
prototype representations in an unsupervised manner is a challenge by itself, visualising
such implicitly learnt representations in a human-understandable way is also difficult. Re-
cently Prototypical Parts Network (ProtoPNet) (Chen et al., 2019), has been introduced
that enables DNNs to learn internal representations as a set of interpretable prototypes
consisting of parts of the closest training image. During inference, parts of test samples
could be visually reasoned to be similar (‘this-looks-like-that’) to some of its closest pro-
totypes. In this work, we leverage prototype-based learning for human-interpretable VCF
grading. By learning visual prototypes that sufficiently represent different fracture grades,
one can explain the inferred VCF grading of a test sample using its similarity with the
prototypes from that fracture grade (c.f. Fig. 1). Such an explainable design would bring
trustworthiness to the deployed system and reduce the workload of clinicians and diagnosis
time for patients. However, existing prototype-based models struggle to capture necessary
visual and semantic variations within the prototypes of the same class. Repetition in pro-
totypes can result in inadequate human-interpretable visual explanations during inference.
Crucially, these methods were designed to target natural images where the semanticity is
intuitive and abundant. In comparison, semanticity in medical images is intricate and in-
volves a complex, expert understanding of the normality of anatomical patterns, including
edges, shapes, volume, and local contrast. Hence, these models are more prone to visual
feature collapse in the prototype layer for the medical dataset, which calls for appropriate
customisation. This is even exaggerated in the case of small dataset size. We mitigate this
by a novel diversity-promoting loss, which forces the network to focus on a diverse set of
vertebral features, e.g., various fracture regions. Further, we employ imbalance-aware clas-
sification loss to alleviate dataset imbalance. In the end, our proposed method is suitably
applied for VCF grading in an imbalanced and small dataset.

Contributions: In summary, our contributions are:

• We propose a novel interpretable-by-design method ProtoVerse, for VCF grading
based on prototype parts learning. To the best of our knowledge, we are the first
to leverage interpretability based on prototypes into clinical VCF datasets.

• We propose a novel objective function to enhance the visual and semantic diversity of
the learnt prototype for each fracture / healthy class. Additionally, we mitigate huge
class imbalances with the help of differential weighting in the classification loss.

• Our method substantially outperforms ProtoPNet, a state-of-the-art prototype-based
method. Moreover, our method precisely localises clinically relevant parts in the
vertebral body, while a prominent post-hoc method, GradCAM, fails to achieve this.
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• Finally, we demonstrate the clinical applicability of our method by validating its
human-interpretability with the help of expert radiologists.

2. Related Work

Human-interpretable DL Models: A collection of XAI works for visual tasks can be
found in the surveys (Nguyen et al., 2019; Samek and Müller, 2019) including the medical
application (Tjoa and Guan, 2020). The explanations can be categorised based on several
criteria, such as (a) local vs. global, (b) post-hoc vs. interpretable-by-design (IBD), and (c)
explicitly specified vs. implicitly derived. Depending upon the user requirement, a partic-
ular XAI approach can be used for generating explanations. Local explanations deal with
single sample by looking at its specific parts with highest attribution for a particular decision
in DNNs, such as saliency-based class activation map (CAM) (Zhou et al., 2016), GradCAM
(Selvaraju et al., 2017) and its variants like GradCAM++ (Chattopadhyay et al., 2017) and
XGradCAM (Fu et al., 2020), gradient-based local sensitivity, (Sundararajan et al., 2017)
and relevance back-propagation (Bach et al., 2015). Previous studies have pointed out
that saliency-based methods for post-hoc explainability are limited under constant intensity
shift (Kindermans et al., 2019), model weight randomization (Arun et al., 2021), relatively
smaller regions of interest (Saporta et al., 2022), confounders (Sun et al., 2023), and often
disagree with medically correct explanation (Rafferty et al., 2022).In contrast, global expla-
nations consider the whole dataset and generate explanations based on recurring features
in multiple samples. Global explanations derived from such learnt internal representations
are more useful and often necessary for tasks like anomaly detection. Most local methods
generate post-hoc explanations from already trained models. Since these explanations are
generated a posteriori, they are sub-optimal to make use of high-level semantic recurrence
in the internal representation. Therefore, in order to make the internal representations
human-interpretable, we need to consciously design global methods that are inherently IBD
(Rudin, 2019). Here, one recent approach maps human-understandable concepts to internal
representations as an interpretable bottleneck layer (Schwalbe, 2022). These concepts can
be either explicitly specified per sample as attributes in natural language by domain experts
as in concept learning models (Koh et al., 2020; Kazhdan et al.; Fong and Vedaldi, 2018;
Fang et al., 2020; Cao et al., 2021) or implicitly derived as in prototype-based learning
models (Chen et al., 2019; Nauta et al., 2021; Gautam et al., 2021; Li et al., 2018; Donnelly
et al., 2022; Rymarczyk et al., 2022). The latter does not depend on concept-specific anno-
tations but rather simply learns to associate latent representations to parts of the closest
training images. These parts are termed as prototypes (Chen et al., 2019), which serve as
semantically relevant visual explanations. Subsequent works have pointed out multiple lim-
itations, such as the semantic gap between latent and input space (Hoffmann et al., 2021),
and the distance of prototypes from the decision boundary (Wang et al., 2023). Since then,
many works have extended and improved prototypical learning by imposing consistency
and stability criteria (Huang et al., 2023), using support prototypes (Wang et al., 2023),
mining negative prototypes (Singh and Yow, 2021), and receptive field-based localization
(Carmichael et al., 2024).

Vertebral Fracture Detection: Numerous recent works have studied vertebrae fracture
detection on both the patient and vertebrae levels; however, only a few have attempted
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to make the network decision IBD. The CNN-based networks take center stage in the ar-
chitectural choice, which is used in both 2D slices and 3D volumes of CT images. Among
2D-based works, a custom contrastive loss based on grading hierarchy to process the re-
formatted mid-sagittal 2D slices was proposed in (Husseini et al., 2020). In (Pisov et al.,
2020), a key points based method was proposed to localize vertebrae and subsequently es-
timate fracture severity. An LSTM-based approach was used in (Tomita et al., 2018) and
(Bar et al., 2017) to leverage inter-slice and intra-slice feature dependencies, respectively.
While 2D methods can efficiently capture discriminative features of vertebrae, 3D methods
explicitly target 3D context at the cost of increased computational cost. A 3D dual-pathway
architecture for dense voxel-wise fracture detection was proposed in (Nicolaes et al., 2020).
A sequence-to-sequence CNN for inter-patch feature accumulation was used in (Chettrit
et al., 2020). A patient-level feature aggregation from 3D patches was proposed in (Yilmaz
et al., 2021). A two-stream architecture to explore discriminative features for fine-grained
classification was used in (Feng et al., 2021).

Recently, (Engstler et al., 2022b) proposed to leverage an activation map to find corre-
lated image regions to a fracture grade by expert validation. However, their method offers
post-hoc interpretability and heavily depends on the post-processing heuristics. In stark
contrast, we aim to obtain a global IBD model which enforces the network to learn the
most semantically recurring features across the dataset. (Zakharov et al., 2023) proposes
a fracture grading pipeline, which provides interpretability based on the measured heights
between landmarks of vertebrae. While this approach closely follows the Genant definition,
it requires additional annotation of six key points per vertebrae, making the annotation
process complex and more time-consuming.

Few recent approaches applied prototype-based learning methods in medical use-cases,
such as Alzheimer’s disease (Mohammadjafari et al., 2021), brain tumor classification (Wei
et al., 2023), and breast masses classification (Carloni et al., 2022). However, their goal
is limited to binary classification, such as anomaly detection (healthy vs. unhealthy). In
comparison, our method brings interpretability to fine-grained multi-class medical classi-
fication tasks such as VCF grading, where small sample sizes and severe class imbalances
pose additional challenges. Previously, (Kim et al., 2021) has shown multi-class use cases
on chest X-rays; however, their approach is tailored for disease with dynamic areas of focus.

3. Dataset

In this work, we use the VerSe’19 dataset from the VerSe 2019 challenge for VCF grading.
VerSe (Sekuboyina et al., 2021) is a large-scale, multi-detector, multi-site CT spine dataset
comprising 374 scans from 355 patients. To minimize existing inter-rater variability of
publically available annotation (Löffler et al., 2020), we updated annotations in-house by
a group of radiologists with 15 years of median experience. For VCF, in this work, we
consider healthy, G2 and G3. Following (Husseini et al., 2020; Keicher et al., 2023; Engstler
et al., 2022a), we do not consider G1 since it is often clinically challenging to differentiate
G1 from healthy class and is prone to significant inter-rater variability. We have altogether
1444 vertebrae annotation; out of 1308 are healthy, 76 are G2, and 52 are G3. We have
1086 training samples and 358 test samples. We have 326 healthy, 18 G2, and 14 G3 test
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samples. Clearly, our main challenge is to devise a useful learning strategy for a successful
interpretable DL method to mitigate high class imbalance and small sample size.

4. Methodology: ProtoVerse

In this section, we propose a novel interpretable method called ProtoVerse for vertebral frac-
ture grading. At the core of this lies an interpretable architecture motivated by ProtoPNet
(Chen et al., 2019), which is an image classifier network that learns inherent representations
for relevant sub-parts of an image. Once these representations are learnt, they serve as vi-
sual explanations for the model output. To obtain such visual explanation, sub-parts or
patches of training images closest to the learnt representations are stored in a set of visual
patches called prototypes to enhance human-interpretation of the inner workings of DNN
models.

Figure 2 shows the overview of the ProtoVerse for learning visual prototypes for vertebral
fractures. The model consists of a convolutional feature extractor backbone f followed by
two additional 1× 1 layers, a prototype layer gp, and a fully connected layer h with weights
wh. The feature extractor is usually taken from standard Convolutional Neural Networks
(CNNs), e.g., ResNets, DenseNets, and VGG. These CNNs are initialised using ImageNet
pre-trained weights. During training, firstly, we learn the prototype vectors in the latent
space via stochastic gradient descent over the objective function until the last layer. Next,
the last layer for classification is updated by a convex optimisation. Finally, the learnt
prototype vectors are visualised through retrieved prototype patches/sub-parts of training
images. In the following, we expand upon each of the working stages of ProtoVerse.

4.1 Learning Prototype Vectors

Let us consider an input image x with a fracture grade ∈ {G0, G2, G3}. The feature
extractor generates a convolutional output z = f(x) with a shape of z ∈ RH×W×D, where
D is the feature size in the last convolutional layer. Given the feature extractor is ImageNet
pre-trained, the input image is resized to 224× 224× 3. The ouput of the f produces 7× 7
patches, i.e. H = 7,W = 7.

Next, the output of f goes through the prototype layer gp consisting of learnable pro-
totype vectors P = {pk

j }j=1:c,k=1:m, where m is the number of prototypes per class and c
is the total number of classes. Thus, the total number of prototypes n = m × c. Each
prototype pk

j ∈ Rh×w×D has the same feature size as the last convolutional layer. Following
ProtoPNet (Chen et al., 2019), we have taken prototypes with h = w = 1. Thus, each
prototype corresponds to a prototypical activation pattern 1× 1×D patch in the 7× 7×D
last-layer feature. Since the 7 × 7 × D feature vector represents the entire input image,
a prototype vector pk

j corresponds to a proportionate field of view of a single feature in a
patch, which is considered as prototype patch/sub-part of the input image. Thus, n number
of prototype vectors corresponds to the n most salient image parts characterising the given
dataset.

Next, we calculate the ℓ2 distances between each of the prototype pk
j and all the similar-

sized patches of the feature output layer z. The smaller the distance, the higher the sim-
ilarity of the prototype vector to the feature patch for the given input image. Thus, the
point-wise inversion of the ℓ2 distances provides 7×7 activation map referred to as similarity
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Similarity Scores

Healthy 

G2 fracture

G3 fractureCluster Loss 
+

Diversity Loss

Separation Loss  MWCE Loss

Max pool

Feature Extractor f Prototype layer g(p) Fully connected layer Output Logits

Figure 2: ProtoVerse architecture for learning prototypes for VCF grading. Prototypes
from each class are shown as : healthy (blue), G2 (red), and G3 (green), which learns rep-
resentative image parts for each class through separation and clustering loss. For example,
healthy prototypes emphasise straight vertebral edges, while G2 and G3 prototypes capture
the different degrees of deformities in vertebrae. Notably, our novel Diversity loss ensures
the capture of visual variations within a class such as p1

3 and p2
3 highlighting different frac-

ture regions in G3. Given a G3 input test sample, the prototype patch p1
3 and p2

3 belonging
to G3 shows the strongest presence (similarity score 2.027 and 2.092) in various fracture
regions for vertebrae of interest. While the prototype parts p1

2,p
1
1 belonging to G2 and

healthy classes have lesser similarity score. Final classification logits are trained with our
MWCE loss to mitigate class imbalance.

heatmap. To reduce the similarity heatmap into a single similarity score, global max pooling
is performed. This helps in interpreting how strongly a particular prototype vector matches
with a specific part of the input image. Thus, the prototypes for a particular class j are
responsible for capturing the most relevant parts for images of class j. Lastly, in the fully
connected layer h, the m similarity scores from each class are multiplied with the weight
matrix wh, which constitutes the class connection score. For an input xi, the output logits
are obtained as ŷi = h ◦ gp ◦ f(xi). The resultant outputs are normalised using softmax to
produce the probabilities for images belonging to various classes.

To learn meaningful prototype vectors in the latent space, prototypes of each class
should be clustered together and well-separated from the prototypes of different classes.
ProtoPNet (Chen et al., 2019) tried to achieve this goal by introducing intra-class clustering
and inter-class separation loss, in addition to classification loss. For a given training dataset,

Dtrain = {xi, yi}di=1 and a set of prototype vectors for jth class Pyi = {pk
yi}

m
k=1, the cluster

loss (Lclst) and separation loss (Lsep) is as follows:

Lclst =
1

d

d∑
i=1

min
j:pk

j∈Pyi

min
z∈χ(zi)

∥z − pk
j ∥22; Lsep =

1

d

d∑
i=1

min
j:pk

j /∈Pyi

min
z∈χ(zi)

∥z − pk
j ∥22 (1)

where χ(zi) denotes all the patches from feature zi.Separation loss pushes apart proto-
types of different classes in the prototype layer. On the contrary, cluster loss tries to increase
semantically similarity among prototype patches of its own class based on ℓ2 distances. At
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the same time, the weights of the fully connected layer are initialised following (Chen et al.,
2019). Specifically for a given class, we initialise class connection for the prototype of the
same class as 1.0 and −0.5 for prototypes of a different class.

Since VerSe’19 is a relatively small dataset, it is increasingly challenging to learn relevant
prototypes for fracture classes. Particularly, cluster loss in Eq. 1 encourages prototypes
within the same class to be close to each other. However, due to the absence of many diverse
samples, this inevitably leads to prototypes that are semantically similar and repeating
patches. For a more interpretable diagnosis, it is often preferred to look at different patches
of the given fracture grade, for e.g., prototypes focusing on fractures on the top/ bottom
edge or the frontal/ posterior vertical edges of the vertebrae. To this end, we propose a novel
loss to promote the diversity of prototypes for a given class. Moreover, VerSe’19 has only
5% fracture samples compared to healthy samples. With such a heavy class imbalance,
the classification and Separation loss tends to be skewed towards healthy class. Since
interpretable learning demands a sufficient number of samples, we aim to keep all available
healthy vertebrae and employ a class imbalance aware loss function. Next, we describe our
proposed training strategies comprising novel prototype diversity loss and imbalance-aware
classification loss for better interpretability.

4.1.1 Novel Prototype Diversity Loss

Given very few samples from fracture classes, only a limited variation of visual parts show-
ing predominant characteristics for the fracture classes are available to learn the prototypes.
Further, semantics in medical images involve an expert understanding of anatomical pat-
terns, including edges, shapes, and local texture. However, these features are repetitive
across different scales and image locations. For example, vertebral process regions in the
posterior part could have similar geometric and texture features in an anterior vertebral
body. Under such constraints, clustering loss makes the network susceptible to prototype
repetition. Therefore, an explicit constraint in the form of diversity loss is helpful to enforce
the network to cover fine-grained variations of edges, shapes, and local textures within a
certain class.Thus, we propose a novel loss component called Diversity Loss (Ldiv), which
minimizes the absolute cosine distance between prototype vectors of the same class. In
action, Diversity loss prevents the collapsing of multiple prototypes of the same class into
identical ones. This is achieved by balancing the weight between Cluster and Diversity
loss. As a result, the network is encouraged to find prototypes as the closest match to
semantically diverse parts of the vertebrae. Experimentally, we find Diversity loss signifi-
cantly mitigates the problem of redundancy (Sinhamahapatra. et al., 2023) and improves
the semantic and visual diversity of the prototypes. For example, in Figure 2 the proto-
types p1

3,p
2
3 from Grade 3 fracture focus on two distinctly different parts. It is given by the

squared mean of the dot product of the prototype vectors for a given class with a coefficient
(λdiv) that decides the weight of this loss in the total loss.

Ldiv =
2

cm(m− 1)

∑
j=1:c

∑
k,l=1:m,k ̸=l

(pk
j
⊤ × pl

j)
2 (2)

where m is the number of prototypes per class, and c is the total number of classes.
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4.1.2 Class imbalance aware classification loss

With imbalanced dataset, the class-wise accuracy is heavily affected by model’s bias towards
dominant class despite achieving high sample-wise accuracy. This leads very few samples
from fractured classes to make a positive connection with the fully connected layer and in
turn the prototypes learnt for these classes are not sufficiently representative for the given
class. In order to provide more opportunity for learning from the samples of fractured
class, we adopt differential weighting in the CE loss. However, choosing correct weighting
strategy is crucial and varies with dataset size and complexity. Besides resampling strategies
for tackling imbalance, we have experimented with other weighting strategies such as Inverse
Number of samples (INS), Inverse of Square Root Number of Samples (ISNS). We found
median weighting to be the most beneficial in our case. We have employed median-weighted
cross-entropy (MWCE) in the classification loss and this has significantly improved the class-
wise accuracy. Given dj represent the number of training samples from j-th class, the weight
for the j-th is calculated as follows:

LMWCE(ŷi, yi) = −
c∑

j=1

wj · yji log(ŷji ); where wj =
median({dl}l=1:c)∑

l=1:c;l ̸=j dl
(3)

Finally, we obtain the total loss function for our ProtoVerse model as follows:

(4)LTotal =
1

d

d∑
i=1

(
LMWCE + λclstLclst + λsepLsep + λdivLdiv

)
4.2 Visualising Prototype Vectors

In total, we have n number of D-dimensional prototype vectors in latent space which is
commonly visualised as clusters via various visualisation methods like TSNE, UMAP etc.
However, to make our models interpretable, we need to visualise which part of input images
are reflected into those latent prototype vectors. To address this, we follow (Chen et al.,
2019) and extract the exact patch or image sub-part that activates the most in similarity
score heatmap for each prototype vector. Such obtained image part level visualisations
provide detailed interpretability in a human-understandable manner. For each prototype
vector, the visual prototype patches are extracted based on the closest training image patch
from each class based on the minimum ℓ2 distances as given in Section 4.1. The above
operation of finding the closest patch for all given training image patches for the class is
given as below:

pk
j ← arg min

z∈χ(zi)
∥z − pk

j ∥2;∀i s.t. yi = j (5)

However, prototype patches saved are not exactly the upscaled size corresponding to
1×1×D feature patch. Instead the entire similarity heatmap for the chosen training image
is upscaled to the input image dimensions. Finally, those image regions are selected as
prototype patch which enclose atleast 98% in the similarity heatmap. Thus, the prototypes
generated during training, act as visually interpretable parts crucial for a given class. During
inference, similarity heatmap highlight the parts of a test sample that are close to the learnt
prototype for a given class.
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5. Experimental Results and Discussion

In this section, we demonstrate how prototype-based learning methods can be applied for
enhanced interpretability to the vetebrae fracture grading usecase. We first provide details
about dataset preparation experimental setup and then show our quantitative and qualita-
tive results. Importantly, we provide insights from clinicians by conducting experiments to
find the usefulness of such a method for the interpretability of fracture grades.

Data Preparation: We adopt similar data preparation steps as (Husseini et al., 2020).
Since radiologists prefer sagittal views, we gather information from 3D CT volume into re-
formatted 2D sagittal slices. Specifically, we construct a spline along the vertebral centroids
and extract 2D reformation of the vertebrae for the sagittal plane along which the spline
goes through. As a result, we have a 2D reformatted slice along the mid-vertebral plane.
Finally, we crop a 112x112 size region of interest comprising valuable context of at least one
vertebra above and below, keeping the vertebrae of interest at the center, and subsequently
resize the image to 224x224. We have not noticed any significant difference in accuracy drop
in training from scratch for different image resolutions [112x112, 224x224]. However, for
improved performance, we have always used an imagined-trained backbone in our experi-
ments, and hence we have resized it to 224x224.Moreover, we provide an additional channel
with a Gaussian around the centroid of the vertebra of interest.

Experimental Setup: We have used similar settings as in (Chen et al., 2019) for model
training and prototype visualisation. In our experiments, we select a classifier without a
prototype layer as a baseline for direct comparison between post-hoc interpretability of
the baseline with our proposed interpretable-by-design method. Since previous methods
(Husseini et al., 2020; Keicher et al., 2023) used different fracture annotations than ours,
their results cannot be used for direct comparison with our model. We believe our choice of
baselines with and without IBD serve as sufficient points of comparison in our experiments.
Further, we show ablation of our proposed diversity loss. We have extensively evaluated
with various pre-trained backbones such as VGG (Simonyan and Zisserman, 2014), ResNet
(He et al., 2016), and DenseNet (Huang et al., 2017) and found that VGG-11 results in the
best performance. We have also conducted an ablation study on the number of prototypes
per class and found the performance decreasing with an increasing number of prototypes
(Sec 5.6).

To quantitatively evaluate the performance of imbalanced dataset like VerSe’19, we have
focused on Class Average Accuracy, Class Average F1 scores as evaluation metrics, such
that performance on individual classes are highlighted as compared to Sample Accuracy
based on total number of correct samples.

5.1 Classification Results

We use 10% of the training data as a validation set for model selection and a fixed held-out
test set. Our main results on the test set are presented in Table 1, and clinical evaluation
is performed on this test set.In Table 1, we compare our ProtoVerse classification results
with ProtoPNet and the post-hoc baseline model. For all the models, we used pre-trained
VGG11 as the backbone and MWCE for classification loss since it was found to be a better
fit for the imbalance in the dataset. Using the MWCE for classification, we could ensure
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Models IBD Class-avg Class-avg Sample
Accuracy F1 Accuracy

Baseline ✗ 72.46 60.82 86.03
ProtoPNet (Chen et al., 2019) ✓ 64.81 51.59 83.24
ProtoVerse (ours) ✓ 76.28 67.97 90.22

Table 1: Comparison of our ProtoVerse model with ProtoPNet and a baseline classifier
on the test set. All models have been trained on Verse’19 dataset using MWCE for class
imbalance. ProtoVerse, thanks to novel Diversity loss, significantly outperforms ProtoPNet
and non-IBD baseline.

reasonably good class-average test accuracies even for such a highly imbalanced dataset.
The class-average accuracy for each class for each of the models are given as - Baseline:
[88.04, 72.22, 57.14]%, ProtoPNet: [86.5, 22.22, 85.71]%, ProtoVerse: [92.33, 72.22, 64.29]%.
We observe that ProtoPNet does not perform as well as the baseline model in terms of the
considered metrics. We attribute this to the feature collapse in the prototype layer. Impor-
tantly, we observed that the ProtoVerse model significantly outperforms both ProtoPNet
and baseline across all metrics. For our ProtoVerse model, we found (λdiv = 0.3) to be
the optimum coefficient for Diversity loss. We postulate that explicitly ensuring diverse
prototypes is beneficial to learn IBD models, especially in case of small sample size. The
Diversity loss forces the network to focus on different parts of the vertebrae body, which
is in line with clinical diagnosis rationale so that the variations in a fracture class can be
adequately explained using the learnt prototypes.

Models IBD Class-avg Class-avg Sample
Accuracy F1 Accuracy

Baseline ✗ 70.92 ± 3.29 63.52 ± 4.68 89.26 ± 3.84
ProtoPNet (Chen et al., 2019) ✓ 72.73 ± 4.47 67.27 ± 4.06 91.13 ± 3.56
ProtoVerse (ours) ✓ 76.36 ± 5.96 75.97 ± 4.80 93.58 ± 1.37

Table 2: 5-fold cross-validation of our ProtoVerse model with ProtoPNet and a baseline
classifier. Average and standard deviations over 5 runs are reported.

Additionally, we have performed a 5-fold cross-validation on the train set among non-
IBD baseline, ProtoPNet, and ProtoVerse in Table 2. The general trend remains the same in
the cross-validation as observed for the test set in Table 1. Accuracy for each class averaged
across 5 splits are as follows: Baseline: [92.75, 39.99, 80]%, ProtoPNet: [93.89, 58.33, 66]%,
ProtoVerse: [96.732, 62.33, 70]%. We also performed a pairwise Wilcoxon signed-rank test
to determine the statistical significance between ProtoVerse, ProtoPNet, and Baseline. For
Class-avg Accuracy, we find p-values 0.094 (ProtoVerse vs. Baseline) and 0.031 (Proto-
Verse vs. ProtoPNet), respectively. For Class-avg F1, we find p-values 0.031 (ProtoVerse
vs. Baseline) and 0.031 (ProtoVerse vs. ProtoPNet), respectively. For Sample Accuracy,
we find p-values 0.031 (ProtoVerse vs. Baseline) and 0.031 (ProtoVerse vs. ProtoPNet),
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respectively. ProtoVerse shows statistically significant (p-value<0.05) results in two out of
three metrics compared to baselines and all three metrics for ProtoPNet.

Healthy G2 G3
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H
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G
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G
3

ProtoPNet ProtoVerse (Ours)

Figure 3: Cosine similarity between prototype vectors obtained from ProtoPNet and our
ProtoVerse. Note that cosine similarity within a class is relatively high in the case of
ProtoPNet, indicating difficulties in encompassing diverse prototypes. ProtoVerse achieves
a diverse set of prototypes, as reflected in cosine similarity scores. Note that the third
healthy prototype in both cases is looking into the trachea, which results in totally different
features than vertebrae.

5.2 Prototype Quality of ProtoPNet vs ProtoVerse

We present prototypes from ProtoPNet and ProtoVerse models in Fig. 4 and cosine sim-
ilarity among the prototype vectors in Fig. 3.We see that ProtoPNet produces repetitive
prototypes for G2 and G3 and focuses outside the vertebral body for the healthy class. In
contrast, ProtoVerse produces diverse prototypes for all three classes. Note that since most
of the thoracic vertebras do not have any fracture, both models see the nearby trachea
region of those cases (3rd prototype of healthy class) as an attribute of healthy class.

5.3 Visual Interpretability Analysis

We compare ProtoVerse’s interpretability with the post-hoc methods on the baseline model
using Class Activation Map (CAM) in Fig. 5 and 6 for representative test samples from G2
and G3, respectively. Here, we compute the similarity heatmap (col. 2), similarity score,
and class connection score as described in Section 4.1. The similarity score is multiplied
by the class connection score to get the total contribution score of a given prototype to
explain the classification output of a sample. We show the top 3 most activated prototypes
corresponding to each of the test samples and the corresponding heatmap in col. 3 and col.
4, respectively. Col. 1 shows the highest activated region in the similarity heatmap for the
test samples corresponding to each of the top-3 prototypes.

First sample in Fig. 5 has the first prototype focuses from top-right to mid-bottom
regions of the vertebra, while the last two prototypes focuses on the mid-right sections.
Second sample in Fig. 5 has the first two prototypes activating at the top-right corner of
the vertebral body, while the last prototype attends to its middle section. The similarity
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Prototype 1 Prototype 2 Prototype 1Prototype 3 Prototype 2 Prototype 3

Healthy

G2 fracture

G3 fracture

Prototypes from train samples Corresponding similarity heatmaps

(a) ProtoPNet prototypes

Prototype 1 Prototype 2 Prototype 1Prototype 3 Prototype 2 Prototype 3

Healthy

G2 fracture

G3 fracture

Prototypes from train samples Corresponding similarity heatmaps

(b) ProtoVerse prototypes

Figure 4: Qualitative comparison of prototype learnt from ProtoPNet and ProtoVerse
model. Note that ProtoPNet produces repetitive prototypes whereas ProtoVerse captures
diverse prototypes.

heatmaps focus on distinct relevant contexts around the deformities of G2. Positive class
connection scores for all three prototypes from G2 confirm human-interpretable reasoning
for classifying the test sample as G2.

Similarly, in both examples from Fig. 6, we observe that all the prototypes from G3
correspond to severely diminished height in the middle section of the vertebrae. These
prototypes show high activations in similarly deformed sections at the middle and middle-
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Figure 5: Test-time interpretability of ProtoVerse (left) in comparison to post-hoc baselines
(right) for two typical G2 fracture samples. We show the top 3 closest prototypes (col.
3) based on similarity score and corresponding heatmaps (col. 4). Firstly, the similarity
heatmap of ProtoVerse is localised to the fracture regions of the vertebrae (col 2). In
contrast, post-hoc baselines fails to precisely localise clinically important regions in the
vertebral body and focuses on the wrong vertebra. Secondly, the top 3 prototypes visually
explain why the highest activated region is important to grade the fracture type correctly.
Note that, for all 3 prototypes show positive class connections and belong to the same class.

right of the vertebrae. This observation reaffirms the reasoning ability of ProtoVerse based
on meaningfully retrieved visual prototypes, e.g., similarly deformed vertebral edges. We
also note that the last prototype (from G2) has a negative class connection since it does
not belong to the class of the test sample despite having high visual similarity. Thus,
the overall contribution score determines the role of the prototype in class prediction of
the given sample. From both cases, one can observe the benefit of a diverse set of learnt
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Figure 6: Test-time interpretability of ProtoVerse (left) in comparison to post-hoc baselines
(right) for two typical G3 fracture samples. We show the top 3 closest prototypes (col.
3) based on similarity score and corresponding heatmaps (col. 4). Firstly, the similarity
heatmap of ProtoVerse is localised to the fracture regions of the vertebrae (col 2). In
contrast, post-hoc baselines fails to precisely localise clinically important regions in the
vertebral body and focuses on the vertebral processes. Secondly, the top 3 prototypes
visually explain why the highest activated region is important to grade the fracture type
correctly. Note that, for first example, all 3 prototypes show positive class connections and
belong to the same class, whereas the third prototype for second example coming from G2
shows a negative class connection.

prototypes in identifying different sub-parts of the fractured vertebrae of interest bringing
in interpretability in the overall classification decision.
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Prototype Class
Test Class Healthy G2 G3

Healthy 4.72 -0.33 -0.19
G2 0.73 2.72 -0.01
G3 0.35 -0.06 2.70

Table 3: The average contribution score for all samples from each class has been correlated
with the prototypes from each class. Strong diagonal correlation indicates prototypes of
each class are most activated and thus reliably explain samples from their class.

For post-hoc CAM methods, the heatmaps are generated a posteriori using the class
activations from the baseline model. In our experiments, we considered three popular
variants of CAM based methods, namely GradCAM ((Selvaraju et al., 2017)), GradCAM++
((Chattopadhyay et al., 2017) and XGradCAM ((Fu et al., 2020)).

For the G2 samples, we observe that the most-activated (in red) is not highlighting the
vertebrae of interest (center vertebrae) but focusing on the one above. For the G3 samples,
the activation is scattered and does not focus on any vertebrae body for most of the meth-
ods except GradCAM++ for the second sample. Although the baseline model does not
perform too badly in terms of classification accuracy, both cases indicate that it is barely
interpretable post-hoc. This is because GradCAM variants only provides local interpre-
tation based on sample-specific activation and ignores the recurring features important to
explain the entire class, unlike the prototypes in ProtoVerse.

5.4 Similarity-based Interpretability across Classes

Here, we analyse how much one class’s prototypes influence another class’s decision-making
process. For that, we average total contribution scores from each class’s prototypes for
all test samples of each class and present them in Table 3. We demonstrate that the av-
erage contribution for all the samples corresponding to the prototypes of their respective
class is maximum (strong correlation along diagonal), thus confirming that the learnt pro-
totypes in each class bear a strong correlation with the samples from the respective class.
Additionally, the positive self-correlation of the healthy class (4.72) compared to negative
cross-correlation in fracture classes G2, G3 (−0.33,−0.19) shows the model’s strong anomaly
detection (healthy vs fracture) performance. To the best of our knowledge, our study is the
first of its kind to successfully learn fine-grained prototypes to further distinguish between
fracture grades beyond contemporary anomaly detection works (Mohammadjafari et al.,
2021; Wei et al., 2023).

5.5 Clinical Validation Results

Along with experimental results, we designed an expert clinical validation performed by two
radiologists with 5 mean years of experience. For this, we emphasised the clinical usability
of the learnt prototypes in explaining a test image. We prepared a study including all test
samples of clinically relevant G2 and G3 fracture classes. For each sample, we listed the
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top 3 closest prototypes from the training set based on the similarity score and asked the
radiologists to rate based on the following two (Yes/No) questions (see Suppl. for details):

1. Are each of the retrieved prototypes relevant in explaining fracture grading of the test
image, i.e., Prototype Relevance?

2. Are the highest activated parts of the test image visually similar to the highest acti-
vated parts of the retrieved prototypes, i.e., Visual Similarity?

Expert Prototype Relevance Visual Similarity
Rater G2 G3 Total G2 G3 Total

Rater-1 1.00 1.00 1.00 0.33 0.72 0.59
Rater-2 0.88 0.78 0.84 0.61 0.71 0.65

Table 4: Clinical Validation results show the high relevance of the learnt prototypes from
both experts in explaining the test-time decision. Doctors found relatively higher visual
similarity for G3 than G2, indicating difficulty in learning G2 from small datasets.

For both questions, we consider ‘Yes’answer for a sample if 2 out of 3 prototypes are
marked ‘Yes’by the doctors. We report the percentage of ‘Yes’outcome for all questions
in Tab. 4. We observe that both radiologists find the retrieved prototypes to be rele-
vant for adequately explaining the fracture class. G3 prototypes have a better average
relevance score. We attribute this to the fact that G2 samples are not severely fractured
and can often be semantically difficult to learn.Qualitatively, the doctors have found that
the prototype’s activation patterns were more pronounced in the posterior elements of the
vertebral body. This finding might be due to the algorithm’s proficiency in recognizing
higher-grade fractures, which usually involve the posterior aspect of the vertebral body,
compared to low-grade fractures of the anterior vertebral body. Radiologists rate consis-
tently high visual similarity for G3, further validating the visual explanation. However,
for G2, inter-rater variability is more pronounced, which is commonly observed for lower
fracture grades (Buckens et al., 2013). Our future work will explore explicitly modeling
inter-rater variability in the prototype layer to better learn a set of prototypes for small
datasets.

5.6 Quantitative Ablation Study

In this section, we provide 5-fold cross-validation on the training set for hyper-parameter
search and ablation on three aspects of our proposed ProtoVerse model.First, we study the
effect of the number of prototypes per class. Thirdly, we compare our median-weighted
class imbalance loss with different loss weighting strategies. Finally, we show ablation on
the coefficient of the Diversity loss.

5.6.1 Ablation on Number of Prototypes

Table 5 reports quantitative performance using varying numbers of prototypes per class for
ProtoVerse with VGG11 backbone. We observe that three prototypes per class are optimal.
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Since a single prototype per class severely hurts the interpretability of the model, we refrain
from including it in the experiment.

# Prototypes Class-avg Class-avg Sample
Accuracy F1 Accuracy

2 72.24 ± 7.60 66.22 ± 9.80 88.99 ± 4.87
3 76.36 ± 5.95 75.97 ± 4.80 93.58 ± 1.37
4 75.40 ± 3.06 70.07 ± 5.82 91.01 ± 3.53
5 74.67 ± 7.33 66.13 ± 11.28 87.34 ± 7.35

Table 5: Performance comparison by varying the number of prototypes per class

λdiv Class-avg Class-avg Sample
Accuracy F1 Accuracy

0.1 75.66 ± 3.89 69.45 ± 4.04 91.10 ± 1.10
0.3 76.36 ± 5.96 75.97 ± 4.80 93.58 ± 1.37
0.5 75.12 ± 2.10 71.99 ± 4.58 92.84 ± 2.06

Table 6: Performance comparison for different weighting of Diversity loss.

5.6.2 Ablation on Weighting Strategy

Fig. 7 shows ablation on different class weighting strategies to mitigate the class imbalance
issue for VCF grading using three prototypes per class. Note that among all competing
weights, median weighting produces the best result.

Figure 7: Bar plot showing comparison among different class weighting strategies
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5.6.3 Ablation on Diversity Loss Coefficient

Table 6 shows the ablation of coefficient for Diversity loss. We use the above optimal
parameters for the model. We note that 0.3 is a suitable choice for sufficient variation in
the visual prototype without affecting the model’s classification performance.

Limitation

We believe improving the dataset imbalance with an emphasis on diverse fracture grade
samples (potentially G1 fractures) could further improve the quality of the prototypes
and clinical utility of such interpretable models. Lastly, although the learnt prototypes
are designed to be human-understandable, nonetheless some prototypes are not human-
interpretable and it still remains to be explored whether the model reasoning is incorrect in
such cases or the generated explanation needs to be enhanced to be better human-aligned.

6. Conclusion

In this work, we proposed a novel IBD method, ProtoVerse, for VCF grading, leveraging
prototype-based representation learning. Specifically, we address the challenge of learn-
ing diverse yet representative prototypes from a small dataset with a high class-imbalance.
The resultant ProtoVerse outperforms previous IBD models, such as ProtoPNet, and offers
enhanced interpretability that non-IBD baselines. We have validated our results with radiol-
ogists, confirming the clinical applicability of the proposed method. To further enhance the
quality of learnt prototypes, future research could include human-in-loop feedback during
training to identify and replace unsatisfactory prototypes.
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Appendix A. Details on Clinical Validation

Fig. 8 shows a sample from the clinical validation report. The radiologists are provided with
the top-3 activated prototypes along with the highest-activated regions in the test image.
Additionally, they are given the similarity heatmap of each of the top-3 prototypes for visual
reasoning. Both radiologists provided ‘yes/no ’answers to the questions and overall opinion
on the findings.

Similarity heatmap
in test sample 

Top 3 prototypes
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Similarity heatmap
for prototypes  G3 fracture sample  Prototype
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Prototype
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Visual
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Yes ,
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A sample from Clinical Validation study

Figure 8: Exemplary samples from clinical evaluation done by radiologists. The answers
obtained from the two radiologists are indicated.
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