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Abstract

Medical image analysis tasks often focus on regions or structures located in a particular
location within the patient’s body. Often large parts of the image may not be of interest
for the image analysis task. When using deep-learning based approaches, this causes an
unnecessary increases the computational burden during inference and raises the chance of
errors. In this paper, we introduce CTARR, a novel generic method for CT Anatomical Re-
gion Recognition. The method serves as a pre-processing step for any deep learning-based
CT image analysis pipeline by automatically identifying the pre-defined anatomical region
that is relevant for the follow-up task and removing the rest. It can be used in (i) image
segmentation to prevent false positives in anatomically implausible regions and speeding
up the inference, (ii) image classification to produce image crops that are consistent in
their anatomical context, and (iii) image registration by serving as a fast pre-registration
step. Our proposed method is based on atlas registration and provides a fast and robust
way to crop any anatomical region encoded as one or multiple bounding box(es) from any
unlabeled CT scan of the brain, chest, abdomen and/or pelvis. We demonstrate the utility
and robustness of the proposed method in the context of medical image segmentation by
evaluating it on six datasets of public segmentation challenges. The foreground voxels in
the regions of interest are preserved in the vast majority of cases and tasks (97.45-100%)
while taking only fractions of a seconds to compute (0.1-0.21s) on a deep learning worksta-
tion and greatly reducing the segmentation runtime (2.0-12.7x). Our code is available at
https://github.com/ThomasBudd/ctarr.
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1. Introduction

Deep learning is currently the most dominant technology for automated medical image
analysis tasks such as classification, segmentation and prognosis. Computed tomography
(CT) is one of the most common medical imaging modalities nowadays (Schockel et al.
(2020)'2). The field of view CT images varies naturally. For example, on a large scale the
medical question determines which body part is scanned (head, chest, abdomen, pelvis etc.).
On a small scale it depends on the input of the radiographers to the scanner and thus slightly
varies between users. On the other hand, the information required for the medical question
or the image analysis task is often located in a particular anatomical region of interest.
Myronenko et al. (2023) suggested a segmentation pipeline build on deep supervision, a
method where a preliminary low resolution segmentation is created on the entire scan and
a full-resolution network refines the prediction only in the context around the preliminary
segmentation. Mikhael et al. (2023) proposed an image classification pipeline to assess lung
cancer risk that used automated segmentation of the lung and applied the classification
network only inside a crop around this segmentation. These and similar approaches heavily
rely on a robust segmentation of the organ in which the disease is located and thus cannot
be applied directly to other CT image analysis problems, such as segmentation of metastatic
disease, where lesions can appear in a variety of locations. Further, computing bounding
boxes based on any automated segmentations can be disadvantageous for several other
reasons. First, such automated segmentation algorithms tend to produce false positive
annotations far away from the actual anatomical region of interest as previously reported
by Buddenkotte et al. (2023) and demonstrated in Appendix A. Second, predicting the
segmentation on full volume on full resolution of the CT image can be computationally
expensive. Third, using a segmentation algorithm on low resolution instead is not feasible
in problems where the object of interest is very small such as lymph nodes or bone fractures.
In this manuscript, we describe a fast and robust approach for the identification of predefined
anatomical regions in CT scans. In contrast to the previously described approaches by
Myronenko et al. (2023) and Mikhael et al. (2023), our method can identify any anatomical
region of interest without the need for fine-tuning the pipeline. Instead, new anatomical
regions of interest are simply added as bounding boxes in an atlas coordinate system. The
method uses image registration to map such bounding boxes from the atlas coordinate
system to the coordinate system of the incoming CT scan. We further suggest a novel
image registration algorithm that is particularly suited for this task. Traditional registration
methods often use iterative schemes and are likely to get stuck in local minima in cases
where large translations are needed for the optimal alignment. Our method prevents this
by using anatomical segmentation masks instead of the CT images directly. We validate our
method on a total of 1131 CT scans from public segmentation challenges to demonstrate
robustness and computational feasibility. The proposed method also identifies orientation
misalignment compared to the atlas with regards to 90-, 180- and 270-degrees’ rotations in
xy-plane and reversion of the z-axis, which occur in some dicom to nifti conversion tools or
when false information was added into the dicom header. The proposed method can serve as

1. https://www.who.int/data/gho/data/indicators/indicator-details/GHO /total-density-per-million-
population-computed-tomography-units

2. https://www.england.nhs.uk/statistics/wp-content /uploads/sites/2/2022/07 /Statistical-Release-21st-
July-2022-PDF-875KB.pdf
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a pre-processing step for CT image analysis problems like image segmentation, classification
or registration. The framework is available for at https://github.com/ThomasBudd/ctarr
and offers a convenient interface to crop from predefined anatomical regions on unlabeled
scans as well as inferring custom ones from labelled datasets.

2. Related Works

To the best of our knowledge, our method is the only one today that can extract any
anatomical region of interest from a CT scan as previous approaches are tailored for only
a single region. Previous approaches are typically build on either image registration or
segmentation while our method utilises a combination of both. In the following we will
describe these previously existing method.

2.1 Image registration-based approaches

There is a long tradition in creating specialised anatomical region recognition in medical
images that use image registration. For example, Kalinié¢ (2009) summarized well before the
age of deep learning existing techniques to perform image segmentation by registering an
image to an atlas and propagating the segmentation from the atlas to the image. The usage
of atlas-based registration techniques is especially popular in brain imaging. CT, MRI, or
SPECT images are often registered to an atlas in the so-called Montreal Neuro Imaging
(MNI) space during pre-processing before carrying out further analysis such as accurate
identification of different brain regions as suggested by Manera et al. (2020) or Ni et al.
(2020). Similar to our approach, Buchert et al. (2015) created a registration method for
brain SPECT images to the MNI space to consistently crop from six slices with locations
defined in this MNI space. The reason why these approaches are popular in the field of brain
imaging might be that the robust and reliable registration algorithms could be proposed
due to the rigidity of the brain. Image registration in other areas of the body can be sig-
nificantly more challenging, especially considering anatomies that are more flexible or show
more variation between patients. Nowadays, deep learning is often used as a part of image
registration pipeline to solve difficult registration problems or decrease the computational
effort of conventional approaches. For a comprehensive survey we refer to Chen et al. (2021)
and Chen et al. (2023).

2.2 Image segmentation-based approaches

Other approaches comparable to our proposed method automatically segment organs of
interest to create smaller image crops. Mikhael et al. (2023) suggested a prediction pipeline
for lung cancer risk and used cropping around automatically created lung segmentations
as a prepossessing step. Myronenko et al. (2023) won the 2023 kidney tumor segmentation
challenge (kits23)? by using an approach that first identifies the kidneys on a low resolution,
cropping around this region and employing a second network that operates only on the full
resolution crops.

Our method is based on anatomy segmentation of the full body and registration to an atlas

3. https://kits-challenge.org/kits23/
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which are active fields of research. One of the most relevant current work on segmentation
of various anatomies on CT images is the Totalsegmentator by Wasserthal et al. (2023). The
Totalsegmentator consists of a dataset of more than 1200 CT scans and annotations from
1174 different anatomies and automated segmentation models for the segmentation for those
anatomies. The annotations were made by first creating a small set of manual annotations,
training a publicly available segmentation model on these and refining the model predic-
tions on remaining scans. Other examples of automated segmentation of organs and other
anatomies can be found in the well-established nnU-Net framework Isensee et al. (2021),
where the authors proposed a pipeline that automatically suggests hyper-parameters for a
CNN-based segmentation model given any new dataset for biomedical image segmentation.
The framework won multiple segmentation challenges and can be downloaded freely with
pre-trained weights for multiple segmentation tasks including organ segmentation. For ex-
ample, the challenge submission for the Multi Atlas Labeling Beyond the Cranial Vault
- Abdomen Challenge is capable of segmenting 13 different organs in the abdomen. For
a more comprehensive review on anatomy segmentation on CT images can be found in
Wasserthal et al. (2023)

2.3 Comparison to our method

All previously established approaches have in common that they are specialised for one par-
ticular anatomical region of interest. Modification to other anatomical regions often involves
collecting new datasets, training new networks or adapting parameters in the registration
pipeline. In contrast to this, our method is a general-purpose tool in the sense that new
anatomical regions can be added by defining a new bounding box in the coordinate system
of an atlas. The rest of the pipeline is agnostic to the choice of the bounding box. Our
novel image registration method uses sets of segmentation masks instead of performing on
the CT images directly, this allows us to prevent the method from getting caught in local
minima and to safely determine even large transformations as we will demonstrate in the
following sections.

3. Material and Methods

In the following we will describe the proposed method in detail. The goal of our method is
to automatically identify pre-defined anatomical regions in any incoming CT scan. This is
achieved by encoding anatomical regions as one or multiple bounding boxes in the coordinate
system of the atlas and mapping those to the CT scan by performing image registration.
In contrast to many existing image registration techniques, we do not perform the image
registration directly on the CT images, but instead on the segmentation masks of a fixed
set of 19 anatomies. We will first describe our automated segmentation method to obtain
this segmentation automatically in Section 3.1 followed by the atlas registration method
in Section 3.2. The pipeline of how to perform the cropping of a pre-defined anatomical
region on an unseen CT image is described in Section 3.3. Section 3.4 described how such

4. The original version had annotations from 104 anatomies while the recent update contains 117
https://github.com/wasserth /TotalSegmentator
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anatomical region can be computed when none is pre-defined, but a set of CT images and
segmentations of the region of interest are given.

3.1 Segmentation of anatomical structures

The segmentation of the anatomical structures was performed by training a 3d U-Net (Ron-
neberger et al. (2015); Cigek et al. (2016)) on the Totalsegmenator dataset. We first carefully
selected a set of 19 anatomical structures throughout the whole body which ratified the fol-
lowing criteria: (1) large volume, (2) segmented by previous approaches with high accuracy
and (3) do not demonstrate large anatomical variations. We further created groups of some
anatomies to reduce the complexity of the segmentation task. The resulting list of the
19 anatomical structures considered by our segmentation approach can be found in Table
1. We ensured that our segmentation model is on state-of-the-art level by starting from
hyper-parameters suggested by the nnU-Net framework followed by a hyper-parameter tun-
ing of the patch size, learning rate, batch size, optimizer, and augmentation strength. For

Table 1: Target anatomies of the segmentation approach

ID | Anatomy name ID | Anatomy name
1 skull 11 | brain

2 C vertebrae 12 | lung left

3 left rips, scapula, clavicular 13 | lung right

4 right rips, scapula, clavicular || 14 | heart

5 sternum 15 | liver

6 T vertebrae 16 | spleen

7 L vertebrae 17 | left kidney

8 sacrum 18 | right kidney

9 left hip 19 | urinary bladder
10 | right hip

pre-processing, we resized the training dataset to 3mm isotropic voxel spacing and created
a three channel input by windowing the CT image with a bone, lung and soft-tissue win-
dow followed by normalizing the gray values to [0, 1] in each channel. The network is a
standard 3d U-Net with 32 filters in the first block, four stages and 20 output channels
followed by a softmax function. The network was trained using the ADAMW optimizer as
suggested by Loshchilov and Hutter (2017) for 250.000 steps with a batch size of 4, a linear
warm-up plus cosine decay schedule with a maximum learning rate of 0.0016, 51 = 0.98,
By = 0.999 and a weight decay of 0.0001. We used a cubed input patches of 643 voxels.
To promote robustness of the network, we employed aggressive data augmentation during
training, namely rotation in xy plane, z axis flipping, zooming in and out as well as heavy
Gaussian noise and blurring (see Supplementary Materials for more Detail). In contrast
to other segmentation frameworks like nnU-Net by Isensee et al. (2021), we do not resize
the segmentations to the original resolution, but instead perform the atlas registration step
using the isotropic resolution of 3mm to reduce the memory and computational cost.

Recent research of Isensee et al. (2024) suggests that the performance of simple 3d U-Nets
can be improved by simply changing the decoder to a ResNet and increasing the amount of
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convolutional layers. However, this comes at the expense of increased computational bur-
den. To prevent this and maintain a high inference speed we decided against more elaborate
architectures. Instead, we research how improved segmentation quality affects the registra-
tion results by applying the registration once with our automated segmentations and once
with ground truth segmentations.

3.2 Atlas registration

The aim of the atlas registration is to find a mapping 7" which aligns the input CT image im
(moving image) to the atlas (fixed image). Classical methods use the CT images directly and
have the disadvantage of being sensitive towards the initial condition of the iterative scheme
in the sense that they often get stuck in local minima in cases where large transformations
are needed to align the two images. The registration method presented in this prevents
this by not acting on CT images directly, but instead using the output of the anatomy
segmentation described in the previous section. It is important to note that the atlas is not
present as a CT image, but as a set of averaged segmentations of the anatomies listed in
Table 1. The creation of this atlas of segmentations is described in the end of this section.
In principle any type of registration algorithm can be used to map the bounding box(es)
from the atlas coordinate system to the scans coordinate system. In this work we decided
to restrict the transformation such that the topology of bounding boxes is maintained
after transformation. To be precises, we restrict the transformation such that transformed
bounding boxes still have edges parallel to the x-, y-, and z-axis by allowing only translations,
scalings and possibly 90-, 180- and 270-degrees rotations in the xy-plane as well as flippings
along the z-axis. The computation of this transformation is divided in two steps, a first
translation alignment followed by an iterative gradient descent step.

The first translational alignment step prevents the iterative scheme from getting stuck in
local minima, especially for cases where large translations are needed for optimal alignment.
To compute this translation, we compute the center of masses of the segmentations and used
them as landmarks to minimize a weighted mean squared error. For this, let 2 € R'¥*3 be
the center of mass of the segmentations from the input CT image and y € R¥*3 be the
center of mass of the segmentations of the atlas. The coordinates in = are only well-defined
for anatomies that are covered in the input CT image. To put no weight on anatomies
not covered in the input image and only little weight on those only partially covered, we
introduce a weighting vector w. This weighting vector is computed on the fly for each
incoming image. For anatomy i, w; is computed as the ratio volume in the input image vs
the volume of this anatomy in the atlas. The resulting vector is normalized to sum to 1
(w; = w;/ > ;w;). Given the two sets of center of masses z and y and a weighting vector
w, we obtain the translation via

19
tj = argminz w@'(%j +t;— yij)2
i=1

19
=D wilyyy — i)
=1
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To account for misalignment of the atlas and input image in terms of 90-, 180-, or 270-degree
rotations in the xy plane or a flipped z-axis, we iterate over all possible configurations and
choose the one that minimizes the previously described weighted mean squared error of
the landmarks. The landmark-based registration is computationally cheap, but contains
imperfections as the landmarks contain less information than the set of segmentation masks.
The initial translational alignment is a crucial step as it prevents the iterative refinement
scheme from getting stuck in local minima like traditional image-based methods do.

To improve upon the landmark-based registration, we perform a gradient descent-based
refinement scheme to obtain the final translation and scaling component of the registration
transformation. This is performed by minimizing the dice loss between the segmentation
masks of the CT image seg;,, and the atlas segqiiqas

mjin Ldse (T(Segim) ) Segatlas) )

where T denotes the registration operator that maps the moving image to the fixed. We
initialise the parameters of the translation as the ones computed by the landmark-based
approach and the parameters of the scaling as ones (no scaling). Next, we apply gradient
descent to minimize the dice loss between the anatomy segmentations of the input C'T image
(moving image) and the atlas (fixed image). We use an initial step size of 0.05 and reduce
the step size by a factor of 2 each time the loss did not decrease by at least 0.005 between
two iterations. The iteration is stopped when reducing the step size a fourth time. The
rotations in xy-plane the and flipping of the z-axis are left unchanged in this stage.

The atlas of anatomical segmentations was obtained by registering and averaging all 37
scans from the Totalsegmentator that contained all 19 segmentation classes. First, each of
these scans was registered to all remaining 36 scans and the average over all 36 translations
and scalings was computed. Second, these averaged transformations were applied to each
corresponding set of segmentations of the anatomical structures. Third, we computed a
provisionally atlas by computing the voxel-vise average of the transformed anatomy seg-
mentations. Fourth, each scan was registered to the provisionally atlas. The final atlas was
computed by the voxel-wise average of the aforementioned registered anatomy segmenta-
tions and checked visually.

3.3 Cropping of pre-defined anatomical regions

Let’s assume that the anatomical region of interest is given as one or multiple bounding
boxes bby,...,bb; in the coordinate system of the atlas. To map those bounding box(es)
to the coordinate system of the input image, one first has to compute the registration
transformation T" as described in Section 3.2. As T maps the input image (moving image)
to the atlas (fixed image), 7~! maps the bounding boxes bby, ..., bb; to the input images
coordinate system. By design of 7' the mapped bounding boxes T~ (bby), ..., T~ (bby,) still
have edges parallel to the x-, y-, and z-axis and thus can be used for cropping without any
need for interpolation. This workflow is visualized in Figure 1 and presented as pseudo code
in Algorithm 1.
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Figure 1: Pipeline of cropping pre-computed anatomical regions in unseen CT images. Step
1: CNN-based segmentation for a fixed set of 19 anatomies is performed. Step
2: image registration is performed to align the segmentations of step 1 (moving
image) to the atlas (fixed image). Step 3: the registration transformation is being
used to map the anatomical region from the atlas- to the image coordinate system
and used for cropping. The segmentations are displayed as colored pseudo X-Ray
images where the sum of the binary mask was computed over the x-axis.

3.4 Computing of new anatomical regions

One way to create anatomical regions is to create or edit the bounding boxes in the atlas
coordinate system guided by expert knowledge. Another way is to use pairs of images
and segmentations of the region of interest, which is performed the following way. For
each image im; with corresponding region of interest segmentation ROI; the registration
transformation T; is computed as detailed in Section 3.2. This transformation is applied
to ROI;. The collection of transformed region of interest segmentations (7;(ROI1;)); now
reveals in which parts of the atlases coordinate system region of interest can and cannot
occur. To extract one our multiple bounding boxes from this information we propose to
simply average these masks by computing the heatmap

1 n
h=— ;Ti(ROIi).

The bounding boxes can be computed such that they contain all coordinates (x,y, z) for
which the heatmaps value is above a certain threshold. In case all segmentation labels are
clean one can use 0 as a threshold, otherwise a larger threshold can be used. Our imple-
mentation computes the bounding box for each connected components of the thresholded
heatmap h and merges overlapping ones. To account for anatomical variations and imper-
fections in the atlas registrations we increased the resulting bounding boxes by 1lcm in each
direction. The corresponding workflow is visualized in Figure 2.
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Algorithm 1 CT Anatomical Region Cropping

Require: im, segqiiqs, bb > CT image, atlas segmentation, bounding box
segim < AnatomySegmentation(im)
x < CenterOfMass(segin ) > Landmarks moving image
y < CenterOfMass(segatias) > Landmarks fixed image
W 4— sum(segim, (1,2,3))/sum(segqtias, (1,2, 3))
w — W/sum(w) > MSE Weight
to, krot, f» < LeastSquares(z, ,y ,w) > Orientation and initial translation
if k.o+ > 0 then
segim < Rotate90(segim, krot) > Xy rotation
im < Rotate90(im, kyot)
end if
if f, then
segim < FlipZ(segim) > Flipping of z axis
im < FlipZ(im)
end if
s1, t1 < IterativeRegistration(segim, S€gatias, to) > Refine registration
bbim, < (bb —t1)/s1 > Map bounding box to scan

iMerop < Cropping(im, bbip,)

Our code is available at https://github.com/ThomasBudd/ctarr and is delivered with
bounding boxes for the anatomical regions of the kidneys, brain, colon, gallbladder, heart,
liver, lungs, pancreas, spine, spleen, stomach, and urinary bladder. The creation of these
boxes is described in the following section.

4. Experiments
4.1 Image registration

We use the Totalsegmentator dataset to compare our proposed segmentation and atlas
registration algorithm with alternative methods. First, to assess the influence of the errors of
the segmentation network onto the registration result, we ran the registration algorithm on
this dataset again using the manual ground truth segmentations instead of the segmentation
produced by the CNN. Second, to compare our registration pipeline with established state-
of-the-art algorithms that perform directly on CT images, we use the affine registration of
the ANTs framework®. To perform image-based atlas registration we needed to create a CT
image atlas as the atlas of our registration method is only given as a set of segmentations.
For this we used the scan with the longest z axis and registered it and its segmentation with
our registration method to the atlas and verified the results visually (see Figure 4). Lastly,
we set up our proposed method. Since the original segmentation network was trained on
the Totalsegmentator dataset, we trained the network again in four-fold cross-validation
and collected only the predictions of scans that were not present in the training data to
prevent a bias due to overfitting. We quantified the results in terms of DSC between the

5. https://antspy.readthedocs.io/en/latest/registration.html
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Figure 2: Workflow of computing bounding boxes from labelled CT images. Step 1 and 2
compute the anatomy segmentations and the atlas registration transformation for
each scan of the dataset. Step 3 applies these transformations to the regions of
interest to map them all into the same coordinate system. Step 4 overlays these
to a heatmap and computes the bounding box.

manual ground truth anatomy segmentations and NCC between the CT image atlas and
the warped moving image.

4.2 Anatomical region cropping

Next, we aimed at testing the utilities of the cropping pipeline. For this, we used the
Totalsegmentator dataset to create a set of bounding boxes for various anatomical regions
without considering other data sources. As the labels of the dataset are noisy, we could
not threshold the heatmap h (see Section 3.4) with a value of 0, but instead had to choose
larger values to prevent single outliers (see Appendix A) from greatly increasing the bound-
ing boxes. The thresholds used for each region is listed in the supplementary Table 4. The
data was obtained by using random scans from different scanners of the picture archiving
system of a university hospital. In this case it is reasonable to assume that the majority of
the segmented anatomies were healthy.

The cropping pipeline was tested on a total of n=1131 scans from public segmentation
challenges namely the liver, lung, pancreas, spleen and colon dataset of the medical seg-
mentation decathlon (MSD, Antonelli et al. (2022)) and the kits23 challenge. In contrast
to the Totalsegmentator data, these datasets contain scans of pathological organs (except
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for the spleen dataset).

As a measure for the sensitivity of the method, we computed the percentage of preserved
foreground voxels after cropping. The specificity was captured by computing the percent-
age of foreground voxels contained in the image before and after cropping. To motivate the
usage in reducing the inference time of image segmentation pipelines we further measured
(1) the time it takes to execute the cropping pipeline, (2) the execution speed of inference of
an nnU-Net style segmentation algorithm with and (3) without cropping the images using
our proposed method. More technical detail on these experiments can be found in the Ap-
pendix B. It should be noted that we did not train an nnU-Net style network for this as this
would have required additional training datasets for each segmentation problem. Instead,
the inference was simulated by using networks with randomly initialised weights. To check
how often the orientation in terms of 90 degrees rotation in xy-plane and flipping of the
z-axis was obtained correctly by the pipeline, we manually checked the axial, coronal and
sagittal view of each volume after applying our pipeline and computed the percentage of
correct orientations.

4.3 Computation of new anatomical regions

As a last line of experiments we gradually reduced the number of scans from the Totalseg-
mentator dataset used to compute the bounding boxes and compared those with the MSD
pancreas test dataset. This was done to see how many annotated scans are needed to per-
form the computation of bounding boxes described in Section 3.4. As mentioned in Section
3.4, we increase the bounding box with a margin of lecm in each direction by default. To
make the bounding boxes obtained by the differing amount of scans comparable, we adapted
this additional margin such that the volume of the bounding box equalled the volume of
the bounding box created with the full Totalsegmentator dataset.

5. Results

5.1 Image registration

The results of the image registration experiments can be found in Figure 3. It can be
observed that the results of the registration pipeline using the automated and the manual
ground truth labels are almost indistinguishable. While the traditional image-based method
maintains moderate NCC values in some cases, it can be observed that the DSC values of this
method are very poor. One reason for this is that the method is dependent on the starting
point of the iteration and can get stuck in local minima before reaching the desired global
minima. Figure 4 demonstrates some of such failures. We present further comparisons via
scatter plots in the Supplementary Materials along with visual comparisons.

5.2 Anatomical region cropping

The results of testing the cropping pipeline can be found in Table 2. It can be observed
that all foreground was preserved in three of the six tasks, and only 0.93-2.55% of the
foreground was lost in the remaining tasks, while the percentage of foreground voxels in the
images after cropping was increased by a factor of 1.98-8.13. Figure 5 shows examples of
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Figure 3: Results of comparing the presented image registration method with the usage of
clean segmentation labels and state-of-the-art affine registration methods using
CT images instead of segmentations.
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Figure 4: Examples of failures of the traditional image-based registration method.

scans from each of those three tasks with a loss of ground truth foreground after cropping.
Visual analysis revealed that the foreground that got lost during the cropping was always
in close proximity to the margin of the bounding boxes. Figure 5 also shows that all three
scans are still reasonably well aligned with the atlas despite the fact that the pathological
masses present in the images caused a distortion in the neighboring anatomies. Table 2
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Table 2: Numerical evaluation of the cropping pipeline on the test dataset. The reduction
of image voxels was computed by dividing voxels before cropping by the number
of voxels after cropping. Computation times were measured using an RTX 6000
Ada GPU with pytorch 2.02 installation.

dataset H Liver ‘ Lung ‘ Panc. ‘ Spleen | Colon | kits23
region of liver & | lung panc. & | spleen | colon kidneys &
interest tumors | cancer | masses cancer | masses
num. scans n=131 | n=63 | n=281 n=41 n=126 | n=489
preserved 98.91% | 100% | 99.07% | 100% 100% 97.45%
foreground

foreground voxels || 2.28% | 0.04% | 0.22% 0.44% | 0.05% | 0.83%
before cropping
foreground voxels || 11.38% | 0.08% | 2.08% 8.09% | 0.13% | 10.3%
after cropping
exec. speed 0.21s 0.15s | 0.10s 0.14s 0.16s 0.17s
cropping
inference speed 126.7s | 87.4s | 72.7s 102.3s | 124.5s | 117.4s
no cropping

inference speed 26.5s 43.4s 5.7s 10.2s 58.1s 14.0s
cropping

correct 99.24% | 100% | 100% 100% | 98.41% | 100%
orientation

shows that the proposed cropping pipeline took an average of 0.10-0.21s to compute on our
RTX 6000 ADA GPU using pytorch 2.02, while reducing the inference computing time of
a nnU-Net style segmentation algorithm by 44.0-100.2s. Last, the orientation of the scans
was correctly determined in all except one scan in the MSD Liver and two scans in the
MSD Colon dataset. The one scan from the MSD Liver dataset was flipped on the z-axis
compared to the atlas as the segmentation algorithm labelled the vertebrae in the lower
abdomen as vertebrae in the neck. We found that both scans from the MSD Colon dataset
with wrong orientation were caused by a corruption of the image files. In both cases, we
observed that some bottom slices were placed on the top of the stack of slices instead of the
bottom, which also caused a flip of the z-axis when being compared to the atlas.

5.3 Computation of new anatomical regions

In the end we evaluated the bounding boxes of the pancreas obtained with the differing
amount of CT image and segmentation pairs. The results can be found in Table 3. It can
be noted that the sensitivity remains very stable even when using as little data as n=25
scans.
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Liver Pancreas Kidneys

Figure 5: Examples of scan with a loss of ground truth foreground after cropping.

Table 3: Change of sensitivity when decreasing the dataset size for locating the anatomical
region of the pancreas. The bounding box size was fixed to the size of the bounding
box when using the full dataset.

n | 807 | 403 | 201 | 100 | 50 | 25 | 12 | 6
sens | 99.07 | 99.24 | 99.20 | 99.31 | 99.02 | 98.99 | 98.66 | 98.89

6. Discussion

The fact that CT images naturally vary in the anatomical context they contain can make
automated processing of them more challenging. In this manuscript we proposed the first
general purpose pipeline for identifying anatomical regions on CT images. We demonstrated
how our pipeline can be adapted to any anatomical region by simply defining a new bound-
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ing box in the coordinate system of the atlas. We also showed that our method is robust,
fast and can be used to drastically improve the inference speed of segmentation pipelines.
This was done using over 1100 scans from six different publicly available datasets. We
also suggested a novel registration pipeline based on automatically generated segmentation
masks instead of using CT images directly. While this seems like an additional step that
might introduce accumulated errors, we demonstrated how the usage of such segmentation
masks instead prevents registration methods from getting stuck in local minima. The fact
that the registration results using the automated and manual segmentations were extremely
similar implies that further improvement of the segmentation model might not lead to an
improved registration performance. Further, we demonstrated that potentially only very
few labeled examples might be needed to compute new anatomical regions automatically.
Our method has room for improvement. Our results showed that inferring bounding boxes
from healthy regions of interest and applying it to unhealthy patients might lead to a loss
of information when applying the cropping pipelines. This is naturally to be expected as
unhealthy organs can be enlarged and might exceed the boundaries of healthy organs. In
consequence, more anatomical regions from unhealthy subjects should be computed and
added to the pipeline to ensure no loss of information in these cases. As an alternative, an
additional cropping margin can be used when using bounding boxes computed from healthy
organs for scans with unhealthy organs. Second, the current version of the algorithm is not
applicable for CT scans of the legs, as our method is not capable of segmenting anatomies
in the legs. The current release of the Totalsegmentator algorithm does feature the segmen-
tation of bones in the legs, however the corresponding labels have not been released in the
publicly available dataset yet. Third, while the pipeline was able to infer the orientation
of the scan in terms of z-axis flipping and xy-plane rotations, the user still has to know
on whether the input images are axial, sagittal, or coronal images. This knowledge can be
difficult to obtain especially when using nifti scans with isotropic resolution or false infor-
mation was added to dicom headers. Fourth, to prevent the orientation alignment errors it
is desirable to check the automated anatomical segmentations for plausibility. This might
allow raising warnings for scans with labelling errors in the automated segmentation, or
corrupted image files as observed in the MSD colon dataset. Finally, we believe that it
would be valuable to extend the library for the usage of MRI scans as the Totalsegmentator
dataset was recently extended by D’Antonoli et al. (2024) for the usage in MRI.

For the future, we believe it to be valuable to test the proposed pipeline as a preprocessing
step for CT image analysis tasks. For example, the pipeline can be used as a first step
in image registration problems where two scans of the same patient are present. In this
scenario, CTARR reduces the workload and serves as a pre-registration tool by providing
two crops of the same anatomical region. Further, the pipeline should be tested for image
classification pipelines targeting cancers with complex distributions like ovarian cancer that
is spread across the abdomen. The proposed pipeline can help reducing a dataset of CT
scans to image crops of similar size showing the same anatomical context. This might be a
key pre-processing step to avoid overfitting and reduce the training and inference burden.
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7. Conclusion

We presented a novel pipeline for cropping anatomical regions on CT images based on au-
tomated CNN-based anatomy segmentations and traditional image registration techniques
to a predefined atlas. We demonstrated that the pipeline is fast, robust can be adapted
easily to identify new anatomical regions.
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Appendix A. Outlier examples in Totalsegmentator

This section briefly demonstrates some outliers far from the actual anatomical region that
are introduced by automated segmentation methods. The examples were taken from the
Totalsegmentator dataset Wasserthal et al. (2023). The annotations of this dataset were
created by first training the nnU-Net framework Isensee et al. (2021) on little manually
created annotations, evaluating the model on unannotated data and correcting the predic-
tions manually. We found that some of the annotations in the Totalsegmentator dataset
contained mistakes which are most likely caused by the annotator missing errors of the
nnU-Net segmentation. Examples of such can be found in Figure 6. All errors presented
are far away from the anatomical region where the organs are actually located. This might
be a reason why the annotators have missed these false positive predictions.

baH'I: 51024 colon: 50484

lungs: 50419 urinary_bladder: 50945

brain: s1428

lungs: s0815

Figure 6: Examples of implausible annotations on the Totalsegmentator dataset. These
errors are most likely a result of false positive errors of the segmentation network
that were missed by the annotator during the refinement process. The heading
of each image displays the label of the red contour and the ID of the scan.

Appendix B. Hyper-parameters of image augmentation

The hyper-paramters of the image augmentation can be found in Table 5. Rotations and grid
scaling were applied only in xy plane. Rotations were performed around the image center
once using interpolation (magnitude=[-45, 45] degrees) and in a interpolation-free manner
(90-, 180-, or 270-degrees). The standard deviation of the additive Gaussian noise was
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Table 4: Thresholds applied to infer bounding boxes on the Totalsegmentator dataset.
Noise in the Totalsegmentator labels cause too large bounding boxes when us-
ing a threshold of 0. The thresholds were obtained by increasing the threshold
until the visual inspection of the bounding box in the atlas coordinate system was

satisfying.

Region threshold
spine 0.03
brain 0.01
lungs 0.04
heart 0.03
spleen 0.01

kidneys 0.01

urinary bladder 0.01
colon 0.03
gallbladder 0.01
pancreas 0.01
stomach 0.01
liver 0.035

computed by respecting the standard deviation of the image patch o(im). The magnitude
of the Gaussian Blurring is given in number of voxels with full width at half maximum.

Table 5: Hyper-paramters of the image augmentations.

Operation Probability Magnitude
Rotation 0.5 [-45, 45]
Rotation 0.75 {90, 180, 270}
Grid scaling 0.5 [0.7, 1.4]
Flipping (z only) 0.5
Addative Gaussian Noise 0.5 o(im) x [0,0.25]
Gaussian Blurring 0.5 [0, 5]

Appendix C. Additional results image registration

Figure 7 presents scatter plots to compare the different registration methods. It can be
observed that the segmentation-based approaches result in very similar results in terms of
NCC and that only few outliers can be detected in terms of DSC. The most dominant six
cases in which a higher DSC was achieved by using the manual segmentation instead of
the automated segmentation are displayed in Figure 8. Overall it can be observed how the
classical image-based method frequently fails in aligning the CT image with the atlas.
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Figure 7: Scatter plot for a case by case comparison of the different registration methods.

Appendix D. Simulation of segmentation network inference

To simulate the computational burden of segmentation network inference we created a
inference pipeline similar to the one suggested by nnU-Net Isensee et al. (2021). In a first
step we resized the images to a common voxel spacing. While nnU-Net suggests a different
voxel spacing per dataset, we used a common spacing of 3mm in z and 0.75mm in xy
direction to simplify the experiments. Next, we used a 3d U-Net architecture as suggested
by nnU-Net. We used a five stage network where the first two stages used only inplane
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Example 1 Example 2 Example 3

Manual Automated Manual Automated Manual Automated Atlas
Example 4 Example 5 Example 6

Manual Automated Manual Automated Manual Automated Atlas

Figure 8: Examples for which the registration achieved a higher DSC performance when
using the manual ground truth segmentations instead of the automated segmen-
tations.

convolutions to account for the anisotropic resolution. The network was evaluated with the
Sliding Window algorithm using a patch size of 64 x 160 x 160 voxels. As in nnU-Net, this
was repeated applied total of 40 times to simulate the test time augmentation (evaluating
with eight configurations of flipping over the z, x, and y axes) and the ensembling (evaluate
five networks trained in cross-validation). Finally, the predictions were interpolated again
to the original image spacing. In our experiments we used the GPU interpolation operations
implemented in pytorch to accelerate the inference. We used an NVIDIA 6000 Ada GPU
and pytorch v2.02 for all experiments.
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