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Abstract

Echocardiography is a widely used medical modality to evaluate cardiac function. Auto-
matic solutions for 2D echocardiography analysis could greatly influence cardiac disease
diagnosis and prognosis. Among its diverse analysis tasks, segmentation and motion esti-
mation are critical. Segmentation provides insights into cardiac structures, while motion
estimation depicts myocardial deformation during cardiac cycles via image registration.
These two tasks help extract useful clinical indexes, including ejection fraction and heart
wall strain. Deep learning-based methods that aim to tackle each of the above tasks have
demonstrated efficient performance. However, the predominant focus on a single research
dataset raises concerns about the generalisation of these approaches to other datasets and
their applicability to downstream clinical tasks, such as diagnosis and prognosis. In this
paper, we propose a comprehensive echocardiography analysis pipeline, consisting of a seg-
mentation module, a motion tracking module, and a classifier. The segmentation module
incorporates a shape prior, leveraging a contour-aware loss function for the endocardium
and epicardium. With appropriate data augmentation strategies, this module consistently
demonstrates robust segmentation and ejection fraction estimation performance across di-
verse datasets from distinct medical centres. The motion tracking module integrates a
motion prior for the myocardium through a differentiable poly-affine transformation, en-
suring smooth and anatomy-aware deformation estimation. This module exhibits improved
registration performance and ensures greater consistency in the deformation field across
datasets. Finally, the classifier leverages features extracted from the preceding segmenta-
tion and motion tracking modules for downstream classification, providing interpretable
inputs. The segmentation and motion tracking models undergo individual training on two
publicly available datasets. Subsequently, the classifier undergoes further training on a
third pathology dataset using the estimated features from the previously trained models.
To evaluate real-world performance, we directly apply the three trained models to a clini-
cal dataset from a local hospital. Our successful application of these proposed methods in
detecting patients with myocardial infarction (an F1 score of 0.84 and an accuracy of 0.77),
a life-threatening cardiac disease, highlights their potential clinical utility. Our codes are
available at https://gitlab.inria.fr/epione/echoanalysis.
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1. Introduction

According to the 2023 annual report of the World Heart Organisation, cardiovascular dis-
eases (CVD) accounted for nearly one third of all global deaths in 2021 (Federation, 2023).
Compared to high-income countries, more than 80% of CVD-related deaths occurred in low
and middle-income countries. The inequitable distribution of CVD diagnosis and treatment
resources still remains unresolved. Addressing the prevention and management of CVD
patients requires effective diagnostic methods, with point-of-care ultrasound proving to en-
hance the diagnostic landscape (King et al., 2016). However, the intricacies of echocardiog-
raphy image analysis demand extensive medical training and experience from cardiologists
to provide reliable diagnoses. Unfortunately, the unbalanced distribution of cardiovascular
medical professionals also hinders the CVD diagnostics and management (Narang et al.,
2016). In the face of such challenge, automatic cardiac function analysis emerges as a
potential solution. This approach not only improves the management workflow for cardiol-
ogists but also enables trainees/nurses to help, particularly in emergencies and under-served
regions. Recent advances in deep learning have significantly enhanced the efficiency of auto-
matic cardiac function analysis across both segmentation tasks (Jafari et al., 2019; Arafati
et al., 2020; Leclerc et al., 2019b) and registration tasks (Ahn et al., 2020; Ta et al., 2020;
Østvik et al., 2021). Despite these advancements, it is recognised that deep learning models
often face over-fitting issues; thus, generalisable solutions are desired. Moreover, most of the
existing literature predominantly concentrates on enhancing individual tasks within a single
dataset. Generalisation of these approaches, along with studying its impact on downstream
task (e.g. patient classification), is crucial in the domain of 2D echocardiography analysis.

In this paper, we propose a comprehensive deep-learning based echocardiography analy-
sis pipeline, comprised of a segmentation module, a motion tracking module and a classifier
(Figure 1(a)). For the first two modules, we consider incorporating prior knowledge with the
intention to enhance their robustness against unseen data. Various means exist to integrate
such prior knowledge, encompassing: data augmentation; output parameterisation; and,
loss functions. To cultivate more universally applicable AI solutions for echocardiography-
based cardiac function analysis, we introduce the following propositions in this paper:

• Segmentation module: a shape prior is achieved through a contour-based loss function
as well as a stack of echo-specific data augmentation strategies

• Motion tracking module: a motion prior is incorporated via a poly-affine transforma-
tion framework for weakly-supervised motion estimation in echocardiography

These two modules are trained individually on two public datasets respectively and we
evaluate their performance across public datasets from different centres. Subsequently, the
classifier is cross-validated on another pathology dataset using features extracted by the
former trained models as input to aid in myocardial infarction patient detection (Figure
1(b)).

Furthermore, we present findings from a preliminary pilot study conducted at a local
hospital. This real-world evaluation allows us to monitor the proposed tool performance in
practical scenarios and aligns with our commitment to rigorous assessment.

This paper builds upon our preliminary work, which introduced a segmentation method
at the FIMH 2021 conference (Yang and Sermesant, 2021), and a motion estimation method
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Figure 1: (a) Proposed multi-view echocardiography analysis pipeline. (b) Segmentation
model and motion tracking model are first trained using CAMUS and EchoNet-
Dynamic dataset respectively (green line) and are used to extract clinical features
for classifier training, which employs the HMC-QU dataset for training. Each step
of the pipeline are also evaluated on unseen datasets (gray line) for generalisation
assessment. Detailed dataset information can be found in Table 1 and Section
4.1).

presented at the FIMH 2023 conference (Yang and Sermesant, 2023). Building upon the
initial findings from (Yang and Sermesant, 2021, 2023), our current research introduces the
following novel contributions:

• We enhance the generalisation evaluation process by encompassing more diverse datasets
and comparing our results with a wider range of state-of-the-art methods for segmen-
tation and motion tracking respectively. In addition, for motion tracking task, we
further propose an incompressibility regularisation term for more accurate and real-
istic cardiac motion estimation.

• We introduce a classification task based on the output of former-proposed segmenta-
tion and motion tracking methods for downstream task evaluation.

• We design a comprehensive echocardiography analysis pipeline, showcasing its clinical
potential through the detection of myocardial infarction in 2D echocardiography data
on public research data as well as on real-world clinical data.
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2. Related Works

2.1 Segmentation in Echocardiography

Deep learning methods have significantly advanced in the medical image segmentation do-
main, including automatic segmentation in 2D echocardiography. The U-Net architecture
and its variants (Leclerc et al., 2019b; Ling et al., 2022) have demonstrated exceptional
performance. In order to tackle the incorrect anatomy problem in cardiac segmentation, re-
searchers have proposed regularisation techniques and refinement models (Oktay et al., 2017;
Leclerc et al., 2019a). Further, to incorporate temporal information into the segmentation
process, Wei et al. (Wei et al., 2020) proposed two co-learning strategies of parallel segmen-
tation and motion estimation from 2D echocardiography. Painchaud et al. (Painchaud et al.,
2022) introduced a post-processing auto-encoder that corrects the temporal inconsistency
of sequence segmentation outputs.

One crucial application of cardiac segmentation is the estimation of left ventricular
ejection fraction (LVEF), a fundamental cardiac measurement in assessing cardiac sys-
tolic function. LVEF plays an important role in accessing the severity of systolic dys-
function and in management of various cardiovascular diseases (Folland et al., 1979). The
quantification of LVEF involves the employment of the bi-plane or single-plane Simpson’s
method (Folland et al., 1979) for volume assessment, thus is sensitive to image quality
and segmentation process. Automatic identification of end-diastole (ED) and end-systole
(ES) frames (Smistad et al., 2020; Leclerc et al., 2019b) are also necessary. An alternative
approach for LVEF estimation involves the analysis of entire echocardiography sequences.
This includes methods employing recurrent neural networks or transformer architectures to
predict LVEF (Kazemi Esfeh et al., 2020; Reynaud et al., 2021).

For cardiac segmentation, our objective centres on creating a straightforward yet anatom-
ically robust model. We employ a U-Net architecture, enhancing it by integrating a shape
prior within the loss function. As for the LVEF estimation, we rely on the segmentation
mask, prioritising its interpretability in our approach.

2.2 Motion estimation in Echocardiography

Traditional motion estimation methods such as block matching (Touil et al., 2010; Bouk-
erroui et al., 2003), optical-flow (Ahn, 2013) and non-rigid registration (Vercauteren et al.,
2008; Chakraborty et al., 2016) usually demand heavy computations. Recent works using
deep learning models for echocardiography motion estimation have achieved good trade-off
between run time and accuracy (Ahn et al., 2020; Ta et al., 2020; Østvik et al., 2021).
Unsupervised motion estimation relies solely on image pairs (or annotated masks) for train-
ing (Ahn et al., 2020; Ta et al., 2020; Balakrishnan et al., 2019; Wang et al., 2022). In con-
trast, supervised motion estimation employs dense displacement fields from ground truth
data in order to penalise predicted deformation fields (Østvik et al., 2021). However, ob-
taining accurate ground-truth myocardial displacement is challenging, often necessitating
the use of synthetic echocardiography images with known motion (Alessandrini et al., 2018;
Evain et al., 2022). It remains unclear how synthetic data aligns with in vivo data due to
potential domain shifts (Deng et al., 2022).
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From deformation field, we can obtain another important index of cardiac function: the
global longitudinal strain (GLS). GLS reveals cardiac contractility and is a robust prognostic
parameter for LV strain. It has been reported to be more sensitive in detecting early cardiac
diseases than LVEF (Cikes and Solomon, 2016). Computation of GLS can stem from cardiac
landmarks (Smistad et al., 2020; Østvik et al., 2021) or dense deformation fields (Morales
et al., 2021). The strain tensor sensitivity to the smoothness of the deformation field
necessitates regularisation in deep learning models. Common strategies include Gaussian
smoothing layers (Krebs et al., 2020) or rigidity penalties (Staring et al., 2007; De Vos
et al., 2019). However, these techniques often apply within limited pixel neighbourhoods
in the image domain and might not consistently adhere to anatomical constraints. In our
approach, we address this issue through a poly-affine motion framework, which serves as
a well-established motion approximation for myocardial movement (McLeod et al., 2015).
Thus, by integrating a motion prior, we achieve the capability to track myocardial motion
with a small number of parameters while respecting the anatomy of the heart.

2.3 Myocardial infarction detection in echocardiography

Myocardial infarction (MI), also known as heart attack, is the most significant contributor
to sudden cardiac death. Myocardial infarction happens when there is lack of oxygen in
the heart muscle due to the blockage in heart arteries. 2D echocardiography is one of the
clinical tools used to detect MI by evaluating motion of the myocardium. Deep learning
and machine learning based classification methods have demonstrated good performance in
myocardial infarction (MI) detection using 2D echocardiography. Convolutional neural net-
works are commonly employed to extract deep features from 2D echocardiography images
for classification purposes (Kusunose et al., 2020; Huang et al., 2020; Omar et al., 2018). Ad-
ditionally, handcrafted features, including frequency-related attributes, have been extracted
from 2D echocardiography images to aid in MI detection (Liu et al., 2023; Raghavendra
et al., 2018). However, much of the existing research relies on training models with local
large datasets, posing limitations when it comes to external validation by other researchers.
A notable exception is the work of Degerli et al. (2024), who introduced a publicly available
dataset for MI detection and assessed its performance using segment displacement features.
Given the relatively small size of this dataset (130 patients), we opt to extract interpretable
features from echocardiography using segmentation and motion estimation trained models.
Subsequently, we employ machine learning techniques for MI detection.

3. Methods

In this section, we begin by the introduction of the shape prior (Sec.3.1) and motion prior
(Sec.3.2) for the segmentation and motion estimation models, respectively. Subsequently,
we delve into how these models can help build classifiers for multi-view myocardial infarction
detection (Sec.3.3).
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Figure 2: Shape and motion priors for echocardiography analysis. (a) The shape prior
refers to the application of contour loss which maximises the matching of ground
truth distance map with the contour of predicted segmentation mask (detailed in
Section 3.1). (b) The motion prior refers to the precomputed key-point prior as
well as the regularisation terms related to the myocardium key points (detailed
in Section 3.2.1).

3.1 Left-ventricle segmentation

3.1.1 Shape prior

In order to detect the left-ventricle, we use U-Net (Ronneberger et al., 2015) as backbone
network, where the shape prior is introduced as part of the loss function, noted as the
contour loss. The contour loss was first proposed to segment the 3D left-atrium from
CT images (Jia et al., 2019) and preliminary results on echocardiography were presented
in (Yang and Sermesant, 2021). It was observed that this loss produces smoother shapes
with less outliers. The idea of contour loss is to penalise the distance from predicted border
pixels to ground-truth border pixels.

Lcontour =
∑

(D(M) ◦ contour(B(P ))) (1)

where ◦ performs element-wise multiplication. D(M) represents the distance map computed
from ground-truth mask, which demonstrates the shortest distance between all pixels and
the mask contour. P refers to the Softmax output of U-Net. B(P ) stand for a differentiable
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thresholded Sigmoid function for binarisation B(P ) = 1
1+exp−γ(P−T ) , where γ = 20 and

T = 0.5.
The contour of the binarised mask is obtained by applying a 2D Sobel filter

contour(P ) = |Gx ∗ P |+ |Gy ∗ P | (2)

where ∗ denotes a 2D convolution and Gx, Gy are 2D Sobel kernels in x-,y- dimension:

Gx =

1 0 −1
2 0 −2
1 0 −1

 , Gy =

 1 2 1
0 0 0
−1 −2 −1

 . (3)

In echocardiography analysis, it is important to achieve good endocardial and epicardial
contours, as they play an important role in evaluating the volume and myocardial motion.
We apply the contour loss for the contour of endocardium (Endo) and epicardium (Epi)
respectively (illustration in Figure 2). The final loss function for optimisation is defined as:

Lseg = Ldice + β ∗ Lcontour (4)

where Ldice refers to the multi-class Dice loss.

3.1.2 Data augmentation

In order to improve the generalisation of image processing methods, we apply an ensemble of
augmentation strategies to the original training dataset. Specifically the implemented aug-
mentation consists of the following related changes, designed for echocardiography (adapted
from (Zhang et al., 2020)):

• Rotation: Rotation is usually caused by different probe orientation and we set the
rotation range to [-15,15] degrees.

• Crop and Scaling: Scaling is due to the heart shape variability and myocardium
motion. We set the scaling factor to [0.7,1.3] and then crop (or pad) the resized image
to be the same size.

• Brightness adjustment: Image intensity characteristics often result from device ven-
dors and image system settings. For brightness adjustment, we shift the histogram of
image intensities by factor of [0.9,1.1].

• Contrast adjustment: Contrast adjustment is a popular tool to improve the visuali-
sation of cardiac structures. We apply a Sigmoid correction Inew = 1

1+expC∗(S−I) on

the input image with a random range of cutoff S in [0.4,0.6] and a constant multiplier
C from [4,10].

• Sharpness adjustment: To modify the sharpness of the image, we apply an unsharp
mask Inew = I + A ∗ (I − Iσ), where A ranges from [1,2] and the σ of the Gaussian
filter from [0.25,1.5].

• Blurriness adjustment: For image blurring, we apply a Gaussian filter with σ in
(0.25,1.5).

2299



Yang et al.

• Speckle noise: Due to the acoustic interference phenomenon, speckle is the main
kind of noise present in echocardiography. Speckle is usually modelled as a Rayleigh
multiplicative noise. Since the training data is already log-compressed, we add speckle
noise following an additive fashion Inew = I +

√
I ∗ Gσ, where G is a multiplicative

Gaussian noise with σ in range [0.01,0.1].

Figure 3: Data augmentation examples.

3.2 Polyaffine transformation for motion estimation

We estimate the motion of the myocardium in 2D echocardiography through a non-rigid
image registration task. For a source image IS and a target image IT , our aim is to estimate
a dense motion field TS←T : R2 → R2 such that

IS(TS←T (·)) = IT (·). (5)

Instead of estimating the dense motion field directly from neural networks, we parameterise
the motion field with a poly-affine transformation. We also introduce a motion prior in
the loss function to guide the network to focus on the myocardium region. Our work was
inspired by the poly-affine motion fusion framework proposed by Arsigny et al. (2009) and
the motion estimation module from Siarohin et al. (2019).

We adapt the network architecture presented in (Siarohin et al., 2019) to obtain the key
points position and their corresponding local affine transformation. From predefined local
effective region and weights, we obtain the final dense motion field by poly-affine motion
fusion.

3.2.1 Key points and affine transformations estimation

We assume that there exists an abstract reference frame R as introduced in (Siarohin
et al., 2019). Given an input image X,X ∈ {S, T}, the encoder-decoder network predict
the estimated key points pkX , k = 1, 2, ...,K, as well as the corresponding linear mappings
Ak

X←R ∈ R2×2, k = 1, 2, ...,K. The local transformation from target image IT to source
image IS is modelled by applying an affine transformation passing through the reference
frame R:

T k
S←T (z) = Āk

S←T · z︸ ︷︷ ︸
Linear mapping

+(pkS − Āk
S←T · pkT )︸ ︷︷ ︸

Translation

, (6)

where z ∈ R2 represents the coordinate in the target image, and Āk
S←T = Ak

S←R(A
k
T←R)

−1.
Motion prior In order to capture motion around the myocardium, we introduce a my-

ocardium key-point prior. The prior is computed using myocardium masks from the training

2300



Echocardiography Analysis Generalisation

dataset, no matter whether they come from ground-truth segmentation masks or from gen-
erated pseudo-masks (Yang and Sermesant, 2023). We calculate a mean mask from available
myocardium masks and cluster all the pixels of the mean mask into K groups using a K-
Means algorithm implemented by Scikit-learn (Pedregosa et al., 2011). The centre of each
cluster is regarded as one myocardium key-point prior (illustrated in Figure 2).

The myocardium key-point prior is integrated in two loss functions to enforce the po-
sition of key points close to the myocardium region. The first loss Lkp prior minimises the
L2 norm between the predicted key-point position and the prior key-point position. This
ensures that the order of predicted key points would be consistent across different patients.
The second loss Lkp myo constrains key points to lie within a known myocardium region
(either within ground truth mask or pseudo mask) by penalising the mapping between the
heat-map of each key point and the myocardium mask.

Lkp myo = −
K∑
k=1

H(pk, σ2
H) ∗ (Maskmyo − 0.5), (7)

where H(pk, σ2
H) is designed as the isotropic Gaussian heat-map centred at pk, with variance

σ2
H and Maskmyo the binary mask of myocardium available. This loss help the network to

predict patient-specific key point positions.
In contrast from the network in (Siarohin et al., 2019) which learned the position of key-

points in a self-supervised way, the integration of myocardium prior in our work encourages
the network to learn key points close to the myocardium. Such approach would be much
easier for clinicians to interpret.

Incompressibility penalisation In order to constrain the compressibility of the my-
ocardium within physiological ranges, we also apply an incompressibility penalisation to
the deformation field. Different from former work that applied divergence-free regularisa-
tion to the dense motion field (Mansi et al., 2011; Ahn et al., 2020), here we are able to
efficiently constrain the Jacobian determinant of each local affine transformation to be close
to 1:

Lincomp =
K∑
k=1

(|det(Ak
X←R)| − 1)2 (8)

3.2.2 Polyaffine motion fusion

The final dense motion field is the sum of weighted local transformations. Specifically, we

define a 2D isotropic Gaussian spatial weight Wk(p
k
T , σ

2) : z → exp−
(z−pkT )2

2σ2 centred at each
key point pkT with variance σ2. The weight W0 for zero-motion region is the residual of
other local weights:

W0 = RELU(1−
K∑
k=1

Wk(p
k
T , σ

2)). (9)

All weights are normalised W̄k = Wk∑K
k=0 Wk

, where k = 0, 1, 2...K., and are used for dense

motion field computation:

TS←T (z) = W̄0z +

K∑
k=1

W̄k(p
k
T )T k

S←T (z). (10)
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The original motion module in (Siarohin et al., 2019) estimated the normalised spatial
weights by deploying a second encoder-decoder network in a self-supervised way. However,
it could not guarantee the predicted weight close to the corresponding key point. Our
design of 2D Isotropic Gaussian weights is consistent with the predicted key point position,
thereby providing more stable and explainable parameterisation for myocardial motion.

Registration losses In order to learn the motion field from images in an unsupervised
way, we optimise the following terms that are related to image similarity and key-point
similarity. First, for each pair of consecutive frames in the input sequence, we constrain the
following similarity terms:

Lseq im =
∑
seq

NCC(IT , IS(TIS←IT )), (11)

Lseq kp =
∑
seq

1

K

K∑
k=1

|H(pkT , σ
2
H)−H(pkS , σ

2
H)(TIS←IT )|, (12)

where NCC represents the normalised cross correlation as image similarity metric.
Second, in order to force the model to learn large motion (such as the cardiac motion

between end-diastole and end-systole), we apply a second pair of registration losses be-
tween the image at end-diastole and other frames including the end-systole one, denoted as
LED2any im and LED2any kp for image similarity and key-point similarity, respectively.

3.2.3 Loss functions

We train the motion estimation model in an end-to-end manner using a combination of loss
functions: keypoint myocardium losses; registration losses; incompressibility loss; and, the
following keypoint equivalence losses.

Equivalence losses As proposed in (Siarohin et al., 2019), we also include equivalence
losses Lequi kp and Lequi affine. Equivalence losses constrain the detected key points and the
local affine transformations to be consistent when applying a known transformation (either
an affine transform or a thin plane transform) to the input image. Given an image X and a
known spatial transformation TX←Y , we obtain a new image Y transformed from X. Key
points and local affine transformation of images X,Y predicted by the motion estimation
network should preserve the following relationship:

pkX = TX←Y (p
k
Y ), k = 1, 2, ...,K

Ak
X←R = Ak

X←Y A
k
Y←R, k = 1, 2, ...,K

(13)

, where Ak
X←Y is the local gradient around pkY calculated from TX←Y .

The final loss function involved for the polyaffine motion model, is as follows:

Ltotal =λ1Lseq im + λ2Lseq kp

+ λ3Lequi kp + λ4Lequi affine

+ λ5Lkp prior + λ6Lkp myo

+ λ7LED2any im + λ8LED2any kp

+ λ9Lincomp

(14)
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3.3 Multi-view myocardial infarction detection

t
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  65%
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Figure 4: Pipeline for interpretable cardiac features extraction. For segmentation task, a
sequence of echocardiography images are processed by the segmentation model
and we compute the temporal left ventricle volume change and left ventricle length
change. Ejection fraction (EF) and MAPSEn are extracted after identifying the
end-diastole and end-systole frames. For motion tracking task, we obtain the
deformation motion field from the input sequence (which was cropped according
to the left ventricle segmentation) and identify the 7-AHA segments. Averaged
strain along radial direction and longitudinal direction can be calculated.

In our study, we choose to formulate an 8-dimension feature vector for multi-view my-
ocardial infarction classification. Specifically, the 8-dimension feature consists of a con-
catenation of two 4-dimension vectors extracted from apical 2-chamber view and apical
4-chamber view, respectively. Each 4-dim feature is comprised of features that globally
measures cardiac function, including left ventricle ejection fraction (LVEF), left ventricle
longitudinal strain (LVLS) at end-systole, left ventricle radial strain (LVRS) at end-systole
and normalised mitral annular plane systolic excursion (MAPSEn) estimated from each
view. LVEF and nMAPSE are two measurements for systolic function evaluation, which
play important role in cardiac disease detection. LVLS and LVRS reflect the global con-
tractility of left ventricle and may reveal the abnormality of cardiac wall, which is usually
present in myocardial infarction patients. The clinical GLS is estimated from 4-chamber,
3-chamber and 2-chamber views jointly. Here we only have 2 views so we use LVLS and
LVRS to refer to the averaged strain from each corresponding view. The pipeline is de-
picted in Figure 4. Once the 8-dimension feature vector is formed, a classifier is trained to
predict the classification result: MI or non-MI (Figure 1(a)). Two popular machine learning
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methods from the Scikit-Learn package (Pedregosa et al., 2011) are used for classification:
random forest (RF) and support vector machine (SVM), respectively.

3.3.1 Ejection fraction

We apply the modified Simpson’s rule (Folland et al., 1979) to the estimated left ventricle
segmentation output to obtain an approximated volume curve along cardiac sequences (refer
to subfigure entitled ’LV volume’ in Figure 4). The end-diastole and end-systole frames
are identified as the frames when the volume curve is at its largest and smallest point,
respectively. Ejection fraction is then calculated using the end-diastole volume (EDV) and
end-systole volume (ESV): EF = 1− ESV

EDV .

3.3.2 Mitral annular plane systolic excursion (MAPSE)

MAPSE measures the displacement of mitral annular plane at systolic phase, a helpful
cardiac index for LV systolic function evaluation. MAPSEn normalises MAPSE for LV
length (Støylen et al., 2018).

MAPSEn =
MAPSE

LED
− 1 =

LES − LED

LED
(15)

where Lt refers to the LV length at time t. We compute the LV length by connecting
the apex and mid-basal points from segmentation outputs (refer to subfigure entitled ’LV
length’ in Figure 4).

3.3.3 Myocardial strain

We take the myocardium segmentation output obtained for end-diastole as the region of
interest (ROI), and further obtain the pixel displacement within this ROI from motion
estimation output across all cardiac sequences. For all myocardial pixels at end-diastole,
we compute the 2D Lagrangian finite strain tensor E using:

E =
1

2
(FTF− I), (16)

where I represents the identity matrix and F refers to the deformation gradient tensor. The
radial direction is computed as the tangent field of the correspondence trajectories between
endocardial contour and epicardial contour (Yezzi and Prince, 2003). The longitudinal
direction is taken perpendicular to the radial direction. We compute segment strain using
AHA segment protocol (refer to sub-figure entitled ’AHA segments’ in Figure 4) and the
global strain is averaged across segments except for apex region. Strains at end-systolic
phase are extracted as features for myocardial infarction detection.

4. Experiments

4.1 Datasets

Three public datasets (CAMUS, EchoNet-Dynamic, HMCQU) and one private dataset
(CHU-Nice) of 2D echocardiography were used in our study.
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Table 1: Datasets involved in this study

Dataset Training Task Pathology
View

A2C A4C 2+4

CAMUS Segmentation – 500 500 500
EchoNet-Dynamic Motion estimation – – 10030 –
HMC-QU Classification MI/Non-MI 130 162 130
CHU-Nice – MI/Non-MI 66 76 64

Table 2: Datasets with pathology diagnostics

Dataset MI Non-MI Total

HMC-QU 88 42 130
CHU-Nice 42 22 64

CAMUS dataset (Leclerc et al., 2019b) contains apical 4-chamber (A4C) view and apical
2-chamber (A2C) view of 500 patients. The whole dataset was acquired using GE Vivid
E95 ultrasound scanners. The ratio of good, medium and poor image quality is 43%, 43%
and 14%. The mean frame rate of the dataset is 55 frame per second (fps). The following
annotations are also publicly available: segmentation (of the left ventricle, the myocardium
and the left atrium), volume information and ejection fraction of the left ventricle. The
dataset contains an official train-test split of 450 patients vs. 50 patients.

EchoNet-Dynamic (Ouyang et al., 2020) is a large open dataset of 10030 A4C echocar-
diography videos. All videos were acquired by experienced sonographers using machines
from different manufacturers, including iE33, Sonos, Acuson SC2000, Epiq 5G and Epiq
7C. The original videos were cropped and masked to remove irrelevant information and
down-sampled to 112 × 112 pixel videos (Ouyang et al., 2019). The mean frame rate of
the full dataset is 51 fps. Left ventricle traces at ED and ES as well as LVEF are pro-
vided for all videos. The official split of the train data vs. validation data vs. test data is
7465/1288/1277.

HMC-QU (Degerli et al., 2024) is the first public dataset for myocardial infarction de-
tection, and contains: 162 A4C video and 130 A2C videos, where A2C and A4C views of 130
patients are both available. Videos were acquired using Phillips or GE Vivid machines. The
mean frame rate is 25 fps. Moreover, for 109 of the A4C videos, the dataset supplies segmen-
tation masks for the myocardium, generated through a semi-automatic approach (Degerli
et al., 2021).

CHU-Nice dataset contains 2D echocardiography sequences of 76 patients collected ret-
rospectively from Nice University hospital. This study protocol was in compliance with the
declaration of Helsinki and was approved by the local research Ethics committee. These
examinations were interpreted by experienced cardiologists, with only one cardiologist per
examination. The ultrasound machines used for acquisition were either from Philips or GE
Vivid E95. The mean frame rate of the dataset is 52 fps. The ratio of good, medium and
poor image quality is 30%, 47% and 23%. It has to be noted that 20% of the images from
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Figure 5: (a, c, e, g) Examples of echocardiography from each dataset involved in this study.
(b, d, f, h) Anatomy-related annotations for each corresponding image sample. (i)
The pixel value distribution using 100 random samples drawn from each dataset.
Pixels outside the cone view area are excluded.

CHU-Nice were acquired within the Cardiology Emergency and Intensive Care Unit by the
cardiologist on call at the time of the emergency imaging. This enables to evaluate the
generalisation ability of the method on various levels of image quality. This dataset serves
as an evaluation set for the real-world patient monitoring.

A detailed summary of all datasets is provided in Table 1 and Table 2. Image ex-
amples and their corresponding anatomy-related annotations are shown in Figure 5. The
distribution of pixel values among the four datasets exhibits distinct patterns (Figure 5 (i)).

4.2 Experiments and implementation

4.2.1 Segmentation

For the segmentation task, we used the training split of CAMUS dataset (450 patients), as
it contained the most detailed segmentation annotation of the left heart. Evaluation was
performed on the test split of CAMUS dataset (50 patients: 50 A2C + 50 A4C), on the test
split of EchoNet-Dynamic dataset (1277 A4C sequences) and on the CHU-Nice dataset (76
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A4C sequences + 66 A2C sequences). We evaluated anatomical metrics including Dice score,
Hausdorff distance (HD) and mean surface distance (MSD) for estimated segmentation, and
clinical metrics such as mean absolute error (MAE) and correlation coefficient (Corr.) for
predicted LVEF. In addition, the outliers of segmentation prediction for CAMUS dataset
were established from the inter-variability tests with the upper limit values for HD and MSD,
and lower limit values for simplicity and convexity (Leclerc et al., 2019a). Geometrical and
anatomical outlier computation was only conducted on CAMUS dataset.

Implementation: The segmentation model was implemented in Pytorch (Paszke et al.,
2019) with a training batch of 8. The input images were resized to 256×256 and augmented
following the data augmentation strategies presented in Section 3.1 during training phase.
An Adam optimizer was applied with a learning rate of 1e-4 and β = 1e − 6 in (4). We
ran 10-fold cross-validation on the 450 patients (A2C+A4C) of CAMUS train data with a
maximum epoch of 100. The best model was identified as the one with the best performance
on validation data. The model contains 1.14M trainable parameters. It takes less than 20
hours for 100 epochs’ training on a NVIDIA GTX 1080Ti GPU. Inference running time in
average is 0.067s per frame on a Dell laptop (Intel© Core™ i7-8650U CPU @ 1.90GHz ×
4).

4.2.2 motion estimation

For the motion estimation task, we used the training split of EchoNet-Dynamic dataset
(7465 A4C samples), as its echocardiography video contained at least 1-2 cardiac cycles.
Evaluation was performed on the test split of EchoNet-Dynamic dataset (1277 A4C se-
quences), on the train split of CAMUS dataset (450 patients) and on the HMC-QU dataset
(109 A4C sequences with provided myocardium masks). Since no ground truth data was
available, we evaluated the registration performance of frames that contained segmentation
annotation, such as ED-ES pairs.

Implementation: Since there was no myocardium annotation in the training data, we
generated pseudo myocardium masks from the training data as described in (Yang and Ser-
mesant, 2023). The poly-affine motion model (PAM) was trained using an Adam optimiser
with learning rate of 1e-4 and a batch size of 1. The maximum number of frames per sample
is set to 50. The training will be . The input image was resized to 128× 128. The optimal
hyper-parameters were identified by conducting experiments on a random subset of 1000
examples from the EchoNet-Dynamic training dataset: λ1 = λ2 = 100, λ3 = λ4 = 50, λ5 =
20, λ6 = 0.1, λ7 = λ8 = 100, λ9 = 1 in (14), σ2 = 0.05 in (9), and σ2

H = 0.005 in (7) and
(12). In particular, the hyper-parameters were selected through a incremental search. We
first fixed the parameter of λ1 = λ2 = 100, and tuned the other weights according to the
following order and principle: λ3 = λ4 ∈ {1, 50, 100}; λ5 ∈ {1, 10, 20}; λ6 ∈ {0.1, 1, 10};
λ7 = λ8 ∈ {1, 50, 100}; and λ9 ∈ {0.1, 1, 10}.

We compared our PAM model with one state-of-art conditional variational autoencoder
(CVAE), which was re-implemented according to (Krebs et al., 2020). In order to leverage
segmentation information, an extra Dice loss for registering LV masks between ED and ES
was added to the final loss function. We also integrated a divergence-free term into the final
loss function for incompressibility regularisation. All models were trained with 100 epochs
at maximum and early stopped when there was no decrease in validation loss for more than
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10 epochs. The PAM model contains 0.25M trainable parameters and it takes around 3-4
days on a NVIDIA GTX 1080Ti GPU. The inference running time on average is 0.9s for 50
frames (one sequence) on a Dell laptop (Intel© Core™ i7-8650U CPU @ 1.90GHz × 4).

Ablation study: The backbone FOMM model (Siarohin et al., 2019) only optimises the
first four terms of (14). +Prior refers to the integration of prior-related losses (5th and
6th loss terms in (14)). +Polyaffine denotes replacing the original encoder-decoder module
for weight estimation by designed poly-affine weights. +ED refers to the incorporation of
registration losses between ED frame and others (7th and 8th terms in (14)). PAM(all)
represents the model that optimises the total loss function of (14).

4.2.3 Myocardial infarction detection

In order to further evaluate the generalisation potential of the proposed methods, we ex-
tracted cardiac features from the segmentation and motion estimation outputs to detect
myocardial infarction patients on HMC-QU dataset and CHU-Nice dataset. In practice,
we performed 5-fold cross-validation on HMC-QU dataset using multi-view features (130
patients) and evaluated the classifier directly without retraining or fine tuning on CHU-Nice
dataset (64 patients).A resampling strategy was conducted before classification training for
the unbalanced HMC-QU dataset.

The best performing method on HMC-QU dataset used normalised segment displace-
ment as features (Degerli et al., 2024).

fk =
maxDk(t)

min I(k,p)(t)
(17)

where Dk(t) referred to the mean displacement of segment k at time t, and I(k,p)(t) rep-
resented the averaged Manhattan distance between segment k and its opposite segment p.
Authors in (Degerli et al., 2024) used active polynomials to extract displacement informa-
tion. In our case, we obtained the normalised segment displacement using the predicted
segmentation and motion estimation results, which resulted in a 6-dimension vector for each
apical view. We denoted the method using the proposed global features as ’global’, and the
method using normalised displacement as ’local’.

4.3 Results

4.3.1 Segmentation

CAMUS On the unseen test split of CAMUS dataset, our proposed method achieved
comparable performance (ranked No.2) with the best performing method either on cardiac
structure segmentation or segmentation-based ejection fraction estimation (Table 3). In
terms of correct anatomy, comparing with the previous work of R-Unet (Leclerc et al.,
2019a), who added a refinement network after the U-Net work to improve the shape regu-
larity of predicted left ventricle structures, our U-Net model with a contour prior (U-Net
Contour loss) can directly generate less geometrical and anatomical outliers on the same
dataset (Table 4).

EchoNet-Dynamic On the test split of EchoNet-Dynamic, our model segmented the left
ventricle (endocardial region) with a Dice Coefficient of 0.895, only 2.7% lower than the
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Table 3: Segmentation evaluation on CAMUS test split data. (Values in bold represent the
best performance, while values with underline represent the second best.)

ED
Endo Epi

Dice HD MSD Dice HD MSD

U-Net(Leclerc et al., 2019b) 0.939 5.3 1.6 0.954 6.0 1.7
ACNNs(Oktay et al., 2017) 0.936 5.6 1.7 0.953 5.9 1.9
CLAS(Wei et al., 2020) 0.947 4.6 1.4 0.961 4.8 1.5
nnUNet(Ling et al., 2022) 0.952 4.3 1.4 0.963 4.6 1.5
Ours 0.949 4.8 1.4 0.961 5.0 1.6

ES
Endo Epi

Dice HD MSD Dice HD MSD

U-Net(Leclerc et al., 2019b) 0.916 5.5 1.6 0.945 6.1 1.9
ACNNs(Oktay et al., 2017) 0.913 5.6 1.7 0.945 5.9 2.0
CLAS(Wei et al., 2020) 0.929 4.6 1.4 0.955 4.9 1.6
nnUNet(Ling et al., 2022) 0.935 4.2 1.3 0.959 4.4 1.5
Ours 0.930 4.7 1.4 0.955 5.0 1.6

Volume
EDV ESV EF

Corr. MAE Corr. MAE Corr. MAE

U-Net(Leclerc et al., 2019b) 0.926 11.2 0.960 7.5 0.845 5.0
ACNNs(Oktay et al., 2017) 0.928 9.7 0.954 6.9 0.807 5.5
CLAS(Wei et al., 2020) 0.958 7.7 0.979 4.4 0.926 4.0
nnUNet(Ling et al., 2022) 0.977 5.9 0.987 4.0 0.857 4.7
Ours 0.965 6.4 0.983 4.6 0.912 4.4

Table 4: CAMUS Segmentation shape outliers evaluated on 500 patients (2,000 images in
total) with geometrical and anatomical outliers.

Method Geometrical Anatomical

R-Unet (Leclerc et al., 2019a) 16% 1.2%
U-Net (Leclerc et al., 2019b) 18% 3.75%
Ours 15.4% 1.15%

model trained on EchoNet-Dynamic dataset (Dice 0.92) (Ouyang et al., 2020). In terms of
LVEF estimation, our model demonstrated only 1% decrease in MAE (MAE: 8.32%, Corr.
0.7) when compared with the benchmark model trained on the EchoNet-Dynamic training
split (MAE: 7.35%) (Ouyang et al., 2020). Compared with the LVEF estimation of nnUNet
(MAE: 14.3%, Corr. 0.27), our model achieves better generalisation performance.
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Figure 6: Examples of segmentation and LVEF estimation from CHU-Nice datasets. Each
example comprises two rows: the first row displays the original image sequence,
while the second row presents the predicted segmentation masks (Red: the left
atrium, Cyan: the myocardium, and Purple: the left ventricle blood pool). Ad-
ditionally, volume changes throughout one cardiac cycle are displayed alongside
the corresponding predicted LVEF at the end of each example row.

CHU-Nice Since no segmentation ground truth was available for CHU-Nice dataset, we
compared the LVEF estimated from segmentation model with the LVEF value provided
by expert cardiologists. We achieved a MAE of 8.3% and correlation coefficient of 0.74.
Examples of segmentation output and LVEF prediction are visualised in Figure 6 with
various image qualities. The trained nnUNet model demonstrated inferior generalisable
performance (corr. 0.50 and MAE 11.7%), which in turn reflects the superior performance
of the proposed method.
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4.3.2 Motion estimation

Table 5: Registration evaluation on EchoNet-Dynamic test split.

Method
Endo

Dice
HD

(pixels)
MSD

(pixels)

CVAE (Krebs et al., 2020) 0.91 7.97 2.30
FOMM (Siarohin et al., 2019) 0.75 22.99 6.07
FOMM+Polyaffine 0.82 11.50 4.61
FOMM+Prior 0.77 18.36 5.46
FOMM+Prior+Polyaffine 0.91 7.53 2.36
FOMM+Prior+Polyaffine+ED 0.92 7.34 2.23
PAM(all) 0.92 7.17 2.14

EchoNet-Dynamic As illustrated in Table 5, our proposition PAM(all) model out-performed
all the other methods, including the state-of-art method CVAE and the backbone model
FOMM. The ablation study pointed out that the introduction of the motion prior (+Prior)
and poly-affine motion framework (+Polyaffine) improved largely the performance of reg-
istration compared with the original FOMM. Addition of the long-term similarity (+ED)
and the incompressibility regularisation further contributed to the improvement of the reg-
istration accuracy of the PAM model.

Table 6: Registration evaluation on CAMUS training set (450 patients with 2CH and 4CH
samples). The MCLAS method was trained on the CAMUS training set using
10-fold cross-validation, serves as the upper bound of the performance. Other
methods (trained on EchoNet-Dynamic dataset) were evaluated directly on the
same CAMUS training split.

Method
Epi Endo

Dice
MSD
(mm)

Dice
MSD
(mm)

MCLAS (Wei et al., 2023) 0.931 2.0 0.903 1.9
CVAE (Krebs et al., 2020) 0.917 3.0 0.859 3.3
FOMM (Siarohin et al., 2019) 0.883 4.3 0.778 5.2
FOMM+Polyaffine 0.881 4.3 0.796 4.8
FOMM+Prior 0.893 3.8 0.804 4.3
FOMM+Prior+Polyaffine 0.932 2.5 0.885 2.6
FOMM+Prior+Polyaffine+ED 0.933 2.4 0.894 2.4
PAM(all) 0.927 2.6 0.883 2.6
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CAMUS Table 6 summarises the generalisation performance of our proposed PAM model
on CAMUS dataset without any retraining or fine-tuning. Notably, the proposed PAM
model out-performed the backbone FOMM and the state-of-art CVAE method. In addition,
it achieved the closest registration performance with the best tracking model (MCLAS) (Wei
et al., 2023) which was trained on CAMUS training set using 10-fold cross-validation, while
our PAM model has never seen any data from CAMUS. Although the introduction of
the incompressibility term degraded the performance of PAM, it still outperformed other
competitive methods.
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Figure 7: Registration results on HMC-QU dataset (109 A4C samples) using frame-wise
myocardium masks. Original: Comparison between the ground truth masks along
one cardiac cycle and that of end-diastole. Curves of all samples are interpolated
to the same length. PAM*: without incompressibility term.

HMC-QU Figure 7 summarises the performance of the proposed PAM model, the PAM
model without incompressibility term and the CVAE model on HMC-QU dataset by eval-
uating the registration accuracy of the myocardium mask.

The introduction of the incompressibility penalisation improved the tracking perfor-
mance of PAM model across three metrics. In particular, the PAM model demonstrates
smaller values than the CVAE in terms of Hausdorff distance and mean surface distance
around end-systole frames, where largest deformation has occurred. An visualisation ex-
ample from HMC-QU dataset (Figure 8) further demonstrates the tracking consistency.
Our prediction shows that the patient has a small radial strain in SEG14 region (decreased
regional radial strain and longitudinal strain highlighted by a red rectangle), which is in
accordance with the fact that the patient is diagnosed with MI and in particular the SEG14
is affected.

Motion regularity The extensive evaluation of the proposed PAM model across differ-
ent datasets demonstrated its robustness and its better performance compared with other
competing methods in motion tracking in echocardiography. The introduction of the in-
compressiblity term improved the performance of the original PAM* model (Yang and
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Figure 8: Visual results of a myocardial infarction sequence from HMC-QU dataset where
SEG14 is annotated as infarcted region. Red rectangles highlight the abnormal
local strain values.

(a) (b) (c) (d)

Figure 9: Evaluation results of Jacobian Determinant and its gradient in the myocardium
region on the CAMUS dataset (a-b) and on the HMC-QU dataset (c-d). ES/ED
represents the area ratio of the myocardium between end-systole and end-diastole
using ground truth masks. PAM*: without incompressibility term.

Sermesant, 2023) on two evaluation datasets and improved the regularity of predicted mo-
tion fields. This was evidenced by the Jacobian Determinant which was closer to 1 and its
smaller gradient (Figure 9). Further visualisation of Jacobian Determinant under CVAE
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MI

ED ES CVAE
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Figure 10: Examples of Jacobian determinant map in the myocardium region from HMC-
QU dataset using CVAE and PAM methods.

and PAM methods (Figure 10) supported the former conclusion, witnessing the superiority
of using poly-affine motion model for cardiac motion tracking.

4.3.3 Myocardial infarction detection
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Figure 11: Distribution of global features between MI patients and non-MI patients on
HMC-QU dataset. Wilcoxon rank-sum test is performed between non-MI and
others. (Green ∗: p-value < 0.05)

HMC-QU First, a significant group difference was observed between MI patients and non-
MI patients in the four global parameters on the HMC-QU dataset, as illustrated in Figure
11, except for the LVRS feature for the apical 4-chamber view.
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Table 7: Myocardial infarction detection results. Local features: normalised segment dis-
placement (Section 4.2.3); Global features: LVEF, nMAPSE, LVLS, LVRS (Sec-
tion 3.3).

Method Feature Sen. Spe. Prec. F1. Accuracy

HMC-QU (5 fold cross-validation)
RF (Degerli et al., 2024) 0.875 0.619 0.828 0.951 0.792
SVM (Degerli et al., 2024) 0.910 0.429 0.769 0.877 0.754
RF Local 0.773 0.714 0.850 0.810 0.754
SVM Local 0.761 0.786 0.881 0.817 0.769
RF Global 0.841 0.786 0.891 0.865 0.823
SVM Global 0.784 0.833 0.908 0.841 0.800

CHU (Evaluation)
RF Local 1.000 0.091 0.677 0.808 0.688
SVM Local 0.952 0.273 0.714 0.816 0.719
RF Global 0.952 0.409 0.754 0.842 0.766
SVM Global 0.881 0.545 0.787 0.831 0.766
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Figure 12: 5-fold cross validation result of MI detection using global features and SVM
classifier. False: wrong classification, True: correct classification.

Second, the results presented in Table 7 demonstrate that our method, utilising global
features, outperformed the use of local features, including the state-of-the-art result re-
ported in (Degerli et al., 2024). This showcases the effectiveness and generalisability of
the proposed pipeline for myocardial infarction detection. Notably, local features extracted
using a trained segmentation model and motion tracking model exhibited similar classifica-
tion accuracy compared to those obtained through the time-consuming active polynomial
method.

2315



Yang et al.

A2C A4C
View

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
* *

EF

0 12 34 56

A2C A4C
View

0.200
0.175
0.150
0.125
0.100
0.075
0.050
0.025
0.000

* *
n.s.

MAPSEn

A2C A4C
View

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16 * *

n.s.
n.s.

n.s.

LVRS

A2C A4C
View

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

* *

LVLS

Figure 13: Distribution of global features between patients with different number of infarct
segments from HMC-QU dataset. 0: non-MI, 12: MI patients with 1-2 infarct
segments, 34: MI with 3-4 segments, 56: MI with 5-6 segments. Wilcoxon rank-
sum test is performed between non-MI and others. (Green ∗: p-value < 0.05)

However, the use of global features for MI detection had its limitations. Further anal-
ysis, as illustrated in Figure 12, revealed that our proposed method using global features
faced challenges in differentiating healthy samples from MI patients with fewer infarct seg-
ments. This observation aligns with the linear relationship observed between the number
of infarct segments and global features, as shown in Figure 13. It is noteworthy that there
is no significant difference in MAPSEn and LVRS values between non-MI patients and MI
patients with 1-2 infarct segments. However, the difference between non-MI patients and
MI patients with more than 2 segments is statistically significant in all four measurements.
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Figure 14: Distribution of global features between MI patients and non-MI patients on
CHU-Nice dataset. Wilcoxon rank-sum test is performed between non-MI and
others. (Green ∗: p-value < 0.05)

CHU-Nice As shown in the lower part of Table 7, classifiers that utilised global features
demonstrated better classification performance on the CHU-Nice dataset. This is evident
from comparable sensitivity, higher specificity, higher precision, higher F1-score, and higher

2316



Echocardiography Analysis Generalisation

accuracy. Local features tend to be more sensitive to noisy output from segmentation and
motion tracking models due to the domain shift between the test dataset (CHU-Nice) and
the training dataset (HMC-QU). In contrast, global features, often derived from averaged
measurements, exhibit greater stability compared to local features, resulting in superior
performance.

Additionally, a significant group difference between MI patients and non-MI patients
on the CHU-Nice data was observed (Figure 14). The evaluation results on the CHU-Nice
dataset strongly reinforce the robustness and good generalisation of our proposed pipeline
for echocardiography analysis.

5. Discussion

In this work, we introduced a generalisable echocardiography analysis pipeline, including
one segmentation model, one motion tracking model and a classifier that takes inputs from
the predictions of the two former models to detect myocardium infarction patients. We
have extensively evaluated each part of the pipeline thoroughly across various test datasets.

Segmentation The proposed segmentation model not only demonstrated segmentation per-
formance on the test split from the training dataset very close to the state-of-the-art method
but also exhibited generalisation capabilities on two other datasets without retraining or
fine-tuning. In addition, regarding the left ventricular ejection fraction (LVEF) estima-
tion from segmentation masks, it is noteworthy that the three datasets involved in the
segmentation evaluation phase had different annotation schemes, impacting the estimation
performance of LVEF. For instance, the CAMUS dataset provided detailed annotations of
the left ventricle (LV) for end-diastole (ED) and end-systole (ES) (see Figure 5 (b)), while
EchoNet-Dynamic only provided endocardial traces used for volume estimation (see Fig-
ure 5 (d)). Additionally, the ground truth LVEF of the CHU-Nice dataset was measured
by expert cardiologists either visually or using the Simpson’s method. Despite the diverse
annotation approaches across datasets, our model consistently predicted LVEF results on
external evaluation datasets (MAE 8%, Corr. 0.7), closely aligning with the inter-observer
variability range (MAE: 10%, Corr. 0.8) reported in a previous study (Leclerc et al., 2019b).

Motion tracking The motivation behind the Polyaffine Affine Motion (PAM) tracking
model lies in addressing the absence of regularity in deformation fields found in current
deep learning-based methods, particularly in the myocardium region. The proposed PAM
method models the motion of the entire myocardium through poly-affine fusion, which
ensures local smoothness in a larger neighbourhood. This is quantitatively reflected in
the smaller Jacobian determinant gradient observed in the myocardium region, as well as
through visualisation examples from test datasets. Additionally, extensive evaluation across
public echocardiography datasets demonstrated the comparable or even superior tracking
performance of the PAM model when compared with other competing methods, such as the
Conditional Variational Autoencoder (CVAE) model and the First-Order Motion Model
(FOMM). This supports the conclusion that the proposed PAM model is more suitable for
cardiac motion tracking in echocardiography.

Classification Initially, all features of the HMC-QU dataset and CHU-Nice dataset were
extracted from segmentation and motion estimation outputs, derived from models trained
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on other datasets. We observed significant differences in specific measurements between
healthy and Myocardial Infarction (MI) patients on these two previously unseen datasets,
underscoring the effectiveness and robustness of our segmentation and motion estimation
methods in distinguishing between the two groups. The application of the trained classifier
on a real-world unseen dataset (CHU-Nice dataset) further supports the robustness of util-
ising global features for MI detection. However, we acknowledge that using global features
for MI detection faces challenges in accurately identifying patients with only one or two
segments containing infarcted myocardium. Moreover, local features such as the displace-
ment or strain of myocardium segments necessitate precise segmentation of the myocardium,
rendering them sensitive to domain shift and incorrect segmentation masks, consequently
making them less stable for generalisable classification.

Limitations We acknowledge that the segmentation model was applied on separate frames
of echocardiography sequences, while temporal information of cardiac sequences was ne-
glected by current model. Enforcing temporal consistency is a good way to reduce seg-
mentation outliers and to engage unlabelled data for training (Wei et al., 2020; Painchaud
et al., 2022). In addition, for the motion tracking model, we imposed a strong regional
weight for each key point without considering the varying thickness of the LV wall across
patients and across regions. Thus, it would be interesting to further combine temporal
motion tracking model with temporal segmentation model, letting the predicted mask of
the myocardium guide the region of influence of each local key point. Furthermore, motion
tracking of LV regularises vice versa the segmentation of cardiac structures for unlabelled
temporal frames, accordingly. Finally, it is crucial to estimate the uncertainty of the pre-
dicted segmentation and motion transformation for clinical applications. Methods proposed
in (Grzech et al., 2022; Judge et al., 2023) are of great interest for the further improvement
of our echocardiography analysis pipeline.

6. Conclusion

In this paper, we proposed a novel and generalisable pipeline for 2D echocardiography
analysis using deep learning. Specifically, we introduced a segmentation model incorporating
a shape prior to enhance regular anatomy and improve EF estimation. Furthermore, a
motion estimation model was presented, leveraging a motion prior for superior tracking
accuracy and increased regularity of the motion field. Lastly, a classification module was
proposed using clinically interpretable features for robust detection of myocardial infarction
patients. Our experiments and evaluations clearly demonstrated the robustness and strong
generalisation ability of our novel method compared to other competing methods at different
stages. We utilised various metrics and validated our approach on different public datasets
and real-world clinical data, providing benchmark results for generalisable echocardiography
analysis.
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