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Abstract
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma
Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial
tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed
deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated
multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283
hidden test set cases. Each case included T2, FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels
delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing FLAIR hyperintensity. Participant automated
segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity
coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of
0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899,
0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated
segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the
edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
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1. Introduction and Related Works

M eningiomas are the most common primary brain
tumors, and several common treatment modalities,
including surgical resection and radiation therapy,

require accurate delineation of tumor components (Oga-
sawara et al., 2021; Rogers et al., 2017, 2020). When used
clinically, meningioma MRI segmentation is often performed
using T1-weighted (T1), T2-weighted (T2), T2-weighted-
Fluid-Attenuated Inversion Recovery (FLAIR), and T1 post-
contrast (T1Gd) multi-sequence brain magnetic resonance
image (MRI) (Martz et al., 2022). Meningioma segmen-
tation on brain MRI can be challenging due to the diverse
morphology and location of meningiomas within the brain.
Anatomically, meningiomas arise from the arachnoid layer
of the meninges between the dura mater and pia mater and
commonly present at supratentorial sites of dural reflection,
along the sphenoid sinus, and the skull base. Less com-
monly, meningiomas occur in intraventricular and suprasellar
regions, the olfactory groove, and in the posterior fossa
along the petrous bone (LaBella et al., 2023). Examples
of common anatomical locations of meningioma are de-
picted in Figure 1, which is an unmodified figure by Murek
(Murek, 2024). Their extra-axial location can frequently
lead to their exclusion, in whole or in part, from brain
MRI skull-stripping pre-processing steps. Radiographically,
meningioma can present with a wide range of presenta-
tions which contributes to the difficulty in creating accurate
generalizable meningioma automated segmentation models
(Watts et al., 2014). Commonly encountered radiograph-
ical variants and findings include en plaque meningioma,
which is a plaque-like sessile extension of tumor along the
meninges, cystic meningioma components, dural tail in-
volvement extension, peri-tumoral edema, and numerous
distinct lesions (Watts et al., 2014).

Recent advancements in segmentation techniques for
brain tumors, particularly gliomas, through the application
of deep learning and convolutional neural networks (CNNs),
have shown promise in overcoming these challenges, of-
fering increased accuracy and reproducibility compared to
traditional methods (Pereira et al., 2016; Havaei et al.,
2017; Bouget et al., 2022). Since the inception of the Brain
Tumor Segmentation (BraTS) challenge in 2012, they have
been instrumental in propelling forward the field of brain
tumor imaging segmentation by providing comprehensive
datasets that facilitate the development and benchmarking
of segmentation algorithms (Menze et al., 2014; Bakas
et al., 2017). The inaugural 2012 challenge had 35 train-
ing cases and 15 test cases focused solely on glioma, and
the glioma dataset most recently increased to over 2000
cases included in the 2023 challenge. Studies by Menze
et al. and Bakas et al. underscore the importance of the
BraTS dataset in improving the segmentation accuracy for

gliomas, leveraging multi-sequence MR images to improve
the delineation of tumor tissues from non-tumorous brain
matter (Menze et al., 2014; Bakas et al., 2017; Gordillo
et al., 2013; Işın et al., 2016).

In 2023, the BraTS organizing committee hosted new
automated segmentation challenges to additionally focus on
pediatric tumors, gliomas diagnosed in sub-Saharan Africa,
brain metastasis, and meningioma (bra, 2023; LaBella et al.,
2023; Baid et al., 2021; Kazerooni et al., 2023; Moawad
et al., 2023). Building on the foundation of prior BraTS chal-
lenges, the BraTS 2023 Intracranial Meningioma Segmen-
tation Challenge aims to establish a community standard
and benchmark for intracranial meningioma segmentation
(Bakas et al., 2017; LaBella et al., 2023; Calabrese and
LaBella, 2023). We present a comprehensive analysis of
segmentation performance across nine teams participating
in the challenge focusing on key metrics: Enhancing tumor
(ET) dice similarity coefficient (DSC), tumor core (TC)
DSC, and whole tumor (WT) DSC, ET 95% Hausdorff
Distance (95HD), TC 95HD, and WT 95HD. These metrics
were evaluated on a lesion-wise basis to account for the
possibility of multiple lesions. In many clinical scenarios,
particularly in diseases such as meningioma where patients
may present with multiple lesions of varying sizes, global
metrics tend to average performance over the entire image
volume. This averaging can mask suboptimal performance
on smaller or less conspicuous lesions. By contrast, lesion-
wise evaluation allows each individual lesion to be assessed
separately, thereby providing a more nuanced picture of
an algorithm’s performance. For instance, a segmentation
algorithm might achieve a high overall DSC by accurately
segmenting larger lesions while missing or poorly delineat-
ing smaller ones. Evaluating the DSC and 95HD on a
lesion-by-lesion basis highlights such discrepancies, which
is particularly important for clinical decision-making where
even a single missed lesion could be significant. Advantages
and disadvantages of lesion-wise metrics are listed below.

Advantages of lesion-wise metrics:

• Granular Assessment: Evaluates each lesion indi-
vidually, revealing performance variability hidden in
global metrics.

• Clinical Relevance: Aligns with clinical needs by
ensuring even small, critical lesions are accurately
segmented.

• Error Localization: Identifies specific algorithm weak-
nesses on a per-lesion basis.

Disadvantages of lesion-wise metrics:

• Noise Sensitivity: Small errors in tiny lesions can
disproportionately impact metric values.
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• Definition Ambiguity: Variability in defining indi-
vidual lesions (especially confluent ones) may lead to
inconsistent evaluations.

By evaluating each of the competing teams’ automated
segmentation algorithms’ performance using lesion-wise
metrics, we can identify state-of-the-art machine learning
algorithm techniques. By doing so, we anticipate extension
beyond the technical realm, to impacting patient outcomes,
surgical approaches, radiation therapy planning, and un-
derstanding tumor behavior such as the propensity for an
extra-axial location. As such, this study contributes to the
technical field of medical imaging analysis and to the broader
understanding of meningioma treatment and management
strategies.

2. Methods

2.1 Challenge Data
BraTS Meningioma Challenge image data was contributed
from 6 different United States academic medical centers:
Duke University, Yale University, Thomas Jefferson Uni-
versity, University of California San Francisco, Missouri
University, and University of Pennsylvania. Image data con-
sisted of T1, T2, FLAIR, and T1Gd brain MRI sequences
from patients with radiographic or pathologic diagnosis
of intracranial meningioma. All data preprocessing was
conducted using the FeTS tool, (Pati et al., 2022) and
included conversion to NIfTI file format, co-registration,
1 mm3 isotropic resampling to the SRI24 atlas space, and
automated skull stripping (Schwarz et al., 2019; Thakur
et al., 2019, 2020; Juluru et al., 2020; Smith, 2002). The
skull stripping algorithm, part of the FeTS preprocessing
workflow, was integral in removing non-brain tissue, includ-
ing the skull and scalp, to isolate the intracranial structures.
The brain extraction tool, widely used in neuroimaging
pipelines, relies on deformable models and intensity-based
thresholding to separate the brain from surrounding tissues
(Smith, 2002). In this challenge, skull stripping was critical
for preserving patient anonymity by preventing potential
face reconstruction from MRI data and to standardize data
preparation across institutions. However, it should be noted
that meningiomas often extend through the skull and skull-
base foramina, and any extra-cranial portions of the tumors
were implicitly excluded by this process (Smith, 2002). De-
spite this limitation, skull stripping was applied to ensure
consistency with other BraTS 2023 challenges and to min-
imize the inclusion of non-brain tissue. After image data
pre-processing, tumor compartment labels were created us-
ing a comprehensive pre-segmentation, manual correction,
and expert revision process, including enhancing tumor, non-
enhancing tumor, and surrounding non-enhancing FLAIR
hyperintensity (SNFH) as seen in Figure 2, which is an

unmodified figure by LaBella et al. (LaBella et al., 2023,
2024). The initial pre-segmentation was performed using
a deep convolutional neural network-based model (Isensee
et al., 2021). Subsequently, 39 annotators manually re-
viewed and refined the segmentations. These annotators
had varying levels of experience, from medical stu1dents
to fellowship-trained neuroradiologists. Each annotator
was given instructions on how to use the ITKSnap annota-
tion software (Yushkevich et al., 2006) as well as a docu-
ment on common errors of meningioma pre-segmentation
as discussed in the dataset resource paper by LaBella et
al (LaBella et al., 2024). After each annotator completed
their manual corrections, the labels were sent to a final
board-certified fellowship trained neuroradiologist (EC) for
approval. This multi-step approach ensured the accuracy
and consistency of the segmentation labels, incorporating
multiple rounds of revision as needed to achieve high-quality
final segmentations. All participating institutions received
Institutional Review Board and Data Transfer Agreement
approvals before contributing data, ensuring compliance
with relevant regulatory authorities.

Figure 1: Axial (left) and coronal (right) views of menin-
giomas at the most common locations in the skull.
This is a modified figure as adapted from Murek
under the CC-BY-4.0 license

2.2 Challenge Procedures and Timeline

The BraTS 2023 Intracranial Meningioma Segmentation
Challenge was hosted on the Synapse platform using the
BraTS Pre-operative Meningioma Dataset (bra, 2023). To
access the challenge dataset and to be eligible for submis-
sion of automated segmentation models, participants were
required to register as a participating team on the Synapse
platform. Registered teams developed automated segmenta-
tion algorithms that trained on multi-sequence MRI of pre-
treatment intracranial meningioma with associated ground
truth labels that were released to the participating teams
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Figure 2: Meningioma sub-compartments considered in
the BraTS Pre-operative Meningioma Dataset.
Image panels A-C denote the different tumor
sub-compartments included in manual annota-
tions; (A) enhancing tumor (blue) visible on a
T1-weighted post-contrast image; (B) the non-
enhancing tumor core (red) visible on a T1-
weighted post-contrast image; (C) the surround-
ing FLAIR hyperintensity (green) visible on a
FLAIR image; (D) combined segmentations gen-
erating the final tumor sub-compartment labels
provided in the BraTS Pre-operative Meningioma
Dataset.

in May 2023.
In June 2023, each of the participating teams had access

to additional validation data consisting of multi-sequence
MRI cases. For validation data, teams were able to assess
segmentation performance of their models by submitting
predicted labels through the Synapse platform, but indi-
vidual ground truth segmentations were not made publicly
available. From July until August 2023, participating teams
utilized the validation dataset to fine tune their segmen-
tation models and compose short paper manuscripts. At
the end of the validation phase, each participating team
uploaded their optimal automated segmentation model and
respective manuscript as an MLCube container, which was
used for evaluation in the testing phase. During the testing
phase, the BraTS organizing committee internally evaluated
each of the participating team’s automated segmentation
models on the hidden test set of pre-operative meningioma
cases with ground truth labels.

2.3 Algorithm Evaluation

During the testing phase, the BraTS organizing committee
evaluated metrics on three regions of interest including ET,
TC, and WT. ET was solely the enhancing tumor compart-
ment label. TC was the combination of enhancing tumor
and non-enhancing tumor compartment labels. WT was

the combination of enhancing tumor, non-enhancing tumor,
and SNFH compartment labels. Note that the term “whole
tumor” was used across the BraTS 2023 cluster of chal-
lenges for consistency; however, this term is not entirely
accurate for meningioma, where SNFH typically does not
contain any tumor but rather represents associated vaso-
genic edema. Metrics used for evaluation included DSC and
the 95HD and were evaluated on a lesion-wise level. The
DSC is a measure used to quantify the similarity between
two samples, which, in this context, refers to the overlap
between automated segmentation and the expert annotated
ground truth labels for each respective tumor compartment.
The 95HD observed in the segmentation results. The 95HD
was used in lieu of the standard 100% Hausdorff Distance
to account for smaller lesions that may suffer from over-
estimates of the standard 100% Hausdorff Distance. For
previous BraTS challenges, a global DSC was used for chal-
lenge rankings. However, lesion-wise metrics were adopted
for the 2023 challenge as there was greater potential for
multiple distinct lesions in a single patient image (most
notably for the metastasis and meningioma sub-challenges).
Distinct lesions were identified by performing a 1 voxel sym-
metric dilation on the ground truth WT masks, and then
evaluating a 26-connectivity 3D connected component anal-
ysis to determine if overlap between distinct lesions exists
(Rudie, 2023). A case’s lesion-wise DSC and 95HD scores
are calculated based on equations (1) and (2) respectively,
where L is the number of ground truth lesions and (true
positive (TP) + false negative (FN)) is equal to L (Saluja,
2023). A predicted lesion is counted as a TP if at least 1
predicted voxel overlaps with the respective ground truth’s
respective region of interest mask. A lesion is counted as
a FN if the model does not predict any voxels within the
ground truth’s respective region of interest mask. A pre-
dicted lesion is counted as a false positive (FP) if the model
predicts a distinct lesion that does not overlap with any
ground truth lesions’ voxels. The lesion-wise scoring system
assigned a specific lesion’s region of interest a DSC score of
0 and a 95HD score of 374 for FP or FN. These equations
effectively calculate the average DSC or 95HD values across
all of the predicted lesions for a given case. The scoring
system also excluded evaluation for ground truth lesions
smaller than 50 voxels to avoid evaluation of false ground
truth lesions missed in dataset review. This threshold was
discussed and decided by fellowship trained neuroradiolo-
gists after ground truth label review (Saluja, 2023; Rudie,
2023). Evaluation of submissions was performed on ML-
Commons’ MedPerf, an open federated AI/ML evaluation
platform (Karargyris et al., 2023). MedPerf automated the
evaluating pipeline by running the participants’ models on
the testing datasets of each contributing site’s data and
calculating evaluation metrics on the resulting predictions.
Finally, the Synapse platform retrieved the metrics results
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from the MedPerf server and ranked them to determine the
winner (MLCommons Association, 2024; Pati et al., 2023;
Karargyris et al., 2023).

Lesion-wise Dice Score =
∑L

i Dice(Ii)
TP + FN + FP (1)

Lesion-wise 95HD =
∑L

i HD95(Ii)
TP + FN + FP (2)

2.4 Participant Ranking and Workshop Proceedings
The BraTS organizing committee internally evaluated each
of the participating team’s automated segmentation models
on the hidden test set of pre-operative meningioma cases
to determine lesion-wise metrics for both DSC and 95HD
for each of the three regions of interest. The participants
were ranked against each other for each region of interest’s
lesion-wise metric independently. A total of 6 independent
rankings were calculated to reflect the two metrics, DSC and
95HD, for each of the ET, TC, and WT regions of interest.
Then a “BraTS segmentation score” was calculated based
on the average of each independent lesion-wise region of
interest metric rankings. For example, if a team had the
3rd best ET DSC, 2nd best TC DSC, 3rd best WT DSC,
3rd best ET 95HD, 2nd best TC 95HD, and 4th best WT
95HD, then that team would have an average ranking of
(3+2+3+3+2+4) / 6 = 2.83 as their BraTS segmentation
score. The BraTS segmentation score was used to determine
the final participant rankings relative to one another. The
three top-ranked teams were invited to present their findings
at the BraTS workshop at the 2023 MICCAI Annual Meeting
held in Vancouver, Canada; although final rank was hidden
until the workshop. At the BraTS workshop, the BraTS
organizing committee announced the final placement of the
three top-ranked teams. Monetary awards of $1400, $1000,
and $800 were presented to the three top-ranked teams,
respectively.

2.5 Challenge Results Analysis
Overall participant and individual team statistical analysis
of DSC and 95HD lesion-wise performance was performed
using Python and Microsoft Excel (Excel). Analysis included
calculation of participant average, standard deviation, and
median DSC and 95HD for each region of interest; overall
average and median DSC and 95HD across all participants
for each region of interest; volume calculations of each
lesion; and number of abutting voxels of lesions compared
to the pre-processed brain MRI.

2.6 Analysis of Tumor Abutment of Brain Masks
Given the extra-axial location of meningiomas, we sought
to evaluate the proportion of meningiomas that were poten-

tially cropped or excluded by the automated skull stripping
process. To determine the volume of each compartment
label and the number of tumor compartment voxels that
were directly abutting the edge of the skull-stripped images
for each case, the NumberOfEdgeNeighbors.py script was
internally run by BraTS organizers, which evaluated each
of the 1483 meningioma MRI cases (LaBella, 2024). This
analysis was performed internally due to restricted access
to the hidden test dataset. To determine significance of
association of WT volume compared to abutting voxels,
the Pearson Correlation Coefficient was calculated with
associated p-value with a significance level of 0.05.

3. Results

A total of 1000 training (70%) multi-sequence pre-operative
meningioma MRI cases, 141 validation cases (10%), and 283
test cases (20%) were utilized within the BraTS Meningioma
Challenge (Table 1) in adherence with standard machine
learning protocols.

A total of 9 participating teams submitted automated
segmentation models to MLCube for the BraTS Challenge
2023: Intracranial Meningioma. The statistical summary
of the teams’ performances is outlined in Tables 2 and 3;
which list the calculated DSCs and 95HD, respectively. The
maximum recorded average DSC for ET, TC, and WT are
0.899, 0.904, and 0.871, respectively; and the minimum
recorded average 95HD for ET, TC, and WT are 23.9,
21.8, and 31.4, respectively; highlighting the upper bounds
of team performance within the challenge. The overall
challenge summary statistics across all participating teams
are listed in Table 4 for both DSC and 95HD. Figure 3
shows violin plots of DSC and 95HD scores for the ET, TC,
and WT regions across all of the participating teams. Figure
4 shows a comparison of the predictions for a single testing
set case from each of the top 3 participant’s algorithms.

The top 3 ranked teams for the BraTS Meningioma Chal-
lenge included NVAUTO, blackbean, and CNMC PMI2023
(Capellan-Martin, 2023; Myronenko et al., 2023; Huang
et al., 2023b). Each of these teams were invited to give an
oral presentation of their findings and methods at MICCAI
2023 in Vancouver, Canada. Their lesion-wise DSC and
95HD and median lesion-wise DSC, averaged over ET, TC,
and WT are listed in Table 5. NVAUTO’s winning MONAI
Auto3DSeg framework and blackbean’s STU-Net framework
are open-source and freely accessible (Apache License 2.0)
(Myronenko et al., 2023; Myronenko, 2018; Consortium,
2020; Huang et al., 2023b,a). CNMC PMI2023 utilized
an ensemble of nnUNet, an open-source and freely acces-
sible Apache License 2.0 model, and SWIN-transformer,
a freely accessible MIT License model (Capellan-Martin,
2023). The team leaders, submitted short paper titles, and
technical aspects of their algorithms are listed below:
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Figure 3: Violin plots of DSC and 95HD scores for the ET, TC, and WT regions across all of the participating teams.
The subplots are organized as: A1 (ET DSC), A2 (TC DSC), A3 (WT DSC), B1 (ET 95HD), B2 (95HD TC),
B3 (95HD WT).
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Figure 4: Image panels demonstrating the different predictions of the top 3 teams for a pre-operative meningioma testing
set case as seen on T1Gd (top row) and FLAIR (bottom row) MRI.

.
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Table 1: This table presents the total number of cases
in each of the training, validation, and testing
sets. Note that the training data was released
with ground truth labels. Note that the valida-
tion data was released without ground truth la-
bels. The included institutions are Duke University
(Duke), Thomas Jefferson University (TJU), Mis-
souri (Miss), University of Pennsylvania (Penn),
University of California San Francisco (UCSF),
and Yale University (Yale).

Train Validation Test

Total Count 1000 141 283
Duke 315 46 91
TJU 236 34 68
Miss 132 16 33
Penn 31 4 9
UCSF 126 18 35
Yale 160 23 47
Release Date May 2023 June 2023 Never released

1. NVAUTO: Andriy Myronenko et al., Auto3DSeg for
Brain Tumor Segmentation from 3D MRI in BraTS
2023 Challenge (Myronenko et al., 2023).

NVAUTO employed the Auto3DSeg tool from MONAI
for brain tumor segmentation using 3D MRI scans
(Myronenko, 2018; Consortium, 2020; Myronenko
et al., 2023). The core of the model architecture used
in the challenge was SegResNet, a U-Net based convo-
lutional neural network designed for semantic segmen-
tation tasks. This model utilizes an encoder-decoder
structure, incorporating repeated ResNet blocks with
batch normalization and deep supervision, which helps
guide training through multiple layers of the network
(Myronenko, 2018). To improve performance and ro-
bustness, several data augmentation techniques were
applied, including random affine transformations, flip-
ping, intensity scaling, shifting, noise addition, and
blurring. These augmentations help the model gen-
eralize better by simulating variations in MRI data.
The loss function used for training combined Dice
loss and focal loss, with the goal of addressing class
imbalance by emphasizing harder-to-segment areas
and penalizing inaccurate segmentations of minority
classes. Additionally, the loss was summed across
deep-supervision sublevels, meaning the network com-
puted losses at various resolution scales to refine the
segmentation. The optimizer employed was AdamW,
with an initial learning rate of 2 e−4, gradually re-
duced to zero using the cosine annealing scheduler.

This adaptive optimization method, combined with a
learning rate decay, ensures better convergence and
prevents overfitting. Weight decay regularization of
1 e−5 was also used to prevent overfitting by penal-
izing large weights in the model. The Auto3DSeg
framework was designed to be user-friendly, requiring
minimal manual input. It automates several stages
of the training and optimization process, making it
accessible even to non-experts. Advanced users can
fine-tune various parameters, such as hyperparameters
and model architecture, for improved performance.
The training setup leveraged 8 NVIDIA V100 GPUs
with 16 GB of memory each, and a 5-fold cross-
validation process was used to ensure generalizability
across different MRI datasets, further improving the
model’s accuracy and robustness.

2. blackbean: Ziyan Huang et al., Evaluating STU-Net
for Brain Tumor Segmentation (Huang et al., 2023b).

Blackbean utilized the Scalable and Transferable U-
Net (STU-Net) model in the 2023 BraTS Challenge
(Huang et al., 2023b,a). STU-Net builds upon the
nnU-Net architecture but introduces key modifica-
tions to enhance its scalability and transferability for
large-scale medical image segmentation tasks (Huang
et al., 2023a; Isensee et al., 2021). The model’s
architecture ranges from 14 million to 1.4 billion
parameters, enabling flexibility depending on compu-
tational resources. The core innovation lies in the
incorporation of residual connections to address gra-
dient diffusion and downsampling blocks within each
encoder stage for more efficient feature extraction.
STU-Net also utilizes nearest-neighbor interpolation
with a 1×1×1 convolution layer for upsampling, which
improves the model’s ability to generalize and trans-
fer learning across different imaging tasks (Huang
et al., 2023a). A compound scaling strategy ensures
balanced growth of both encoder and decoder compo-
nents, optimizing both depth and width. Pre-trained
on the TotalSegmentator dataset, which covers 104
foreground classes, the model demonstrates robust
transferability to the BraTS brain tumor segmen-
tation task (Wasserthal et al., 2022). Blackbean
adhered to the default data pre-processing, data aug-
mentation, and training procedures provided by nnU-
Net, and they utilized the SGD optimizer with a
Nesterov momentum of 0.99 and a weight decay of
1 e−3 (Isensee et al., 2021). The batch size was fixed
at 2, and each epoch consisted of 250 iterations.
The learning rate decay followed the poly learning
rate policy: (1 − epoch/1000)0.9. Data augmenta-
tion techniques used during training included additive
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Table 2: Team DSC scores, average ± SD (median), for ET, TC, and WT regions of interest. Combined team rankings
for each respective metric.

Team Name ET DSC TC DSC WT DSC Rank (ET, TC, WT)

NVAUTO 0.899 ± 0.189 (0.976) 0.904 ± 0.180 (0.976) 0.871 ± 0.198 (0.964) 1, 1, 1
CNMC PMI2023 0.876 ± 0.217 (0.968) 0.867 ± 0.227 (0.968) 0.851 ± 0.231 (0.953) 2, 3, 2
blackbean 0.870 ± 0.222 (0.969) 0.879 ± 0.206 (0.969) 0.845 ± 0.226 (0.957) 3, 2, 3
Sherlock 0.854 ± 0.234 (0.958) 0.850 ± 0.239 (0.959) 0.831 ± 0.244 (0.945) 4, 4, 4
huilin 0.830 ± 0.276 (0.959) 0.820 ± 0.258 (0.958) 0.761 ± 0.297 (0.897) 5, 5, 6
i sahajmistry 0.799 ± 0.291 (0.954) 0.773 ± 0.303 (0.949) 0.764 ± 0.296 (0.932) 6, 7, 5
Kurtlab-UW 0.790 ± 0.237 (0.896) 0.774 ± 0.250 (0.892) 0.745 ± 0.257 (0.872) 7, 6, 8
MIA 0.775 ± 0.305 (0.940) 0.757 ± 0.307 (0.941) 0.751 ± 0.306 (0.916) 8, 8, 7
UMNiverse 0.007 ± 0.084 (0.000) 0.027 ± 0.078 (0.006) 0.241 ± 0.290 (0.092) 9, 9, 9

Table 3: Team 95% Hausdorff distances, average ± SD (median), for ET, TC, and WT regions of interest. Combined
team rankings for each respective metric.

Team Name ET 95HD TC 95HD WT 95HD Rank (ET, TC, WT)

NVAUTO 23.9 ± 68.5 (0.96) 21.8 ± 64.6 (1.0) 31.4 ± 71.8 (1.0) 1, 1, 1
CNMC PMI2023 30.0 ± 80.9 (1.0) 31.7 ± 83.5 (1.0) 35.2 ± 86.8 (1.62) 2, 3, 2
blackbean 34.3 ± 82.0 (1.0) 29.9 ± 75.0 (1.0) 41.2 ± 84.3 (1.0) 3, 2, 4
Sherlock 34.3 ± 87.5 (1.07) 35.1 ± 88.3 (1.93) 39.7 ± 93.1 (1.94) 4, 4, 3
Kurtlab-UW 39.9 ± 90.2 (2.0) 45.9 ± 95.8 (2.0) 56.0 ± 100.4 (1.05) 5, 5, 6
huilin 46.9 ± 104.2 (1.0) 47.7 ± 105.2 (1.41) 55.9 ± 106.9 (3.61) 6, 6, 5
i sahajmistry 56.5 ± 108.9 (1.0) 64.1 ± 112.5 (1.41) 66.2 ± 111.0 (2.0) 7, 8, 8
MIA 61.4 ± 117.6 (1.41) 61.6 ± 118.0 (1.73) 64.2 ± 119.5 (2.83) 8, 7, 7
UMNiverse 371.4 ± 314.9 (374.0) 150.1 ± 151.5 (81.5) 158.8 ± 146.9 (189.1) 9, 9, 9

brightness, gamma, rotation, scaling, mirror, and
elastic deformation. The pre-training patch size on
the TotalSegmentator dataset was 128 × 128 × 128
(Wasserthal et al., 2022). Fine-tuning patch sizes on
downstream tasks were automatically configured by
nnU-Net (Isensee et al., 2021).

3. CNMC PMI2023: Daniel Capellán-Mart́ın et al.,
Model Ensemble for Brain Tumor Segmentation in
Magnetic Resonance Imaging (Capellan-Martin, 2023).

CNMC PMI2023 used an ensemble-based approach.
The ensemble strategy combines two state-of-the-art
deep learning models: nnU-Net and Swin UNETR
(Isensee et al., 2021; Tang et al., 2022). The 3D nnU-
Net model was trained using five-fold cross-validation,
with input images divided into patches of 128 x 160
x 112 (Isensee et al., 2021). The output consisted of
three channels corresponding to the three tumor sub-
regions. A combined Dice loss and cross-entropy loss
function was employed, optimized using the stochas-
tic gradient descent (SGD) algorithm with Nesterov

momentum (learning rate: 0.01, momentum: 0.99,
weight decay: 3 e−5). Inference was conducted using
a sliding window approach. The vision transformer-
based 3D Swin UNETR model was trained using five-
fold cross-validation, with input patches of 96 x 96 x
96 voxels (Tang et al., 2022). The output was four
channels: three tumor sub-regions and background.
The combined Dice loss and focal loss function was
optimized using the AdamW optimizer (learning rate:
0.0001, momentum: 0.99, weight decay: 3 e−5). To
improve segmentation accuracy and robustness, pre-
dictions from nnU-Net and Swin UNETR were en-
sembled. The ensembling process involved combining
outputs for the tumor regions (WT, TC, and ET)
from each model across the five cross-validation folds.
Given the task’s emphasis on lesion-wise evaluation,
a post-processing step was developed to clean small
disconnected regions ¡50 voxels. Training for nnU-Net
models was conducted on an NVIDIA A100 GPU with
40GB of memory, while Swin UNETR models were
trained on NVIDIA A5000 (24GB) and A6000 (48GB)
GPUs. Hyperparameter optimization was carried out
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Table 4: Summary statistics for DSC and 95% Hausdorff Distance (95HD) across ET, TC, and WT regions of interest
for 9 participating teams in a segmentation task. The DSC (Dice Similarity Coefficient) and 95HD metrics are
presented with their respective statistics: Average, Std (Standard Deviation), Median, (Q1, Q3) (1st and 3rd
Quartiles), and either Max or Min values as applicable.

Statistic ET DSC TC DSC WT DSC ET 95HD TC 95HD WT 95HD

Average 0.830 0.820 0.764 39.9 46.0 55.9
Std 0.234 0.239 0.257 87.5 95.76 100.4
Median 0.958 0.958 0.933 1.00 1.414 2.00
(Q1, Q3) [0.872, 0.981] [0.850, 0.979] [0.630, 0.972] [1.00, 4.24] [1.00, 6.27] [1.00, 14.5]
Max Avg 0.899 0.904 0.871 23.9 21.8 31.4
Max Med 0.976 0.976 0.964 1.00 1.00 1.00

using the Optuna framework (Akiba et al., 2019).

Table 5: This table shows the lesion-wise metrics for each
of the top 3 ranked teams in the BraTS Challenge
2023: Intracranial Meningioma challenge. Note
that a precision of 4 decimals is used due to the
close final results amongst top participating teams.

Average Median Average
Team Name DSC DSC 95HD

NVAUTO 0.8909 0.9855 25.70
Blackbean 0.8643 0.9861 34.84
CNMC PMI2023 0.8638 0.9855 32.30

Of note, NVAUTO placed in the top 2 for each of the
five distinct BraTS 2023 automated segmentation chal-
lenges. NVAUTO came in first place for Meningioma,
BraTS-Africa, Brain Metastases; and came in second place
for Adult Glioma and Pediatric Tumors. For the menin-
gioma challenge, NVAUTO had a total of 228 of 283 testing
phase cases with a tumor core DSC ≥ 0.90. Additionally,
during the public validation phase, as described in their
in-person oral presentation at MICCAI, NVAUTO reported
achieving an average composite DSC of 0.935, which is sub-
stantially higher than their testing phase top score of 0.891,
which suggests some degree of overfitting (Myronenko et al.,
2023).

3.1 Notable Challenge Cases and Statistics
The top median DSC across all participants for a specific
case was a perfect score of 1.00 for enhancing tumor and
tumor core as shown in Figure 5. Note that there was a
total of 33 enhancing tumor voxels, and 23 were abutting
the edge of the MR image. The cases with the next highest
overall median and average DSC are shown in Figure 6.
Note that the ET volumes are qualitatively much greater

in these particularly high DSC cases.
There were two meningioma cases with somewhat un-

usual imaging appearance as shown in Figures 7 and 8
which had poor performance for test performance metrics
across all participants. Notably, they had a majority of
non-enhancing tumor making up the TC and WT. These
lesions correspond to heavily calcified lesions with little
or no visible enhancement and low signal intensity on all
provided sequences.

Each region of interest’s DSC was compared to WT
volume for each respective case as shown in Figure 8. There
was a nonsignificant positive linear correlation between DSC
vs WT volume for each of the three regions of interest,
ET, TC, and WT; with p values of 0.696, 0.689, and
0.741, respectively. There was a nonsignificant logarithmic
correlation between DSC vs WT volume for each of the
three regions of interest, ET, TC, and WT; with p values of
0.102, 0.093, and 0.200, respectively (not shown in figure).
Notably, Figure 9 also demonstrates a significant number of
cases with a lesion-wise DSC of approximately 0.5 for each
of the regions of interest. This is due to the lesion-wise
metrics penalizing false positives with a value of 0 for the
respective prediction and false negatives with a value of
0 for missed ground truth lesions; combined with a very
strong performance for another ground truth lesion.

Skull-stripping resulted in 908 of 1000 training cases,
129 of 141 validation cases, and 257 of 283 test cases’
meningioma labels (1286 of 1424, 90.3% overall) having at
least 1 compartment voxel abutting the edge of the skull-
stripped image edge as seen in the example case in Figure
10. Of the 257 aforementioned cases, the average and
median number of abutting voxels was 628.7 and 394 voxels
respectively. Figure 11 shows the relationship between the
number of abutting voxels and the WT volume (R2 = 0.190
and p = 0.002).

While global metrics (i.e. those used in previous BraTS
challenges) were not used for ranking of the 2024 challenge,
we have included Figure 12 to show the relationship between
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Figure 5: Image panels of the top scored individual test case
with a median participant DSC of 1.00, 1.00, and
1.00 and average participant DSC of 0.993, 0.881,
and 0.882 for enhancing tumor, tumor core, and
whole tumor; respectively. Tumor ground truth
sub-compartment labels annotated on axial (A),
sagittal (B), and coronal (C) views of a T1Gd MRI
head case. Panel D depicts the tumor abutting
the edge of the skull-stripped brain without a
label.

the complete tumor volume and each of the global metrics
in cases with only a single lesion for each of the regions
of interest. Note that there is a noticeable trend towards
improved global DSC, global 95HD, and global sensitivity
as complete volume increases.

4. Discussion

4.1 Challenge Summary
The BraTS 2023 Intracranial Meningioma Segmentation
Challenge provided unprecedented insight into the state-of-
the-art performance in pre-operative meningioma segmenta-
tion, leveraging the largest multi-institutional systematically
expert annotated multilabel meningioma MRI dataset to
date (Calabrese and LaBella, 2023; LaBella et al., 2024).
The challenge saw remarkable performances, particularly
from the NVAUTO team, in DSC and 95HD across ET,
TC, and WT region of interest segmentation tasks. It was
notable that DSC scores were, on average, higher for the
meningioma challenge compared to all other BraTS 2023
segmentation sub-challenges, which may be due to the rela-

Figure 6: Image panels that depict participants median
enhancing tumor and tumor core DSC of (A)
0.993, (B) 0.991, (C) 0.991, and (D) 0.991 (0.990
for TC). Note that the averages were 0.876, 0.878,
0.864, 0.875 respectively, which is due to a single
team having a DSC of approximately 0.002 for
each case, whereas every other team had an ET
DSC above 0.95 for each case.

tively lower complexity of meningiomas compared to other
tumor types and/or the relatively high quality and consis-
tency of the meningioma dataset. These lesion-wise DSC
and 95HD scores should be considered as benchmarks for
future pre-operative meningioma segmentation evaluation.
Note that lesion-wise metrics are essential for segmentation
tasks with potential for more than one distinct lesion as
global metrics may still remain relatively high even if a sin-
gle, smaller lesion is completely missed by the segmentation
algorithm.

4.2 The Best Algorithm and Caveats
The superior performance of NVAUTO, with lesion-wise
median DSC values of 0.976, 0.976, and 0.964 lesion-wise
average DSC values of 0.899, 0.904, and 0.871, for ET, TC,
and WT respectively, signifies a notable advancement in
automated meningioma segmentation algorithms. These
results not only demonstrate the feasibility of achieving
high accuracy in meningioma segmentation, but also sug-
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Figure 7: Image panels depicting a completely calcified
extra-axial non-enhancing meningioma that had
a median participant DSC of 1.00, 0.00, and 0.00
and average participant DSC of 0.888, 0.175,
and 0.174 for enhancing tumor, tumor core, and
whole tumor; respectively.

Figure 8: MRI study demonstrating the worst performing
meningioma case for NVAUTO with an ET DSC
of 0.00, TC DSC of 0.00, and WT DSC of 0.338.
The blue and red labels represent ground truth
enhancing tumor and non-enhancing tumor, re-
spectively, which combined make up the tumor
core region of interest.

gest that deep learning models can effectively adapt to
the diverse morphology and anatomical locations of menin-
giomas. NVAUTO’s base algorithm, known as AutoSeg3D,
an open-source and Pytorch-based framework, is particularly

Figure 9: Scatterplot graph depicting the overall participant
median DSC for each region of interest to the
WT volume for each of the test cases.

Figure 10: Image panels with the tumor sub-regions anno-
tated on sagittal views of T1Gd MRI head cases.
Panels A1 and A2 represent a meningioma tu-
mor with 4514 voxels abutting the skull-stripped
boundary. Panels B1 and B2 represent a menin-
gioma tumor with 3911 voxels abutting the skull-
stripped boundary.

adaptable to a variety of medical imaging automated seg-
mentation challenges (Myronenko et al., 2023). Auto3DSeg
allows for auto-scaling to available GPUs; 5-fold training
with SegResNet, DiNTS, and SwinUNETR models; and
performing inference and ensembling using each of the
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Figure 11: Scatterplot depicting the relationship between
WT size and the number of abutting voxels.

multiple trained models. For the challenges, NVAUTO
found the SegResNet model to be the most accurate and
was ultimately the optimal model architecture selected by
Auto3DSeg for each of the automated segmentation chal-
lenges (Myronenko et al., 2023). Additionally, Auto3DSeg,
allows for use of a variety of image modalities and is not
limited to just MRI. Auto3DSeg is advertised to run with
a GPU RAM ≥ 8GB. However, for the 2023 BraTS chal-
lenges, NVAUTO used 8 x 16GB NVIDIA V100 machines
(Myronenko et al., 2023). Future studies should assess
the ability to use Auto3DSeg on more widely available,
consumer grade GPUs and non-NVIDIA branded GPUs.

4.3 Overall Segmentation Performance

The challenge results revealed a broad range of perfor-
mances among the 9 participating teams, with DSC scores
for the ET ranging from 0.899 to 0.007. Such variability
underscores the challenge’s complexity and the diverse ap-
proaches to segmentation. When comparing NVAUTO’s
meningioma segmentation performance compared to their
performance on other challenges, it was found that they
performed the best on meningioma’s DSC for ET and TC
regions of interest but performed only second best for DSC
for WT as shown in Table 6. NVAUTO’s algorithm showed
that Sub-Saharan Africa gliomas had a higher DSC for WT
than all other tumor types. Since meningioma tend to
have a smaller overall whole tumor volume and a higher
ET or TC to WT ratio compared to glioblastoma, it can
be hypothesized that there is less available training infor-
mation to create as accurate SNFH compartment labels;
and thereafter, the WT region of interest (Ogasawara et al.,
2021; Gilard et al., 2021; Khandwala et al., 2021).

Table 6: Average DSC for ET, TC, and WT for the top
performing team, NVAUTO, using their algorithm,
Auto3DSeg, across each of the different BraTS
2023 segmentation challenges. Note that 3 dec-
imal precision is shown for meningioma to em-
phasize the small increase in DSC for non-ET
compared to ET.

ET TC WT
(Avg DSC) (Avg DSC) (Avg DSC)

Meningioma 0.899 0.904 0.870
Glioma 0.810 0.830 0.840
Sub-Saharan 0.790 0.840 0.910
Africa
Metastasis 0.600 0.650 0.620
Pediatric 0.550 0.780 0.840

4.4 Limitations of the BraTS Meningioma Benchmark
Our analysis revealed that all participating teams performed
relatively poorly on heavily calcified meningiomas with little
or no enhancing tumor. For example, teams had an average
TC DSC of only 0.156 for one particular non-enhancing
meningioma case. This relatively poor performance is pre-
sumably related to the relative rarity of this imaging ap-
pearance of meningioma, and the fact that only a small
number of such cases were included in the training dataset.
Future datasets should include more cases of exclusively
non-enhancing tumor to allow for more generalizable au-
tomated segmentation models. It is important to consider
that radiotherapy plans only consider a single GTV repre-
sented by the TC, and whether these indeterminate TC
regions are labeled as non-enhancing vs enhancing regions
would not impact the resulting treatment volumes (Rogers
et al., 2017, 2020).

Note that in Figure 9, the lines of best fit for ET, TC,
and WT trend towards improved DSC with increased WT
volume. In an automated segmentation challenge, this
could cause a higher perceived test set overall DSC score
if a larger proportion of larger tumors are included in the
test set compared to the overall population. Therefore, it is
important to ensure balance within the training, validation,
and test sets regarding tumor size, which was not explicitly
done for this iteration of the challenge.

Another notable limitation of our study is the absence of
explicit testing on out-of-distribution (OOD) cases. While
our model demonstrated strong performance on the pro-
vided BraTS 2023 meningioma dataset, all data were derived
from a limited number of institutions, and no evaluation
was performed on data from external sources or signifi-
cantly different MRI acquisition protocols. Consequently,
the generalization ability of the model to cases from different
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Figure 12: Plots of sliding window average global DSC, global 95HD, and sensitivity for each of the ET, TC, and WT
regions of interest for the subset of BraTS testing cases that only had 1 ground truth lesion. The number of
subjects with a single lesion is ET (N=255), TC (N=255), and WT (N=252), for each respective label.
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populations, MRI machines, or acquisition settings remains
untested. Future work should focus on assessing the model’s
performance on OOD data to ensure its robustness and
applicability in real-world clinical environments. Techniques
such as domain adaptation and cross-institutional valida-
tion will be crucial to improve the model’s generalization
capabilities and reliability across diverse clinical settings.

4.5 Future Directions

Future studies involving meningioma automated segmenta-
tion should focus on the most important clinical volumes,
particularly the tumor core which comprises the radiother-
apy gross tumor volume (GTV). Additionally, future studies
should focus on the segmentation of meningioma along
the intra-axial and extra-axial border with various face
anonymization pre-processing techniques, due to the high
frequency for meningioma to be excluded by skull-stripping
as demonstrated by our results (Watts et al., 2014; Schwarz
et al., 2019, 2021).

This study performed an analysis of the propensity of
meningioma to abut the skull-stripped image, thereby hav-
ing the potential to exclude portions of the meningioma
within the skull-stripped image. Due to skull-stripping
resulting in 1286 of 1483 meningioma having at least 1
compartment voxel abutting the boundary of the skull-
stripped image, future studies should evaluate a differ-
ent pre-processing anonymization technique that will allow
for inclusion of more volume of intracranial meningioma.
Schwarz et al. describes a promising mri reface technique
that performs face anonymization by modifying the MR
head image face and ear regions to represent an average
human face and ear, thereby preserving the vast majority of
the MR head image (Schwarz et al., 2019, 2021). Bischoff
et al. describes mri deface, a defacing tool that removes
facial features by assigns a probability of voxel being “face”
or “brain” and removes voxels that have non-zero proba-
bility of being “face” but zero probability of being “brain”
(Theyers et al., 2021; Bischoff-Grethe et al., 2007).

Furthermore, while current segmentation approaches
predominantly utilize MRI, atypical meningiomas—such as
those that are completely non-enhancing or heavily calci-
fied—remain challenging to automate segmentation due to
low signal intensity and limited contrast. In these cases,
integrating additional imaging modalities could prove highly
beneficial. PET imaging, especially with tracers like 68Ga-
DOTATATE, provides metabolic information that can help
differentiate viable tumor tissue from calcified or fibrotic
areas (Prasad et al., 2022). Likewise, CT offers superior
spatial resolution for delineating calcifications and osseous
involvement, which is critical when meningiomas extend
into or invade bone (Salah et al., 2019). Indeed, stud-
ies have demonstrated that PET and CT can outperform

MRI in identifying bony invasion and calcification in menin-
giomas (Galldiks et al., 2023; Salah et al., 2019). Thus,
the incorporation of multi-modal imaging may lead to more
robust segmentation algorithms capable of addressing the
full spectrum of meningioma presentations.

RTOG 0539, a phase II trial of observation for low-risk
meningiomas and of radiotherapy for intermediate- and high-
risk meningiomas, describes radiation treatment planning
and target volume protocols that should be used for menin-
giomas (Rogers et al., 2017, 2020). For radiation planning,
they only required use of pre-operative and post-operative
contrast-enhanced MRI. RTOG 0539 defines the GTV to
encompass the tumor bed on postoperative-enhanced MRI
and to include any residual nodular enhancement. They
also state that trailing linear dural tail and cerebral edema
should not be specifically included within the GTV, since
there is no evidence that recurrence is more likely within
the dural tail (Rogers et al., 2017, 2020).

Therefore, future studies that focus on automated seg-
mentation of meningioma for radiation therapy planning
should place emphasis on evaluation of the enhancing tumor
and post-op resection bed volumes on post-operative T1Gd
treatment planning MRI, while reducing emphasis on the
surrounding non-enhancing FLAIR hyperintensity compart-
ment and the small trailing linear dural tail enhancement.

However, in the post-treatment follow-up setting, RTOG
0539 still required the use of T1, T2, FLAIR, and T1Gd
series, which is similar to the imaging used in the BraTS
2023 Challenge: Intracranial Meningioma. For this chal-
lenge’s pre-operative meningioma dataset, the enhancing
and non-enhancing tumor labels compose the tumor-core.
The SNFH label representing edema, which was included in
the WT region of interest is not typically included within
radiation therapy meningioma target volumes.

5. Conclusion

The BraTS 2023 Intracranial Meningioma Segmentation
Challenge has marked a significant step forward in the
segmentation of meningioma tumors, highlighting both the
potential and limitations of current methodologies. As
the field moves forward, a focus on enhancing dataset
diversity, refining pre-processing techniques, and tailoring
segmentation tasks to specific clinical needs will be crucial
in translating these advancements into clinical practice.
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