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Abstract
Image-to-image (I2I) synthesis aims at learning the mapping between two visual domains. Due to the scarcity of
paired datasets, learning such transformation may be challenging. With a growing number of publications each year,
unpaired I2I synthesis has drawn attention from the research community and has found a great application field in
medical imaging. Disentangled representation learning constitutes a significant portion of these methods. By relying
on the factorization of an image into independent variation latent codes, this approach offers greater control over
the result of the synthesis than GAN-based ones. However, disentangling latent representations is not a trivial task
and may be influenced by particular inductive bias. In this work, we propose to apply disentangled representation
learning to the unpaired synthesis of high-resolution dynamic MRI. We study the impact of both the entanglement
module and the addition of a segmentation auxiliary task on the result of the synthesis and the disentanglement of the
representations. Our results demonstrate that the choice of the entanglement module greatly influences the learning of
a good representation, and that the addition of a segmentation auxiliary task leads to better synthesis performances.
Our code is available at https://github.com/cScavinner/Unpaired_image_synthesis.
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1. Introduction

Image synthesis is defined as the process of generating an
image according to specific characteristics. It can be either
conditional or unconditional. Conditional image synthe-
sis generates images based on provided input data, which
can include text descriptions (prompts), existing images,
or even sounds. It has found extensive applications within
computer vision tasks such as style transfer (Jiang et al.,
2020; Gatys et al., 2016), super-resolution (Ledig et al.,
2017; Hu et al., 2021) and semantic image synthesis (Park
et al., 2019; Tang et al., 2020), etc.). Furthermore, im-
age synthesis is making significant contributions in the
fields of medical imaging in reconstruction (de Haan et al.,

2020), denoising (Chen et al., 2022), registration (Fu et al.,
2020) or super-resolution (Sanchez and Vilaplana, 2018).
Image-to-image (I2I) translation in practice faces signifi-
cant challenges due to the inherent ambiguity of the task
and the scarcity of suitable training data. The core is-
sue lies in the lack of readily available ”paired datasets”
for many applications. Paired datasets consist of corre-
sponding input-ground truth pairs for a given task. While
datasets like Horse2Zebra allow pairing for classification
tasks (horse vs. zebra labels), they become unpaired for
I2I translation (horse image to zebra image). Construct-
ing such paired datasets necessitates manual annotation
by experts, which can be time-consuming (e.g., segmenta-
tion), expensive (multiple imaging acquisitions), or prone
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to errors (imperfect registration across modalities). These
difficulties are particularly amplified in medical imaging,
making the development of robust I2I translation models a
complex endeavor.

The scarcity of paired data for image synthesis tasks
has driven the research community towards utilizing un-
paired datasets. Since their emergence in 2014, Genera-
tive Adversarial Networks (Goodfellow et al., 2020) (GANs)
have formed the foundation for numerous unpaired image
synthesis methods (Zhu et al., 2017; Park et al., 2020;
Taigman et al., 2022). However, GAN-based approaches
often lack control over the synthesis outcome, potentially
generating realistic but anatomically inaccurate images in
medical applications. As an alternative, disentangled rep-
resentations have emerged as a promising approach. This
class of methods assumes that an image can be decom-
posed into a set of independent, interpretable features,
each representing a specific aspect of variation within the
image (Liu et al., 2022; Chen et al., 2023). Compared to
GANs, disentangled representations provide a more inter-
pretable generation process, greater control over the syn-
thesis, and improved transferability across tasks.

Dynamic MRI is an imaging technique employed in vivo
to study physiological dynamics, including cardiac cycles,
blood flow, and joint biomechanics (Garetier et al., 2020;
Pettigrew, 1989). Our study centers on pediatric dynamic
MRI data acquired for investigating equinus (Makki et al.,
2019). Affecting roughly 75% of children with cerebral
palsy, equinus is the most prevalent musculoskeletal defor-
mity in this population (Banks and Green, 1958). Charac-
terized by a fixed plantarflexed foot position with a neutral
hindfoot and extended knee, equinus significantly impacts
mobility. The use of dynamic MRI to understand the ef-
fect of equinus on joint mechanics and bone deformities
may lead to a better comprehension of the post-surgery
recurrence rate and improve medical management of equi-
nus deformity. However, capturing high-resolution dynamic
sequences requires a long acquisition time and repeated
motion patterns at a constant speed, making them diffi-
cult to handle for patients with musculoskeletal disorders.
In order to minimize patient discomfort, the choice of se-
quence type should be balanced between reducing acqui-
sition time and ensuring sufficient resolution and contrast
between anatomical structures. To enhance comprehen-
sion of the underlying pathology, a combination of one
high-resolution static image and three lower-resolution dy-
namic images was employed, with the aim of studying the
in vivo biomechanics of the pediatric ankle joint (detailed in
Figure 1). Estimating high-resolution dynamic sequences
from static images exemplifies an unpaired image synthesis
problem. This work delves into the application of a disen-
tangled representation learning framework to address this
challenge.

In this work, we present the following contributions:
1. We study the impact of the entanglement module on

disentangle representations learning for unpaired image
synthesis.

2. We investigate the impact of incorporating a segmenta-
tion auxiliary task on the synthesis results.

3. We study the uncertainty through test time data aug-
mentation of dynamic MR image synthesis.

In a previous study (Scavinner-Dorval et al., 2024), a
model called mDRIT++, based on the DRIT++ frame-
work, was introduced. In terms of neural network architec-
tures, the mDRIT++ framework is equivalent, within the
context of this study, to the DRL method with the AdaIN
entanglement module and without the auxiliary segmenta-
tion task. The present work investigates the influence of
several architectural hyperparameters and the addition of
a segmentation module on the result of the synthesis in a
different experimental setup.

2. Related Works

2.1 Unpaired Image-to-Image Synthesis
The field of unpaired image synthesis is primarily driven
by two dominant frameworks: Generative Adversarial Net-
works (GANs) and Disentangled Representation Learning
(DRL) (Chen et al., 2023). More recently, diffusion mod-
els have gained significant interest from the research com-
munity due to their ability to generate highly realistic im-
ages. Diffusion models represent a class of generative mod-
els wherein images are progressively corrupted with an in-
creasing level of noise, which the models then learn to re-
verse. This generative process is defined as the reverse
of a Markovian process, whereby white noise is progres-
sively denoised to produce an image. These models have
already been applied in unpaired image synthesis in com-
puter vision (Sasaki et al., 2021; Sun et al., 2023) and
medical imaging (Luo et al., 2024; Özbey et al., 2023;
Fan et al., 2024). Diffusion-based methods are capable
of achieving diverse and highly realistic image synthesis,
and have been shown to outperform GAN-based methods
for certain tasks. However, the sampling process is per-
formed in a non-disentangled data domain, such as the im-
age domain. These methods are computationally expensive
during training and inference steps. GANs are a family of
deep learning models capable of generating new data based
on existing samples. GAN training involves two competing
networks: the Generator and the Discriminator. The Gen-
erator strives to synthesize new data that is indistinguish-
able from a real data set Y , while the Discriminator aims
to differentiate real data from the synthesized ones (Good-
fellow et al., 2020). In unconditional image synthesis, the
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Figure 1: MRI source data. (a) Static 3DT1 image (b)-(h) Seven different time frames extracted from a dynamic
MRI sequence. During each dynamic MRI sequences, the subject performs (actively or passively) a single cycle of
dorsi-plantar flexion with a rotation speed between 4°/s and 5°/s. Each sequence consists in 15 3D time frames.

Generator takes a random vector z as input and outputs a
synthetic data. In this scenario, the output is solely con-
strained by the set of real data Y that it attempts to mimic.
Conversely, conditional image synthesis employs additional
input such as an image (image-to-image synthesis) or text
(text-to-image synthesis), to guide the generation process.
In the context of image-to-image translation, cyclic GANs
have emerged as a popular approach (Zhu et al., 2017).
These models leverage two GANs in a closed loop, with
each GAN focusing on one direction of the translation cy-
cle.

Although GAN-based approaches are effective in image-
to-image translation, they often suffer from limited control
over the synthesis outcome, resulting in the generation of
realistic but structurally inconsistent images that lack hu-
man interpretability. Disentangled representation learning
(DRL) provides an alternative approach based on the as-
sumption that an input image can be decomposed into a
set of independent, meaningful features. Each of these
features represents a specific mode of variation within the
image and is encoded into a distinct dimension (Liu et al.,
2022; Chen et al., 2023; Higgins et al., 2018). Encouraging
a representation to be disentangled offers several advan-
tages, including a more interpretable generation process,
greater control over the synthesis, and improved transfer-
ability across tasks.

2.2 Disentangled representation learning

In deep learning, representation learning refers to the pro-
cess of learning a representation of the data that facilitates
information extraction for subsequent tasks (Bengio et al.,
2013). Therefore, finding a ”good” representation for a
given task is a critical issue in deep learning. Disentangled
representation learning aims to find the particular repre-
sentation that captures the underlying factors of variation
in the data distribution. Ideally, each of these factors rep-
resents an independent, semantically meaningful aspect of
the data, human-understandable. Such a representation
then allows to generate an image with control over each
semantic aspect. According to Thomas et al. (2017), a
representation is considered ”disentangled” if changing a
single factor only affects the corresponding mode of vari-
ation within the data. As there is no clear consensus on
the definition of disentanglement, several approaches have
been proposed in the last decade (Higgins et al., 2018;
Do and Tran, 2019; Eastwood and Williams, 2018; Achille
and Soatto, 2018; Bengio et al., 2013). However, there is
a general agreement within the community regarding two
key properties: the representation needs to be distributed,
and each factor should be encoded in a distinct dimension
within the latent space.

Disentangled representations, due to their inherent flex-
ibility, find applicability across various modalities and tasks
(Wang et al., 2023). They are commonly used in com-
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puter vision for tasks such as generation (Karras et al.,
2019; Chen et al., 2016; Kim and Mnih, 2018) and domain
adaptation (Lee et al., 2020; Gonzalez-Garcia et al., 2018),
and to a lesser extent in classification (Ferreira dos San-
tos and Mileo, 2023), semantic segmentation (Chu et al.,
2021), and colorization (Lai et al., 2020). Furthermore,
beyond these practical applications, disentangled represen-
tation learning frameworks hold great promise due to their
tractability, generalizability, and controllability (Wang et al.,
2023). Assuming a representation to be disentangled, each
factor of variation is modeled by a corresponding latent rep-
resentation that retrieves a particular semantic aspect of a
set of images. This enables the generation of new images to
be controllable and interpretable. Moreover, if the learned
representation is truly disentangled, each factor is statis-
tically independent from the others, leading to improved
generalization abilities compared to classical algorithms.

Disentangling style and content is a non-trivial process,
particularly in unpaired I2I, as there is no ground truth for
the latent variable to be extracted. To ensure the correct
information is extracted, a set of constraints can be ap-
plied. A good disentanglement may be favored by specific
inductive biases, such as architectures, latent space ma-
nipulations, or learning schemes. Several techniques can
be used to improve disentanglement, including entangle-
ment modules, special learning schemes, and, in the case
of unpaired I2I, the use of an equivariant task as a regular-
ization. Section 2.3 details commonly used entanglement
modules, while Section 2.4 reviews the main methods for
promoting disentanglement in the latent space.

2.3 Entanglement module

The entanglement module plays a crucial role within a
content-style disentanglement learning framework. Its func-
tion is to merge the different latent codes (disentangled
factors) within a generator to produce a new image. The
effectiveness of this merging process, often referred to as
entanglement, is paramount in disentangled representation
learning.

Many of the most popular techniques in the recent liter-
ature for information merging in neural networks are based
on conditional normalization (CN). CN is a concept de-
rived from normalization layers, such as Batch Normaliza-
tion (Ioffe and Szegedy, 2015), where the affine parameters
of the transformation are learned from conditioning infor-
mation. These methods aim to modulate the network’s
intermediate activations in a domain-specific manner. The
most popular CN methods include Conditional Instance
Normalization (CIN) (Dumoulin et al., 2017), Feature-wise
Linear Modulation (FiLM) (Perez et al., 2018) and Adapta-
tive Instance Normalization (AdaIN) (Huang and Belongie,
2017). The FiLM layer is proposed as a conditioning layer

for visual reasoning tasks and as a generalization of CIN. It
applies a channel-wise affine transformation to the interme-
diate activations of a neural network. The transformation
parameters are learned from arbitrary input conditions by
two multi-layer perceptrons (MLPs). This module has ap-
plications in medical image segmentation (Chartsias et al.,
2019), soundscape editing (Jiang et al., 2024), and vision
language control for robotics (Saxena et al., 2023). On the
other hand, the AdaIN module was originally designed for
arbitrary style transfer. However, AdaIN is widely used in
literature for various conditional generation tasks, including
text-to-image generation (Tewel et al., 2024), motion syn-
thesis (Cao et al., 2022), colorization from audio (Zhao
et al., 2024), text-to-speech synthesis (Li et al., 2024)
or face generation (Karras et al., 2019). Like the FiLM
layer, AdaIN acts as an affine transformation in the feature
spaces. However, unlike FiLM, the affine transformation
parameters are not learned but extracted from the input
condition using first and second-order statistics. The trans-
formation is achieved by adjusting the channel-wise mean
and standard deviation of the network’s intermediate ac-
tivations based on those from the condition across spatial
locations.

FiLM and AdaIN are frequently chosen as entanglement
modules in content-style disentanglement frameworks. In
this context, the content serves as the generator’s direct
input, while the style is provided as a conditioning input.
Although early work such as Esser et al. (2018) used a
simple concatenation of style and content, this approach
may hinder proper disentanglement between the two fac-
tors (Liu et al., 2022). In the field of content-style disen-
tanglement, some methods propose custom architectures
for style-content fusion, as seen in Lee et al. (2020). How-
ever, to the best of our knowledge, there is currently a lack
of research investigating the influence of the entanglement
module on the quality of synthesized images in the field of
content-style disentanglement.

2.4 Promote and measure the disentanglement

Learning disentangled representations remains a significant
challenge, especially in unpaired settings. A successful
framework for disentangled representation learning hinges
on the independence between the latent representations.
However, in most common applications of these frame-
works, the ground truth for the latent codes does not ex-
ist. A significant challenge in these methods is to promote
disentanglement and independence between the latent rep-
resentations of the factors of variation, without knowledge
of the exact realizations of these factors. Additional strate-
gies are introduced to enforce disentanglement of the latent
representations without explicit supervision of the latent
variables.
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Most of the time, unpaired I2I translation methods us-
ing disentangled representation rely on a cycle consistency
loss to guide the translation process. This objective, intro-
duced by Zhu et al. (2017), constitutes the state-of-the-art
in unpaired I2I. This objective has proved its efficiency in
guiding inter-domain translation, providing strong regular-
ization, and stabilizing training (Li et al., 2017). How-
ever, cycle-consistency alone cannot guarantee a correct
disentanglement of the latent representations. Recent ap-
proaches have introduced constraints into the latent spaces
to further constrain the latent representations themselves
and their disentanglement, instead of working only in the
image spaces.

These techniques are mainly divided into two cate-
gories: those that guide the structure of the latent space
and those that guide the content. The methods working
on the structure of the latent representation are usually
designed to condition the shape and distribution of the
data point in the latent space (using a VAE (Kingma and
Welling, 2014) with a latent space constrained to fit a nor-
mal distribution with zero mean and unit variance, or con-
trastive learning (Yu et al., 2021; Hjelm et al., 2018; Wu
et al., 2018; Chen et al., 2020) which favors the proximity
of similar data in the latent space and pushes away the data
that are different). These methods can promote disentan-
glement by encouraging a human-interpretable structure
and favoring certain properties of the latent representa-
tions. The second category of methods focuses on con-
straining the content of the latent representations. How
to favour some semantic properties in the latent repre-
sentations without knowing any realization of the latent
codes? As previously mentioned, content representation
in content-style disentanglement is particularly suitable for
use in equivariant tasks. In imaging tasks, it mostly per-
tains to semantic segmentation. Requiring the content to
convey the necessary anatomical properties for segment-
ing anatomical structures has been shown to improve the
learned representation, as demonstrated by Chartsias et al.
(2019) and reported by Liu et al. (2022). On the other
hand, Lee et al. (2020) introduce a content discriminator
to encourage the content representations to be indistin-
guishable between the two modalities. This type of prior
enforces domain-invariance of the content and constrains
the style to convey domain-specific information.

Although there is a growing number of approaches that
focus on learning disentangled representations, the metrics
for quantifying this disentanglement are still relatively un-
known. Most of the proposed metrics are applicable in the
following cases: the ground truths corresponding to the
variation factors are known, or the disentanglement of the
factors takes place within a single latent vector variable
(such as GAN or VAE) (Carbonneau et al., 2022; Chen
et al., 2018; Kim and Mnih, 2018; Higgins et al., 2022;

Duan et al., 2019). When it comes to disentangling con-
tent and style, the ground truths for the variation factors
are often inaccessible. In addition, the different represen-
tations are encoded as multiple latent variables of different
forms (style is often represented as a vector, while con-
tent is often represented as a spatial tensor). In practice,
few disentanglement metrics are designed to overcome the
need for ground truth.

3. Methods

In this work, given a set of low-resolution dynamic MRI
data X and a set of high-resolution static MRI data Y ,
we seek to estimate the transformation that synthesized
a high-resolution dynamic MRI data from a low-resolution
dynamic MRI data, meaning to estimate the transforma-
tion mapping an element x ∈ X into an element of Y .
This work is inspired by DRIT++ (Lee et al., 2020), an
unpaired image synthesis framework built upon disentan-
gled representation learning. We leverage this framework
as a foundation to investigate the influence of the entan-
glement module on the synthesis outcome. Furthermore,
we incorporate segmentation masks to bolster disentangle-
ment and enhance the quality of the synthesized images
through the introduction of a segmentation auxiliary task.
This section is structured as follows: Section 3.1 details
the original DRIT++ framework, Section 3.2 describes the
different entanglement modules and Section 3.3 provides
further details on the incorporation of the segmentation as
an auxiliary task.

3.1 Unpaired Image Synthesis

Consider a pair of magnetic resonance images (MRI) ac-
quired from the same subject, denoted as x ∈ X and
y ∈ Y . This work aims to disentangle the content, referred
to as ”anatomy” in medical imaging terminology, from its
representation, which aligns with the concept of ”style”
in broader literature. The modality refers to the MRI ac-
quisition parameters specific to each image and embodies
modality-specific attributes. Typically represented as a vec-
tor, it does not encode spatial information but rather the
rendering of the anatomical structures. Conversely, the
anatomy represents the modality-invariant, spatial infor-
mation within the image. Encoded as a tensor, this repre-
sentation preserves the spatial correlations of the original
images, making it suitable for tasks requiring equivariance.

For each image, dedicated modality-specific, fully-convo-
lutional encoders extract two latent codes representing the
disentangled factors. We denote by Ea

X and Ea
Y the anatomy

encoders and Em
X and Em

Y the modality encoders. The
anatomy encoders aims at mapping images into a modality-
invariant, shared latent space while the modality encoders
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Figure 2: Overview of the synthesis process. Each image x ∈ X and y ∈ Y is factorized into anatomy and modality
latent codes by Ea and Em. Generators G recombine the latent codes and generate a new image according to the
input latent codes. Once the cross-modality synthesis is done, the inverse operation is performed to recover the original
images and ensure the cycle consistency. The segmentation network (UNet) takes as input the anatomy latent code of
the image y and outputs the corresponding bones segmentation. The overall model is trained in an end-to-end manner.
It should be noted that networks with the same notation are identical in terms of both structure and weights.

aims at mapping the images into modality specific, inde-
pendent latent spaces. The extracted latent codes are
denoted zm for the modality latent code and za for the
anatomy latent code. The disentanglement process is de-
scribed by Equation (1).

{
x = (za

x, zm
x ) = (Ea

X(x), Em
X (x))

y = (za
y , zm

y ) = (Ea
Y (y), Em

Y (y)) (1)

Since each pair (x, y) consists of images acquired from the
same subject, they are expected to share the same anatom-
ical properties despite differing modalities. Disentangle-
ment is enforced through a discriminator working in the
anatomy latent space and shared weights in the networks.
This discriminator is denoted by D and aims to identify the
source modality of a given anatomy latent code. This setup
encourages the anatomy representation to be modality in-
variant. The corresponding adversarial loss is expressed by

Equation (2).

La
adv(Ea

X , Ea
Y , D) = Ex[12 logD(Ea

X(x))

+ 1
2log(1 − D(Ea

X(x)))]

+ Ey[12 logD(Ea
Y (y))

+ 1
2log(1 − D(Ea

Y (y)))] (2)

Two generators, one for each modality, are conditioned
on both anatomy and modality latent codes to generate
a new image. GX stands for the generator in the X
domain while GY stands for those in the Y domain. A
cross-modality synthesis from a source modality to a tar-
get modality is achieved by providing to a generator the
anatomy latent code of the source image and the modality
latent code of the image from the target modality. We
denote xY and yX the synthesized cross-modality images.

21



Scavinner-Dorval, Bailly, Borotikar, Brochard, Ben Salem and Rousseau, 2025

The generation process is described in Equation (3).{
xY = GY (za

x, zm
y )

yX = GX(za
y , zm

x ) (3)

To address the unpaired setting, the model is condi-
tioned on both image and latent spaces. Similar to the
CycleGAN framework, we first introduce an adversarial loss
to constrain the generated images’ data distribution to ap-
proximate that of the target modality’s real images. Two
discriminators, one for each modality and denoted by DX

and DY are introduced to this end. The corresponding
adversarial loss, including both discriminators is expressed
by Equation (4). Given x′ and y′ two ”real” data from X
and Y respectively:

Lm
adv(GX , DX , GY , DY ) =

Ex′∈X [logDX(x′)]
+ Ex∈X,y∈Y [log(1 − DX(GX(za

y , zm
x ))]

+ Ey′∈Y [logDY (y′)]
+ Ex∈X,y∈Y [log(1 − DY (GY (za

x, zm
y ))] (4)

Second, the framework leverages a cycle-consistency
loss to stabilize the training, introduce a regularization, and
enforce content preservation through the domain transla-
tion. x̃ and ỹ (expressed by Equation (5)) denote the im-
ages obtained after two inter-modality translations.{

x̃ = GX(za
xY

, zm
yX

)
ỹ = GY (za

yX
, zm

xY
) (5)

The cycle-consistency loss is then expressed by the follow-
ing equation:

Lcycle = ||x − x̃||1 + ||y − ỹ||1 (6)

In addition to the previously introduced objective func-
tions, several others are used in order to ease the training.
A self-reconstruction loss compare the original image with
its reconstruction obtained by using latent codes from the
original image (see Equation (7)).

Lself = ||x − GX(za
x, zm

x )||1 + ||y − GY (za
y , zm

y )||1 (7)

A latent regression loss enforces an invertible mapping be-
tween image and modality latent space, forcing images to
contain the information encoded in the modality represen-
tation (Huang et al., 2018). Given zm

rdn a random modality
latent code sampled from N (0, 1), the latent regression
loss is expressed by Equation (8):

Llatent = 1
n

n∑
i=1

∣∣zm
rdn − Em

X

(
GX(za

y , zm
rdn)

)∣∣
+ 1

n

n∑
i=1

∣∣zm
rdn − Em

Y

(
GY (za

x, zm
rdn)

)∣∣ (8)

The global cost function is written:

L = λa
advLa

adv + λm
advLm

adv + λlatentLlatent

+ λselfLself + λcycleLcycle (9)

where λa
adv, λm

adv, λlatent, λself, and λcycle are the dedi-
cated weighting for each particular objective function. An
overview of the method is proposed on Figure 2.

3.2 Entanglement module
Let us consider the anatomy latent code, denoted by za ∈
RN×C×H×W , and the modality latent code, denoted by
zm ∈ RN×h. The variable N stands for the batch size,
(C, H, W ) refers to the spatial dimensions of the anatomy
latent code, and h refers to the dimension of the modality
latent code.

FiLM The FiLM module (Perez et al., 2018) learns the
mapping function from zm to the affine parameters γ and
β. Both mapping functions are modeled by a MLP. γ and
β are computed channel-wise and across spatial locations
and aim at modulating intermediate activations of a neural
network. The FiLM operator can be expressed by Equation
(10) where (.) stands for the element-wise multiplication
and (+) for the element-wise addition:

FiLM(za
n,c, zm

n,c) = γn,c(zm).za
n,c + βn,c(zm) (10)

where n ∈ [1, N ], c ∈ [1, C] and γ, β ∈ RN,C .

AdaIN AdaIN (Huang and Belongie, 2017) is initially de-
signed for arbitrary style transfer and also acts as an affine
transformation in the feature space. Unlike FiLM, the
AdaIN module has no learnable parameters and the pa-
rameters of the affine transformation are obtained from
zm statistics. While both FiLM and AdaIN modules are
used for information merging, their approaches differ. The
FiLM module directly applies an affine transformation to
the intermediate activations derived from za. In contrast,
the AdaIN module focuses on aligning the channel-wise
mean and standard deviation of each intermediate activa-
tion sample with the corresponding values from zm:

AdaIN(za
n,c, zm

n,c) = σn,c(zm)
(za

n,c − µn,c(za)
σn,c(za)

)
+µn,c(zm)

(11)

Conv The method used in the DRIT++ framework (Lee
et al., 2020) relies on successive concatenations between
za and zm, followed by convolution operations to merge
both data. Ki denotes the i × i convolution kernel and
(⊕) the concatenation operator:

Conv(za
n,c, zm

n,c) = F (IN(F (za
n,c, zm

n,c) ∗ K3), zm
n,c) (12)
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where F (f, z) = (a((f ⊕ z) ∗ K1) ∗ K1), a is an activation
function (e.g. ReLU) and IN is the Instance Normalization
function.

3.3 Supervised Segmentation
This section details the introduction of a segmentation
module into the framework detailed in Section 3.1. An
overview of the proposed method is illustrated in Figure 2.
As discussed in Section 2.4, auxiliary task such as segmen-
tation may provide a way to enforce disentanglement of
the latent representations by encouraging particular prop-
erties in the content representation (Chartsias et al., 2019;
Liu et al., 2022). The content representation in image-
to-image translation is particularly suitable for equivariant
tasks such as segmentation (Chartsias et al., 2019). To this
end, we leverage the ankle joint bones segmentation on the
static MR images to introduce a supervised segmentation
task from the anatomy representation.

This segmentation net takes as input the anatomy rep-
resentation of the static MR image and outputs the corre-
sponding segmentation of the ankle joint bones. Given seg-
mentation maps of static data, this task is performed in a
supervised manner. The goal is to constrain the anatomical
information to be encoded into the anatomy representation
in order to perform the segmentation while the modality-
specific information remains in charge of the modality rep-
resentation. The objective function, denoted by Lseg, is a
cross-entropy loss between the estimation provided by the
segmentation net and the ground truth. This paired set-
ting for the segmentation offer an additional constraint to
guide the extraction of the latent representation.

The global cost function, including the segmentation
module, is expressed as follows:

L = λa
advLa

adv + λm
advLm

adv + λlatentLlatent

+ λselfLself + λcycleLcycle + λsegLseg (13)

4. Experimental Setup

This section describes the experimental setup, including
the dataset used in the experiments in Section 4.1, the
metrics considered for evaluation (see Section 4.2), and
the implementation details in Section 4.3.

4.1 Dataset
This dataset consists of pediatric MRI data (Makki et al.,
2019) of the ankle joint acquired in order to study equi-
nus. Equinus is the most common deformity in children
with cerebral palsy (Cobeljic et al., 2009). To enhance
comprehension of pediatric ankle joint biomechanics, one
high-resolution static image and several low-resolution dy-
namic sequences have been acquired. The study, which

was approved by the regional ethics committee, included
eleven typically developing children and nine children with
equinus, aged between 6 and 14 years old. 3D MRI data
were collected during a single visit after the parents signed
informed consent forms. The data was acquired using a 3T
MR scanner (Achieva dStream, Philips Medical Systems,
Best, Netherlands). The acquisition protocol includes, per
child, one high-resolution static 3D MR scan of the an-
kle joint with a resolution of 0.26 × 0.26 × 0.8mm (T1-
weighted gradient-echo, flip angle 10°, matrix 576576, FOV
150mm×150mm, TR/TE 7.81/2.75 ms, mean acquisition
duration: 424.32 s) and three low-resolution dynamic se-
quences of the ankle joint while performing a single cycle of
dorsi-plantar flexion. The dynamic sequences includes two
passive sequences for repeatability measures and one active
sequence, all acquired with knee angle kept in full exten-
sion (approximately between 0° and 10°). Each sequence
consists of 15 3D time frames with a spatial resolution of
0.57 × 0.57 × 8mm (flip angle 15°, matrix 352352, FOV
200mm×200mm, TR/TE 20.61/1.8 ms, acquisition dura-
tion: 18.98 s).

Each static MRI has been manually segmented by hu-
man experts. The segmentations include the three bones
of interest of the ankle joint: the talus, the tibia, and the
calcaneus. All the segmentations have been performed us-
ing ITK-Snap (Yushkevich et al., 2006). The age range of
the subjects is from 6 to 14, resulting in variations in the
growth plates among them. The segmentation of bones in-
cludes both bone and eventual growth plates, but articular
cartilage is not included.

4.2 Metrics

Reconstruction metrics A large part of the image syn-
thesis literature uses full-reference image quality metrics
such as PSNR, MSE, or SSIM. These metrics rely on a
strong physical background and have proven their efficiency
and relevance. However, they are not suitable for unpaired
datasets since they compare a synthesized image with its
corresponding ground truth, which is not available in un-
paired datasets.

No-reference image quality assessment metrics are de-
signed to avoid the need for ground truth. These metrics
are often built on comparisons between intermediate acti-
vations of secondary neural networks, rather than compar-
ing pixels. Two commonly used metrics for evaluating the
quality of generated images are Fréchet Inception Distance
(FID) (Heusel et al., 2017) and Kernel Inception Distance
(KID) (Bińkowski et al., 2018). The FID corresponds to
an improvement of the Inception Score (Salimans et al.,
2016). It compares features of both real and synthetic im-
ages using Inception v3’s features from a net trained on
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ImageNet, as described in equation (14).

FID = d2
(
(µ, C), (µw, Cw)

)
= ∥µ − µw∥2

2 + Tr
(
C + Cw − 2(CCw)1/2

)
(14)

where d(.,.) is the Wasserstein-2 distance (Vaserstein,
1969), (µ, C) the multivariate Gaussian obtained from the
intermediate activation of the Inception network fed by
generated data and (µw, Cw) the Gaussian obtained from
the intermediate activation of the Inception network fed by
real data. µ stands for the mean and C for the covariance
matrix. Although FID was initially developed for natural
image analysis, there is evidence that it can also be relevant
in medical imaging (Woodland et al., 2022).

The KID is a variation of FID, also based on Inception
v3’s activations. It reflects the shared visual similarities
between real and synthetic images. It is defined as the
squared Maximum Mean Discrepancy (MMD) between the
Inception intermediate activation of real and generated im-
ages, using a polynomial kernel:

KID = MMD(freal, ffake)2 (15)

freal defines the intermediate features from real images and
ffake those from generated images. The kernel for MMD
computation is defined as k(x, y) =

(
1/dxT y + 1

)3
.

However, these metrics suffer from a lack of repro-
ducibility as their values can only be roughly compared
between different setups and papers (Parmar et al., 2022).

Disentanglement metrics Liu et al. Liu et al. (2021)
focus on quantifying the disentanglement in the case of
style-content disentanglement. They propose using dis-
tance correlation Székely et al. (2007) and a metric called
’Information over Bias’ to measure correlation and informa-
tiveness. Distance correlation (DC) measures the degree of
dependence between two random variables of arbitrary di-
mensions, and unlike Pearson correlation, DC is bounded in
the interval [0,1]. A DC=0 indicates that the two random
variables are independent. In the case of disentangling style
and content, let X and Y be two matrices with N rows
corresponding to N examples and an arbitrary number of
columns. X and Y can refer to style, content, or linked
images. As variables corresponding to content or images
are spatial tensors, they are reformatted as vectors, result-
ing in a 2D matrix. The distance correlation is written as
follows:

DC(X, Y ) = dCov(X, Y )
dVar(X)dVar(Y ) (16)

with dCov(X, Y ) =
√∑N

i=1
∑N

j=1
Ai,jBi,j

N2 the distance co-
variance between X and Y and dVar(X) = dCov(X, X)
the distance variance. A and B are the respective distance

matrix of X and Y . The DC can be compute between
the anatomy and the modality latent codes. DC values
closer to 0 indicate a higher disentanglement. The DC can
also be compute between those latent codes and the re-
sulting image, indicating the level of dependence between
the image and its generating factor. However, such met-
ric alone cannot retrieve the disentanglement ability of a
system. As indicated in Liu et al. (2021), DC(X, Y ) = 0
may indicate either X and Y encode unrelated informa-
tion, or one of those encode all the information and the
other encode noise, indicating full entanglement and pos-
terior collapse. To this end, the authors introduced the
Information over Bias (IoB) metric, which aim to mea-
sure the informativeness of generating factors relative to
the corresponding image. IoB aim at comparing a recon-
struction accuracy of particular images from uninformative
representation and the estimated representation done by
the disentangle representation learning model. Given z an
estimated representation, 1 an uniformative constant ten-
sor, and Gθn a neural network defined by its parameters θn

aiming to reconstruct images I given a representation, IoB
is defined as the expectation over the test images of the
ratio between MSE obtained after the training of Gθn on
the uninformative representation and the informative one:

IoB(I, z) = Ei

[
MSE

(
Ii, Gθ1(1)

)
MSE

(
Ii, Gθ2(zi)

)]
(17)

When learning from the uninformative representation 1,
Gθn only learn the dataset biais which can be modeled
by θn, so, higher values of IoB can be associated with an
higher amount of information encoded into the representa-
tion z. IoB=1 meaning that no information about iages I
are encoded into the representation z.

4.3 Implementation details
The training set includes eleven subjects, five with equinus
and six typically developing. The validation and test sets
each include one subject, respectively typically developing
and with equinus. All MR images were resampled to an in-
termediate resolution of 0.41×0.41×8mm. The resolution
in the sagittal plane was chosen to be halfway between the
static and dynamic resolutions to limit information loss in
static images and interpolation artifacts in dynamic images.
Finally, to limit the proportion of interpolated images in the
training set and given the significant differences in resolu-
tion between static and dynamic images, the resolution in
the frontal axis is kept the same as that of the dynamic im-
ages. The static MR images are preprocessed to be roughly
registered to the dynamic images. This registration enables
the use of image patches in the disentangled representation
learning framework in an unpaired setting without using
too dissimilar image patches for each modality. For exam-
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ple, a patch sampled from the foot in the dynamic image
and a patch sampled from the background in the static
image should not be used in parallel. Throughout this
work, we used 2D patches from MRI sequences for training.
The use of 3D patches increases computation times and
slows down the training process. Furthermore, the strong
anisotropy in dynamic MR images between the resolution
in the sagittal plane and along the frontal axis limits the
accuracy and robustness of volumetric image processing.
To increase the quantity of training data, data augmenta-
tion was performed using the TorchIO library (Pérez-Garćıa
et al., 2021). TorchIO is an open-source library designed
for medical imaging. It provides tools for loading, prepro-
cessing, and augmenting data. It enables the generation
of MRI-specific artifacts, such as magnetic field inhomo-
geneity and motion artifacts, as well as typical computer
vision augmentations. All selected transformations can be
applied with a specific probability and can be composed
with others. Random transformations were applied to the
data, including flips along the lateral axis, a bias field with
a maximal magnitude of polynomial coefficient equal to
0.5, Gaussian noise with a standard deviation of 0.1, and
affine transformations including scaling (with an amplitude
of 0.2) and rotations (along the sagittal plane, with a 40°
amplitude). The number of extracted patches was set to
95,400.

The model has been implemented using PyTorch. The
framework is inspired by that of Lee et al. (2020) but us-
ing lighter network architectures. Each encoder is fully-
convolutional. The anatomy encoders, denoted Ea, con-
sist of three convolutional layers followed by two residual
blocks. The last convolutional layers of Ea

X and Ea
Y are

shared to enhance disentanglement (Lee et al., 2020). The
modality encoders, denoted Em, consist of five convolu-
tional layers followed by an average pooling layer and a
final convolutional layer. We set zm ∈ R8 and za ∈
R256×32×32. Similar to Karras et al. (2019), each genera-
tor shares a common structure of a fully-connected map-
ping network that takes modality latent code zm as in-
put, followed by two residual blocks and three fractionally-
strided convolutions. Each residual block shares the same
fully-convolutional structure, except for the entanglement
module. The content discriminator D is fully-convolutional
and comprises three convolutional layers. Both modality-
specific discriminators, DX and DY , are PatchGAN dis-
criminators introduced in CycleGAN (Zhu et al., 2017),
each set with three layers and Instance normalization. The
segmentation network is a UNet (Ronneberger et al., 2015),
followed by fractionally-strided convolutions, with approx-
imately 26K parameters.

The full model contains approximately 23 million pa-
rameters, compared to the original model’s 87 million.

For training, we use Adam optimizer, with a learning

rate of 10−5. The batch size is set to 32, exponential decay
rates to (β1, β2) = (0.5, 0.999) and weight decay to 0.0001.
For all experiments, we set λcycle = 10, λlatent = 10,
λreg = 0.01, λself = 10. For the segmentation task, we set
λseg = 10. If not specified, all remaining weights are set to
0. Each DRL method is trained in an end-to-end fashion.
The source code for this project is available at https://
github.com/cScavinner/Unpaired_image_synthesis.
As a baseline, we use the CycleGAN model (Zhu et al.,
2017).

5. Results

We conduct the experiments on the dataset presented be-
low. The disentangled representation learning framework,
with and without the segmentation task, was compared to
the CycleGAN model (Zhu et al., 2017). The results pre-
sented in this section are discussed in Section 6. Section 5.1
presents the results of high-resolution dynamic sequence
synthesis. Section 5.2 describes the segmentation results
of the disentangled representation learning framework, and
Section 5.3 presents the uncertainty evaluation using test-
time augmentation. An evaluation of the disentanglement
is presented in Section 5.4.

5.1 Reconstruction

The disentangled representation learning framework and its
variations are compared to CycleGAN. Figures 3 and 4 show
the results of using the three entanglement modules with
and without the segmentation module for both equinus
and typically developing subjects. Table 1 and 2 provide
a quantitative evaluation of the synthesis in terms of KID
and FID. The Dice Similarity Coefficient (DSC) and the
Hausdorff Distance (HD) are included for the methods that
incorporate the segmentation module.

DRL methods that use segmentation as a task prior
demonstrates superior performance in comparison to those
without segmentation, in terms of both KID and FID, for
both equinus and typically developing subjects. The use of
segmentation as a task prior globally improved the synthe-
sis performance for each entanglement module. The best
results were obtained using the AdaIN entanglement mod-
ule in combination with the segmentation task. The FiLM
entanglement module demonstrated the poorer synthesis
performance. Figure 3 and 4 provide a visual assessment
of the synthesis quality. The source dynamic and static im-
ages are provided as a reference. It can be observed that
the combination of the AdaIN module with the segmen-
tation network provides the best trade-off between image
quality and anatomical accuracy. Although the DRIT++
entanglement module seems to provide clean images with
and without segmentation, it appears to be more prone
to artifacts and produces less regular edges. The AdaIN
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: High-resolution dynamic sequence synthesis results using CycleGAN and DRL model for an equinus subject.
(a) Dynamic image (b) Static image (c) Estimation with CycleGAN (d) Estimation with DRL - Conv (e) Estimation
with DRL - AdaIN (f) Estimation with DRL - FiLM (g) Estimation with DRL - Conv with segmentation as an auxiliary
task (h) Estimation with DRL - AdaIN with segmentation (i) Estimation with DRL - FiLM with segmentation.

module without segmentation produces a realistic synthe-
sis of textures but generates inconsistent edges and lacks
realistic bone and cartilage shapes.

A comparison between the quantitative evaluations of
typically developing and equinus subjects reveal uneven
performances of all the methods on each subject. If similar
trends are observed between the different methods for both
subjects, we observe a degradation in reconstruction and
segmentation quality on the typically developing subject in
comparison to the subject with equinus. With regard to
reconstruction, the observed differences in metrics can be
attributed to the sensitivity of these metrics to modifica-
tions in setup, particularly the number of samples employed
for evaluation, which can influence metric reliability (Par-
mar et al., 2022). As the number of test images used
for the typically developing subject is lower than for the
equinus subject, a comparison of the two reconstruction
performances may be compromised.

5.2 Segmentation

This section presents the segmentation results obtained
with each entanglement module. The segmentation ac-
curacy is evaluated using the Dice Similarity Coefficient
(DSC) and the Hausdorff Distance (HD). The quantitative
results for the segmentation task are presented in Table 1
for the equinus subject and Table 2 for the typically de-
veloping subject. Despite the disparity in synthesis quality,
all methods exhibit comparable segmentation performance
with regard to the DSC. Regarding the HD, the DRL meth-
ods using Conv and AdaIN modules exhibit comparable per-
formance, whereas the AdaIN module exhibiting a higher
variability. Despite the lower synthesis quality, the DRL
method using the FiLM module consistently achieves the
lowest HD among the different methods. The segmenta-
tion results are presented in Figure 5 for an equinus subject
and 6 for a typically developing subject. The estimated seg-
mentations are displayed as overlays on the source static
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: High-resolution dynamic sequence synthesis results using CycleGAN and DRL model for a typically developing
subject. (a) Dynamic image (b) Static image (c) Estimation with CycleGAN (d) Estimation with DRL - Conv (e)
Estimation with DRL - AdaIN (f) Estimation with DRL - FiLM (g) Estimation with DRL - Conv with segmentation as
an auxiliary task (h) Estimation with DRL - AdaIN with segmentation (i) Estimation with DRL - FiLM with segmentation.

MRI in the first row. The ground truth is indicated as
a reference on the left. The second row shows the abso-
lute difference between the ground truth and the estimated
segmentations. It could be observed that the segmentation
performances are globally similar across the different entan-
glement modules. The absolute error is found to be evenly
distributed along bone contours, regardless of whether the
bone edges are smooth or sharp. Additionally, for each
bone, the corresponding segmentation is free of holes and
exhibits a single connected component. As illustrated by
both DSC and HD, the segmentation accuracy is inferior
for the typically developing subject, regardless of the DRL
method employed.

5.3 Uncertainty

Data augmentation is commonly used during the training
process, though it can also be used during the test time.
The purpose is to generate multiple variations of a sin-

gle image and then combine the predictions made by the
model after reversing the transformation. Typically used as
a way to improve the prediction of neural networks during
training, especially in segmentation tasks, it also provides
a measure of the uncertainty of the model with respect to
particular transformations. In this case, we use it to eval-
uate the uncertainty of the high-resolution dynamic image
synthesis process.

The transformations are randomly sampled from a set
of rotations and scaling transformations. The amplitude of
scaling is set to 0.2, and the rotation amplitude is set to 40°
on the sagittal plane. A total of ten images are used, in-
cluding the original images and nine randomly transformed
images. High-resolution synthesis is performed for all ten
images, and the inverse transformation is then applied to
restore the original configuration. Statistics are then com-
puted based on the ten resulting images, with a focus on
the mean and standard deviation images.
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Table 1: Evaluation of the synthesis performance for a subject with equinus. The evaluation is performed using two
unpaired image metrics, KID and FID. The segmentation is evaluated using DSC and HD, computed on synthesised
image segmentations. The best performance is indicated in bold.

Lseg Entanglement FID ↓ KID ↓ DSC ↑ HD (mm) ↓

DRL ✗

Conv 164.13 0.12 / /
AdaIN 195.5 0.17 / /
FiLM 367.5 0.44 / /

DRL ✓

Conv 162.54 0.12 0.96 ± 0.003 2.8 ± 2.55
AdaIN 134.8 0.076 0.96 ± 0.004 2.77 ± 3.0
FiLM 201.4 0.15 0.96 ± 0.004 1.66 ± 0.52

CycleGAN 154.81 0.10 / /

Table 2: Evaluation of the synthesis performance for a typically developing subject. The evaluation is performed
using two unpaired image metrics, KID and FID. The segmentation is evaluated using DSC and HD, computed on
synthesised image segmentations. The best performance is indicated in bold.

Lseg Entanglement FID ↓ KID ↓ DSC ↑ HD (mm) ↓

DRL ✗

Conv 227.4 0.19 / /
AdaIN 209.99 0.16 / /
FiLM 395.59 0.48 / /

DRL ✓

Conv 183.32 0.11 0.93 ± 0.02 6.29 ± 8.02
AdaIN 181.45 0.12 0.93 ± 0.009 8.06 ± 9.36
FiLM 259.81 0.22 0.93 ± 0.007 4.43 ± 4.71

CycleGAN 277.63 0.28 / /

Figure 7 illustrates the results for each method. The
first and second rows of this figure correspond to the mean
image and standard deviation image, respectively. Each
mean image and standard deviation image shares the same
contrast dynamic. A blurred mean image indicates greater
variability in the image synthesis, whereas a sharper one
indicates greater stability of the reconstructions. The stan-
dard deviation image reflects the amount of variability present
in a given pixel. First, we observe that all the mean im-
ages from the DRL model methods seem to exhibit greater
blurring than the CycleGAN one. However, while the mean
image from the CycleGAN appears sharper than the oth-
ers, the standard deviation within that area is considerably
greater than in the other methods. The standard deviation
image of the CycleGAN methods demonstrates a global
variability in the image, while the other methods show high
standard deviation values concentrated around the bones’
edges. Secondly, it can be observed that the texture of
the bone is rendered more accurately by the mean images
generated by the AdaIN methods (with and without seg-
mentation) than by those produced by the other methods.
This is particularly visible on the calcaneus. The enhanced
detail observed in the mean images produced by the AdaIN
methods suggests that these methods yield more robust re-
sults than the other methods.

Additionally, we observe that the mean image of each
method using the segmentation as an auxiliary task demon-

strates significantly richer textures in terms of details, and
a reduced variability, according to the standard deviation
images. To support our assertions, three statistical mea-
sures—maximum, minimum, and mean—were computed
for each standard deviation image. While the minimum
values are observed to be comparable across all methods,
the maximum and mean values exhibit notable discrepan-
cies contingent on the method employed. The incorpora-
tion of the segmentation task results in a notable reduc-
tion in the maximum and mean values for both the FiLM
and AdaIN modules. For the FiLM module, the maximum
value declines from 43.75 to 24.02, while the mean value
drops from 8.64 to 3.83. Similarly, for the AdaIN mod-
ule, the maximum value decreases from 7.87 to 5.55, while
the mean value decreases from 1 to 0.53. In the case
of the Conv module, both the maximum and mean val-
ues are higher with the introduction of the segmentation
task (without segmentation: max = 10.01 and mean =
0.75; with segmentation: max = 13.77 and mean = 1.63).
This divergence from the other methods can be attributed
to the sensitivity of Conv-based methods with regard to
artifacts, clearly discernible in the results of the method
employing both Conv and the segmentation task. These
artifacts may manifest as high-intensity gray-level spikes
that exert a considerable influence on the computation of
the mean value.

These observations suggest that the addition of the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5: Segmentation results using DRL model on an equinus subject. Each segmentation is displayed as an overlay
on the corresponding static image. (a) Ground truth segmentation (b) Estimation with DRL - Conv (c) Estimation
with DRL - AdaIN (d) Estimation with DRL - FiLM (e) (f) and (g) corresponds to the difference between the ground
truth and the above result.

segmentation reduces the variability among the synthesized
images, producing a more robust model. The standard de-
viation images demonstrate the presence of artifacts, which
are predominantly observed in the images generated by the
methods that employ the Conv and FiLM modules.

5.4 Evaluation of the disentanglement

This section provides an approach to evaluate the disen-
tanglement of the anatomy and modality latent represen-
tations for each of the disentangled representation learn-
ing scenarios previously introduced. The evaluation uses
the DC and IoB metrics introduced in Section 4.2 and the
quantitative results are provided in tables 3 and 4. The DC
and IoB metrics are designed to assess distinct aspects of
the disentanglement: the independence between each rep-
resentation and the representativeness of these representa-
tions. The degree of dependence between the two latent
representations is quantified by the DC (see first row in
Tables 3 and 4). A lower value indicates a higher degree
of independence between the representations. Conversely,
both the DC and the IoB metrics computed between each
representation and the source image, are designed to re-
flect the representativeness of these representations with
respect to the source image. A higher DC between a given
representation and the source image indicates a greater
degree of correlation between the two. Additionally, the
IoB metric is designed to assess the informativeness of the
learned representations with respect to the source image.
The results for a dynamic image are presented in Table 3,

and for a static image in Table 4.

The method using the AdaIN entanglement module
consistently exhibits a higher correlation between the source
image and the extracted anatomy representation for both
static and dynamic images, with and without the segmen-
tation task. The DC between the image and the modality
representation is globally even across all variations of the
DRL framework and for both dynamic and static images.
The primary impact of the segmentation task lies in the
decorrelation between the two latent representations. The
introduction of the segmentation task appears to increase
the decorrelation rate between the two latent representa-
tions for both DRL-AdaIN and DRL-Conv, and both static
and dynamic images, suggesting a better independence be-
tween the two latent representations, and thus a better
disentanglement. In contrast, the introduction of the seg-
mentation module does not yield the same improvement in
decorrelation for the DRL-FiLM method as for the other
two methods. However, this method produced particularly
unrealistic results compared to the other two, suggesting
that this entanglement module is less effective for learn-
ing disentangled representations than the other two. This
would explain the differences in the observed disentangle-
ment trends.

In the case of the IoB, no significant differences were
observed in the values obtained with and without the in-
troduction of the segmentation task. The primary insight
derived from IoB is that the representations encoded from
the static image appear to convey a higher degree of infor-
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6: Segmentation results using DRL model on a typically developing subject. Each segmentation is displayed
as an overlay on the corresponding static image. (a) Ground truth segmentation (b) Estimation with DRL - Conv (c)
Estimation with DRL - AdaIN (d) Estimation with DRL - FiLM (e) (f) and (g) corresponds to the difference between
the ground truth and the above result.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7: Results of the test-time augmentation for n=10. The first row corresponds to the mean images and the
second corresponds to the standard deviation image. (a)(h) DRL - Conv (b)(i) DRL - AdaIN (c)(j) DRL - FiLM (d)(k)
DRL - Conv with segmentation (e)(l) DRL - AdaIN with seg (f)(m) DRL - FiLM with seg (g)(n) CycleGAN.

mation about the source image than those encoded from
the dynamic images. This observation is consistent with
expectations, as static images typically contain a greater
quantity of information and details than dynamic images,
which are commonly affected by noise and blurring. The
DC between the two representations is also lower in static
images, and with both representations being more informa-
tive, this indicates a greater amount of information carried
by the latent representations of the static images and a
higher independence between them, and so a better disen-
tanglement on the static images.

6. Discussion and Conclusion

This paper describes a disentangled representation learn-
ing framework for unpaired synthesis of high-resolution dy-
namic MRI. Three entanglement modules are compared,
and the impact of an auxiliary segmentation module is
investigated. The experiments demonstrate that the ad-
dition of an auxiliary segmentation task significantly im-
proves synthesis quality, improves the robustness of the
model to spatial transformations. While both the Conv and
the AdaIN-based DRL framework produce visually realistic
images, the method using the AdaIN module appears to
be less prone to artifacts and produces more regular edges.
The results demonstrate that, while the DRL methods us-
ing the AdaIN module consistently demonstrate the higher
correlation between the anatomy latent representation and
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Table 3: Evaluation of the disentanglement on a dynamic image for each method. We use Distance Correlation (DC)
and Information over Bias introduced in Liu et al. (2021). The best performance is indicated in bold.

without segmentation segmentation
Conv AdaIN FiLM Conv AdaIN FiLM

DC(za
x, zm

x ) ↓ 0.56 ± 0.03 0.57 ± 0.03 0.56 ± 0.02 0.52 ± 0.03 0.56 ± 0.03 0.57 ± 0.02
DC(za

x, x) ↑ 0.77 ± 0.02 0.85 ± 0.03 0.81 ± 0.03 0.76 ± 0.02 0.83 ± 0.02 0.8 ± 0.03
DC(zm

x , x) ↑ 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.02
IoB(za

x, x) ↑ 1.33 ± 0.03 1.33 ± 0.02 1.33 ± 0.02 1.32 ± 0.03 1.33 ± 0.03 1.34 ± 0.03
IoB(zm

x , x) ↑ 1.08 ± 0.06 1.06 ± 0.02 1.03 ± 0.05 1.05 ± 0.02 1.06 ± 0.03 1.1 ± 0.02

Table 4: Evaluation of the disentanglement on a static image for each method. We use Distance Correlation (DC)
and Information over Bias introduced in Liu et al. (2021). The best performance is indicated in bold.

without segmentation segmentation
Conv AdaIN FiLM Conv AdaIN FiLM

DC(za
y , zm

y ) ↓ 0.48 ± 0.03 0.58 ± 0.04 0.54 ± 0.01 0.47 ± 0.03 0.54 ± 0.04 0.56 ± 0.04
DC(za

y , y) ↑ 0.71 ± 0.04 0.83 ± 0.05 0.78 ± 0.04 0.71 ± 0.04 0.8 ± 0.05 0.78 ± 0.05
DC(zm

y , y) ↑ 0.91 ± 0.03 0.9 ± 0.03 0.77 ± 0.06 0.89 ± 0.03 0.9 ± 0.03 0.92 ± 0.03
IoB(za

y , y) ↑ 1.36 ± 0.04 1.37 ± 0.07 1.35 ± 0.05 1.35 ± 0.04 1.34 ± 0.06 1.35 ± 0.05
IoB(zm

y , y) ↑ 1.12 ± 0.05 1.13 ± 0.05 1.13 ± 0.04 1.12 ± 0.04 1.08 ± 0.03 1.09 ± 0.04

the source image, the Conv-based DRL methods consis-
tently exhibit higher disentanglement between the two la-
tent representations. The CycleGAN framework generates
a visually realistic texture of the bones, but appears to be
more susceptible to irregular anatomical structures and ar-
tifacts. Furthermore, it has been demonstrated to be less
robust than the DRL approaches.
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