
Machine Learning
for Biomedical Imaging

GeoLS: an Intensity-based, Geodesic Soft Labeling for Image Segmen-
tation
Sukesh Adiga Vasudeva 1,2,3 , Jose Dolz 1,4 , Hervé Lombaert 2,1,3
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Abstract
Soft-label assignments have emerged as prominent strategies in training dense prediction problems, such as image
segmentation. These approaches mitigate the limitations of hard labels, such as inter-class relationships in the data
and spatial relationships between a given pixel and its neighbors. Nevertheless, most existing methods rely only on
ground-truth masks and ignore the underlying image context associated with each label. For instance, image intensities
convey information that could potentially clear ambiguities in the annotation. This paper, therefore, proposes a Geodesic
Label Smoothing (GeoLS) approach that incorporates image intensity information within the soft labeling process.
Specifically, we leverage the geodesic distance transform to capture the intensity variations between pixels. The generated
maps geodesically modify the hard labels to obtain new intensity-based soft labels. The resulting geodesic soft labels
better model spatial and class-wise relationships as they capture the variations of image gradients across classes and
anatomy. The benefits of our intensity-based geodesic soft labels are assessed on three diverse sets of publicly accessible
segmentation datasets. Our experimental results show that the proposed method consistently improves the segmentation
accuracy compared to state-of-the-art soft-labeling techniques in terms of the Dice similarity and Hausdorff distance.
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1. Introduction

I mage segmentation is a highly structured and dense
prediction problem where pixels in an image are grouped
into a set of target regions, such as organs or tumors

(Pham et al., 2000; Suetens, 2017). It plays a pivotal role
in clinical decision systems, notably in computer-assisted
prognosis and diagnosis, treatment planning, and inter-
vention support (Duncan and Ayache, 2000; Zhou et al.,
2019). Recent advancements in segmentation methods are
primarily due to the ability of deep learning techniques to
solve such complex predictive tasks (Litjens et al., 2017;
Hesamian et al., 2019). Training these approaches involves
minimizing the deviation of the network predictions from
the given ground-truth annotations using various objective
functions (Rubinstein and Kroese, 2004; Sudre et al., 2017;
Lin et al., 2017).

A common strategy to measure this deviation is to em-

ploy the cross-entropy function with the ground-truth mask
represented as one-hot encoded vectors. This learning ob-
jective exhibits remarkable performance in problems needing
predictions of independent classes, such as in whole-image
classification (Baum and Wilczek, 1987; He et al., 2016;
Szegedy et al., 2017). Nevertheless, the use of standard
one-hot encoding in segmentation tasks can be sub-optimal
since class predictions at each pixel are inherently condi-
tioned with surrounding pixels. Such encoding indeed fails
to capture the spatial relationships across neighborhoods
as well as inter-class relationships within an image. These
relationships, however, are crucial for the segmentation of
medical images. For instance, labels can be similar for
pixels within a homogeneous region, but vary near object
boundaries due to various image ambiguities (Fig. 1). Such
ambiguity can be attributed to partial volume effect, mo-
tion artifacts, or image acquisition, among other reasons.
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Figure 1: Limitation of one-hot label assignments. (a) A
sample image and (b) its corresponding ground-truth mask,
(c) a closeup image around the boundary region (purple),
and (d) the one-hot (OH) encoding for two pixels (orange
and pink in closeup images). The OH encoding of a pixel
(orange) inside the kidney region (green label) may represent
the true class distribution (yc) since the label is spatially
consistent with neighboring pixels. Conversely, the OH label
assignment of a pixel (pink) near the boundary region may
not reflect the true class distribution as it does not capture
the underlying spatial ambiguities in the image. Different
colors denote the class labels c.

Moreover, the one-hot label assignments are solely based on
the provided ground-truth masks, where the underlying spa-
tial and inter-class relationships are disregarded. Therefore,
explicitly modeling spatial and inter-class relationships in
the label assignments is sought to improve the performance
of the segmentation model.

Recent attempts to incorporate the inter-class relation-
ships in the labels (Szegedy et al., 2016; Galdran et al., 2020)
generally modify the hard one-hot encoding into a softer
version. For instance, Label Smoothing (LS) (Szegedy et al.,
2016) uniformly redistributes a portion of the target-class
probability into all non-target classes to obtain a new soft la-
bel assignment for training a deep model. In (Galdran et al.,
2020), a non-uniform label smoothing approach is proposed
to capture the underlying structure within annotations. This
method uses a Gaussian smoothing on each target class
to redistribute probability over other classes. It is partic-
ularly suitable for datasets featuring ordered class labels,
such as tumor or disease grading. These label-smoothing
approaches, however, disregard the spatial relationships in
their soft-label assignments.

To capture the spatial relationships, a few approaches
alter the target segmentation mask to obtain softer labels
in the boundary regions (Kats et al., 2019; Gros et al.,
2021). For instance, Kats et al. (2019) generates the
soft labels in the dilated regions of the target masks by
adding granularity in the object boundaries. Furthermore, a
Spatially-Varying Label Smoothing (SVLS) approach models
the annotation ambiguity around object boundaries in target
masks (Islam and Glocker, 2021). Its soft labels capture the

local structural variations by applying a Gaussian-smoothing
operation on the target masks. However, the annotation
ambiguities of object boundaries stem from poorly defined
image intensities caused by imaging techniques or existing
pathologies, which inherently leads to labeling inaccuracies
(Joskowicz et al., 2019; Hayward et al., 2008). These
ambiguities are not captured in these soft-labeling methods,
as they solely rely on the given ground-truth masks.

One solution is to incorporate image-based metrics in
the soft-label assignments process. More specifically, a
geodesic distance transform captures intensity variations
and spatial distances within an image (Toivanen, 1996; Cri-
minisi et al., 2008). Our approach, therefore, leverages the
geodesic distance in order to capture inter-pixel and inter-
class relationships during the label smoothing process. The
generated soft labels thus become intensity-aware, capturing
gradient information across object boundaries. Incorporat-
ing our geodesic soft labels in model training is found to
improve the segmentation performance, as they model the
underlying intensity variations across objects and labels.

Our contributions: This work introduces a novel Geodesic
Label Smoothing (GeoLS) approach to enhance image seg-
mentation. Specifically, our originality lies in leveraging the
geodesic distance transform to embed intensity variations
in the soft-labeling process. Unlike existing soft-labeling
strategies, our proposed method utilizes geodesic maps to
smooth the hard labels, thus capturing the essential intensity
information that is crucial for medical image segmentation.
The resulting intensity-based soft labels capture class-wise
relationships by considering image gradient information be-
tween two or more object categories. Furthermore, the
geodesic distance between pixels captures the spatial rela-
tionships, integrating richer information than the Euclidean
distance. Our GeoLS method is extensively validated across
three distinct medical image segmentation benchmarks: the
brain tumor dataset (Bakas et al., 2017, 2018), the ab-
dominal organ dataset (Ma et al., 2022), and the prostatic
zone dataset (Litjens et al., 2014). The findings in our
experiments demonstrate the merit of GeoLS over existing
soft-labeling methods.

This manuscript provides a significant extension upon
our preliminary work (Adiga Vasudeva et al., 2023). Specif-
ically, we conduct exhaustive experiments on a variety of
datasets with thorough analyses to demonstrate the perfor-
mance of our geodesic approach. Notably, our method is
evaluated on a diversity of segmentation datasets, including
tumors in brain MRIs (BraTS), multi-organs in abdominal
CT scans (FLARE), and multiple zones in prostatic MRIs
(ProstateX). Moreover, our experiments include comprehen-
sive ablation studies to further highlight the effectiveness
of our geodesic soft labels for image segmentation. In
particular, we investigate the parameters influencing the
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generation of geodesic soft labels, such as studying the
impact of intensity variation and different seeding strategies
in obtaining our soft labels. Additionally, we conduct exper-
iments focusing on the combination of our proposed loss
with a Dice loss, a boundary loss, and a focal loss, which
aim to assess the synergies in combining these approaches.

2. Related Work

2.1 Soft labeling

Soft labeling has been actively investigated in the machine
learning community (Szegedy et al., 2016; Müller et al.,
2019; Zhang et al., 2021). The early methods often leverage
the nearest-neighbor points to obtain a soft label (Keller
et al., 1985; Seo et al., 2003). Such a labeling scheme cap-
tures multiple class characteristics in the dataset, which are
later used to train a classifier (El Gayar et al., 2006). More
recently, Szegedy et al. (2016) proposed a label smoothing
strategy for training deep neural networks. This smoothing
strategy uniformly redistributes the portion of the one-hot
label of a given class to all other classes. The model trained
with these soft labels has been shown to improve the per-
formance in classification tasks in both computer vision
(Szegedy et al., 2016; Müller et al., 2019) and medical
imaging domains (Galdran et al., 2020; He et al., 2020; Is-
lam et al., 2020). It is also shown to be effective in handling
noisy labels (Lukasik et al., 2020; Lukov et al., 2022).

In the context of image segmentation tasks, the la-
bel smoothing strategy (Szegedy et al., 2016) captures
inter-class relationships within an image. However, It is
also essential to consider the spatial relationships within
neighboring regions. Recent approaches (Kats et al., 2019;
Gros et al., 2021; Islam and Glocker, 2021) attempt to cap-
ture such relationships with spatially-varying smooth labels,
improving segmentation performance. For instance, Kats
et al. (2019) obtains soft labels by expanding the original
binary mask using a dilation operation and subsequently
assigns a soft value in the extended region. In (Gros et al.,
2021), non-binary pre-processing and data augmentation
techniques are employed on the target mask to obtain soft
labels around the boundaries. These strategies are designed
for binary segmentation tasks, where they disregard the
probability distribution in the label assignments. There-
fore, adopting them directly to multi-class segmentation
is not trivial. A SVLS approach generates the soft labels
by redistributing the class probabilities based on Gaussian
filtering (Islam and Glocker, 2021). Nevertheless, these
soft-labeling methods are entirely based on ground-truth
masks while ignoring the ambiguities arising from image
intensities. Alternately, soft labels can also be generated
using multi-rater annotations (Lourenço-Silva and Oliveira,
2021). Although having multiple annotations for soft labels

is ideal, it is even more expensive to obtain in practice since
it requires multiple independent annotators. Furthermore, a
few methods also utilize uncertainty maps for soft segmen-
tation (Tang et al., 2022; Wang et al., 2023). Nevertheless,
these methods require multiple segmentation predictions
to compute uncertainty maps, which are computationally
expensive. Compared to these approaches, our method
leverages the geodesic distance transform (Toivanen, 1996)
to capture the intensity variations in the label smoothing
process. The resulting intensity-based soft labels capture
spatial and class-wise relationships through the geodesic
maps. Moreover, the generated soft labels are computed
once and incorporated into the learning objective to train
a segmentation model. Also, our method generates new
soft labels from a single annotation and can be seamlessly
integrated into the segmentation network.

2.2 Geodesic Distance Transform (GDT)

The GDT is commonly used for smooth and contrast-
sensitive image segmentation (Criminisi et al., 2008; Pro-
tiere and Sapiro, 2007; Toivanen, 1996), as it captures
the local contrast and structural information within an
image. The seminal work, GeoS (Criminisi et al., 2008),
proposes a generalized geodesic distance (GGD) method for
segmentation tasks in an energy-based model. The effec-
tiveness of GeoS has led to various segmentation approaches
(Kontschieder et al., 2013; Wang et al., 2014; Qiu et al.,
2015). For instance, Wang et al. (2014) utilizes GGDs to
bring the spatial context between object boundaries in an
atlas-based label propagation method. Recent approaches
have leveraged GGDs in deep learning techniques to improve
image segmentation (Wang et al., 2018; Bui et al., 2019;
Hammoumi et al., 2021; Wei et al., 2022). For instance, Bui
et al. (2019) proposes a regression of the geodesic distance
maps to regularize the segmentation network through an
additional prediction branch. Similarly, Ying et al. (2023)
regularizes geodesic distance maps in a dual-branch network
to enhance edge details for weakly supervised segmentation.
To improve initial segmentation, the geodesic distance from
user interactions (Wang et al., 2018) or initial network
predictions (Wei et al., 2022) are employed to provide the
contextual information. The resulting geodesic maps are
subsequently used as additional inputs to the refinement
network. These existing approaches require an extra predic-
tion branch or refinement network to integrate the geodesic
maps. In contrast, our method leverages the geodesic dis-
tance to embed underlying image context information into
the label smoothing process. The generated soft labels
are computed once and consequently incorporated into the
learning objective to train the segmentation model. Our
geodesic soft-labels, therefore, can be directly plugged into
any segmentation network.
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Figure 2: Visualization of different soft labelings. Left side: Two samples, their corresponding ground-truth masks,
and closeup images having the same ground-truth masks around tumor regions. Right side: The probabilities of each
class (in red, blue, and green colors) for the same closeup images from One-Hot (OH) encoding, Label Smoothing (LS),
Spatially-Varying LS (SVLS), and ours (GeoLS). Since OH, LS, and SVLS are solely obtained from ground-truth masks,
they have the same class probabilities maps for both closeup regions (compare top vs bottom). In contrast, our proposed
method employs geodesic maps to smooth the hard labels, thus capturing intensity variations across object boundaries.
Best viewed in color.

3. Method

An outline of the proposed approach comparing hard la-
bels (OH) and existing soft labels (LS and SVLS) is shown
in Fig. 2. Consider two closeup regions with the same
masks but differing image intensities as in Fig. 2. The
existing methods rely only on ground-truth masks to gen-
erate the soft labels. Therefore, they have the same class
probability maps in both closeup regions. In contrast, our
approach adds image context by leveraging geodesic dis-
tance transform in the soft-labeling process. The resulting
intensity-based soft labels capture the underlying image
ambiguities through geodesic maps. Thus, our method
produces different class probability maps in the two close-
ups. The following subsections describe the label smoothing
formulation and proposed geodesic soft-labeling process.

3.1 Preliminaries

Let {(xi, yi)}N
i=1 indicate the training dataset with N sam-

ples, where xi ∈ RS×H×W represents a 3D input volume
of size S × H × W , and yi ∈ {0, 1}C×S×H×W denotes the

corresponding ground truth in OH representation with C
number of classes. The Cross-Entropy (CE) loss function
for a given voxel is defined as:

LCE = −
C∑

c=1
yc log(pc), (1)

where pc is the predicted softmax probability from the seg-
mentation network. For simplicity, we use i and c notations
wherever necessary and assume that the cardinality of the
training set normalizes the loss function.

The OH label encoding, yc, assigns a probability of
‘1’ for the target class and ‘0’ for the non-target classes.
Such assignments fail to provide the model with annotation
ambiguity since they do not capture the underlying inter-
class relationships within the image. One way to model
these relationships is by softening the hard OH encoding
during the training process. For instance, the LS method
(Szegedy et al., 2016) reduces the probability of the target
class by a factor α and evenly distributes it across all classes.
The resulting soft label for a given voxel is:

123



Adiga, Dolz and Lombaert, 2025

(d) GGD map (e) Geodesic map(a) Image (b) mask (c) Seed points
(skeletonization)

(f) Euclidean map

Figure 3: Geodesic map generation. (a) A sample image and (b) a corresponding segmentation mask of a spleen
organ. (c) Seed points (orange, overlaid on the image) are derived by skeletonization of the segmentation mask. (d) The
GGD map is generated from seed sets to each pixel in the image. (e) Our final geodesic map is obtained by inverting
the GGD map. (f) An Euclidean map is similarly obtained for the same seed points. Notice that the Euclidean map
spreads uniformly from seed points in all directions. Whereas our geodesic map spreads based on both spatial distance
and gradient information, capturing the underlying intensity similarities.

yLS
c = (1 − α)yc + α

C
(2)

These soft labels are subsequently used in training a
segmentation network by replacing the original OH label in
Eq 1. This strategy has been shown to improve performance
in classification tasks (Szegedy et al., 2016; He et al., 2020;
Islam et al., 2020). Nevertheless, LS ignores the intrinsic
spatial structure that is essential for the segmentation tasks.

3.2 Geodesic Label Smoothing (GeoLS)

Existing soft-labeling approaches modify the segmentation
masks to capture the spatial relationships (Kats et al., 2019;
Gros et al., 2021; Islam and Glocker, 2021), thereby ac-
counting for the annotation ambiguities around the object
boundaries. Nevertheless, they largely overlook the annota-
tion ambiguities coming from the image intensities, being
prone to annotation mistakes. To consider such image
ambiguities, we integrate the geodesic distance transform
(Toivanen, 1996) directly in the soft labeling of pixels. This
addition captures the intensity variations as well as the
spatial distance between pixels in an image. The follow-
ing subsections elaborate on our geodesic label-smoothing
method.

3.2.1 Generalized Geodesic Distance (GGD) Transform

The GGD transform (Criminisi et al., 2008) computes the
shortest geodesic distance between a set of reference points,
known as seed points, and each pixel in an image. This
transform produces a distance map derived from a spatial
distance and image gradient combination. The seed points
can be either a single point or a set of points selected from
the object of interest. Let Sc represent a set of seed points
upon the target class c. The generalized geodesic distance
of each voxel v to the set Sc of a target class is described
as:

Dc(v; Sc, xi) = min
v′∈Sc

d(v, v′, xi), (3)

with:

d(v, v′, xi) = min
p∈Pv,v′

∫ √
||p′(s)||2 + γ2(∇xi · u(s))2ds,

(4)
where Pv,v′ represents the set of all paths between voxels v
and v′, and p(s) denotes one such path parameterized by
s ∈ [0, 1]. We define a unit vector u(s) = p′(s)

||p′(s)|| , which
is tangent in the direction of the path, and whose spatial
derivative is p′(s) = ∂p(s)

∂s .
In Eq. 4, the first term, p′(s), accounts for the Eu-

clidean distance, while the second term captures the image
gradient information (∇xi). The parameter γ, termed the
geodesic factor, balances the contribution of the image gra-
dient, and the Euclidean distance between the seed set Sc

and each voxel in the image. When γ = 0, Eq. 4 simplifies
to the Euclidean Distance, whereas setting γ to 1 facili-
tates computation of the geodesic distance as described
in (Criminisi et al., 2008). In practice, the geodesic dis-
tance transform is optimally estimated using the raster scan
algorithm (Toivanen, 1996; Criminisi et al., 2008).

An example of generating a geodesic map is shown in
Fig. 3. The seed points are chosen by the skeletonization
operation on a target mask. The GGD map is subsequently
obtained using Eq. 4. To highlight the object of interest,
we invert the GGD map to get the final geodesic map for
each target class as follows:

gc = e−Dc (5)

The resulting maps are thus in the range [0, 1]. The
geodesic map of the background class is obtained by invert-
ing the average of foreground geodesic maps, also in the
range [0, 1]. In Fig. 3, we have also added an Euclidean
distance map for comparison with a geodesic map. The
Euclidean map spreads uniformly from seed points in all
directions. In contrast, our geodesic map propagates based
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Figure 4: Illustration of our proposed Geodesic Label Smoothing (GeoLS). The geodesic maps for all target labels
are combined to form a probability distribution. The generated geodesic label is subsequently used to modify the one-hot
encoding to obtain the proposed intensity-based soft label. Our soft label captures the underlying intensity variation,
thus it can better guide the segmentation network in ambiguous regions.

on both spatial distance and gradient information, capturing
the underlying intensity similarities.

3.2.2 Geodesic Soft Labels

The geodesic maps encode image gradient details as a func-
tion of distance from the target objects. Such maps account
for the intensity variations across object boundaries. Our
approach, therefore, avails the geodesic maps for smoothing
the hard labels. In order to accomplish this, we first nor-
malize the geodesic map of each class as g̃c = gc∑

c
gc

, such
that it follows a probability distribution. Subsequently, the
normalized geodesic maps are integrated with the original
one-hot encoding to produce the new intensity-based soft
labels, as defined below:

yGeoLS
c = (1 − α)yc + αg̃c (6)

These generated soft labels are thereafter substituted
in Eq. 1 to facilitate the training of the segmentation net-
work. The generation of our proposed geodesic soft labels
is demonstrated in Fig 4. As our approach incorporates in-
tensity variations into the target label assignments through
geodesic maps, it effectively guides the network toward
better segmentation.

4. Experiments and Results

4.1 Datasets

In order to validate our geodesic label-smoothing method,
we utilize three publicly accessible segmentation datasets.
These datasets include: a) the Brain Tumor Segmentation
dataset obtained from the 2019 BraTS challenge (Bakas

et al., 2017, 2018), b) the multi-organ abdominal segmen-
tation dataset from the 2021 FLARE challenge (Ma et al.,
2022), and c) the prostatic zone segmentation dataset from
the ProstateX challenge (Litjens et al., 2014). A detailed
description of these datasets and our experimental settings
are presented next.

a) BraTS: This dataset comprises 335 multimodal MRI
volumes of the brain, containing T1, T2, FLAIR, and T1ce
sequences. These volumes are preprocessed with skull-
striped, co-registered to a fixed template, and resampled
to an isotropic resolution of 1 mm3. The dataset contains
corresponding annotations of glioma tumors, including de-
lineations of the necrotic and non-enhancing core, edema,
and enhancing tumor regions. These regions are converted
into Whole Tumor (WT), Tumor Core (TC), and Enhanc-
ing Tumor (ET) for evaluation purposes. The dataset is
partitioned into 235 for training, 32 for validation, and 68
for testing across all our experiments.

b) FLARE: The dataset consists of 361 CT volumes of
abdominal regions with segmentation masks of four organs:
liver, kidney, spleen, and pancreas. These volumes have
variable resolutions, which are standardized by resampling
to a consistent resolution of 2×2×2.5 mm3. Subsequently,
they are intensity normalized by retaining values within the
percentile range of [0.5, 0.95], as followed in the literature
(Isensee et al., 2021). We employ a predefined dataset split
for all experiments, allocating 260 volumes for training, 26
for validation, and the remaining 75 for testing.

c) ProstateX: The dataset includes 98 prostatic T2 MRI
scans and corresponding segmentation labels of four anatom-
ical zones, including the peripheral zone (PZ), transition
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zone (TZ), distal prostatic urethra (DPU), and anterior
fibromuscular stroma (AFS). All volumes are resampled
into a fixed resolution of 3 × 0.5 × 0.5 mm3 as followed
in (Islam and Glocker, 2021). For all our experiments, the
dataset is split into 68 for training, 10 for validation, and
the remaining 20 for testing.

4.2 Training and implementation details.

To assess the contribution of our geodesic soft labeling,
we utilize a 3D U-net (Çiçek et al., 2016) architecture for
the segmentation network. This model is trained using
Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 10−4 and weight decay of 10−4. The input size of
128 × 192 × 192 in BraTS, 112 × 160 × 208 in FLARE, and
24 × 320 × 320 in ProstateX experiments are fed into the
network. The data augmentations such as random flipping
and rotation are utilized, as in (Islam and Glocker, 2021).
The network is trained for 200 epochs with a batch size
of 4. For inference, the model with the best dice score on
the validation set is selected for testing. Our evaluation
includes experiments with CE, Focal Loss (FL) (Lin et al.,
2017), LS (Szegedy et al., 2016), and SVLS (Islam and
Glocker, 2021) losses as training objectives. Following
the literature, commonly utilized hyperparameter values
are considered for each baseline approach, and the result
is reported for a value with the best dice score on the
validation set. In particular, the focusing parameter γ in
FL is set to {1, 2, 3}. In the case of LS, α ∈ {0.1, 0.2, 0.3}
are used, whereas σ ∈ {0.5, 1, 2} values are employed in
SVLS with a kernel size of 3. In our method, the geodesic
factor γ is explored for {0.5, 0.75, 1} values with a fixed
smoothing factor of α = 0.1. To obtain the geodesic maps,
an open-source library, GeodisTK 1, is employed with a
skeletonization of a segmentation mask as seed points. Note
that our soft labels are computed offline, requiring virtually
no additional computation during the training process. The
only additional cost is loading the geodesic maps, whose
computational burden is negligible. The geodesic maps are
not needed during the inference step, resulting in exactly
the same computation cost as existing approaches. All our
experiments were executed on an NVIDIA RTX A6000 GPU
with PyTorch 1.8.0. Our GeoLS implementation is available
at: https://github.com/adigasu/GeoLS.

4.3 Evaluation Metrics

The segmentation performance is evaluated with standard
and widely used evaluation measures, such as the Dice Sim-
ilarity Coefficient (DSC) and the 95% Hausdorff Distance
(HD). The former measure estimates the overlap between
ground truth labels and predictions, whereas the latter

1. https://github.com/taigw/GeodisTK

measures the distance between ground truth and predicted
segmentation boundaries. To ensure a fair comparison, we
conducted all experiments three times with fixed seed sets
on identical machines, presenting results with mean and
standard deviation values.

4.4 Comparison with the state-of-the-art

The performance of the proposed geodesic soft-labeling
approach is first compared with CE, FL, and state-of-the-
art soft-labeling methods (LS (Szegedy et al., 2016) and
SVLS (Islam and Glocker, 2021)), and their discriminative
results are reported in Tables 1-3 for all three datasets. The
table also includes the hyperparameter value corresponding
to the best-performing model for each method.

The performance of various methods on multi-class
brain tumor segmentation dataset is shown in Table 1.
The results show that employing soft labels improves the
segmentation performance compared to models trained
with a CE loss on hard labels in both scores. Among soft-
labeling baselines, FL and SVLS achieve the best DSC and
HD scores, respectively. Our approach outperforms these
best-performing baselines in both DSC and HD scores in all
tumor categories. Notably, we observe that the proposed
GeoLS indeed benefits in the enhancing tumor (ET) region.
Such a region is often irregular and poorly defined, which
leads to imprecise annotation (Menze et al., 2014). Our
method improves this challenging region by 1.06% in DSC
score and 0.45 mm in HD, highlighting the advantage
of combining the intensity information in our soft labels.
These results demonstrate the merit of using our geodesic
soft-labeling over hard-labeling and existing soft-labeling
approaches.

Table 2 presents the results of the multi-organ abdomi-
nal segmentation on the FLARE test set. A similar pattern
is observable in the LS, SVLS, and GeoLS results com-
pared to those obtained from the BraTS dataset (Table 1).
Nevertheless, there is an apparent performance gap in FL
compared to CE results, which may be attributed to the
over-emphasis on mislabeled pixels present in the data.
Overall, our GeoLS yields the best segmentation perfor-
mance corresponding to the baselines, notably enhancing
the segmentation in the challenging pancreas and spleen
regions.

The results of the multi-class prostatic zone segmenta-
tion on the ProstateX dataset are reported in Table 3. A
similar trend in FL, LS, and GeoLS results is observed as in
Table 1. However, SVLS produces a drop in performance
compared to CE results (HD), possibly due to the over-
suppression of original one-hot encoding in the boundaries.
Moreover, existing methods are ranked differently across
datasets and evaluation measures, indicating that these ap-
proaches are sensitive to datasets. In contrast, our GeoLS
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Table 1: Segmentation results on the BraTS test set. In all tumor structures (ET, TC, WT), our method yields the
best DSC and HD scores. For each tumor structure, bold and underlined indicate the best and second-best methods.

Methods ET TC WT Average
CE 72.05 ± 2.14 82.38 ± 0.91 90.09 ± 0.39 81.51 ± 1.03
FL (γ = 1) 73.55 ± 0.49 82.82 ± 0.20 90.37 ± 0.16 82.25 ± 0.20
LS (α = 0.1) 73.28 ± 0.85 82.65 ± 0.30 90.46 ± 0.08 82.13 ± 0.35
SVLS (σ = 1.0) 73.15 ± 2.82 82.67 ± 1.96 90.43 ± 0.78 82.08 ± 1.81

D
SC

(%
)

↑

Ours (γ = 0.75) 74.61 ± 0.79 83.51 ± 0.24 90.88 ± 0.12 83.00 ± 0.31

CE 14.55 ± 1.61 7.64 ± 1.15 6.28 ± 0.86 9.49 ± 1.20
FL (γ = 1) 12.81 ± 1.11 7.31 ± 0.32 5.96 ± 0.18 8.69 ± 0.31
LS (α = 0.1) 13.52 ± 0.35 7.23 ± 0.16 5.95 ± 0.16 8.90 ± 0.21
SVLS (σ = 1.0) 12.83 ± 2.70 6.93 ± 1.37 5.72 ± 1.10 8.50 ± 1.70

H
D

(m
m

)
↓

Ours (γ = 0.75) 12.36 ± 0.56 6.08 ± 0.61 5.22 ± 0.52 7.89 ± 0.32

Table 2: Segmentation results on the FLARE test set. Our method produces the best DSC and HD scores on
average results as well as on a challenging pancreas organ. For each abdominal organ, bold and underlined indicate the
best and second-best methods.

Methods Liver Kidney Spleen Pancreas Average
CE 94.88 ± 0.31 94.70 ± 0.33 95.46 ± 0.85 72.52 ± 0.61 89.39 ± 0.14
FL (γ = 1) 94.84 ± 1.08 94.38 ± 0.35 95.56 ± 0.72 69.66 ± 2.02 88.61 ± 0.90
LS (α = 0.1) 95.96 ± 1.11 94.89 ± 0.35 95.61 ± 0.63 73.07 ± 1.35 89.88 ± 0.38
SVLS (σ = 0.5) 95.76 ± 0.34 94.28 ± 0.34 95.01 ± 0.09 73.39 ± 0.16 89.61 ± 0.10

D
SC

(%
)

↑

Ours (γ = 1.0) 95.60 ± 0.87 94.80 ± 0.37 96.52 ± 0.30 73.72 ± 1.02 90.16 ± 0.44

CE 4.15 ± 1.10 2.94 ± 0.11 2.98 ± 1.06 6.72 ± 1.18 4.20 ± 0.19
FL (γ = 1) 3.28 ± 1.28 3.22 ± 0.32 2.80 ± 1.08 8.03 ± 0.46 4.33 ± 0.61
LS (α = 0.1) 2.87 ± 1.14 2.93 ± 0.37 2.60 ± 0.24 6.37 ± 1.03 3.69 ± 0.26
SVLS (σ = 0.5) 2.61 ± 1.06 3.17 ± 0.78 1.42 ± 0.18 6.26 ± 0.48 3.36 ± 0.20

H
D

(m
m

)
↓

Ours (γ = 1.0) 3.01 ± 1.05 2.40 ± 0.50 1.49 ± 0.55 5.59 ± 0.20 3.12 ± 0.21

Table 3: Segmentation results on the ProstateX test set. Our method is competitive in most cases and achieves
the best DSC score on average results. At the same time, baselines are ranked differently across prostatic zones (PZ,
TZ, DPU, and AFS). For each prostatic zone, bold and underlined indicate the best and second-best methods.

Methods PZ TZ DPU AFS Average
CE 71.56 ± 0.55 86.34 ± 0.28 48.39 ± 2.46 38.27 ± 4.46 61.14 ± 1.21
FL (γ = 1) 72.18 ± 1.11 86.38 ± 0.20 51.19 ± 2.73 35.50 ± 6.85 61.31 ± 1.96
LS (α = 0.2) 70.52 ± 0.31 86.34 ± 0.46 53.31 ± 2.89 35.16 ± 6.65 61.33 ± 1.29
SVLS (σ = 1.0) 72.08 ± 1.89 85.89 ± 0.64 51.10 ± 4.14 35.67 ± 3.08 61.19 ± 2.12

D
SC

(%
)

↑

Ours (γ = 1.0) 70.86 ± 1.11 86.51 ± 0.36 51.50 ± 0.50 39.50 ± 2.60 62.09 ± 0.75

CE 6.51 ± 0.34 3.22 ± 0.10 11.28 ± 0.44 9.58 ± 1.21 7.65 ± 0.24
FL (γ = 1) 5.76 ± 0.97 3.38 ± 0.39 7.89 ± 3.34 9.68 ± 0.59 6.68 ± 1.05
LS (α = 0.2) 6.64 ± 0.69 3.33 ± 0.15 7.28 ± 2.20 9.75 ± 1.14 6.75 ± 0.70
SVLS (σ = 1.0) 7.04 ± 0.84 3.73 ± 0.24 10.94 ± 5.75 10.2 ± 1.26 7.98 ± 1.59

H
D

(m
m

)
↓

Ours (γ = 1.0) 7.83 ± 2.72 3.22 ± 0.06 6.50 ± 0.52 9.78 ± 0.26 6.83 ± 0.78

outperforms the state-of-the-art approaches in most cases.
Based on these results, we can conclude that our method
remains consistent across diverse datasets, highlighting the
robustness of our intensity-based soft labels.

4.5 Qualitative Results

Figure 5 shows the visual comparison of different segmenta-
tion results on brain tumors from BraTS, abdominal organs

from FLARE, and prostatic zones from ProstateX datasets.
In brain tumor segmentations (top row), the results of ex-
isting approaches (OH, FL, SVLS) are predominantly over-
segmenting in non-enhancing core regions (blue), whereas
the LS and GeoLS reduce the segmentation errors. In the
middle row of Fig. 5, the existing methods struggle to seg-
ment the challenging pancreas organ (yellow) organ. In
contrast to these baselines, our GeoLS delivers a superior
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Figure 5: Qualitative results across BraTS (top), FLARE (middle), and ProstateX (bottom) datasets. For
BraTS and ProstateX, segmentation results are shown from the region highlighted in the image (purple). Average DSC
(%) and HD (mm) scores are mentioned at the top of each prediction. Our GeoLS minimizes classification errors in
ambiguous regions, such as the non-enhancing core (blue) in BraTS, the pancreas (yellow) in FLARE, and PZ (blue)
and AFS (yellow) zones in the ProstateX examples. Coloring denotes different tumor structures (top), abdominal
organs (middle), and prostatic zones (bottom).
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Figure 6: Predicted probability maps. The probability maps indicate a non-enhancing core (blue) in BraTS (top), a
pancreas (yellow) in FLARE (middle), and a PZ (blue) in ProstateX (bottom), corresponding to the examples shown in
the qualitative results. Our GeoLS yields reasonably low probabilities in poorly defined image intensities and misclassified
regions while maintaining high probabilities in non-ambiguous regions.

segmentation of the pancreas organ. The prostatic zone
segmentations are arguably challenging due to imprecise
boundaries between different zones. In the bottom row,
the results of prostatic zone segmentations are poor in all
approaches. Our method produces reasonable segmentation

results, notably in the AFS prostatic zone (yellow). In addi-
tion, the prediction probability maps of baselines and our
method for the same examples are shown in Fig. 6. Our Ge-
oLS produces reasonably low probabilities in poorly defined
image intensities and misclassified regions, ensuring segmen-
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(a) BraTS dataset (b) FLARE dataset (c) ProstateX dataset

Figure 7: Sensitivity of geodesic factor γ on segmentation performance - Each bar indicates the average DSC ↑
(top) and HD ↓ (bottom) scores for BraTS, FLARE, and ProstateX datasets. γ = 0 here uses only using Euclidean
Distance. Segmentation accuracy improves when the γ value is increased towards 1, indicating a higher emphasis on
Geodesic Distance in soft labels.

tation accuracy even in challenging areas. At the same time,
it consistently maintains high probabilities in well-defined
intensity regions. Furthermore, the quantitative results pre-
sented in Sec. 4.4 support these visual results. These results
indicate that supplying image gradient information through
geodesic maps in our intensity-based soft-labeling approach
enhances the segmentation performance.

4.6 Sensitivity to γ

The hyperparameter γ in Eq. 4 plays a crucial role in bal-
ancing between the Geodesic Distance and the Euclidean
Distance. Since the intensity variations and spatial distance
can influence the generalized geodesic distance transform,
we investigate the segmentation performance by varying
the γ parameter and report their results in Fig. 7, across all
datasets. Additionally, we include the segmentation result
obtained from a model trained with γ = 0, i.e., utilizing
only the Euclidean Distance for soft labels. The results
demonstrate that the segmentation performance is better
for higher γ values compared to the models solely relying on
Euclidean distance maps. This indicates that incorporating
geodesic information based on image gradients in our soft
labels positively impacts the performance of segmentation
tasks.

4.7 Choice of seed set S

Our soft label relies on the geodesic maps, which vary with
the different choices of seed set S. Therefore, to validate
the effectiveness of our seeding strategy on segmentation
performance, we conduct experiments with different seed-
set strategies. These strategies involve obtaining a random
selection of pixels within each target class. For this, our

experiments include 3, 5, and 7 randomly selected pixels
as seed points. Such seed points are inadequate for large
regions, such as the liver, or multiple instances of a class
label, such as the kidney. To address this issue, seed sets are
also obtained using the remainings of the skeletonization and
erosion operations applied to each target class. The results
of these experiments are reported in Table 4. It shows that
the segmentation performances are comparable for different
seed-set choices, which further demonstrates the strength
of our geodesic soft labels. Furthermore, the results suggest
that the skeleton-based seed strategy consistently yields
favorable results across all datasets, which indicates that
this seeding strategy could also be viable on new datasets.

4.8 Combination of loss functions

The main goal of this work is to provide an alternative to
state-of-the-art soft labeling losses by leveraging geodesic
distance transform. Nevertheless, the proposed approach
is orthogonal to other types of segmentation losses, includ-
ing widely used Dice loss (Sudre et al., 2017). Moreover,
combined CE and Dice losses are often employed to train
segmentation models for medical images (Ma et al., 2021;
Taghanaki et al., 2019). Thus, we investigate whether
the findings observed when comparing the CE loss hold
when we combine the proposed GeoLS with the Dice loss.
These results, depicted in Fig. 8, demonstrate that adding
the Dice loss improves the segmentation performance of
both CE and GeoLS across all datasets. Moreover, com-
bining GeoLS and Dice losses achieves the best results in
most cases, demonstrating the consistency of our geodesic
label-smoothing approach.

Furthermore, we performed experiments by combining
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Table 4: Performance under different seed sets S . Average DSC and HD scores on BraTS, FLARE, and ProstateX
datasets are reported. Segmentation accuracy is consistent across datasets for skeleton-based seed points. The bold and
underlined indicate the best and second-best results.

Datasets BraTS FLARE ProstateX
choice of S DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓

random-3 82.98 ± 0.68 8.10 ± 0.09 87.83 ± 1.02 4.79 ± 0.16 58.65 ± 3.73 7.41 ± 1.59
random-5 82.51 ± 0.80 9.00 ± 0.70 89.46 ± 1.00 4.20 ± 0.97 60.88 ± 0.85 7.07 ± 0.33
random-7 82.36 ± 0.48 8.89 ± 0.81 89.23 ± 0.21 4.41 ± 0.49 61.76 ± 2.62 6.84 ± 0.91
skeleton 83.00 ± 0.31 7.89 ± 0.32 90.16 ± 0.44 3.12 ± 0.21 62.09 ± 0.75 6.83 ± 0.78
erosion 81.93 ± 0.93 9.17 ± 0.68 89.56 ± 0.08 3.63 ± 0.27 61.72 ± 0.90 6.96 ± 0.55

(a) BraTS dataset (b) FLARE dataset (c) ProstateX dataset

Figure 8: Segmentation results with a combination of Dice loss - Each bar indicates the average DSC ↑ (top) and
HD ↓ (bottom) scores on all three datasets. The performance of segmentation improves by adding Dice loss on both CE
and our models. Combination of Dice loss with our yields consistently best in most cases.

(a) BraTS dataset (b) FLARE dataset (c) ProstateX dataset

Figure 9: Segmentation results with a combination of Boundary loss (BL) and Focal loss (FL) - Each bar
indicates the average DSC ↑ (top) and HD ↓ (bottom) scores on all three datasets. Combining our method with BL and
FL consistently provides better segmentation results compared to CE combined with BL and FL in most cases.

our GeoLS with a boundary loss (BL) first and then with a
focal loss (FL), and their results are reported in Fig. 9. The
results show a similar trend as with a combination of Dice
loss. Combining our method with the BL and FL yields

better segmentation results compared to the CE combined
with the BL and FL across all three datasets, in most cases.
These results demonstrate the robustness of the proposed
GeoLS when combined with other loss functions.
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5. Discussion and Conclusion

Despite the growing popularity of contemporary soft-labeling
approaches, the underlying image context information asso-
ciated with the label is largely overlooked in the soft labels
for image segmentation. This work demonstrates that incor-
porating such information into standard hard labels would
improve the performance of deep segmentation networks.
To that effect, our contribution, a Geodesic label smooth-
ing (GeoLS), incorporates intensity variation details into
the soft-labeling process through geodesic distance trans-
forms. More specifically, our proposed approach generates
new intensity-based soft labels that capture ambiguity be-
tween neighboring target regions. Employing our soft labels
in the training of segmentation models has consequently
demonstrated an improved segmentation performance. Our
results have in fact shown that our geodesic-based smooth-
ing consistently outperforms state-of-the-art approaches in
soft-labeling, across three different datasets: multi-class
tumor segmentation in brain MRIs, organ segmentation in
abdominal CTs, and zone segmentation in prostatic MR
volumes. Both quantitative and qualitative results indicate
notable improvements in the segmentation of known chal-
lenging regions, such as of enhancing tumors, as well as the
pancreas.

Furthermore, the ablation study conducted on the geo-
desic factor parameter indicates that our geodesic maps
integrate richer intensity information in the yielded soft
labels, effectively producing an improved segmentation per-
formance than utilizing only Euclidean distance maps. Our
experiments have also evaluated several key seeding strate-
gies for generating soft labels. These results show that
the skeleton-based strategy remains consistent across all
datasets. The design of the seeding process can be further
explored in order to better capture the intrinsic structures
of target objects. This work provides, therefore, a valuable
alternative to hard-labeling and existing soft-labeling losses.
Nonetheless, our geodesic label smoothing loss can also
be combined with other segmentation losses, such as the
conventional Dice loss. The use of such loss has in fact
shown further improvements in the segmentation accuracy
within our experiments. As future work, our approach could
also be potentially applicable to segmentation tasks under
noisy annotations (Lukasik et al., 2020; Karimi et al., 2023).
Overall, our proposed geodesic-based soft-labeling could be
virtually leveraged in broader ranges of applications where
annotation remains challenging due to ambiguities in image
intensities across regions.
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