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Abstract

Diabetic retinopathy is a common complication of diabetes, and monitoring the pro-
gression of retinal abnormalities using fundus imaging is crucial. Because the images
must be interpreted by a medical expert, it is infeasible to screen all individuals with
diabetes for diabetic retinopathy. Deep learning has shown impressive results for auto-
matic analysis and grading of fundus images. One drawback is, however, the lack of
interpretability, which hampers the implementation of such systems in the clinic. Ex-
plainable artificial intelligence methods can be applied to explain the deep neural net-
works. Explanations based on concepts have shown to be intuitive for humans to under-
stand, but have not yet been explored in detail for diabetic retinopathy grading. This
work investigates and compares two concept-based explanation techniques for explaining
deep neural networks developed for automatic diagnosis of diabetic retinopathy: Quan-
titative Testing with Concept Activation Vectors and Concept Bottleneck Models. We
found that both methods have strengths and weaknesses, and choice of method should
take the available data and the end user’s preferences into account. Our code is available
at https://github.com/AndreaStoraas/ConceptExplanations_DR_grading.

Keywords: Explainable Artificial Intelligence, Concept-Based Explanations, Diabetic
Retinopathy, Fundus Images

1. Introduction

Diabetes is a disease with increasing prevalence, and diabetic retinopathy (DR) is one of
the most common complications (World Health Organization, 2022). DR is characterized
by retinal abnormalities, which damage the eye and can lead to blindness. Its severity
depends on the type and amount of retinal abnormalities: Hemorrhages (HE), microa-
neurysms (MA), hard exudates (EX), soft exudates (SE), intraretinal microvascular abnor-
malities (IRMA), and neovascularization (NV). DR is graded from 0 to 4 (no DR, mild,
moderate, and severe nonproliferative DR, and proliferative DR), as described by Wilkin-
son et al. (2003). DR grading of fundus images is traditionally a manual process requiring
medical expertise. Figure 1 provides examples of fundus images of eyes with increasing
severity of DR including the ground truth segmentations of the six retinal abnormalities.
These images underline the challenge of identifying relevant medical abnormalities without
specialist training.
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(a) DR level 0 (b) DR level 1 (c) DR level 2 (d) DR level 3 (e) DR level 4

Figure 1: Example fundus images representing increasing DR severity with segmentation
masks of retinal lesions. Level 4 is the most severe type of DR and is associated with a
high risk of blindness. Images from the FGADR dataset (Zhou et al., 2021). Dark blue =
microaneurysms, pink = hemorrhages, light blue = hard exudates, green = soft exudates,
yellow = intra-retinal microvascular abnormalities, and red = neovascularization. Best
viewed with zoom.

Deep neural networks have shown impressive results for objectively predicting levels of
DR from fundus images (Lakshminarayanan et al., 2021). However, these models are com-
plex and difficult to interpret, which is regarded as an obstacle for clinical implementation
of such systems (Vellido, 2020). If ophthalmologists do not understand why the model made
the specific predictions, they might refuse to use it. Moreover, if algorithms make decisions
that can affect the life of the patient to a large extent, such as in medical diagnoses, the pa-
tient has the right to get an explanation about why the decision was made. In other words,
being able to explain the decision process of deep neural networks for medical applications
is crucial.

Explainable artificial intelligence (XAI) aims to explain machine learning models and
their predictions. Previous work on XAI for fundus image analysis have mainly focused on
heatmap methods, which highlight the pixels in the image regarded as important during
inference (van der Velden et al., 2022). As an example, Ayhan et al. (2022) performed a
quantitative analysis of heatmaps produced by a wide selection of XAI methods to explain
deep learning-based DR, detection in fundus images, showing that the quality of heatmaps
vary greatly. Despite their popularity, heatmap methods have some limitations (Arun et al.,
2021). Heatmaps do not explain why an area in the image was highlighted (Kovalerchuk
et al., 2021), or quantify how important the highlighted area is. Moreover, one heatmap is
generated for each observation, making it challenging to get a global overview of how the
model interprets images.

Concept explanation methods are attractive for medical applications because they mea-
sure how much the deep neural networks are influenced by high-level concepts representing
clinical findings (Salahuddin et al., 2022). A concept can be described as a theme or topic,
e.g., 'stripes’ and ’dots’ for natural images, or diagnostic findings such as ’hemorrhages’ and
‘microaneurysms’ for fundus images. The six different diagnostic concepts used for this work
is shown with the ground truth segmentation masks in Figure 1. Testing with Concept Ac-
tivation Vectors (TCAV) (Kim et al., 2018) and Concept Bottleneck Models (CBMs) (Koh
et al., 2020) are two concept-based methods that have several advantages above heatmap
methods. Both allow the user to define the concepts, which ensures relevant and meaningful
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concepts that are interpretable for the end-users. How the concepts are used varies between
the two explanation methods and is outlined in Sections 2.1 and 2.2. Moreover, the relative
importance of the concepts can be quantitatively measured. For TCAV, concept scores can
be generated for a group of images, e.g. images belonging to the same class, allowing the
user to investigate whether the model has learnt aspects coherent to domain knowledge
and diagnostic guidelines. CBMs, on the other hand, allow the user to directly modify
the model’s intermediate concept predictions at test time and observe how this affects the
final model prediction. This way of manipulating the model after training is attractive
in the medical field, e.g. if the clinician wants to increase the emphasis of a concept in
the image that the model missed. While TCAV explains models post-hoc, i.e., predicting
the concepts after the classification model has been trained, CBMs provide ad-hoc expla-
nations, where the prediction of the concepts are trained together with the classification
model. Even though concept explanations can be more intuitive than heatmaps for medical
doctors, neither TCAV or CBMs have been extensively studied in the field of DR grading.
In this work, we thus investigate and compare TCAV and CBMs for explaining deep neural
networks trained to grade DR in fundus images.

2. Data and Method

Seven open access datasets were used in the current study: APTOS (Karthik and Dane,
2019), DR Detection (Dugas et al., 2015; Cuadros and Bresnick, 2009), Messidor-2 (De-
cenciere et al., 2014; Abramoff et al., 2013), FGADR (Zhou et al., 2021), DDR (Li et al.,
2019), DIARETDBI1 (Kauppi et al., 2007) and IDRiD (Porwal et al., 2018). An overview
of the data is provided in Table 1. All datasets including image-level annotations of DR
grade were used to train the deep neural networks for DR grading. Several data sources are
combined to ensure generalizable models, as the fundus images were captured at different
locations, by different healthcare personnel, and using different devices, making the train-
ing data diverse. For concept generation, fundus images segmented with medical findings
relevant for diagnosis of DR were used. FGADR was applied for both DR grading and
concept generation. The distribution of DR levels are highly skewed, with the majority of
the images representing eyes with no signs of DR, and annotations of IRMA and NV are
only available in FGADR. The four datasets used for developing the DR grading models
were split into 80% for training, 10% for validation, and 10% testing. Images from the same
patient were placed in the same split of the dataset. Additionally, the black background
was removed from all images. Further on, Contrast Limited Adapted Histogram Equaliza-
tion (CLAHE) was applied to enhance the image quality by making the blood vessels and
retinal findings more visible (Zuiderveld, 1994). For the training set, several image aug-
mentation techniques, such as random flipping, blurring, and change of perspective, were
also applied. The source code for all the experiments, including concept explanations, is
publicly available online!.

1. https://github.com/AndreaStoraas/ConceptExplanations_DR_grading
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Table 1: Description of the applied datasets. NA: Not available.

Datasets with DR grading Total Level 0 Level 1 Level 2 Level 3 Level 4

APTOS 3662 1805 370 999 193 295
DR Detection 35126 25810 2443 5292 873 708
Messidor-2 1744 1017 270 347 75 35
FGADR 1842 101 212 595 647 287
Datasets with segmentations Total MA HE SE EX IRMA/NV
FGADR 1842 1424 1456 627 1279 159/49
DDR 757 570 601 239 486 NA
DIARETDB1 89 80 54 36 48 NA
IDRiD 81 81 80 40 81 NA

2.1 Testing with Concept Activation Vectors

Two model architectures, Inception V3 (Szegedy et al., 2016) and Densenet-121 (Huang
et al., 2017), were applied due to good performance on analyzing fundus images in previous
work (Kora et al., 2022; Tsangalidou et al., 2022; Zhou et al., 2021). Both models were
pretrained on ImageNet (Deng et al., 2009), as also used in the previous works, and modified
to predict five classes in the final prediction layer. The models were fine-tuned for 100 epochs
on the combined training and validation sets for DR grading. The best performing model
on the validation set was used for further evaluation. Due to class imbalance, a weighted
random sampler was used during training. Moreover, an Adam optimizer with default
hyperparameters and cross-entropy loss were applied (Paszke et al., 2019).

TCAV measures the relative concept importance for a classification result by checking
how sensitive the model is to changes in the input image toward the direction of the concept,
defined by the concept’s corresponding concept activation vector (CAV) (Kim et al., 2018).
For estimating the CAV, the user provides a set of positive example images containing
the concept of interest and a set of negative example images, where the concept is absent.
Next, features are extracted from the positive and negative example sets, respectively, from
a specific layer in the model chosen by the user. A linear classifier is trained to separate
the features from the two image sets apart, and the resulting CAV lies orthogonal to the
classification boundary of the linear model. The process is repeated for each concept.
For more details about the mathematics behind the XAI method, the interested reader is
referred to the original TCAV paper (Kim et al., 2018). In our work, the concepts were
defined as described in the original publication (Kim et al., 2018). First, the full images
were used to represent the concepts (Kim et al., 2018), as opposed to cropping out the
image regions where the specific medical finding for a given concept were located. However,
abnormalities in fundus images can be small, and are typically not evenly distributed in
the image. We therefore tested a second way of preprocessing the concept images, masking
out the area around the relevant medical findings based on the segmentation masks. This
might enhance the quality of the concepts and was inspired by Chen et al. (2020). To avoid
extreme variations in image sizes, the masked images were restricted to be at least 520 x 520
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Figure 2: Schematic representation of a sequential bottleneck model predicting DR level
from six concepts. The ‘bottleneck layer’ is the concepts predicted by a deep neural net-
work. The predicted concepts are then provided to a logistic regression model for DR level
classification.

pixels. For both concept generation approaches, CLAHE was applied to enhance the quality
of the concept images.

Regardless of the image preprocessing approach, concepts were generated for all six
medical findings used for grading DR in fundus images (MA, HE, EX, SE, IRMA, and
NV) based on the segmentation masks. Positive examples containing the concept and
negative examples without the concept were employed for generating the concept activation
vectors. The presence of other findings in the images were balanced between the positive
and negative examples. The positive and negative example sets contained 45 images each,
which were randomly selected from the four datasets. To test the significance of the detected
concepts, 20 different negative sets were generated for each concept. FGADR was the only
dataset annotated with IRMA and NV, and all positive and negative examples for these
two concepts thus arrived from the FGADR dataset.

Next, TCAV scores were calculated for images from the test set. The concepts were ex-
tracted from Denseblock4, which is the last block before the prediction layer of the Densenet-
121 model. To make sure the concepts were consistent and not only caused by randomness,
two-sided paired t-tests were performed on the TCAV scores for a given DR level using the
positive example set for a given concept and the 20 negative example sets. Only statistically
significant concepts with p-values < 0.05 were considered.

2.2 Concept Bottleneck Models

CBMs differ from TCAV in that the concepts are learnt together with the target labels
during model training. The deep neural network is modified to include a bottleneck layer
that predicts the concepts before the final prediction layer (Koh et al., 2020). In other words,
the final labels are predicted directly from the concepts. By inspecting the probabilities
for the predicted concepts for a given input image, it is possible to observe how much
each concept influences the model. A drawback of CBMs is that the dataset must include
annotations for both the target labels and the concepts of interest for all images in the
dataset. Consequently, getting enough annotated data could be an issue, especially in
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the medical field, where annotations are typically challenging and expensive to obtain.
Moreover, only concepts included during the training phase can be explored. For TCAV,
this is less of a concern because the concepts are defined after training the model and the
example images are not restricted to images from the training dataset.

Because CBMs learn the concepts during model training, the deep neural network used
for TCAV could not be used. The original CBM paper (Koh et al., 2020) describes sev-
eral alternative ways of designing CBMs. In our experiments, we implemented sequential
bottleneck models using a modified version of the Densenet-121 and Inception V3 architec-
tures, as shown in Figure 2. The bottleneck model was initiated with the weights from the
corresponding DR grading model and fine-tuned to predict the presence of six diagnostic
concepts. Next, we trained a logistic regression (LR) model to classify DR levels from the
concept predictions provided by the bottleneck model. The FGADR dataset, being the only
dataset annotated with both DR, levels and all six concepts, was applied for training. Due to
limited amount of training data, another bottleneck model was also trained to only predict
the four most prevalent concepts: MA, HE, EX, and SE. By excluding the IRMA and NV
concepts, the DDR, IDRiD, and DIARETDBI1 datasets can also be used for training. Im-
ages of DR level 0 without any of the concepts were also included in the training, validation
and test sets, encouraging the models to not always predict the most prevalent concepts
to be present. Following Koh et al. (2020), binary cross entropy with logits loss was used
for training the bottleneck models. Apart from that, the bottleneck and LR models were
trained with the same hyperparameters as the DR grading models.

The main advantage with CBMs is the possibility of manually correcting the predicted
concepts provided to the LR model at test time. Inspired by the original paper (Koh
et al., 2020), we intervened on the concepts by using the 1st and 99th percentiles for the
predicted concept values on the training dataset. These percentiles functioned as surrogates
for the true concept values for the absence and presence of a given concepts, respectively.
Test time intervention was performed on the entire FGADR test set. Additionally, the
intervention was performed on the subset of test images classified with incorrect DR levels
to make it easier to observe the differences in model performance with and without test
time intervention. In both cases, only incorrect concept predictions were corrected using the
percentile values. The effect of incrementally correcting more concepts was studied, where
the concepts were ordered based on the increase in balanced accuracy when adjusting the
concepts independently.

3. Results

The models based on the Densenet-121 architecture outperformed the Inception V3-based
models for both TCAV and CBMs models. The performance metrics on DR grading for
the models based on Densenet-121 on the combined and FGADR test sets are presented
in Table 2. Because concepts were not used when training the models explained by TCAV,
the performance metrics reported for the ‘TCAV models’ can be regarded as baseline results
for DR level classification. We observe from Table 2 that the model used for TCAV had the
highest performance on the combined test set. The CBM trained on six concepts generalized
poorly from FGADR to the combined test set, but performed best on the FGADR test set.
This is not surprising, as the FGADR training set is much smaller and less diverse than

2058



LOOKING INTO CONCEPT EXPLANATION METHODS FOR DR CLASSIFICATION

Table 2: Performance metrics on both test sets. Highest performance marked in bold.
Acc.: Accuracy, MCC: Matthews correlation coefficient, TTI: Test time intervention.

Model No. of Acc. Balanced F1 score MCC Precision
concepts accuracy

Combined test set

TCAV - 81.2% 62.3% 0.612 0.615 0.613

CBM 4 71.9% 44.8% 0.429 0.416 0.454

CBM 6 24.8% 39.9% 0.257 0.095 0.318

FGADR test set

TCAV 66.7% 55.2% 0.529 0.547 0.511

CBM 52.9% 51.7% 0.470 0.384 0.461

CBM 55.0% 56.0% 0.521 0.416 0.525

54.0% 59.0% 0.532 0.412 0.532
64.6% 69.4% 0.634  0.545 0.628

CBM + TTI (full)
CBM + TTTI (incorrect)

Sy O O =~

the combined training set. For the model trained on four concepts, the performance was
not significantly different between the two test sets because of the mixed training data.
Regarding the concept detection task, the CBM trained on six concepts correctly identified
86.2% of the diagnostic concepts, compared to 82.5% for the model based on four concepts.
The balanced accuracy also increased from 80.9% to 85.9% when increasing the number of
concepts. These results were computed on the FGADR test set. The CBM trained on six
concepts was used in further experiments since this model performed best on the FGADR
data for both DR grading and concept detection.

Due to memory limitations, TCAV scores were calculated on a representative subset of
the combined test set consisting of 50 randomly picked images from each DR level. The
performance for DR prediction on the representative test set did not differ significantly from
the full test set. As mentioned in Section 2.1, the TCAV concepts were either based on the
full images or only the image area surrounding the medical finding(s) of interest. Masking
the concept images did not generate significantly different results, thus the full concept
images were used. Figure 3 shows both TCAV scores for each concept and the concept
predictions with the CBM at different DR, levels. Increasing DR severity is associated with
higher TCAV scores for more concepts and higher concept counts. Note that the TCAV
scores and CBM concept counts are not directly comparable. Different datasets were used,
and the TCAV scores reflect relative importance between the concepts while the CBM
counts are merely the predicted presence of concepts.

Test time intervention on an increasing number of concepts was performed for the CBM
trained on six concepts. The intervention concerned concepts that were wrongly predicted
by the CBM. As previously mentioned, the order of which concepts to intervene on was
determined by the corresponding balanced accuracy in DR classification following the in-
tervention on a single concept. Consequently, the concept resulting in the best balanced
accuracy on the DR grading was included first, while the concept with the worst performance
was included last. The left hand side of Figure 4 shows the DR classification performance
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Figure 3: Upper row: TCAV scores for DR levels 1 to 4, showing the mean and standard
deviation for 20 pairs of positive and negative sets for the representative test set. * marks
insignificant concepts. Lower row: Fraction of images with concepts predicted as present
in the FGADR test set by the CBM. The values are normalized by the total number of
images for each level in the test set.

metrics on the entire fine-grained annotations diabetic retinopathy (FGADR) test set when
concept intervention was performed incrementally. We observe that the intervention had
best effect when five out of six concepts were corrected (correcting the HE concept did not
show further improvement). Even though the performance did not increase dramatically,
test time intervention improved the balanced accuracy and precision compared to no in-
tervention. Next, test time intervention was performed only on the misclassified images in
the test set. As seen on the right hand side of Figure 4, the performance peaked when all
six concepts were corrected. The balanced accuracy increased from 56.0% with no correc-
tions to 69.4%. Qualitative examples on how test time intervention affected the DR level
predictions are provided in Figure 5.

4. Discussion and Conclusion

According to the diagnostic criteria for DR level 1 (mild DR), MA should be the only
abnormality present (Wilkinson et al., 2003). This corresponds well to both TCAV and
CBM results in Figure 3, highlighting MA as the most important concept for DR level 1.
The IRMA, SE, and MA concepts were ranked highest by TCAV for DR level 2, and all
concepts but NV was identified by the CBM. This is consistent with the diagnostic criteria
for MA, HE, and SE. Interestingly, the IRMA concept was ranked highest by TCAV, even
though this finding is mainly associated with DR level 3. By inspecting the datasets more
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Figure 4: Performance metrics for the DR classification task during test time intervention
for an increasing number of concepts. Only wrongly predicted concepts were intervened on.
Left side: Results for the full FGADR test set. Right side: Results for the misclassified
images in the FGADR test set.

closely, several DR level 2 images actually contained IRMA. It is therefore reasonable that
the model identifies IRMA as important when making predictions on DR, level 2 images.
Additionally, several DR level 3 images were predicted to belong to DR level 2. This can
also partly be explained by the high TCAV scores for the IRMA concept. The TCAV scores
for DR level 3 gave high importance to MA, HE, EX, SE, and TRMA, and are coherent
with the diagnostic criteria for this DR level, as well as the presence of all concepts except
NV for the CBM. The presence of HE, EX, and SE was increased compared to level 2,
which is also expected. Finally, for DR level 4, TCAV ranked NV highest, followed by EX
and HE, which was expected as this is the only DR level where NV is present. NV was also
identified by the CBM. Taken together, the concept-based explanations seem to align with
established medical knowledge about DR. This is encouraging in terms of applying TCAV

EX Wrong
= [..0.50..]=> DRlevel 2

NV Wrong
= [...0.01..]=> DRlevel 3

l Test time intervention l Test time intervention

EX Correct
= [..0.09..]=> DRlevel 1

NV Correct
= [...0.95..]=> DRlevel 4

Figure 5: Test time intervention on selected test images with DR levels 1 (left) and 4 (right),
showing how the predicted DR levels change. Inspired by Koh et al. (2020).
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and CBMs in the clinic for explaining deep neural networks for DR grading. The next step
would be to validate the usability of these concept-based XAI methods with feedback from
ophthalmologists. In this current study, we compare the explanations with widely accepted
guidelines for grading of DR, but there might be other clinically relevant aspects that were
not considered.

The overall ranking of the concepts were not different for the concepts based on full
images and concepts based on masked images that focused on the area containing the
medical findings of interest. This could mean that even though some findings are small,
they are still sufficiently learnt from the full images. On the other hand, similar results
could also indicate that the masking technique was not efficient enough. In order to avoid
extreme deviations in the image sizes for the masked concept images, a lower limit of 520
x 520 pixels was applied. For images of low resolutions, this restriction implied that a very
small part of the image was removed and that the masked and full image versions were
almost the same. However, since the model was trained on images input size 620 x 620
pixels, input images with few pixels were regarded as less likely to provide useful results.
Consequently, the lower pixel limit was considered the best alternative when preparing
the masked concept images. The small variations between the results from full concept
images and masked concept images indicate that it is sufficient to use the original images
for concept generation. Further on, time is saved because we do not have to mask out the
relevant findings from the images in order to get meaningful concepts.

IRMA and NV are typical findings for severe DR. The presence or absence of these
findings is therefore expected as useful information when learning to grade DR. As observed
in Table 2, the CBM trained on four concepts (MA, HE, EX and SE) performed worse
when grading DR on the FGADR test set. Even though the model trained on four concepts
received more training data and was better at predicting these four concepts than the model
trained on all six concepts, missing information about IRMA and NV seems to negatively
affect the DR grading. This highlights the importance of high quality concept annotations
for these XAI methods.

Test time intervention showed to be a great advantage of the CBM and resulted in more
accurate model predictions. When the concepts for incorrect predictions are inspected, the
user can get important information about why an image was misclassified. As an example,
the DR level 4 image in Figure 5 was misclassified as DR level 3, because the bottleneck
model missed the NV concept. By correcting this, the image was correctly classified.

Despite including > 33800 images for training the combined DR classification model, the
model did not outperform earlier deep neural networks (Lakshminarayanan et al., 2021). In
this work, we combined four different datasets where the fundus images were captured using
various devices and arriving from patient populations in different geographical areas. The
high image diversity probably makes it challenging for a model to capture representative
patterns in the data compared to more homogenous datasets. On the other hand, the
diverse collection of training data could make the model robust to variations and noise in
data from a real-world setting and increase its ability to generalize to new datasets. We
could not identify any previous studies using the same combination of data as us, meaning
that our results are not directly comparable to previously reported performance metrics.
Because this study focuses on the explanation methods, the performance is regarded as
sufficiently high.
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Concept-based explanations are promising for increasing the understanding of DR grad-
ing with deep neural networks. While CBMs allow for test time intervention on the con-
cepts, these models are limited by the lack of publicly available medical datasets annotated
with both concepts and target labels. For TCAV, concepts can be defined using other
data sources, meaning that the training data does not need additional concept annotations.
Consequently, the model explained by TCAV outperformed the CBMs for DR grading.
Our results highlight a major drawback of the CBMs: Because the development dataset
must be annotated with concepts and DR level, the amount of available data is small. The
requirement of training a modified CBM also complicates direct comparison and combina-
tion with other XAl methods. Before larger medical datasets annotated with concepts and
target labels are available, TCAV gives the best trade-off between model performance and
explainability for DR grading.
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