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Abstract
Natural images depict real-world scenes such as landscapes, animals, and everyday items. Transformer-based detectors,
such as the Detection Transformer, have demonstrated strong object detection performance on natural image datasets.
These models are typically optimized through complex engineering strategies tailored to the characteristics of natural
scenes. However, medical imaging presents unique challenges, such as high resolutions, smaller and fewer regions of
interest, and subtle inter-class differences, which differ significantly from natural images. In this study, we evaluated
the effectiveness of common design choices in transformer-based detectors when applied to medical imaging. Using
two representative datasets, a mammography dataset and a chest CT dataset, we showed that common design choices
proposed for natural images, including complex encoder architectures, multi-scale feature fusion, query initialization, and
iterative bounding box refinement, fail to improve and can even be detrimental to the object detection performance. In
contrast, simpler and shallower architectures often achieve equal or superior results with less computational cost. These
findings highlight that standard design practices need to be reconsidered when adapting transformer models to medical
imaging, and suggest that simplicity may be more effective than added complexity in this domain. Our model code and
weights are publicly available at https://github.com/nyukat/Mammo-DETR.
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1. Introduction

Recent advances in computer vision have increasingly turned
to transformer architectures (Vaswani et al., 2017) for tasks
such as image classification and object detection (Doso-
vitskiy et al., 2020; Liu et al., 2021; Carion et al., 2020;
Touvron et al., 2021). With their inherent self-attention
mechanisms, transformers effectively capture global de-
pendencies and understand contextual relations across the
entire image. These strengths have made transformer-based
models a popular choice in natural image analysis. Their
application in medical imaging has shown promising results,
suggesting strong potential in this field as well (Chen et al.,
2021; Dai et al., 2021b; Valanarasu et al., 2021; Zheng
et al., 2022).

Object detection is crucial in medical image analysis,
as detection models identify the locations of abnormali-

ties, which are important for medical diagnosis. Among
transformer-based detectors, Detection Transformer (DETR)
(Carion et al., 2020) has gained popularity for its end-to-
end training pipeline and elimination of non-differentiable
post-processing steps such as Non-Maximum Suppression
(NMS) (Girshick et al., 2014). By leveraging the trans-
former architecture and directly optimizing the objective
function, DETR achieves state-of-the-art results on natural
image benchmarks such as MS COCO (Zhu et al., 2020;
Zhang et al., 2022; Zong et al., 2023). Its success has
drawn intense research interest, leading to a range of highly
engineered DETR variants aimed at boosting accuracy and
training efficiency (Zhu et al., 2020; Zhang et al., 2022;
Chen et al., 2022b; Wang et al., 2022; Chen et al., 2022a).

Despite the success of DETR architectures on natu-
ral image benchmarks, their direct application to medical
imaging remains challenging due to fundamental differences
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Figure 1: An overview of the study. In this work, we investigate key design choices in Deformable DETR using the
NYU Breast Cancer Screening Dataset (NYU Breast) and LUNA16 Dataset. Specifically, we evaluate six design factors
(highlighted in red): (1) input resolution, (2) number of encoder layers, (3) use of multi-layer feature fusion, (4) number
of object queries, (5) query initialization method, and (6) use of iterative bounding box refinement. The graph on the
right shows changes in Average Precision (AP) resulting from these design choices. +2 indicates a reduction in encoder
layers; +3 removes multi-layer fusion; +4 reduces object queries; +5 adds query initialization; and +6 enables iterative box
refinement. Our findings suggest that a simplified architecture (+2,3,4) is better suited for medical datasets, leading to
improved performance.

between the two domains (Figure 2):

• High resolution and small regions of interest: Medical
images are often extremely high-resolution, with clinically
relevant features, such as lesions or calcifications, occu-
pying only small portions of the image (Moawad et al.,
2023; Heath et al., 2001).

• Standardized acquisition protocols: Unlike natural
images which have diverse backgrounds, medical images
are acquired under standardized procedures, resulting in
consistent anatomical structures and minimal background
variability.

• Few objects per image: Medical images usually focus
on a narrow range of abnormalities, resulting in fewer
objects of interest and a narrower class space compared
to the rich and diverse class space of natural images.
Additionally, many medical images may not contain any
objects at all.

• Small and imbalanced data sets: Medical imaging data
sets are often small and exhibit a more unbalanced class
distribution, as positive cases (i.e., unhealthy subjects)
are usually much less common than negative cases (i.e.,
healthy subjects)(Galdran et al., 2021; Heath et al., 2001;
Wang et al., 2017).

DETR-family models, such as Deformable DETR (Zhu
et al., 2020), incorporate complex design choices such as
multi-scale feature fusion and iterative bounding box re-
finement to address challenges in natural image detection.
However, their effectiveness in medical imaging is unclear,

as the domain presents distinct characteristics: high reso-
lution, small lesion size, limited object diversity, and class
imbalance, which differ markedly from natural images. In
such settings, detecting subtle features precisely is often
more important than modeling diverse object scales or dense
scenes. As a result, these complex design choices may in-
troduce unnecessary computational overhead and memory
cost without yielding performance gains.

In this study, we examine how DETR can be adapted
to better suit medical imaging tasks. We hypothesize that
a simplified model, tailored to the specific characteristics
of medical data, can achieve comparable performance with
reduced computational cost. To evaluate this, we use
Deformable DETR (Zhu et al., 2020) as a baseline on
two medical imaging datasets: the NYU Breast Cancer
Screening Dataset (Wu et al., 2019) and the LUNA16
dataset (Setio et al., 2017), a public chest CT dataset
focused on lung nodule detection (Figure 2). Those two
datasets highlight the distinct features of medical images,
such as high resolution, small lesions, and class imbalance.

Our experiments demonstrate that simplified DETR
configurations—using fewer encoder layers, a single feature
map, and no decoding enhancements—achieve detection
performance on par with, or better than, standard De-
formable DETR, while substantially reducing computational
cost. These findings validate our hypothesis and highlight
the potential of lightweight DETR variants as efficient and
effective baselines for medical imaging. The key findings of
our work are:
• Models with a reduced number of encoder layers and no

multi-scale feature fusion learn faster without compro-
mising detection performance. These changes maintain
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performance within 1% in AP10,50 on both datasets,
while accelerating training by up to 40%.

• Increasing the number of object queries to around 100
queries improves localization and detection performance.
Beyond this point, performance declines, primarily due
to a rise in false positives that obscure true positive
detections.

• Decoding techniques such as object query initialization
and iterative bounding box refinement, while beneficial
for natural image detection, do not improve performance
on medical datasets. In some cases, they degrade per-
formance (e.g., a 0.7% drop in AP10,50 for NYU Breast
and 1.8% drop for LUNA16), likely due to overfitting
and limited positive examples.

2. Background on DETRs

DETR (Carion et al., 2020) offers several advantages over
traditional detection models such as Mask-RCNN (He et al.,
2017) and YOLO (Redmon et al., 2016). Its transformer-
based architecture enables more expressive feature represen-
tations, and its end-to-end training simplifies optimization
and improves performance. However, DETR suffers from
slow learning. To address this issue, various extensions have
been proposed to accelerate training and improve detection
performance (Zhu et al., 2020; Wang et al., 2022; Chen
et al., 2022b; Zhang et al., 2022). Deformable DETR (Zhu
et al., 2020) stands out for its competitive performance on
the MS COCO dataset (Lin et al., 2014). It introduces a
deformable attention module that reduces training time by
a factor of 10 and enables multi-scale feature fusion that
improves detection, especially for small objects. Given its
strong performance and widespread adoption in subsequent
research (Roh et al., 2021; Dai et al., 2021a; Zhang et al.,
2022; Yao et al., 2021), we adopt Deformable DETR as the
baseline for our experiments. This section outlines the key
components of DETR and Deformable DETR architectures.

DETR DETR (Carion et al., 2020) consists of a backbone,
an encoder-decoder transformer, and a prediction head, as
illustrated in Figure 3(a).

Given an input image x ∈ RC0×W0×H0 , where C0 is
the number of channels and W0 and H0 are the width and
height, the backbone network f produces a low-resolution
activation map xs = f(x) ∈ RC×W ×H , with C significantly
larger than C0. The specific sizes of W, H and C depend on
the choice of backbones. For instance, when using Swin-T
(Liu et al., 2021) as the backbone, the spatial dimensions
are downsampled to W = W0/32 and H = H032, and
the number of channels is increased to C = 768. This
map is further processed by a 1 × 1 convolution to collapse
the channel dimension C into a smaller size d, resulting

in image tokens xf = conv(xs) ∈ RW H×d. To preserve
spatial information in the original image, each token is paired
with a positional encoding, denoted by xp ∈ RW H×d. The
encoder is a standard attention-based transformer where
each layer consists of a multi-head self-attention module
(MHSA) followed by a feedforward network (FFN). For an
in-depth formalization of MHSA, refer to the Appendix
A.1. Typically, the DETR encoder consists of 6 layers. The
encoder preserves the dimension of the input, producing
xenc ∈ RW H×d.

The decoder receives two inputs, the encoded features
xenc and N object queries q ∈ RN×d. Object queries
play a central role in the DETR architecture. They are
learnable embeddings that work as placeholders for potential
objects in an image. Each of them attends to the specific
regions of the image and is individually decoded into a
bounding box prediction. Each object query is the sum of
two learnable embeddings: content embeddings qc ∈ RN×d,
initialized as zero vectors, and positional embeddings qp ∈
RN×d, indicating each query’s position. More methods
for initializing object queries are discussed in Section 3.
Decoder layers consists of a MHSA, enabling inter-query
learning, and multi-head (MH) cross-attention to integrate
encoder features, and an FFN. The formalization of MH
cross-attention is detailed in the Appendix A.2.

After the decoder, each object query is independently
decoded into bounding box coordinates and class scores
through a three-layer FFN and a linear layer respectively.

Deformable DETR Deformable DETR (Zhu et al., 2020)
improves upon DETR by introducing a deformable atten-
tion module, which accelerates training and enhances the
detection of small objects. The architecture of Deformable
DETR is illustrated in Figure 3(b).

Unlike the standard attention mechanism that calcu-
lates attention scores between all query-key pairs, resulting
in (WH)2 pairs for a feature map of size W × H, de-
formable attention selectively computes attention scores on
a subset of k << WH keys for each query. The subset is
selected through a learnable key sampling function, allow-
ing the model to focus on the most informative regions for
each query. For a detailed formalization of the deformable
attention module, refer to Appendix B.1.

For dense prediction tasks such as object detection,
incorporating higher-resolution feature maps can substan-
tially improve detection performance, especially for smaller
objects (He et al., 2017). However, the complexity of the
standard attention mechanism is quadratic with respect to
the number of tokens, making it infeasible for multiple scales
of feature maps. The deformable attention mechanism en-
ables effective multi-scale feature fusion. Specifically, the
encoder receives the output feature maps x1, x2, x3 from
the last three layers of the backbone, and a convolutional
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(a)
(b) (c)

Figure 2: Example images from the LUNA16, NYU Breast Cancer Screening, and MS COCO datasets. (a)
A chest CT slice from LUNA16 showing a lung nodule (red box). Among images that contain nodules, the average
number of objects per image is 1.21. This dataset has one class. (b) A mammogram from the NYU Breast Cancer
Screening dataset showing a cancerous lesion (red highlight). In images containing lesions, there are on average 1.10
objects per image. This dataset has two classes. (c) Two example images from the MS COCO dataset. These illustrate
the complexity of natural scenes, with multiple overlapping objects of varying sizes. On average, MS COCO images
contain 7.33 objects per image. MS COCO has 80 object classes.

layer generates the lowest resolution feature map x4. All
four feature maps undergo a 1 × 1 convolution and then are
reshaped into a sequence of feature vectors of dimension
d, denoted by xf ∈ RM×d. Each token is associated with
a positional embedding, as well as a layer embedding to
identify feature map level. Section 3 explores the benefits
of multi-feature fusion for medical imaging datasets.

Moreover, Deformable DETR introduces reference points
in the deformable attention module. In the encoder, each
query q is associated with a 2D reference point pq = [x, y],
denoting its location on the feature map. The key sam-
pling function generates k sampling offsets with respect
to the reference point, and thus determines the k keys for
the query. Similarly in the decoder, the reference point of
each object query q is defined by a linear projection of its
positional embedding qp. In this way, each object query
can be mapped to a position on the feature map. This
approach allows object queries to focus on specific regions,
significantly accelerating learning (Zhu et al., 2020).

DETR in Medical Imaging DETR-based architectures
have been widely applied to various medical imaging tasks,
often with architectural tweaks to improve overall perfor-
mance. For example, Mathai et al. (2022) leveraged a
bounding box fusion technique in DETR to reduce the false
positive rate in lymph nodes detection. MyopiaDETR (Li
et al., 2023) utilizes a Feature Pyramid Network to im-

prove the detection of small objects in lesion detection of
pathological myopia. COTR (Shen et al., 2021) embeds
convolutional layers into DETR encoders to accelerate learn-
ing in polyp detection. Although these works achieved good
performances, our experiments indicate that, contrary to the
common understanding, simplifying the DETR architecture
can improve accuracy and accelerate training. We identified
a work that also points in this direction, Cell-DETR (Prange-
meier et al., 2020), also reduces the number of parameters
tenfold, achieving faster inference speeds while maintaining
performance on par with state-of-the-art baselines. Finally,
Garrucho et al. (2023) applied out-of-the-box Deformable
DETR on mammography for mass detection. However,
their focus is the effect of a data augmentation method
on its detection performance. Despite these advances, a
systematic exploration of the effectiveness and relevance of
foundational DETR design choices remains underexplored.

3. Methods

3.1 Design Choices

In this section, we outline key design choices in Deformable
DETR that are relevant to the unique characteristics of
medical images: input resolution, the number of encoder
layers, multi-scale feature fusion, the number of object
queries, and two techniques enhancing the decoding process,
query initialization and iterative bounding box refinement
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(a) vanilla DETR

(b) Deformable DETR

Figure 3: Architecture of DETR and Deformable DETR.
Both architectures consist of a backbone, an encoder-
decoder transformer and a prediction head. Deformable
DETR differs from DETR in its utilization of multiple fea-
ture level fusions and its application of deformable attention
instead of standard attention mechanism. Abbreviations:
MHSA: multi-head self-attention module; MH cross atten-
tion: multi-head cross-attention; MH Deformable SA: multi-
head deformable self-attention module; MH Deformable CA:
multi-head deformable cross-attention module; FFN: feed-
forward network.

(IBBR). We investigated whether these components, which
improve performance on natural image datasets, offer similar
benefits when applied to medical imaging tasks.

Input resolutions Downsampling is commonly used in
detection models to reduce computational cost and satisfy
memory constraints. Natural images can be significantly
downsized to 224 × 224 or 256 × 256 pixels without losing
important features, such as edges, shapes, and textures that
are necessary for accurate predictions. In contrast, medical
images are often an order of magnitude larger. For example,
X-ray images can reach up to 2500 × 3056 pixels (John-
son et al., 2019), and CT scans are typically 512 × 512
pixels (Setio et al., 2017). These high-resolution medical
images contain fine-grained details, such as small lesions or
slight changes in tissue density, which are crucial for an ac-
curate diagnosis (Sabottke and Spieler, 2020; Thambawita
et al., 2021). However, processing high-resolution medical
images is often infeasible due to the high computational
requirements. To address this trade-off, we evaluate perfor-
mance across input resolutions ranging from 25% to 100%
of the original size, aiming to identify the optimal input
resolution that balances model accuracy with computational
efficiency and memory usage.

Encoder complexity Medical imaging datasets differ
from natural image datasets in several important ways. First,
they are typically smaller due to limited patient availability.
Second, images within a dataset tend to be homogeneous,
focusing on a single body part, such as the brain, breast,
or chest, with uniform grayscale textures (Figure 2). Third,
while natural images contain hundreds or thousands of ob-
ject classes, medical image datasets usually have far fewer
object classes. For example, NIH Chest X-ray contains 14
classes (Wang et al., 2017), DDSM has 2 (Heath et al.,
2001), and BraTS has 4 (Moawad et al., 2023). As a result,
there is much less variation in the data that the model
has to capture. Given the principle that model complexity
should align with task complexity (Geman et al., 1992),
we suspect that simpler, shallower architectures might be
more appropriate for medical image analysis, helping miti-
gate overfitting and improve training efficiency. In addition,
object sizes in medical images are typically more uniform
than in natural scenes. For example, the standard deviation
of normalized object sizes1 is 0.025 in the NYU Breast
Cancer Screening Dataset and 0.001 in LUNA16, compared
to 0.16 in MS COCO. This raises questions about the use
of multi-scale feature fusion in this domain, a technique pri-
marily intended to improve detection across diverse object
sizes. To investigate these hypotheses, we experimented
with modifications to the encoder of Deformable DETR, in-
cluding reducing the number of encoder layers and utilizing
fewer scales of feature maps from the backbone.

Number of object queries In DETR, each object query is
individually decoded into a bounding box prediction. Thus,
1. Normalized object size refers to the area of the bounding box

divided by the total image area.
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the total number of object queries determines how many
objects the model can detect per image (Carion et al.,
2020). Most DETR models are optimized for natural image
datasets such as MS COCO, where a single image can con-
tain up to 100 objects. Consequently, the number of object
queries is usually set to 300 in DETR models. In contrast,
medical images rarely contain more than 10 objects, and
most have only one or none. As a result, the default number
of object queries used in standard DETR implementations
may be excessive for medical applications, potentially lead-
ing to unnecessary computation or degraded performance.
We therefore examine how reducing the number of object
queries affects detection accuracy and efficiency on medical
image datasets.

Decoding techniques Many DETR variants apply object
queries initialization and iterative bounding box refinement
(IBBR) to improve query decoding and increase detection
accuracy (Zhu et al., 2020; Zhang et al., 2022; Yao et al.,
2021). These methods have proven effective in boosting
detection performance on natural image datasets, increasing
average precision by 2.4 on the MS COCO dataset (Zhu
et al., 2020). In this study, we evaluate their effectiveness in
the medical imaging domain. We tested three initialization
strategies for the positional and content embeddings of
object queries, as characterized by Zhang et al. (2022).

• Static queries Both positional and content embeddings
are randomly initialized as learnable embeddings. This
offers maximum flexibility, but requires the model to
learn where objects are likely located and what features
represent those objects from scratch, potentially slow-
ing convergence. Standard Deformable DETR uses this
approach.

• Pure query selection Both content and positional em-
beddings are initialized from selected encoder features.
Following Zhu et al. (2020), we apply the prediction head
to the encoder output to select the top-K features. Some
other works use a regional proposal network (Yao et al.,
2021; Chen et al., 2022b). This leverages encoder knowl-
edge to guide object queries and significantly accelerates
training.

• Mixed Query Selection: Positional embeddings are ini-
tialized from encoder features (as above), while content
embeddings remain randomly initialized. This hybrid
strategy informs about the likely positions of objects
through spatial priors while retaining flexibility in learn-
ing content representations from scratch. DETR with
Improved DeNoising Anchor Boxes (DINO) (Zhang et al.,
2022) found that this method yields the best performance.

IBBR, first introduced in Deformable DETR, iteratively
updates the reference points of object queries towards the

objects of interest in each image. These reference points
guide the deformable attention toward relevant regions to
search for objects. Initially, they are randomly distributed
across the image, ensuring broad coverage without any
prior knowledge about where objects might be located.
With IBBR, these reference points can move progressively
towards the objects through each decoder layer, providing
more accurate signals for attention. This technique has
been extensively applied in subsequent DETR variants (Zhu
et al., 2020; Chen et al., 2022b; Wang et al., 2022; Liu
et al., 2022) and has been shown to effectively speed up
training and improve detection performance. A detailed
formalization is provided in the Appendix C.

3.2 Data and task
NYU Breast Cancer Screening Dataset (NYU Breast)
(Wu et al., 2019) contains 229, 426 digital screening mam-
mography exams from 141, 472 patients screened at NYU
Langone Health. Each exam includes a minimum of four
images, each with a resolution of 2944 × 1920, covering
two standard screening views: craniocaudal (CC) and medi-
olateral oblique (MLO), for both the left and right breasts.
An example of a mammography exam is shown in Figure
4. The dataset is annotated with breast-level cancer labels
indicating biopsy-confirmed benign or malignant findings.
Moreover, the dataset also provides bounding box annota-
tions, and class labels (benign or malignant) of each visible
positive findings. The entire dataset contains 985 breasts
with malignant findings and 5, 556 breasts with benign find-
ings. The dataset is divided into training (82%), validation
(5%) and test sets (13%) ensuring a proportional distribu-
tion of benign and malignant cases across the subsets.

LUNA16 LUNA16 (Setio et al., 2017) is a public chest CT
dataset for lung nodule detection, containing 888 3D chest
CT scans with annotated nodule locations. We selected
this dataset because it exemplifies key characteristics of
medical imaging (Figure 5): (1) high resolution (typically
512 x 512 pixels per slice), necessary for capturing fine
details; (2) small objects of interest, as nodules are subtle
and occupy only a small portion of each scan; and (3) class
imbalance, as nodules are relatively rare. Each nodule is
annotated in 3D with a center point (x, y, z) and diameter.
To convert them into 2D bounding boxes, we identify the
slices intersecting each nodule along the z-coordinate and
project the center point to 2D (x, y) coordinates on each
slice. Using the diameter, we define a 2D bounding box
around this point, allowing slice-by-slice nodule detection.
Since DETR is designed for 2D object detection, we treat
each 2D slice as an independent input to the model, enabling
nodule detection in each slice separately. The dataset is
randomly split for training (666 scans, 75%), validation (88
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scans, 10%), and test (134 scans, 15%).

Figure 4: An example screening mammography exam.
From left to right: left craniocaudal view (L-CC), left
mediolateral oblique view (L-MLO), right craniocaudal view
(R-CC), right mediolateral oblique view (R-MLO). This
patient has a benign lesion in the left breast. It is marked
with a red bounding box from both views of the left breast.

(a) (b) (c)

Figure 5: 2D CT scans with nodule annotations of
LUNA16 Each image shows a single axial CT slice with
a red bounding box indicating the location of a lung nod-
ule. These examples illustrate the small size and subtle
appearance of nodules, highlighting the challenges of object
detection in medical imaging.

3.3 Evaluation Metrics
In this study, we focus on evaluating the ability of the models
to detect malignant lesions. We use Average Precision (AP)
(Everingham et al., 2010) and the Free-Response Receiver
Operating Characteristic curve area (FAUC) (Bandos et al.,
2009), which is a frequently used metric in medical image
analysis (Yu et al., 2022; Wang et al., 2018; Petrick et al.,
2013). Specifically, we focus on FAUC at the rate of 1 false
positive per image or smaller, referred to as FAUC1, in line
with the approach described by Bandos et al. (2009). To
formalize FAUC1, we introduce the following notation:

Let N denote the total number of images, indexed by
n = 1, 2, .., N . Each image n contains Ln lesions with
Ltotal =

∑N
1 Ln being the total lesions in the dataset. For

each image n, a detection model produces a set of candi-
date detections Dn = {d1

n, d2
n, ...}, each with a confidence

score s(dj
n). By varying a decision threshold τ , one can in-

clude only those detections whose scores exceed τ , denoted
Dn(τ) = {d ∈ Dn : s(d) ≤ τ}.

Following prior works (Jailin et al., 2023; Kolchev et al.,
2022; Konz et al., 2023), we define a positive bounding box
to have at least 10% Intersection over Union (IoU) with
a ground truth box. These thresholds are deemed more
appropriate for accurately detecting small-sized objects,
such as cancerous lesions. The FAUC1

10 metric integrates
the true positive rate (TPR) over false positives per image
(FPI) from 0 to 1:

FAUC1
10 =

∫ 1

0

1
Ltotal

n∑
n=1

Ln∑
m=1

1(∃d ∈ Dn(τ(u)) : d ↔ Lm
n )du,

where:

• τ(u) is the threshold achieving FPI = 1
N

∑N
N=1 |{d ∈

Dn(τ) : d ↮ Lm
n , ∀m ∈ Ln} = u

• d ↔ Lm
n indicates the lesion m is detected by the predic-

tion d in image n

Following the notation of integrated average precision
in PASCAL VOC 2012 (Salton, 1983; Everingham et al.,
2010), we denote AP at 0.1 IoU threshold as AP10. Addi-
tionally, we report the average AP across IoU thresholds
ranging from 0.1 to 0.5, in steps size of 0.05, denoted as
AP10,50.

To clearly explain how well our models detect objects,
we differentiate between “localization” and “classification.”

• Localization refers to the task of accurately drawing
a bounding box around each ground-truth object. To
be consistent with the definition of FAUC and AP, an
object is considered successfully localized if the model
produces a bounding box overlapping the ground truth
box by more than 10% IoU. To quantify localization
accuracy, we compute the percentage of ground-truth
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objects successfully detected by the model. Assume there
are m ground-truth objects Gi where i = 1, . . . , m and p
predicted boxes Pj where j = 1, . . . , p in an image. The
maximum IoU for a ground truth bound box Gi among
all predicted bounding boxes Pj is maxj(IoU(Pj , Gi)).
Localization accuracy L is then expressed as

L = 1
m

m∑
i=1

1maxj(IoU(Pj ,Gi))≥0.1, (1)

where the indicator function is defined as

1maxj(IoU(Pj ,Gi))≥0.1 =
{

1, if maxj (IoU (Pj , Gi)) ≥ 0.1
0, otherwise.

• Classification involves associating the object inside each
predicted box with the correct class. We consider models’
classification accuracy using the percentage of success-
fully localized objects among the predicted bounding
boxes with the top 10 highest predicted scores in each
image. Among all the predicted bounding boxes Pj in
an image, let S be the subset of indices of the top 10
predicted bounding boxes in an image. Localization per-
formance considering classification is expressed as

Ltop10 = 1
m

m∑
i=1

1maxj∈S(IoU(Pj ,Gi))≥0.1, (2)

where the indicator function is defined as

1maxj∈S(IoU(Pj ,Gi))≥0.1 ={
1, if maxj∈S (IoU (Pj , Gi)) ≥ 0.1
0, otherwise.

3.4 Experimental Setup

Our baseline model is Deformable DETR in its default set-
ting, using a Swin-T backbone (Liu et al., 2021). For the
NYU Breast Cancer Screening dataset, the backbone is pre-
trained on a breast cancer classification task using the same
dataset (see Appendix D for details). Models are trained
for 60 epochs on NYU Breast and 100 epochs on LUNA16.
We used a batch size of 2 for NYU Breast and 32 for
LUNA16. All models use the AdamW optimizer (Loshchilov
and Hutter, 2017) with a step learning rate scheduler, which
reduces the learning rate by a factor of 0.1 during the final
20 epochs. We tuned the hyperparameters using random
search as detailed in Appendix E. To account for training
variability, we train five models with different random seeds
for each experiment and report the mean and standard
deviation of their performance. All training is conducted
using a single NVIDIA A100 GPU.

4. Results

Our experiments across the five design choices, including
input resolutions, encoder layer complexity, multi-scale fea-
ture fusion, number of object queries, and two decoding
techniques, reveal that standard Deformable DETR config-
urations do not align well with the unique characteristics
of medical imaging datasets. This misalignment results
in unnecessary computational overhead and sub-optimal
performance.

Input Resolution Our experiments reveal a positive corre-
lation between input resolution and detection performance,
up to a certain point, for both the NYU Breast and LUNA16
datasets (Table 1). Specifically, increasing the resolution
from 25% to 50% of the original image size significantly
improves performance. On NYU Breast, this yields gains of
9.8% in FAUC1

10, 8.6% in AP10, and 6.4% in AP10,50. Sim-
ilarly, LUNA16 shows improvements of 5.9%, 11.8%, and
6.0% in the corresponding metrics. Raising the resolution
to 75% continues to improve performance, although with
diminishing returns in the NYU Breast. Interestingly, full-
resolution images result in a decline in performance across
all metrics on both datasets. This may be attributed to the
limitations of the deformable attention mechanism. In high-
resolution images, objects of interest may be distributed
across a wider spatial area. The deformable attention mech-
anism only focuses on a selective set of keys centered around
the reference points, which may miss necessary informa-
tion in high resolution images. This phenomenon aligns
with previous findings that question the assumption that
higher resolution always improves performance (Sabottke
and Spieler, 2020; Thambawita et al., 2021; Richter et al.,
2021).

It is also important to note the computational trade-off:
increasing the input resolution from 25% to 100% results in
a 10–15× increase in GFLOPs. To balance accuracy with
computational efficiency, we used half-resolution images
(50%) for subsequent NYU Breast experiments and 75%
resolution for LUNA16, as these settings offer the best
trade-off between performance and resource usage.

Encoder Complexity: Number of Encoder Layers We
investigated the effect of varying the number of encoder
layers in Deformable DETR and evaluated whether the full
encoder depth is necessary for medical imaging tasks. To
ensure generalizability, we conducted experiments using two
distinct backbones, ResNet50 and Swin-T.

On the NYU Breast dataset, for both backbones, re-
ducing encoder layers from six to one or three results in
comparable performance in all three detection metrics, while
reducing GFLOPs by up to 40% (Table 2). In particular,
encoder-free models (0 layers) with Swin-T maintain per-
formance within 1% of the full 6-layer model, while cutting
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Table 1: Standard Deformable DETR performance using different input image resolutions. The full resolution of
images from NYU Breast is 2944 × 1920 and LUNA16 is 512 × 512. The detection performance is measured by AP and
FAUC, as defined in Section 3.3. GFLOPs are reported using one billion floating point operations per second as the unit.

Dataset Image FAUC1
10±SD AP10±SD AP10,50±SD L ± SD Ltop10 ± SD GFLOPs

Resolution
NYU 1.0 0.676 ± 0.010 0.671 ± 0.005 0.477 ± 0.006 0.925 ± 0.004 0.843 ± 0.003 4367

0.75 0.688 ± 0.010 0.683 ± 0.007 0.490 ± 0.007 0.930 ± 0.004 0.862 ± 0.005 2448
0.5 0.689 ± 0.008 0.669 ± 0.012 0.464 ± 0.019 0.920 ± 0.005 0.856 ± 0.009 1102
0.25 0.591 ± 0.016 0.583 ± 0.007 0.400 ± 0.021 0.897 ± 0.003 0.799 ± 0.01 284

LUNA 1.0 0.521 ± 0.011 0.363 ± 0.018 0.221 ± 0.015 0.959 ± 0.006 0.651 ± 0.012 3425
0.75 0.537 ± 0.007 0.392 ± 0.013 0.295 ± 0.005 0.959 ± 0.002 0.663 ± 0.011 1966
0.5 0.488 ± 0.003 0.340 ± 0.014 0.221 ± 0.019 0.941 ± 0.011 0.628 ± 0.011 986
0.25 0.461 ± 0.030 0.304 ± 0.011 0.161 ± 0.022 0.951 ± 0.014 0.604 ± 0.018 340

computation nearly half. This is likely because Swin-T was
pretrained on the same mammography dataset, allowing
it to extract strong task-specific features and reducing its
reliance on the encoder. On LUNA16, we observed a sim-
ilar pattern, with one or three encoder layers yielding a
performance comparable to that of the full model, but the
encoder-free models fail completely. This is likely due to
not pre-training Swin-T backbone on lung CT, highlight-
ing that when the backbone is not adapted to the target
domain, some encoder capacity becomes necessary. Never-
theless, even with minimal encoder depth (one layer), the
model achieved strong results while significantly lowering
computational cost, from 1966 to 1225 GFLOPs.

These results suggest that the encoder can be shallower
in DETR, regardless of whether the backbone is pretrained.
When a powerful, domain-adapted backbone is available,
the encoder can be removed with minimal impact on perfor-
mance. This observation aligns with the recent development
of the encoder-free D2ETR (Lin et al., 2022), which out-
performs the standard DETR model on the MS COCO
dataset (Lin et al., 2014). Together, these insights chal-
lenge the conventional view that encoders are essential for
feature transformation and multi-level feature integration
within DETR models. Our results suggest that effective
DETR-based detection can be achieved without encoders,
particularly when paired with powerful backbones, offering
a promising path toward more efficient and streamlined
model designs.

Encoder Complexity: Multi-Scale Feature Fusion Stan-
dard Deformable DETR uses four feature maps of different
scales in the encoder: three from the last three layers of
the backbone and a fourth from a convolution applied to
the backbone’s final output, (Figure 3(b)). Previous work
show that multi-scale feature fusion improves detection
performance on the MS COCO dataset as well as on other
datasets (He et al., 2017; Zhou et al., 2021; Zeng et al.,
2022). However, our results in Table 3 indicate that com-

parable performance can be achieved using only a single
feature map of the backbone. This suggests that multi-
scale feature fusion may not be necessary for detecting
abnormalities in medical images.

The characteristics of medical datasets likely explain
this finding. The objects in natural image datasets, such
as MS COCO, show a high variability in scale and quantity
due to perspective, camera distance, and the inherent size
differences between object classes (Figure 2). Multi-scale
fusion benefits such settings by enabling the model to attend
to features at different resolutions, capturing objects of
varying sizes more effectively. However, in medical datasets
like NYU Breast and LUNA16, most images contain a
single object and the sizes of these objects are relatively
uniform (Figure 6). This contrasts to the MS COCO dataset,
showing a broader variation in both the sizes of objects
and the number of objects per image. For such medical
datasets, the benefits of multi-scale feature fusion are less
pronounced. Consequently, in a homogeneous dataset, the
additional complexity of multi-scale feature fusion may not
translate into better performance.

Notably, in LUNA16, we observed that using the last
feature level resulted in a performance drop. This is likely
due to the extremely small object size in LUNA16, where
all nodules occupy on average 0.6% of the image area
(Figure 6 (b)). The last-layer feature map has too low a
spatial resolution (i.e. downsized to 16 × 16) to preserve
the fine-grained detail necessary for detecting such small
objects. This highlights that while multi-scale fusion may
not be generally required in medical imaging, selecting an
appropriate single feature level, especially one with sufficient
spatial resolution, is still critical for detecting very small
targets.

Number of object queries Figure 7(a)-(c) illustrates the
impact of increasing the number of object queries from 5 to
800 on detection performance across both the NYU Breast
and LUNA16 datasets. Increasing the number of object
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Table 2: Varying the number of encoder layers in Deformable DETR. The standard Deformable DETR has 6
encoder layers. For both datasets, we do not observe any significant performance drop when using fewer encoder layers.

Dataset backbone #encoder FAUC1
10±SD AP10±SD AP10,50±SD L ± SD Ltop10 ± SD #params GFLOPs

layers
NYU ResNet50 0 0.643 ± 0.020 0.619 ± 0.010 0.421 ± 0.025 0.910 ± 0.013 0.819 ± 0.010 35.4 536

ResNet50 1 0.656 ± 0.011 0.624 ± 0.016 0.439 ± 0.005 0.909 ± 0.005 0.814 ± 0.011 36.2 624
ResNet50 3 0.655 ± 0.016 0.627 ± 0.013 0.439 ± 0.015 0.910 ± 0.009 0.818 ± 0.014 37.7 801
ResNet50 6 0.657 ± 0.009 0.626 ± 0.009 0.436 ± 0.011 0.910 ± 0.015 0.820 ± 0.02 40.0 1067

NYU Swin-T 0 0.681 ± 0.013 0.662 ± 0.013 0.458 ± 0.023 0.923 ± 0.006 0.843 ± 0.008 35.9 570
Swin-T 1 0.684 ± 0.009 0.672 ± 0.011 0.463 ± 0.014 0.918 ± 0.007 0.841 ± 0.006 36.7 659
Swin-T 3 0.688 ± 0.012 0.677 ± 0.011 0.470 ± 0.019 0.918 ± 0.005 0.855 ± 0.011 38.3 836
Swin-T 6 0.689 ± 0.008 0.669 ± 0.012 0.464 ± 0.019 0.920 ± 0.005 0.856 ± 0.009 40.5 1102

LUNA Swin-T 0 0.011 ± 0.011 0.001 ± 0.000 0.0 ± 0.0 0.433 ± 0.085 0.089 ± 0.022 35.9 1078
Swin-T 1 0.538 ± 0.013 0.390 ± 0.005 0.296 ± 0.014 0.966 ± 0.002 0.680 ± 0.016 36.7 1225
Swin-T 3 0.536 ± 0.010 0.399 ± 0.003 0.292 ± 0.008 0.966 ± 0.008 0.672 ± 0.008 38.3 1521
Swin-T 6 0.537 ± 0.007 0.392 ± 0.013 0.295 ± 0.005 0.959 ± 0.002 0.663 ± 0.011 40.5 1966

Table 3: The performance of Deformable DETRs using different combinations of feature levels. The standard
Deformable DETR uses all 4 levels of feature maps from the backbone. Using only the 3rd level feature map for breast
NYU and 2nd level feature map for LUNA16, achieves on-par with or even better performance than using multi-level
feature fusion.

Dataset Feature Levels FAUC1
10±SD AP10±SD AP10,50±SD L ± SD Ltop10 ± SD # params GFLOPs

NYU 1, 2, 3, 4 (standard) 0.688 ± 0.012 0.677 ± 0.011 0.470 ± 0.019 0.918 ± 0.005 0.855 ± 0.011 38.3 836
1 0.637 ± 0.012 0.627 ± 0.009 0.434 ± 0.009 0.924 ± 0.007 0.849 ± 0.016 35.5 734
2 0.680 ± 0.005 0.666 ± 0.009 0.467 ± 0.016 0.917 ± 0.005 0.851 ± 0.012 35.6 570
3 0.688 ± 0.004 0.675 ± 0.007 0.475 ± 0.006 0.915 ± 0.010 0.858 ± 0.009 35.7 528

LUNA 1, 2, 3, 4 (standard) 0.538 ± 0.013 0.390 ± 0.005 0.296 ± 0.014 0.966 ± 0.002 0.680 ± 0.016 36.7 1225
1 0.540 ± 0.007 0.378 ± 0.022 0.267 ± 0.020 0.961 ± 0.004 0.674 ± 0.022 34.2 1141
2 0.548 ± 0.017 0.403 ± 0.006 0.309 ± 0.008 0.965 ± 0.003 0.668 ± 0.007 34.3 1018
3 0.491 ± 0.015 0.290 ± 0.025 0.142 ± 0.019 0.959 ± 0.005 0.637 ± 0.010 34.4 987

queries from 5 to 100 consistently improves the detection
performance. However, further increasing the number of
queries beyond 100 results in diminishing returns and even
a slight decline in performance. This pattern is consistent
on both datasets, although more obvious on LUNA16.

To better understand this behavior, we examined the
performance on localization L (cf. Equation 1) and classifi-
cation Ltop10 (cf. Equation 2) separately in Figure 7(d). Lo-
calization performance (L) continues to improve with more
object queries, indicating an enhanced ability to correctly
localize objects. However, the classification performance
(Ltop10), which measures how many correctly localized
boxes rank among the top 10 predictions by classification
score, declines beyond 100 queries. This suggests that while
more queries increase the likelihood of finding true objects,
they also introduce additional false positives that dilute the
ranking of true positives.

We hypothesize that having more object queries in-
creases the chances of localizing false positives. More
object queries expand the model’s search space, making it
more sensitive to subtle features or noise that resemble the
characteristics of true objects. This can lead to more false
positives being assigned high classification scores, pushing

true positives lower in the ranked predictions. This issue
is especially relevant in medical imaging, where images
typically contain only one or very few objects of interest.
In such sparse-object settings, the increased false positive
rate from excessive queries can outweigh the benefits of
improved localization.

Decoding Techniques We evaluated two widely used de-
coding techniques in the DETR family, query initialization
and iterative bounding box refinement (IBBR), using a sim-
plified model with design choices achieved through previous
results. As shown in Table 4, neither technique significantly
improved detection performance across FAUC1

10, AP10, or
AP10,50 for both datasets.

To better understand this outcome, we separately an-
alyzed localization and classification performance using L
and Ltop10. We found that while these techniques im-
proved localization performance, they adversely affected
classification performance. Figure 8 shows training and
validation losses for localization (IoU and box regression)
and classification (binary cross-entropy). Models equipped
with query initialization or IBBR display stronger overfitting,
especially in classification loss, compared to the baseline
model without these techniques. We hypothesize that this
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(a)

(b)

Figure 6: Comparison of object count per image and
object size variability across MS COCO, NYU Breast,
and LUNA16 datasets. In contrast to the MS COCO
dataset, the medical imaging datasets, NYU Breast and
LUNA16, contain fewer objects per image and show signifi-
cantly less variation in object size. The standard deviation
of normalized object sizes is 0.161 for COCO, 0.025 for
NYU Breast, and 0.001 for LUNA16.

overfitting is due to the limited number of positive objects
in our datasets. As the model becomes more effective at
localizing regions of interest, it may focus too narrowly
on those few positive examples, leading to memorization
rather than learning generalizable features. This reduces
the model’s ability to accurately distinguish between subtle
classes, ultimately weakening the classification performance.

Cases Visualization on NYU Breast Finally, to better
understand how DETR models make predictions, we visual-
ized a few exams along with their classification scores on
NYU Breast dataset. Figures 9 and 10 show images in which
the model assigned cancerous objects high malignant scores
(scores ≥ 0.8) and low scores (scores ≤ 0.1), respectively.
We observed that the model correctly localizes abnormal
objects in all images. However, it tends to assign high
scores to high-density masses featuring non-circumscribed,
irregular, or indistinct borders, which are typically indica-
tive of malignancy to the human eye. In contrast, the
model usually assigns low scores to low-density masses with

(a) FAUC1
10 (b) AP10

(c) AP10,50 (d) L and Ltop10

Figure 7: (a–c) Detection performance of Deformable
DETR across varying numbers of object queries on the
NYU Breast and LUNA16 datasets. Performance improves
as the number of queries increases from 5 to 100 but hit
plateau when the number exceeds 100. (d) Localization
performance (L) continues to improve with more queries,
while classification performance (Ltop10) drops beyond 100
queries, suggesting an increase in false positives that dis-
place true positives in the top-ranked predictions.

circumscribed borders, which can easily be confused with
benign cases (Lee et al., 2018).

5. Conclusions

In this study, we investigated the impact of common de-
sign choices in Deformable DETR (Zhu et al., 2020) on
object detection performance in medical imaging, using two
representative datasets: the NYU Breast Cancer Screen-
ing Dataset and LUNA16. We found that all the design
choices we experimented with need to be reconsidered, and
simpler architectures typically lead to better performance
on medical dataset.

Additionally, our findings suggest that the model tends
to struggle more with correctly classifying detected objects
than with localizing them. Many design choices developed
for natural image detection, such as query initialization,
multi-scale feature fusion, and bounding box refinement, are
primarily aimed at improving localization. However, since
classification appears to be the more challenging component
in medical imaging, these localization-focused techniques
may offer limited benefit and, in some cases, even hinder
performance.

Future research should focus on developing architectures
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Table 4: Impact of query initialization methods and iterative bounding box refinement (IBBR) on Deformable
DETR performance. Detection performance is evaluated on models with the best configuration based on previous
experiments for each dataset. Neither query initialization strategies (static, pure, or mixed) nor IBBR consistently
improve performance across the three main detection metrics (FAUC1

10, AP10, AP10,50). While some configurations
improve localization (L), classification performance (Ltop10) generally declines.

Dataset Refinement Query Initial. FAUC1
10±SD AP10±SD AP10,50±SD L ± SD Ltop10 ± SD

NYU Static 0.688 ± 0.004 0.675 ± 0.011 0.475 ± 0.019 0.915 ± 0.010 0.858 ± 0.009
Pure 0.678 ± 0.007 0.668 ± 0.011 0.474 ± 0.018 0.928 ± 0.011 0.833 ± 0.015

Mixed 0.670 ± 0.012 0.633 ± 0.010 0.443 ± 0.014 0.936 ± 0.005 0.834 ± 0.012
✓ Static 0.680 ± 0.010 0.678 ± 0.012 0.470 ± 0.009 0.931 ± 0.003 0.848 ± 0.009
✓ Pure 0.670 ± 0.010 0.670 ± 0.019 0.468 ± 0.013 0.957 ± 0.008 0.838 ± 0.007

LUNA Static 0.548 ± 0.017 0.403 ± 0.006 0.309 ± 0.008 0.965 ± 0.003 0.668 ± 0.007
Pure 0.520 ± 0.007 0.396 ± 0.006 0.298 ± 0.008 0.965 ± 0.006 0.651 ± 0.008

Mixed 0.500 ± 0.018 0.383 ± 0.007 0.291 ± 0.013 0.967 ± 0.006 0.636 ± 0.022
✓ Static 0.516 ± 0.013 0.393 ± 0.017 0.303 ± 0.022 0.969 ± 0.014 0.639 ± 0.004
✓ Pure 0.521 ± 0.015 0.399 ± 0.003 0.300 ± 0.003 0.965 ± 0.007 0.635 ± 0.005

(a) NYU Breast

(b) LUNA16

Figure 8: Training and validation losses of Deformable DETR models with and without decoding techniques for
(a) NYU Breast dataset and (b) LUNA16 dataset. Each plot shows the average loss over five runs with different
random seeds. The left panels display classification loss (binary cross-entropy), and the right panels show localization loss
(GIoU + bounding box regression). Models without decoding techniques (blue lines) consistently show less overfitting,
especially in classification loss, compared to models using query initialization or iterative bounding box refinement.

specifically tailored to the characteristics of medical imag-
ing. This includes improving the model’s ability to extract
subtle visual cues that are often critical for classification,
such as texture variations, tissue density changes, irreg-
ular borders, and microcalcifications. Another important
direction is designing architectures that can efficiently pro-
cess full-resolution images, allowing the model to leverage

detailed information in relevant regions while minimizing
the influence of background areas. Moreover, addressing
overfitting in classification tasks, particularly in datasets
with limited positive samples, requires the integration of
effective regularization techniques to improve generalization
and robustness.
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(a) 0.814 (b) 0.823

(c) 0.825 (d) 0.822

Figure 9: Example mammograms with high classifica-
tion scores They tend to be higher density masses with
non-circumscribed, irregular or indistinct borders, strongly
suggestive of malignancy. The red bounding boxes are
ground truth annotations and the yellow bounding boxes
are the prediction of our model. The prediction results are
provided by Deformable DETR with pure query initialization
method and IBBF, as detailed in Table 4.

6. Limitations and future work

Our study has several limitations. First, while our results
demonstrate that simplified DETR configurations perform
well on medical imaging tasks, future studies should explore
additional architectural designs within the DETR family to
validate and extend these findings, for example, constrastive
denoising training in DINO (Zhang et al., 2022) and an-
chors in Anchor-DETR (Wang et al., 2022). Second, our
experiments were conducted primarily on the NYU Breast
Cancer Screening Dataset and LUNA16 for lung nodule
detection. While these datasets capture important aspects
of medical imaging, future studies should evaluate model

(a) 0.014 (b) 0.018

(c) 0.040 (d) 0.044

Figure 10: Example mammograms with lowest clas-
sification scores They are mostly asymmetric tissue or
low density masses with circumscribed borders, more likely
to be false-positives. The red bounding boxes are ground
truth annotations and the yellow bounding boxes are the
prediction of our model. The prediction results are provided
by Deformable DETR with pure query initialization method
and IBBF, as detailed in Table 4.

performance across a broader set of imaging modalities and
clinical tasks, such as brain MRI, ultrasound, or multi-phase
CT, to assess the generalizability of our conclusions.
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Appendix A. DETR architecture

A.1 Multi-head self-attention (MHSA)
A standard MHSA with M heads is defined as:

MHSA(Q, K, V ) (3)

=
M∑

m=1
Wmo

[
softmax

(
QWmq(KWmk)T√

d/M

)
V Wmv

]
. (4)

The K, Q and V represent the query, key, and value
matrices respectively, defined with respect to input feature
map xf ∈ RW H×d and its positional embedding xp ∈
RW H×d:

Q = xf + xp, K = xf + xp, V = xf . (5)

Wmq, Wmk, Wmv ∈ Rd×d/M linearly transforms K, Q, V in
the m-th head and Wmo ∈ Rd/M×d.

A.2 Multi-head (MH) cross-attention
The MH cross-attention module performs the same compu-
tation as the MHSA defined in 3, except that K, Q, V are
defined based on two different sets of tokens. The queries
Q are defined by the object queries q = qc + qp, where
qp and qc are the positional embedding and the content
embedding of the object queries. The keys K are defined
by the encoder features xenc + xp. Specifically,

Q = qc + qp, K = xenc + xp, V = qc. (6)

A.3 Set prediction loss
DETR uses a set prediction loss that enables end-to-end
training without non-maximum suppression (NMS). DETR
produces a fixed number of predictions per image N , and N
is set to be significantly larger than the maximum possible
number of objects in the image. Let {ŷi = (ĉi, b̂i)}N be all
pairs of class and box predictions. The set of N labels is
{yi = (ci, bi)}N where each ground truth label represents
an object in the image. If there are fewer objects than
N , the rest of the labels are empty classes (0, ∅). The set
prediction loss is computed in two steps. The first step
is to find a permutation σ on the set of labels {yi} that
minimizes the matching loss, defined as below:

σ̂ = arg min
σ∈ΣN

i∑
N

Lmatch(ŷi, yσ(i)).

The matching loss for a matching pair is a linear combi-
nation of classification loss, box regression loss and GIoU
loss (Rezatofighi et al., 2019). The classification loss is a
standard focal loss (Lin et al., 2017). The regression loss
and the GIoU loss are only applied to non-empty labels. It
is defined as the following:

Lmatch(ŷi, yσ(i)) = WclsLcls(ĉi, cσ(i))

+1b ̸=∅
(
Wl1Ll1(b̂i, bσ(i)) + WgiouLgiou(b̂i, bσ(i))

)
,

where Wcls, Wl1, Wgiou are scalar coefficients that are tuned
as hyperparameters to balance the scale of different losses.
The Hungarian algorithm (Kuhn, 1955) can efficiently find
the optimal match σ̂. The second step is to minimize the
loss function ∑i

N Lmatch(ŷi, yσ̂(i)) with the permutation σ̂
on the label set.

DETR also utilizes auxiliary loss in each decoder layer
to provide stronger supervision. At the end of each de-
coder layer, it predicts N boxes and class scores with MLP
prediction heads. All prediction heads share weights. The
above two steps, the matching step and the Hungarian loss
minimization, are applied to each decoder layer’s output.
In inference, only the output of the last layer is used as the
final prediction.

Appendix B. Deformable DETR architecture

B.1 Deformable multi-head self-attention
Formally, deformable MHSA for a single query q ∈ Rd in
the feature map is given by:

Deform MHSA(Qq, K, V ) (7)

=
M∑

m=1
Wmo [softmax (KqWmk) VqWmv] (8)

The Q, K and V represent the query, key, and value matri-
ces respectively, defined as the following,

Q = xf + xp, (9)
Qq = q, (10)
Kq = δ(K, q) ∈ Rk×d, (11)
Vq = δ(V, q) ∈ Rk×d. (12)

The key sampling function δ samples the k keys from the
full set of keys K = xf + xp by generating the sampling
offsets ∆p with respect to reference points pq: δ(K, q) =
K(pq + ∆p). The sampling offsets are obtained by linear
transformation of the query q.

Appendix C. Iterative Bounding Box Refinement
Technique

In the standard Deformable DETR, a 2D reference point
rq ∈ [0, 1]2 for each object query q is derived from its
learnable positional embedding pq via a linear layer

rq = linear(pq).

Throughout the decoder, the locations of these reference
points remain constant. They are updated based on the
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learnable positional embedding pq when a backward pass
is completed. Formally, let ri

q be the reference points of
an object query q in the i-th decoder layer. In standard
Deformable DETR,

r1
q = r2

q = . . . = r6
q .

In IBBR, the reference points ri
q in i-th decoder layer are

refined based on the previous reference points ri−1
q and the

offsets predicted by the auxiliary prediction head, which is a
Multi-layer Perceptron (MLP). MLP is defined by three fully
connected layers, which transform the output embeddings of
the transformer into the desired bounding box coordinates.

ri
q = S(linear−1(S−1(ri−1

q )) + MLP(xi
dec)),

where S and S−1 represent the sigmoid function and its
inverse, and xi

dec is the output of the i-th decoder layer.

Appendix D. Backbone Pre-training

We pretrained the Swin-T Transfromer backbone with a
cancer classification task on our dataset. This classification
task is a binary multi-label classification that predicts two
scores indicating if an input image contains benign lesions
and/or malignant lesions.

Appendix E. Hyperparameter Tuning

Our method for hyper-parameter tuning is random search.
We tuned the following hyperparameters and their ranges
on quarter-resolution images:

• learning rate η ∈ 10[3,5.5],

• scale of the backbone learning rate s ∈ [1, 0.01] (back-
bone learning rate = s × η ),

• weight decay λ ∈ 10[3,6],

• number of object queries N ∈ [10, 200],

• two hyperparameters α and γ in the focal loss α ∈ [0, 1],
γ ∈ [0, 3],

• the coefficients on classification loss and GIoU loss ∈
[0, 1].

We train 80 jobs in total and choose the best model based
on FAUC1

10.
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