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Abstract
We present a keypoint-based foundation model for general purpose brain MRI registration, based on the recently-
proposed KeyMorph framework. Our model, called BrainMorph, serves as a tool that supports multi-modal, pairwise,
and scalable groupwise registration. BrainMorph is trained on a massive dataset of over 100,000 3D volumes, skull-
stripped and non-skull-stripped, from nearly 16,000 unique healthy and diseased subjects. BrainMorph is robust to large
misalignments, interpretable via interrogating automatically-extracted keypoints, and enables rapid and controllable
generation of many plausible transformations with different alignment types and different degrees of nonlinearity at
test-time. We demonstrate the superiority of BrainMorph in solving 3D rigid, affine, and nonlinear registration on a
variety of multi-modal brain MRI scans of healthy and diseased subjects, in both the pairwise and groupwise setting.
In particular, we show registration accuracy and speeds that surpass many classical and learning-based methods,
especially in the context of large initial misalignments and large group settings. All code and models are available at
https://github.com/alanqrwang/brainmorph.
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1. Introduction

R egistration is a fundamental problem in biomedical
imaging tasks. Multiple images, often reflecting
a variety of contrasts, modalities, subjects, and

underlying pathologies, are commonly acquired in many
applications (Uludağ and Roebroeck, 2014). Registration
seeks to spatially align these images in order to facilitate
downstream analyses, like tracking longitudinal changes,
studying disease progression, or analyzing population-level
variability.

Registration can be broken down into different types.
It may be performed within the same modality (unimodal)
or across different modalities (multimodal). Pairwise regis-
tration performs registration on an image pair, while group-
wise registration performs registration on multiple images
at once (Guyader et al., 2018). To perform the registra-
tion, various families of spatial transformations can be used,

including rigid, affine, and nonlinear transformations.
Different lines of research have been explored to solve

the registration task. “Classical” (i.e. non-learning-based)
registration methods solve an iterative optimization of a
similarity metric over a space of transformations, with addi-
tional regularization terms that restrict the space of plau-
sible transformations (Oliveira and Tavares, 2014; Sotiras
et al., 2013). Much research is dedicated to developing
good transformations, similarity metrics, and optimization
strategies. While performant, these approaches are known
to suffer from long run times, often requiring upwards of
several minutes to register a pair of images. In addition,
these approaches are known to perform poorly when the ini-
tial misalignment between images is large (e.g. 90 degrees
of rotational misalignment).

Another line of work decomposes the registration prob-
lem into two steps. First, salient features (e.g. keypoints
or contours) are extracted from images, and correspon-
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Figure 1: The framework of BrainMorph. Fixed and moving 3D brain images are passed through the same keypoint
detection network, which predicts N keypoints useful for registration. The transformation parameters are then computed
as a function of the keypoints, which are in turn used to resample the moving image. Keypoint colors denote depth (see
Fig. 2).

dences are established between the features of the image
pair. Second, the transformation is derived which aligns
these features and correspondences. In this work, we refer
to methods that extract keypoints as salient features as
“keypoint-based” registration. Largely, keypoint-based regis-
tration is advantageous in that the registration is relatively
robust to initial misalignments, given good correspondences.
In addition, these methods enjoy superior interpretability,
because the user can interrogate the correspondences which
are driving the registration. However, finding keypoints
and establishing correspondences is a difficult task and is a
subject of much research (Lowe, 2004; Tang et al., 2023,
2019).

More recently, deep learning-based strategies have emerged
which leverage large datasets of images to train a neural net-
work to perform the registration task. These strategies use
convolutional neural network (CNN) or transformer-based
architectures (Ma et al., 2022; Chen et al., 2021; Khan
et al., 2021) that either output transformation parameters
(e.g. rigid, affine or spline) (Lee et al., 2019a; de Vos et al.,
2019) or a dense deformation field (Balakrishnan et al.,
2019; Hoffmann et al., 2022) which aligns an image pair.
These strategies are effective and are able to perform fast
inference via efficient feed-forward passes. However, they
often fail when the initial misalignment is large and are
usually less robust than their classical counterparts.

Recently, the KeyMorph framework proposed to com-
bine the benefits of keypoint-based registration with deep
learning using neural networks to automatically detect cor-
responding keypoints (Yu et al., 2022; Wang et al., 2023).
Corresponding keypoints can then be used to compute
the optimal transformation in closed-form, where the key-

points themselves are learned by a neural network. Thus,
KeyMorph may be seen as possessing all the benefits of
keypoint-based registration, including robustness to large
misalignments and better interpretability, while retaining
the fast inference times of deep learning-based methods. In
addition, different transformation can be used according to
user specifications, thereby enabling human controllability
of the registration process.

In this work, we extend the KeyMorph framework into
a general-purpose tool for brain MRI registration. Although
the literature on deep-learning-based registration methods
has been widely explored and many tools exist with support
for brain MRIs (Avants et al., 2008b; Konstantinos Ntatsis
et al., 2023; Hoffmann et al., 2022), most works focus on
cross-subject pairwise registration on healthy subjects with
skull-stripped images. Groupwise registration and support
for non-skull-stripped and diseased subjects is often ignored,
or is prohibitively slow or memory-intensive (Konstantinos
Ntatsis et al., 2023). Often, the tools that do exist require
time-consuming preprocessing steps like skullstripping and
pre-affine registration (Balakrishnan et al., 2019; Hoffmann
et al., 2022). In short, there is a lack of software tools for
brain MRIs which is capable of supporting registration across
a wide swath of use cases, including healthy and diseased
subjects, pairwise/longitudinal/groupwise registration, and
minimal assumptions on preprocessing (like skullstripping).

We refer to our proposed tool as BrainMorph. Brain-
Morph is a tool built on the KeyMorph framework that is
trained on a massive dataset of over 100,000 volumes con-
sisting of both skull-stripped and non-skull-stripped data of
diseased and normal subjects in a variety of MRI modalities.
Our tool supports rigid, affine, and nonlinear registration. In
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Figure 2: Moving, fixed, and aligned images in axial, sagittal, and coronal mid-slices. Keypoints extracted by BrainMorph
are overlaid. For Aligned, aligned keypoints are dots and fixed keypoints are crosses. Color of the keypoint corresponds
to depth. Note that keypoint weights are not visualized.

addition to pairwise registration, we introduce a novel and
memory-efficient approach to groupwise registration and
demonstrate the superiority and scalability of our approach
in population-level and longitudinal settings. All code and
models are available at:
https://github.com/alanqrwang/brainmorph.

This work builds on previous works on KeyMorph (Yu
et al., 2022; Wang et al., 2023) in the following ways:

1. We scale up training of the KeyMorph framework on a
massive dataset of over 100,000 volumes at 1mm isotropic
resolution, enabling our resulting model to be robust to
full-resolution skull-stripped and non-skull-stripped data,
a variety of MRI modalities, and diseased and normal
subjects.

2. We introduce a groupwise registration algorithm operat-
ing on the learned keypoints that is scalable and memory
efficient.

3. We provide code and all model variants such that our
models can be used as a tool for the research community.

2. Background

Classical Methods. Pairwise iterative, optimization-based
approaches have been extensively studied in medical image
registration (Hill et al., 2001; Oliveira and Tavares, 2014).
These methods employ a variety of similarity functions, types
of deformation, transformation constraints or regularization

strategies, and optimization techniques. Intensity-based sim-
ilarity criteria are most often used, such as mean-squared
error (MSE) or normalized cross correlation for registering
images of the same modality (Avants et al., 2009, 2008a;
Hermosillo et al., 2002). For registering image pairs from
different modalities, statistical measures like mutual infor-
mation or contrast-invariant features like MIND are popu-
lar (Heinrich et al., 2012; Hermosillo et al., 2002; Hoffmann
et al., 2021; Mattes et al., 2003; Viola and Wells III, 1997).

Keypoint-based Methods. Another registration paradigm
first detects features or keypoints in the images, and then es-
tablishes their correspondence. This approach often involves
handcrafted features (Tuytelaars and Mikolajczyk, 2008),
features extracted from curvature of contours (Rosenfeld
and Thurston, 1971), image intensity (Förstner and Gülch,
1987; Harris et al., 1988), color information (Montesinos
et al., 1998; Van de Weijer et al., 2005), or segmented
regions (Matas et al., 2004; Wachinger et al., 2018). Fea-
tures can be also obtained so that they are invariant to
viewpoints (Bay et al., 2006; Brown et al., 2005; Lowe,
2004; Toews et al., 2013a). These algorithms then opti-
mize similarity functions based on these features over the
space of transformations (Chui and Rangarajan, 2003; Hill
et al., 2001). This strategy is sensitive to the quality of the
keypoints and often suffer in the presence of substantial
contrast and/or color variation (Verdie et al., 2015).

Deep Learning-based Methods. In learning-based image
registration, supervision can be provided through ground-
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truth transformations, either synthesized or computed by
classical methods (Cao et al., 2018; Dosovitskiy et al., 2015;
Eppenhof and Pluim, 2018; Lee et al., 2019b; Uzunova
et al., 2017; Yang et al., 2017). Unsupervised strategies
use loss functions similar to those employed in classical
methods (Balakrishnan et al., 2019; Dalca et al., 2019;
de Vos et al., 2019; Fan et al., 2018; Krebs et al., 2019;
Qin et al., 2019; Wu et al., 2015; Hoopes et al., 2021).
Weakly supervised models employ (additional) landmarks
or labels to guide training (Balakrishnan et al., 2019; Fan
et al., 2019; Hu et al., 2018a,b).

Recent learning-based methods compute image features
or keypoints (Ma et al., 2021; Moyer et al., 2021) that can
be used for image recognition, retrieval, tracking, or regis-
tration. Learning useful features or keypoints can be done
with supervision (Verdie et al., 2015; Yi et al., 2016, 2018),
self-supervision (DeTone et al., 2018; Liu et al., 2021) or
without supervision (Barroso-Laguna et al., 2019; Lenc and
Vedaldi, 2016; Ono et al., 2018). Finding correspondences
between pairs of images usually involves identifying the
learned features which are most similar between the pair.
In contrast, our method uses a single network which ex-
tract/generates corresponding keypoints directly from both
the moving and fixed image. The keypoints between the
moving and fixed image are guaranteed to be in corre-
spondence, since one network extracts keypoints from both
images. We optimize these corresponding keypoints directly
for the registration task (and not using any intermediate
keypoint supervision).

Learning-based methods for multi-modal registration are
of great practical utility and often-studied in the literature.
Most works require, in addition to the moving and fixed
image, a corresponding image in a standard space which
can be compared and which drives the alignment, usually
in the form of segmentations. (Zhang et al., 2022) ad-
dress multi-modal retinal images and handle multi-modality
by transforming each image to a standard grayscale im-
age via vessel segmentation. A standard feature detection
and description procedure is used to find correspondences
from these standard images. Other works (Song et al.,
2022) rely on segmentations from ultrasound and mag-
netic resonance images to align them. Obtaining these
segmentations may be costly, add additional computational
complexity to the registration procedure, or be specific
to the anatomies/modalities in question. In contrast, our
method can be applied generally to any registration prob-
lem. In addition, we present a variant of our model which
only relies on the images themselves during training. In our
experiments, we find that this variant outperforms state-
of-the-art baselines while also performing comparably to a
variant of our model which leverages segmentations.

3. BrainMorph

Our tool, BrainMorph, is based on the previously pub-
lished KeyMorph framework and we refer the reader to
prior papers for more details (Yu et al., 2022; Wang et al.,
2023). Let (xm, xf ) be a moving (source) and fixed (target)
image1 pair, possibly of different contrasts or modalities.
Additionally, we denote by Tθ a parametric coordinate trans-
formation with parameters θ, such as those discussed in B.
The goal is to find the optimal transformation Tθ∗ such
that the registered image xr = xm ◦ Tθ∗ aligns with some
fixed image xf , where ◦ denotes the spatial transformation
of an image.

BrainMorph works by detecting N keypoints P ∈ RD×N

from any given image. In this work, D = 3. The keypoints
are detected by a neural network fψ. Since a single fψ de-
tects keypoints for any image and the detected keypoints are
used to optimize a registration objective (see Section 3.2),
the keypoints for any arbitrary image pair are in correspon-
dence. Given corresponding keypoint sets P and Q, the
optimal transformation can be derived using a keypoint
solver, which outputs the optimal transformation parame-
ters as a function of the keypoints: θ∗(P , Q, w). Here, we
optionally include as arguments a vector of weights w which
weight the correspondences, such that lower weights lead
to a lower contribution to the overall alignment. Further
details are given in Section 4.3.

Fig. 1 depicts a graphical overview of BrainMorph. Note
this formulation unlocks the benefits of keypoint-based
registration, including robustness to large misalignments
and interpretability (as compared to other learning-based
methods) via visualizing the keypoints. Moreover, this
formulation enables controllability in the sense that different
transformations can be used to align the keypoints. In
particular, during training, this allows for heterogeneity in
training, such that the model can be robust to a wide variety
of transformation types. At test-time, one can generate
a dense set of registrations; the controllable nature of
this framework enables the user to select the preferred
registration.

3.1 Keypoint Detection Network
BrainMorph can leverage any deep learning-based keypoint
detector (Ma et al., 2021; DeTone et al., 2018; Barroso-
Laguna et al., 2019). In this work, we use a UNet-style
architecture which takes in a single channel image and
outputs N feature maps. We are interested in preserving
translation equivariance; to this end, we leverage a center-
of-mass (CoM) layer (Ma et al., 2020; Sofka et al., 2017)
as the final layer, which computes the center-of-mass for

1. Although we consider 3D volumes in this work, BrainMorph is
agnostic to the number of dimensions. The terms “image” and
“volume” are used interchangeably.
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Model CPU Time, pre-processed GPU Time, pre-processed CPU Time, raw GPU Time, raw

ANTs, Rigid 101.38±2.33 - 143.38±2.33 -
ANTs, Affine 110.45±2.94 - 142.45±2.94 -
ANTs, Syn 216.03±3.14 - 248.03±3.14 -
BrainMorph, Rigid 109.84±1.80 1.05±0.29 108.27±1.82 1.05±0.25
BrainMorph, Affine 109.63±1.84 1.04±0.36 110.31±1.90 1.05±0.32
BrainMorph, TPS 180.14±1.99 1.24±0.30 180.40±1.91 1.25±0.31

Table 1: Average computation time in seconds for pairwise registration across different models. We separate between
times when performing registration with pre-processed data and raw data. For ANTs, pre-processing requires skull-
stripping with HD-BET, which adds an additional 32 seconds (Isensee et al., 2019). For SynthMorph, pre-processing
requires an initial robust affine registration into a reference space. BrainMorph timings are based on BrainMorph-L.
Note: all times are inference times. BrainMorph requires about 5 days of training time (compute details in Sec. 4.2),
while ANTs does not.

each of the N activation maps. This specialized layer
is (approximately) translationally-equivariant and enables
precise localization. Since the CoM layer expects positive
values at every grid location, we insert a ReLU activation
before the CoM layer.

3.2 Training
Training BrainMorph involves optimizing the learnable pa-
rameters within the CNN fψ for pairwise registration. Dur-
ing training, we randomly sample pairs of moving and fixed
images, and the general objective is:

arg max
ψ

E(xm,xf ) Lsim (xm ◦ Tθ∗ , xf )

where θ∗ = θ∗ (fψ(xf ), fψ(xm), w)
(1)

where Lsim(·, ·) measures image similarity between its two
inputs. Weights w for keypoints correspondences are found
as follows. First, we compute the energy (i.e. the aggre-
gated sum) of each of the N activation maps for both the
fixed and moving image. Then, we multiply the correspond-
ing energies, and compute the softmax of the N energies
to arrive at normalized weights (Moyer et al., 2021).

In this work, we choose transformations whose optimal
parameters can be solved in a closed-form and differentiable
manner so that fψ can be trained in an end-to-end fash-
ion. Thus, the neural network is incentivized to detect N
anatomically-consistent keypoints from a given image, such
that a good registration can be achieved. Note that we do
not rely on any ground truth keypoints as supervision.

The BrainMorph framework enables flexibility in train-
ing depending on the choice of the loss function and the
transformation used. Lsim can be any similarity function
and can vary during training depending on the image pairs.
In this work, we use MSE or Dice loss, depending on the
current image pair. The closed-form optimal solution θ∗

can depend on a hyperparameter λ, such as in TPS, which
can be set to a constant or sampled from a distribution
λ ∼ p(λ) during training. More details on the training de-
tails we used in this work are presented in Section 4.2. Once

the model is trained, it can be used for both pairwise and
groupwise registration during inference time, as described
below.

3.3 Pairwise Registration
Pairwise follows straightforwardly from the training setup.
Given a fixed image xf and moving image xm, BrainMorph
performs pairwise registration as follows:

xr = xm ◦ Tθ∗ where θ∗ = θ∗ (fψ(xf ), fψ(xm)) (2)

Note that at test time, we can use any transformation
Tθ (e.g, rigid, affine or TPS with any hyperparameter value),
which would yield a different alignment based on the same
keypoints.

3.4 Groupwise Registration
Groupwise registration methods try to mitigate uncertainties
associated with any one image by simultaneously registering
all images in a population. This incorporates all image
information in the registration process and eliminates bias
towards a chosen reference frame (Toews et al., 2013b;
Agier et al., 2020).

We propose a novel algorithm for groupwise registration
based on detected keypoints. In the groupwise setting,
we have M subjects to align; thus we are solving for the
optimal transformation as well as the optimal average space
simultaneously. To achieve this with N keypoints P ∈
RD×N per subject, we optimize for the average space and
the optimal transformations in an iterative, coordinate-
ascent strategy by alternating the following two steps:

1. Given points Pk at the current iteration k, compute the
average keypoints P̄k+1

2. Compute new points Pk+1 by registering all points Pk

to P̄k+1

After K iterations, the algorithm converges to the av-
erage space P̄K , and the final registration for the i’th
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image is found by transforming the image according to the
transformation that aligns points P0 to PK .

Note that this algorithm only relies on keypoints. Thus,
it is computationally efficient since keypoints can be pre-
computed and done serially, whereas other works must fit
all images in memory at once. In our experiments, we
demonstrate the scalability of our approach by registering
more than 100 volumes simultaneously.

4. Materials and Methods

4.1 Dataset
We train BrainMorph on a massive dataset of over 100,000
images from nearly 16,000 unique subjects. All datasets
are gathered from publicly-available brain studies, datasets,
and challenges. The full list of datasets is given in the
Appendix. Our tool requires the following two widely-used
pre-processing steps for all image inputs: resampling to
1mm isotropic, cropping/padding to 256x256x256. Min-
max rescaling to [0, 1] is performed as the first layer in the
network, and thus we do not consider it a pre-processing
step.

For training, we reorient all brains to MNI space2. For
purposes of obtaining training data of both non-skullstripped
and skullstripped data, we perform skull-stripping on all
images with HD-BET (Isensee et al., 2019), a robust deep
learning-based skull-stripping tool. For images without
extreme lesions, we further generate segmentations with
SynthSeg (Billot et al., 2020, 2023a), which produces parcel-
lations of 33 brain regions. We do not perform segmentation
on images with extreme lesions. See the Appendix for the
full list of brain regions. Datasets used for training and
testing are non-overlapping, to ensure no data leakage oc-
curs. Further details on evaluation datasets are provided in
Sec. 5.1 and the Appendix.

4.2 Training Details
We are interested in learning foundational keypoints for the
end goal of general-purpose brain registration. Thus, the
keypoints should be optimized such that they are robust
to a variety of brain MRI modalities and transformation
types (rigid, affine, and nonlinear). Note that, BrainMorph
is amenable to a variety of training strategies (pairwise
sampling, loss function, and transformation type). We
would like the network to be able to handle uni-modal,
multi-modal, and longitudinal image pairs, with transform
types including rigid, affine, and TPS. To do so, we perform
heterogeneous training with different tasks for a single
foundation model, where the task is randomly sampled in
each mini-batch.
2. During training, we apply random affine transformations as an

augmentation strategy.

Table 2: Summary of BrainMorph training.

Image pair Transform type Loss

Normal TPS Dice
Skullstripped, lesion Affine MSE
Skullstripped, longitudinal Rigid MSE

During training, we use two loss types: Dice of segmen-
tation labels and mean-squared-error (MSE) of pixel values.
We use three transformation types: rigid, affine, and TPS
(nonlinear). TPS has a hyperparameter λ which controls
the degree of nonlinearity.

In general, we are constrained by the following rules.

1. To use MSE loss, we must sample skull-stripped same-
modality pairs.

2. For Dice loss, we may sample pairs which have corre-
sponding segmentations (this precludes brains with le-
sions, for which SynthSeg (Billot et al., 2020, 2023a)
cannot reliably segment).

3. For longitudinal image pairs, we use rigid transformation
to simulate realistic downstream usage.

4. For image pairs with lesions, we use a restrictive affine
transformation, as TPS will not guarantee bijective cor-
respondence between images.

Table 2 summarizes the training strategy used, which we
choose according to the above constraints. At every train-
ing iteration, we sample uniformly across the three image
pair types. Thus, the model is trained to optimize the
registration performance across all three image tasks with
equal weighting.

We experimented with N = 128, 256, and 512 key-
points, and perform a thorough analysis of the relationship
between number of keypoints and registration performance
in Section 6.2.2. Weights w are applied for all models
during training and evaluation. For TPS transformations,
we sample λ during training from a log-uniform distribution
p(λ) = LogUnif(0, 10). During testing, we can choose a λ
value that lies in the support of this distribution. In addi-
tion, during training, in each mini-batch, we compute TPS
on 32 keypoints chosen uniformly at random (Donato and
Belongie, 2002). This is because TPS has a high memory
requirement due to computing pairwise distances between
every keypoint and grid location. Note that at test-time, we
compute TPS on the full set of keypoints, and compute pair-
wise distances in a chunk-wise, iterative fashion to bypass
this memory requirement. When minimizing Dice loss, we
sample 14 regions uniformly at random for computational
purposes.

For all models, we used a batch size of 1 image pair and
the Adam optimizer (Kingma and Ba, 2017) for training.
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Table 3: BrainMorph backbone variants. Model size mea-
sured in megabytes (MB). # downsampling denotes the
number of downsampling layers.

# parameters # downsampling model size

BrainMorph-S 4M 4 48MB
BrainMorph-M 16M 5 196MB
BrainMorph-L 66M 6 791MB

We train for a total of 160K gradient steps. The following
uniformly-sampled augmentations were applied to the mov-
ing image across all dimensions during training: rotations
[−180°, +180°], translations [−30, 30] voxels, scaling factor
[0.8, 1.2], and shear [−0.1, 0.1]. All training and GPU test-
ing was performed on a machine equipped with an AMD
EPYC 7513 32-Core processor and an Nvidia A100 GPU.
CPU testing was performed on a machine equipped with
an Intel Xeon Gold 6330 CPU @ 2.00GHz. All BrainMorph
models are implemented in PyTorch.

4.3 Model Details

Our architecture backbone consists of a truncated UNet,
which is identical to a standard UNet except all layers which
operate at the original resolution (e.g. after the last up-
sampling layer) are removed (Ulyanov et al., 2016). All
truncated UNets we use have two convolutional blocks
at each resolution. Thus, the final center-of-mass layer
extracts keypoints at half-resolution. This enables us to
train deeper networks with a bottleneck operating on a
very coarse grid, which we empirically find leads to bet-
ter performance. In particular, we report results on three
variants of the truncated UNet, which differ in the capac-
ity as a function of the number of downsampling layers.
We refer to them as BrainMorph-S, BrainMorph-M, and
BrainMorph-L, and summarize them in Table 3. All ref-
erences to BrainMorph are BrainMorph-L models, unless
otherwise noted.

4.4 Self-supervised Pretraining

We employ the following self-supervised pre-training strategy
to aid in keypoint detector initialization, essentially encour-
aging equivariance of the keypoint extractor with respect
to affine image deformations. Note that past works have
leveraged equivariant networks (Billot et al., 2023b); how-
ever, we find these networks unstable to train and lack the
capacity to capture variability present in our large datasets.
Using a single subject, we pick a random set of keypoints P0
by sampling uniformly over the image coordinate grid. Dur-
ing pre-training, we apply random affine transformations to
the input image as well as P0, and minimize the following

keypoint loss:

arg min
ψ

∑
i

EA

∥∥∥AP0 − fψ
(
x(i) ◦ A

)∥∥∥2

2
. (3)

Here, A is an affine transformation drawn from a uniform
distribution over the parameter space.

We train for a total of 480K gradient steps. We use
the same augmentation strategy as training, except that
we linearly increase the degree of augmentation such that
maximum augmentation is reached after 160K gradient
steps. We use the same dataset for training and pretraining.
Note that we assume that all the training data are in the
same orientation and roughly in the center of the image in
order for the sampled keypoints to apply well to all images
in the dataset.

5. Experimental Setup

5.1 Evaluation Datasets
We use the following datasets for evaluation of all models.
Note that these datasets are not included in training.
1. For healthy pairwise and cross-subject groupwise experi-

ments, we evaluate on the IXI brain MRI dataset3. Each
subject has T1, T2, and PD-weighted 3D MRI scans in
spatial alignment, so we can use this dataset for both
unimodal and multimodal registration experiments. We
evaluate on 100 subjects.

2. For diseased subjects with lesions, we evaluate on the
test split of the RSNA-ASNR-MICCAI BraTS dataset
(to ensure no dataset contamination), which consists of
adult brains with gliomas acquired with T1, T1gd, T2,
and FLAIR sequences4. We also evaluate on a dataset
of brains with multiple sclerosis (Muslim et al., 2022),
which consists of 60 MS patients with T1, T2, and FLAIR
sequences.

3. For longitudinal experiments, we evaluate on the OASIS2
dataset, which consists of longitudinal MRI brains in
nondemented and demented older adults5. The number
of timepoints per subject ranges between 2 and 10.

For all evaluation datasets, we perform resampling to 1mm
isotropic and cropping/padding to 2563 image size, which
is standard across all baselines.

We use a pre-trained and validated SynthSeg model (Bil-
lot et al., 2020) to automatically delineate 23 regions of
interest (ROIs)6. Furthermore, all performance evaluations
3. https://brain-development.org/ixi-dataset/
4. https://www.rsna.org/rsnai/ai-image-challenge/

brain-tumor-ai-challenge-2021
5. https://www.oasis-brains.org/
6. ROIs were pallidum, amygdala, caudate, cerebral cortex, hippocam-

pus, thalamus, putamen, white matter, cerebellar cortex, ventricle,
cerebral white matter, and brainstem.
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Figure 3: Dice performance on pairwise registration. Higher is better. Unimodal/multimodal, skull-stripped/non-skull-
stripped.
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Figure 4: HD performance on pairwise registration. Lower is better. Unimodal/multimodal, skull-stripped/non-skull-
stripped.

were based on examining the overlap of ROIs in the test
images.

5.2 Test-time Performance Evaluation

For pairwise experiments, we use each test subject as a
moving volume xm, paired with another random test sub-
ject treated as a fixed volume xf . We simulate different
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Figure 5: Pairwise registration results for BrainMorph and selected baselines. In first row, a 90 degree rotation is applied.
In second row, a 135 degree rotation is applied.
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Figure 6: Groupwise registration with group size of 4. For ITK-Elastix, B-spline registration is used. For BrainMorph,
TPS with λ = 0 is used. The last column shows the average brain in the optimized template space.

degrees of misalignment by transforming xm using rota-
tion. Rotation is applied to all 3 axes at the specified
degree. We use the predicted transformation to resample
the moved segmentation labels on the fixed image grid. Uni-
modal/multimodal registration is an independent variable
in our experiments. We experiment with rigid, affine, and
nonlinear registration types for all models and baselines.

For longitudinal experiments, we perform groupwise reg-
istration on all available timepoints, and restrict to rigid
transformations only. For cross-subject groupwise experi-
ments, we sample different subject, same-modality images
and experiment with varying group sizes in [4, 8, 16, 32, 64,
128]. We restrict to nonlinear transformations only. Simi-

lar to pairwise experiments, we simulate different degrees
of misalignment by transforming all images using rotation
applied to all 3 axes at the specified degree.

5.3 Metrics

For all experiments, we quantify alignment quality and
properties of the transformation using Dice overlap score
and Hausdorff distance (HD).

5.4 Baselines

As the goal of this work is to develop a general-purpose tool
for brain MRI registration, we wish to compare our proposed
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Figure 8: a) Registration performance on longitudinal registration. Rigid transformations for all models. b) Registration
performance on subjects with lesions. Affine transformations for all models, except for SynthMorph which only supports
dense.

model against state-of-the-art and easily-accessible tools
for this purpose. Our intended users are practitioners who
desire a simple, easy-to-use tool that performs registration
with minimal pre-processing or setup. Thus, we adhere to
all instructions required by baselines (including intensity
normalization, initial robust registration, etc.), and do not
assume that data are pre-processed. Note that since skull-
stripping vs. non-skullstripping is an independent variable
in our experiments, we do not perform any skullstripping
as part of any baseline’s preprocessing requirements.

• ITK-Elastix is a widely-used software package which sup-
ports pairwise and groupwise registration (Konstantinos
Ntatsis et al., 2023). Rigid, affine, and bspline align-
ments are supported. For all registrations, we perform
a multi-resolution pyramid strategy at 4 resolutions in
order to improve the capture range and robustness of the
registration. The method uses a 4D (3D+time) free-form
B-spline deformation model and a similarity metric that
minimizes variance of intensities under the constraint
that the average deformation over images is zero. This

constraint defines a true mean frame of reference that
lie in the center of the population without having to
calculate it explicitly.7

• Advanced Normalizing Tools (ANTs) is a widely-used
software package which is state-of-the-art for medical
image registration (Avants et al., 2009). We use the
“Rigid” and “Affine” implementation for the rigid and
affine model, respectively. The volumes are registered
successively at three different resolutions: 0.25x, 0.5x and
finally at full resolution. At 0.25x and 0.5x resolution,
Gaussian smoothing with σ of two and one voxels is
applied, respectively. For non-linear registration, we use
“SyN”, which performs Symmetric Normalization (Avants
et al., 2008b). Finally, we used mutual information as
the similarity metric for all models, which is suitable for
registering images with different contrasts.

• SynthMorph is a deep learning-based registration method
7. https://readthedocs.org/projects/simpleelastix/

downloads/pdf/latest/
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which achieves agnosticism to modality/contrast by lever-
aging a generative strategy for synthesizing diverse im-
ages, thereby supporting multi-modal registration (Hoff-
mann et al., 2022). SynthMorph accepts as input the
moving and fixed images and outputs a dense deforma-
tion field instead of global affine parameters, which is a
common strategy in many well-performing registration
models (Balakrishnan et al., 2019).
Note that an important pre-processing step required by
SynthMorph is an affine-registration step to a pre-defined
reference space (Reuter et al., 2010; Fischl, 2012). Thus,
this limits the flexibility of SynthMorph in the sense that
all registrations are performed in this reference space.
In contrast, BrainMorph enables the user to define any
arbitrary reference space via the fixed image. In addition,
this requirement increases pre-processing time. In our
experiments, we first affine register every image using
ANTs (see above). SynthMorph models are implemented
in Keras/Tensorflow.

• EasyReg is a deep learning-based registration tool that
supports both affine and nonlinear registration in a single
pipeline (Iglesias, 2023). EasyReg is designed to be
symmetric, diffeomorphic, agnostic to MRI modality and
resolution (in a manner similar to SynthMorph), and does
not require any preprocessing or parameter tuning.
The nonlinear registration part of EasyReg is perhaps
most similar to SynthMorph, where the fixed and mov-
ing image are accepted as input to a network and the
output is a dense deformation field. Unlike SynthMorph,
EasyReg does not require an affine-registration step and
instead performs it as an additional step in its registration
pipeline. In particular, EasyReg uses a pretrained seg-
mentation model to generate a parcellation of the brain,
and keypoints are derived by computing the centroids of
all 97 ROIs of the parcellation. These 97 keypoints are
extracted for both the moving and fixed image, and the
affine transformation is solved that aligns these keypoints
corresponding to Eqn. (8). Note that this affine step
crucially depends on the performance and robustness of
the segmentation model.

6. Results

6.1 Main Results
6.1.1 Pairwise Registration

We analyze the performance of baselines and our proposed
BrainMorph under conditions of large initial misalignments
in terms of rotation. Figs. 3 and 4 plot overall Dice and
HD across rotation angle of the moving image for baselines
and BrainMorph. Each panel depicts rigid, affine, and
nonlinear registrations, respectively. Each separate figure

varies different combinations of unimodal vs. multimodal,
skullstripped and non-skullstripped.

Generally, BrainMorph performs well across all rotation
angles, modalities, and (non-)skullstripped. BrainMorph-L
outperforms all baselines for rigid and affine transformations
across all rotation angles. However, for the case of nonlinear
unimodal and multimodal skullstripped registration at small
initial misalignment (e.g. 0 degrees of rotation, (bottom
left panels) ANTs, SynthMorph, and EasyReg outperform
BrainMorph. We attribute this to the fact that TPS in 3D is
likely not sufficient to align cortical geometry and therefore
the model does not seem to identify cortical keypoints. This
leads to relatively worse alignment in cortical regions, which
baselines (which do not have the TPS assumption) can
align better.

We find that all baseline models suffer substantially as
the rotation angle increases, across all transformation types.
For classical methods (ITK-Elastix and ANTs), the models
fail to find correspondences when they are far apart on
the spatial grid. For SynthMorph, the performance drop
is likely due to not affine aligning the image pair, which
is a requirement for SynthMorph but an added step in
the pipeline. EasyReg accounts for this by performing an
initial affine alignment, but the performance drop is due to
the failure of the pretrained segmentation model (used to
extract ROI centroids to be used as keypoints) to segment
brains which are significantly rotated, leading to a poor
initial affine alignment (see Appendix).

We compare the computational time across different
models in Table 1. Some representative examples for all
models are provided in Fig. 5 for qualitative evaluation.
Overall, BrainMorph outperforms other baselines at high
degrees of initial misalignment, and furthermore performs
comparably or often better (at large misalignments) than
the state-of-the-art ANTs registration, while requiring sub-
stantially less runtime.

6.1.2 Groupwise Registration

Fig. 7 depicts groupwise performance and timings for Brain-
Morph vs. ITK-Elastix. We use B-spline for ITK-Elastix and
TPS with λ = 0 for BrainMorph. We find that BrainMorph
has much better and more stable performance across all
group sizes we tested. Note that on our CPU, ITK-Elastix
failed on 128 subjects. BrainMorph has an advantage in
that keypoints can be precomputed in a serial fashion on
a GPU, thus enabling much better scaling to large group
sizes.

Fig. 6 depicts a representative example of groupwise
registration with 4 subjects. The first row depicts the initial
unaligned images, and the second and third row show the
results of ITK-Elastix and BrainMorph, respectively. The
last column depicts the average template brain for all 4
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subjects. We find that BrainMorph groupwise registration
to be substantially better, as evidenced by the sharp lines
in the template brain. On a GPU, BrainMorph is also faster
than ITK-Elastix by nearly 4 orders of magnitude.

6.1.3 Longitudinal Registration

Fig 8a shows boxplots for longitudinal registration perfor-
mance across rotation angles for skull-stripped and non-
skull-stripped, respectively. We find that across all rotation
angles and with and without skullstripping, BrainMorph
outperforms ITK-Elastix.

6.1.4 Registration with Lesions

Fig 8b shows a boxplot of performance of all models on
lesion data. We observe that the weighted variant of Brain-
Morph outperforms all baselines across most rotation angles
and is generally has more stable performance. In particular,
weighted BrainMorph tends to outperform the unweighted
variant of BrainMorph at 45 degrees of rotation and above.

Note that we use Dice performance as a proxy for
registration quality, even though the SynthSeg-generated
segmentations are not guaranteed to be robust to diseased
patients.

6.2 Keypoint Analysis
6.2.1 Visualizing keypoints

In contrast to existing models that compute the transfor-
mation parameters using a “black-box” neural network, one
can investigate the keypoints that BrainMorph learns to
drive the alignment. Fig. 2 shows the keypoints for a mov-
ing and fixed subject pair via mid-slices for sagittal, axial,
and coronal views. The first three columns depict keypoints
extracted from skull-stripped images, and the last three
columns depict keypoints extracted from non-skull-stripped
images. The color of the keypoints represents depth with
respect to the mid-slice. The “Aligned” slices show both
warped (dots) and fixed (crosses) points.

Note that keypoint locations are trained end-to-end
without explicit annotations. We observe that keypoint lo-
cations are generally in sub-cortical regions, where anatom-
ical variability is relatively low across subjects as compared
to cortical regions.

6.2.2 Number of Keypoints

As an ablation, we examine the effect of the number of
keypoints used for alignment across different transforma-
tions. We trained BrainMorph model variants with 128,
256, and 512 keypoints. Fig. 9a illustrates that performance
is not discernably correlated to increasing the number of
keypoints. We hypothesize that as keypoints are gener-
ally in subcortical regions which are anatomically stable,

increasing the number of correspondences does not provide
further advantage beyond a certain point. Fig. 9b breaks it
down across different transform types, from which we can
observe that performance is relatively stable across affine
and different TPS transformations. We further hypothesize
that due to the locations of keypoints, increasing the de-
gree of nonlinearity doesn’t significantly lead to improved
performance.

7. Discussion

The results demonstrate that BrainMorph is a robust and
flexible tool for brain MRI registration. On pairwise registra-
tion, BrainMorph is generally superior to baselines across all
degrees of initial misalignment, and is state-of-the-art for
affine and rigid transformations. These results hold consis-
tently for for unimodal and multimodal registration, as well
as skull-stripped and non-skull-stripped data. In addition,
BrainMorph does not require extensive pre-processing like
skullstripping and pre-affine registration. On longitudinal
and groupwise registration, BrainMorph is superior to base-
line registration algorithms, while being much more memory
efficient and nearly 4 orders of magnitude faster.

The main limitation of BrainMorph is nonlinear perfor-
mance at low initial misalignment and skull-stripped data,
for which ANTs and SynthMorph perform excellently. For
this reason, users who require good nonlinear registrations
may consider using BrainMorph as a robust initial alignment
tool, and further performing nonlinear registration using a
tool like ANTs.

8. Conclusion

We presented a robust and flexible registration tool based
on the KeyMorph framework, called BrainMorph, which
is a deep learning-based image registration method that
uses corresponding keypoints to derive the optimal trans-
formation that align the images. This formulation enables
interpretability, robustness to large initial misalignments,
and flexibility/controllability of registrations at test-time.
Training on a massive dataset of over 100,000 unique im-
ages from nearly 16,000 subjects enables our tool to work
on raw data with minimal pre-processing. Empirically, we
demonstrate fast and competitive performance across rigid,
affine, nonlinear, and groupwise registration, particularly at
large degrees of initial misalignment.
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Appendix A. Details on the Keypoint Detection
Network

The keypoint detector in BrainMorph is a UNet-style ar-
chitecture, but that is truncated at the last upsampling
layer. Thus, keypoints are extracted at half resolution; this
is done for balancing quality of extracted keypoints with
computational feasibility.

The UNet is composed of d number of levels (i.e. down-
sampling layers), with 2 convolutional blocks per level.
d = {4, 5, 6} corresponds to BrainMorph-{S, M, L}, re-
spectively. Each level has its corresponding block in the
upsampling part of the UNet, except for the final resolution.
Each convolutional block consists of a convolutional layer,
an instance normalization, and a ReLU nonlinearity. The
number of channels starts at 32 and doubles with every
level.

Appendix B. Differentiable, Closed-Form
Coordinate Transformations

Notation: In the following sections, column vectors are
lower-case bolded and matrices are upper-case bolded. D-
dimensional coordinates are represented as column vectors,
i.e. p ∈ RD. D is typically 2 or 3. p̃ denotes p in
homogeneous coordinates, i.e. p̃ = [p, 1]T . Superscripts in
parentheses p(i) index over separate instances of p (e.g. in
a dataset), whereas subscripts pi denotes the i’th element
of p.

We summarize three parametric transformation families
that can be derived in closed-form, from corresponding
keypoint pairs. Suppose we have a set of N corresponding
keypoint pairs {(p(i), q(i))}Ni=1, where p(i), q(i) ∈ RD and
N > D. For convenience, let P :=

[
p(1) ... p(N)

]
∈

RD×N , and similarly for P̃ and Q. Define Tθ : RD → RD
as a family of coordinate transformations, where θ ∈ Θ are
parameters of the transformation. For all transformation
families, we also consider weighted versions, where we have
weights for each correspondence {wi}Ni=1. For convenience,
let W = diag(w1, ..., wN ).

B.1 Rigid
Rigid transformations apply a rotation R ∈ RD×D and a
translation t ∈ RD×1 to a coordinate:

Tθ(p) = Rp + t, (4)

where the parameter set is the elements of the matrix and
vector, θ = {R, t}.

The optimal translation is estimated by subtracting the
weighted centroids of the moving and fixed point clouds:

t∗ = p̄ − q̄, (5)

where p̄ =
∑
i p

(i) for non-weighted and p̄ =
∑
i wip

(i) for
weighted, and similarly for q̄.

The optimal rotation is well-studied and is known as
the orthogonal Procrustes problem (Viklands, 2006). First,
denote by P̄ the centered version of P where each column
is subtracted by the centroid p̄, and similarly for Q̄. Next,
compute the SVD of the weighted cross-correlation matrix
SVD(Σ) = SVD(P̄ T Q̄) = UΛV T . For weighted, Σ =
P̄ TW Q̄. Then, R∗ = V UT .

B.2 Affine
Affine transformations are represented as a matrix multipli-
cation of A ∈ RD×(D+1) with a coordinate in homogeneous
form:

Tθ(p) = Ap̃, (6)
where the parameter set is the elements of the matrix, θ = {A}.

Given N corresponding keypoint pairs, there exists a
differentiable, closed-form expression for an affine transfor-
mation that aligns the keypoints:

θ∗(P , Q) := arg min
θ

N∑
i=1

(
Ap̃(i) − q(i)

)2
(7)

= QP̃ T (P̃ P̃ T )−1. (8)

To derive this solution, rewrite the objective in matrix
form:

L =
N∑
i=1

(
Ap̃(i) − q(i)

)2

=
∥∥∥AP̃ − Q

∥∥∥
F

,

where ∥·∥F denotes the Frobenius norm. Taking the deriva-
tive with respect to A and setting the result to zero, we
obtain:

∂L
∂A

= (AP̃ − Q)P̃ T = 0

=⇒ AP̃ P̃ T = QP̃ T

=⇒ A = QP̃ T (P̃ P̃ T )−1.

The extension to incorporate weightings for the corre-
spondences is straightforward:

θ∗(P , Q, W ) := arg min
θ

N∑
i=1

wi

(
Ap̃(i) − q(i)

)2
(9)

= QW P̃ T (P̃ W P̃ T )−1. (10)

Note that solving for the affine transformation is the
least-squares solution to an overdetermined system, and
thus in practice the points will not be exactly matched due
to the restrictive nature of the affine transformation. This
restrictiveness may be alleviated or removed by choosing a
transformation family with additional degrees of freedom,
as we detail next.
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B.3 Thin-Plate Spline
The application of the thin-plate spline (TPS) interpolant
to modeling coordinate transformations yields a parametric,
non-rigid deformation model which admits a closed-form
expression for the solution that interpolates a set of corre-
sponding keypoints (Bookstein, 1989; Donato and Belongie,
2002; Rohr et al., 2001; Machado et al., 2018; Frisken et al.,
2020). This provides additional degrees of freedom over
the affine family of transformations, while also subsuming
it as a special case.

For the d’th dimension, the TPS interpolant Tθd
: RD →

R takes the following form:

Tθd
(p) = (ad)T p̃ +

N∑
i=1

vi,dU
(∥∥∥p(i) − p

∥∥∥
2

)
, (11)

where ad ∈ RD+1 and {vi,d} constitute the transforma-
tion parameters θd and U(r) = r2 ln(r). We define A ∈
R(D+1)×D and V ∈ RN×D as the collection of all the
parameters for d = 1, ..., D. Then, the parameter set is
θ = {A, V }.

This form of T minimizes the bending energy :

IT =
∫
RD

∥∥∥∇2T
∥∥∥2

F
dp1...dpD, (12)

where ∥·∥F is the Frobenius norm and ∇2T is the matrix
of second-order partial derivatives of T . For each θd, we
impose interpolation conditions Tθd

(p(i)) = q
(i)
d and enforce

T to have square-integrable second derivatives:
N∑
i=1

vi,d = 0 and
N∑
i=1

vi,dpd = 0 ∀d ∈ {1, ..., D}. (13)

Given these conditions, the following system of linear equa-
tions solves for θ:

Ψθ :=
[

K L
LT O

] [
V
A

]
=

[
QT

O

]
:= Z. (14)

Here, K ∈ RN×N where Kij = U
(∥∥∥p(i) − p(j)

∥∥∥
2

)
, L ∈

RN×(D+1) where the i’th row is (p̃(i))T , and O is a matrix
of zeros with appropriate dimensions. Thus,

θ∗(P , Q) := Ψ−1Z. (15)

Solving for θ∗ is a differentiable operation.
The interpolation conditions can be relaxed (e.g. under

the presence of noise) by introducing a regularization term:

arg min
θd

N∑
i=1

(
Tθd

(
p(i)

)
− q

(i)
d

)2
+ λIT (16)

where λ > 0 is a hyperparameter that controls the strength
of regularization. As λ approaches ∞, the optimal T ap-
proaches the affine case (i.e. zero bending energy). This

formulation can be solved exactly by replacing K with
K + λI in Eq. (14). Importantly, θ and the optimal
θ∗(P , Q) exhibits a dependence on λ. Finally, weights can
be incorporated by replacing K with K + λW −1 (Rohr
et al., 2001).

Appendix C. List of Datasets

A full list of datasets used for training and evaluation is
shown in Table 4.

Appendix D. Failure Cases of Baselines

We find that all baseline models suffer substantially as the
rotation angle increases, across all transformation types.
For classical methods (ITK-Elastix and ANTs), the models
fail to find correspondences when they are far apart on
the spatial grid. For SynthMorph, the performance drop
is likely due to not affine aligning the image pair, which
is a requirement for SynthMorph but an added step in
the pipeline. EasyReg accounts for this by performing an
initial affine alignment, but the performance drop is due to
the failure of the pretrained segmentation model (used to
extract ROI centroids to be used as keypoints) to segment
brains which are significantly rotated, leading to a poor
initial affine alignment. We visualize this in Fig. 10.
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Figure 10: EasyReg fails to segment images that are significantly rotated. a) non-rotated brain, b) rotated brain.
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