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Abstract 

The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, 

high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing 

and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents 

the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of 

the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) 

from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, 

neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff 

distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 

for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 

1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to 

challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) 

were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving 

a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the 

leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and 
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lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 

mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion 

detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-

annotated, diverse datasets and identified common errors, facilitating the translation of BM segmentation across 

varied clinical environments and providing the tools for future development of personalized volumetric reports to 

patients undergoing BM treatment. 

Keywords 

BraTS, BraTS-METS, Medical image analysis challenge, Brain metastasis, Brain tumor segmentation, Machine 

learning, Artificial Intelligence 

Article informations 

©2024 BraTS-METS Team. License: CC-BY 4.0 
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B 
1. Introduction 

rain metastases represent the most common ma- 

lignancy affecting the adult central nervous sys- 

tem (Le Rhun et al., 2021), affecting an estimated 

20–40% of patients with systemic cancer (Percy et al., 1972; 

Tabouret et al., 2012; Posner, 1978; Nayak et al., 2012). 

Patients commonly have multiple lesions at different stages of 

treatment, therefore radiologic evaluation often extends 

beyond a mere comparison with the most recent scan. In 

clinical practice, a comprehensive assessment frequently 

involves reviewing several previous scans to monitor the 

progression or changes in the metastases over time which 

can be laborious and time-consuming (Jekel et al., 2022b; 

Kaur et al., 2023; Cassinelli Petersen et al., 2022). 

The shift toward automated volumetric analysis and 

lesion organization in evaluating BMs is a transformative 

(Kaur et al., 2023; Ocañ a-Tienda et al., 2023), transcend- 

ing the conventional qualitative assessment methods to a 

personalized and time-efficient approach. Artificial intelli- 

gence (AI) based volumetric BMs assessments will not only 

improve the precision of measurements but also provide 

high-quality personalized reports of individual treatment 

response of brain metastases and thus influence patient 

outcomes; it’s about democratizing access to high-quality 

care Pinto-Coelho, 2023; Najjar, 2023; Tang, 2019. By inte- 

grating automated volumetric analysis into clinical practice, 

we can ensure more reliable and consistent measurements, 

extending these advanced diagnostic capabilities beyond 

specialized centers to a broader range of healthcare settings. 

Improved accessibility of personalized reporting is crucial, 

particularly for patients in regions where such specialized 

services were previously unavailable, thus broadening the 

scope of quality care to include more comprehensive and 

timely monitoring of disease progression and response to 

treatment. 

The intricate task of accurately detecting, segmenting, 

and assessing BMs is pivotal for devising effective therapeu- 

tic strategies and prognostication. However, the efficacy of 

machine learning algorithms in this realm is inherently tied 

to the availability and quality of annotated medical imaging 

datasets (Zhou et al., 2020; Zhang et al., 2020; Xue et al., 

2020; Jeong et al., 2024; Grøvik et al., 2020; Dikici et al., 

2020, 2022; Charron et al., 2018; Bousabarah et al., 2020). 

Historically, the scarcity of large-scale, annotated datasets 

in the medical imaging field has limited the potential of 

machine learning algorithms. Many researchers find them- 

selves constrained to smaller, local institutional datasets, 

which limits algorithm generalizability across different insti- 

tutions (Greenspan et al., 2016). In this context, medical 

image analysis challenges—competitions to establish ac- 

curate segmentation algorithms—have emerged as crucial 

platforms, facilitating the development, testing, and bench- 

marking of machine learning algorithms by providing access 

to extensive, meticulously labeled, multi-center, real-world 

datasets. 

Specifically, the domain of BMs analysis stands to ben- 

efit immensely from such collaborative initiatives. The 

complexities associated with BMs, such as the variability 

in size, shape, and location of lesions, necessitate sophis- 

ticated machine learning approaches that can adapt to 

the diverse characteristics of these metastatic manifesta- 

tions (Cho et al., 2021). Moreover, the dynamic nature of 

BMs, with changes occurring over time and in response to 

treatment, underscores the need for algorithms capable of 

longitudinal assessment and multi-lesion segmentation. 

The 2023 Brain Tumor Segmentation - Metastases 

(BraTS-METS) challenge marked a significant shift from 

previous BraTS challenges, which centered on adult brain 

diffuse astrocytoma (Zhang et al., 2020; Xue et al., 2020; 

Jeong et al., 2024). The scope was broadened to encom- 

pass a variety of brain tumor entities, thereby addressing 

the issue of data scarcity and methodological complexities 

inherent in earlier challenges. This challenge prioritized 

the segmentation of BMs on pre-treatment MR imaging. 

The goal of BraTS-METS 2023 was to establish a robust, 

accurate algorithm for segmenting metastatic lesions of 

virtually any size on diagnostic magnetic resonance imag- 

ing (MRI) using T1-weighted (T1) pre-contrast, T1 post- 

contrast, T2-weighted (T2), and fluid attenuated inversion 

recovery (FLAIR) sequences. The resulting standardized 

auto-segmentation algorithm was made openly accessible, 

thus facilitating its integrationfuture research focused 

on translation of BM segmenation algorithms into 

clinical and research protocols across institutions. 

Initially, the intention was to develop an algorithm dedi- 

cated to segmenting pre-treatment BMs (Figure 1, Step 1). 

This algorithm was fine-tuned to delineate the enhancing 

tumor, peritumoral edema, and necrotic portions of the 

metastases (Figure 1, Step 2). The ultimate aim was to 

establish a BMs consortium for future collaborative research 

(Figure 1, Step 3). This consortium is designed to foster a 

collaborative research environment, not only for the devel- 

opment of BM imaging algorithms but also to facilitate 

research that will lead to for their clinical translation and 

community education efforts. 

 

2. Background 

Standard-of-care for evaluation of BMs includes qualita- 

tive assessment of changes in lesion size and number and 

two dimensional measurements performed by radiologists 

manually on PACS workstation. In clinical trials, the Re- 

sponse Assessment in Neuro-Oncology Brain Metastases 

(RANO-BM) guidelines predominantly rely on measuring 

the unidimensional longest diameter of lesions (Lin et al., 

2015). However, these traditional criteria may not fully 

capture the complex dynamics and morphological changes 
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Figure 1: Flow chart outlining the BraTS-METS 2023 vision, beginning with the pre-treatment BMs segmentation 

during the 2023 ASNR/MICCAI BraTS challenge. In this phase, segmentations were conducted on a select dataset 

subset to refine the dataset for algorithm development by participants. The dataset is set to expand in subsequent 

challenges through ongoing annotation of contributed brain MRIs. Future challenges will incorporate datasets with 

annotated post-treatment BMs, segmentations including the hemorrhagic component of tumors, and non-skull-stripped 

images to enhance the evaluation of dural-based and osseous metastases. These datasets, coupled with clinical data and 

patient demographics, will contribute to an inter-institutional BMs consortium, fostering collaborative research and the 

clinical application of algorithms through partnerships between academia and industry. 

 

of BMs over time, particularly given the heterogeneity and 

irregular growth patterns often associated with these lesions. 

Recent advances in MRI technology, particularly the 

adoption of high-resolution 3D sequences such as T1 mag- 

netization prepared rapid acquisition gradient-echo, T1 

fast spoiled gradient-echo, and T1 three-dimension high- 

resolution inversion recovery-prepared fast spoiled gradient- 

recalled, have significantly enhanced our ability to detect 

and monitor smaller BMs. The traditional threshold for tar- 

get lesions, as outlined in the RANO-BM criteria proposed 

by Lin et al., set the minimum size at 10 mm in longest 

diameter, visible on two or more axial slices with a 5 mm 

or less interval (Lin et al., 2015). However, with the ad- 

vancements in imaging, lesions as small as 1-2 mm can now 

be reliably detected, but because of significant inter-rater 

variability in measurement of lesions smaller than 5 mm, 

the consensus criteria still requires a lesion of at least 10 

mm to be considered as measurable disease. Introduction 

of improved reproducibility and low variability between al- 

gorithm based measurements provides a potential for future 

re-evaluation of standardized assessment criteria to include 

smaller lesions. Indeed, recent practices have seen a shift 

towards a 5 mm minimum size threshold, aligning with the 

capabilities of current MRI technology, as highlighted by 

Qian et al. (2017). 

Integration of automated techniques, such as deep learn- 

ing algorithms for segmentation and assessment, offers a 

promising avenue approach to enhance the precision and 

efficiency of volumetric evaluations, aligning with the re- 

quirements of the RANO-BM guidelines (Kanakarajan et al., 

2023; Wang et al., 2023a; Yoo et al., 2022). The importance 

of multi-lesional segmentation and continuous assessment 

across serial imaging cannot be overstated. Such a com- 

prehensive approach can benefit from the integration of 

automatic algorithms that are capable of efficiently detect- 

ing and segmenting metastases across multiple imaging 

time points, including pre- and post-treatment scans. The 

enhanced precision and efficiency of clinical assessments 

can complement the expertise of radiologists and other 

clinicians, which would aid not only in tracking disease pro- 

gression and response to treatment but also in identifying 

new lesions at the earliest possible stage. 

Despite the potential benefits, the routine implementa- 

tion of such automated techniques in clinical settings faces 

significant hurdles, given the extensive time required and the 

variability inherent in imaging techniques across different 

temporal scans. This variability often arises from disparate 

imaging equipment and the fact that different radiologists 

may interpret sequential scans for a single patient differ- 

ently, introducing acquisition heterogeneity and inter-reader 

variability (Buchner et al., 2023; Mi et al., 2020). 

Therefore significant research on clinical translation of 

BM segmentation algorithms and implementation of 

Step 1: Pre-treatment brain metastasis segmentation 
Step 3: Brain Metastasis Consortium for Research 

Collaboration and Translation of Identified Algorithms 

Step 2: Post-treatment brain metastasis segmentation 

 
● Pre-treatment MRI with FLAIR, T1 post-Gad, T1 pre-gad, and T2 
● Post-treatment MRI with FLAIR, T1 post-Gad, T1 pre-gad, and T2 
● Serial post-treatment MRI for each patient 
● Define enhancing metastasis, peritumoral edema, and necrosis 
●

 
 

Status: collection of cases in current dataset and recruitment of sites for data 

into Clinical practice 

●

 
● Establishment of collaborative research atmosphere for joint projects 
●  
●

 
 

Status: establishing an educational platform for student annotators 

 
2023 ASNR/MICCAI BraTS Brain Metastasis Challenge 

 
● Pre-treatment MRI with FLAIR, T1 post-Gad, T1 pre-gad, and T2 
● Define enhancing metastasis, peritumoral edema, and necrosis 
●  

 
Status: dataset release in 2023 & challenge conclusion at MICCAI 2023 
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them into clinical workflow is still needed. 

Addressing the detection and segmentation challenges 
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associated with smaller BMs is therefore of paramount 

importance. The successful development of targeted algo- 

rithms will expedite their translation to and one day 

adoption in clinical practice, providing a vital resource in 

the manage- ment of BMs. By successfully overcoming those 

challenges, we can provide algorithms that can be form the 

foundation of future research on implementation of similar 

algorithms into clinical settings. readily translated and 

implemented in clinical settings. 

 

3. Related Works 

While challenges remain in the field of automated BMs 

segmentation, recent studies are indicative of a promising 

trajectory toward achieving high levels of automation, con- 

sistency, and adaptability in clinical practice (Jekel et al., 

2022b; Kanakarajan et al., 2023; Dang et al., 2022; Jekel 

et al., 2022a; Chen et al., 2023b). Kanakarajan et al. (2023) 

demonstrated a significant advancement with their develop- 

ment of a fully automated segmentation method for BMs 

using T1 contrast-enhanced MR images, which could signif- 

icantly aid in evaluating treatment effects post-stereotactic 

radiosurgery. Similarly, Buchner et al. (2023) have identified 

core MRI sequences that are essential for reliable automatic 

BMs segmentation, providing a foundation for standardized 

imaging protocols and enhancing algorithmic consistency 

across various clinical settings. 

The integration of multi-phase delayed enhanced MR 

images has been explored by Chen et al. (2023b), who re- 

ported improvements in the accuracy of both segmentation 

and classification of BMs. This approach addressed the crit- 

ical need for refined diagnostic tools that can adapt to the 

complex nature of BMs. Furthermore, Ottesen et al. (2023) 

have extended the capabilities of deep learning algorithms 

by implementing 2.5D and 3D segmentation techniques 

on multinational MRI data, enhancing the robustness and 

adaptability of these systems for diverse clinical environ- 

ments. 

The ongoing development and refinement of these auto- 

mated segmentation tools are set to revolutionize the way 

BMs are assessed, bringing about a significant enhancement 

in the consistency and quality of patient care (Jekel et al., 

2022b; Jalalifar et al., 2023). Yoo et al. (2023) underscored 

the importance of the data domain in self-supervised learn- 

ing for accurate BMs detection and segmentation. This 

development points toward the creation of more adapt- 

able and robust systems capable of functioning effectively 

across a variety of clinical scenarios. Moreover, advance- 

ments in the reduction of false positives within automated 

BMs segmentation underscore the growing feasibility and 

effectiveness of these technologies, even in diverse clinical 

environments, cementing their role as invaluable assets in 

medical imaging (Ghesu et al., 2022; Liew et al., 2023; 

Ziyaee et al., 2023). 

Detecting smaller metastatic lesions, typically ranging 
Formatted: Indent: First line:  0"
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from 1 to 2 mm, is pivotal in patient prognosis and treat- 

ment planning. Given the increased reliance on SRS (Vogel- 

baum et al., 2022), accurately identifying the exact number 

and localization of these small metastases becomes even 

more critical to ensure effective treatment and minimize the 

risk of missed targets, which could necessitate additional in- 

terventions, cause treatment delays, and increase healthcare 

costs (Minniti et al., 2011; Schnurman et al., 2022; Chen 

et al., 2023c). The gross total volume (GTV) of BMs is po- 

tentially a critical prognostic indicator, yet its clinical utility 

remains largely untapped due to the absence of validated 

volumetric segmentation tools. The considerable effort 

required to detect and volumetrically segment all lesions, 

irrespective of size, poses a significant challenge. 

While existing glioma-focused segmentation algorithms, 

such as those developed by Applied Computer Vision 

Lab & Divi- sion of Medical Image Computing, Germany, 

have shown promising accuracy for larger metastases as 

measured by Dice scores, their efficacy diminishes with 

smaller lesions. 

Efforts to release publicly available BM datasets have 

varied significantly in their criteria and quality, contributing 

to inconsistencies in algorithm training and validation. Ta- 

ble 1 provides a summary of previously publicly available 

datasets. 

The development of a universally accepted, metastasis- 

specific AI tool represents a considerable gap in the current 

landscape, posing a barrier to the standard clinical use of 

GTV assessment for prognostication in patients with BMs. 

This challenge is compounded by the lack of a comprehen- 

sive public dataset, which would facilitate a fair comparison 

of existing BMs segmentation models. The availability of 

such a dataset could significantly accelerate progress by 

enabling researchers to benchmark and refine their mod- 

els against a standardized dataset, thereby enhancing the 

reliability and accuracy of AI-powered segmentation tools. 

Bridging these gaps is essential for advancing the integra- 

tion of AI in the prognostic evaluation of BMs, ultimately 

improving patient management and treatment outcomes. 

 

4. Materials & Methods 

4.1 Data 

The BraTS-METS dataset included retrospectively collected 

multiparametric MRI (mpMRI) scans from diverse insti- 

tutions, representing the variability in imaging protocols 

and equipment reflective of global clinical practices. In- 

clusion criteria encompassed MRI scans with the presence 

of untreated BMs with T1 pre-contrast, T1 post-contrast, 

T2, and FLAIR sequences. Participating institutions 

had obtained Institutional Review Board and Data 

Transfer Agreement approvals before contributing data, 

ensuring compliance with regulatory standards. These 

scans were 
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Table 1: Overview of publicly available datasets for BMs. 
 

Public Dataset Data Publisher Number of case Difference from BraTS 

datasets 

NYUMets (Oermann et al., 

2023) 

 
 
 

 
BrainMetShare (Grøvik 

et al., 2020) 

New York University 1,429 patients • Contains post therapy 

cases 
• Not all patients have im- 

ages 
• Most cases without seg- 

mented BM 

Stanford University 156 patients • Does not contain T2 se- 

quence 
• Contains post therapy 

cases 
• Only contains TC subre- 

gion 
• Available in JPEG for- 

mat 

UCSF-BMSR (Rudie et al., 

2024) 

University of California San 

Francisco 

412 patients • Contains synthetic T2 

images 
• Contains post therapy 

cases 

Brain-TR-GammaKnife 

(Wang et al., 2023b) 

University of Mississippi 47 patients • Does not contain T2 im- 

ages 
• Contains post therapy 

cases 

MOLAB (Ocaña-Tienda 

et al., 2023) 

University of Castilla-La 

Mancha 

75 patients • Contains post therapy 

cases 
• Recently published 
• Not all BMs are seg- 

mented 
 

 

 

then centralized and curated for consistency. 

Exclusion criteria included the presence of prior treat- 

ment changes, lack of one of the required MRI sequences, 

or imaging not technically acceptable due to motion or 

other significant imaging artifacts. The cases where post- 

treatment changes were noted were reserved for BraTS- 

METS 2024. 

The dataset allocation for the BraTS-METS 2023 chal- 

lenge adhered to the standard machine learning protocol, 

with 70% designated for training, 10% for validation, and 

20% for testing. Ground truth (GT) labels were provided 

exclusively for the training set, while the validation set 

remained unlabeled to ensure integrity in algorithmic evalu- 

ation. The testing set was kept hidden from the participants. 

The use of additional data, whether public or private, was 

restricted to prevent bias in the algorithmic ranking process. 

Participants were allowed to reference external datasets 

only for publication purposes and were required to disclose 

such usage transparently in their manuscripts, along with 

results derived from the BraTS-METS 2023 dataset. 

 
4.2 Imaging Data Description 

The mpMRI scans included four sequences: non-enhanced 

T1, post-gadolinium-contrast T1 (T1Gd), T2, and non- 

enhanced T2-FLAIR, procured from various scanners and 

protocols. Standardized pre-processing was applied to all 

the BraTS-METS mpMRI scans. Specifically, the applied 

pre-processing routines included conversion of the DICOM 

files to the NIfTI file format, co-registration to the same 

anatomical template (SRI24)(Rohlfing et al., 2010), resam- 

pling to a uniform isotropic resolution (1mm3), and, finally, 

skull stripping (Isensee et al., 2019). The pre-processing 

pipeline was made publicly available through the Cancer 

Imaging Phenomics Toolkit (CaPTk) (Pati et al., 2020; 

Rathore et al., 2018) and the Federated Tumor Segmenta- 
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tion (FeTS) tool (Pati et al., 2022). Conversion to Neu- 

roimaging Informatics Technology Initiative (NIfTI) stripped 

the accompanying metadata from the Digital Imaging and 

Communications in Medicine (DICOM) images and removed 

all protected health information from the DICOM headers. 

Furthermore, skull stripping mitigated potential facial re- 

construction/recognition of the patient (Greenspan et al., 

2016; Cho et al., 2021). The specific approach used for 

skull stripping was based on a novel deep learning approach 

that accounts for the brain shape prior and was agnostic 

to the MRI sequence input (Juluru et al., 2020; Schwarz 

et al., 2019). 

 
4.3 Tumor Labels 

The annotation of tumor sub-regions aligned with Visually 

AcceSAble Rembrandt Images (VASARI) feature visibility 

and encompassed three labels: Gd-enhancing tumor (ET 

- label 3), surrounding non-enhancing FLAIR hyperinten- 

sity (SNFH - label 2), and the non-enhancing tumor core 

(NETC – label 1). ET is described as the enhancing portion 

of the tumor, characterized by areas of hyperintensity in 

T1Gd that are brighter than T1. NETC is identified as 

the presumed necrotic core of the tumor, which is evident 

as a non-enhancing focus surrounded by enhancing tumor. 

SNFH is defined as the peritumoral edema and tumor infil- 

trated tissue, indicated by the abnormal hyperintense signal 

on the T2-FLAIR images, which includes the infiltrative 

non-enhancing tumor, as well as vasogenic edema in the 

peritumoral region. In previous BraTS challenges, ET was 

segmented as label 4. However, starting from BraTS 2023, 

ET has been segmented as label 3 for consistency. The 

sub-regions are shown in Figure 2. 

 
4.4 Tumor Annotation Protocol 

The BraTS initiative, in consultation with domain experts, 

defined various tumor sub-regions to provide a standardized 

approach for their assessment and evaluation. However, 

alternative criteria for delineation could be established, re- 

sulting in slightly different tumor sub-regions. To ensure 

consistency in the GT delineations across various annota- 

tors, the following tumor annotation protocol was designed. 

Structural mpMRI volumes were considered (T1, T1Gd, T2, 

T2-FLAIR). 

The BraTS-METS 2023 challenge focuses on three 

regions of interest: 

1. Whole Tumor (WT) = Label 1 + Label 2 + Label 3 

2. Tumor Core (TC) = Label 1 + Label 3 

3. Enhancing Tumor (ET) = Label 3 

WT describes the complete extent of the disease, en- 

compassing TC and the peritumoral edematous/invaded 

tissue, typically depicted by the abnormal hyper-intense 

signal in the T2-FLAIR volume. While the radiologic defini- 

tion of tumor boundaries, especially in infiltrative tumors 

such as gliomas, presents a well-known challenge, this is 

less problematic in BMs, which typically have well-defined 

borders of the contrast-enhancing portion. In most cases, 

the boundaries of the contrast-enhancing region of the BM 

and the surrounding FLAIR hyperintense edema are well 

defined. One of the major challenges in segmenting BMs 

lies in the overlap of edema between multiple lesions, which 

is why the segmentation of ET is separated from WT and 

treated as distinct entities. 

 
4.5 Annotation Pipeline 

To ensure uniformity in data imaging and tumor labeling, 

we established a comprehensive annotation pipeline (Figure 

3). This pipeline facilitates the development of accurate GT 

labels and is divided into five key stages: pre-segmentation, 

annotation refinement, technical quality control (QC), initial 

approval, and final approval. 

 
4.6 Pre-segmentation 

The initial phase involved pre-segmenting imaging volumes 

using three distinct approaches: 

 
1. nnU-Net trained on the University of California, San 

Francisco BMs Stereotactic Radiosurgery (UCSF- 

BMSR) MRI Dataset (Rudie et al., 2024), which 

creates the ET label and was fused with predictions 

of NETC and SNFH from an nnU-Net trained on the 

pre-treatment BraTS 2021 glioma dataset. 

2. nnU-Net trained on AURORA multicenter study (Kaur 

et al., 2023), which creates SNFH and tumor core 

(ET + NETC) labels. 

3. nnU-Net trained on Heidelberg University Hospital 

dataset (Pflüger et al., 2022), which creates SNFH 

and tumor core labels. 

 
The label fusion process varied for each label. SNFH 

(label – 2) was fused using the STAPLE fusion algorithm to 

aggregate the segmentations from each automated segmen- 

tation algorithm, accounting for systematic errors (Warfield 

et al., 2004). ET (label – 3) was fused using the minority 

voting algorithm to aggregate all enhancing tumor voxels 

identified by the automated segmentation algorithms, due 

to varying accuracies in detecting small metastases. NETC 

(label – 1) is only produced by the nnU-Net trained on 

UCSF-BMSR. Algorithms trained on AURORA and Hei- 

delberg datasets only segment TC and SNFH. Therefore, 

NETC overlays both ET and SNFH labels. 
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Figure 2: Image panels illustrating the annotated tumor sub-regions across various mpMRI scans with segmentations of 

ET (yellow), SNFH (green), and NETC (red) done on ITK-SNAP. For each example A-H, the metastases are 

segmented on the top two panels and non-segmented images are displayed on the bottom two panels. (A) Example of 

multiple small metastases within the gray-white junction are demonstrated on post-contrast T1 weighted imaging and 

FLAIR sequences. (B) Example of multiple small metastases throughout the supratentorial brain including white matter 
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and gray-white junction. The metastases are of different sizes with some being punctate and others being larger 

measuring approximately 10 mm in maximum dimension. (C) Large predominantly necrotic metastasis within the left 

frontal lobe with surrounding edema on FLAIR imaging and evidence of mass effect on the surrounding brain 

parenchyma. (D) Large predominantly solid metastasis within the right frontal lobe with prominent surrounding edema 

and associated mass effect on the surrounding brain parenchyma. (E) Large metastasis within the left subinsular gray-

white interface with evidence of central necrosis but also a prominent solid component of the tumor. There is 

prominent surrounding edema around the large metastasis.  There is an additional metastasis within the left cingulate 

gyrus that is smaller in size and does not contain a necrotic center. (F) Large predominantly solid metastasis with 

internal necrotic components within the left posterior fronto-parietal region. There is prominent surrounding edema 

that is FLAIR hyperintense and T1 hypointense with associated mass effect and mild midline shift. (G) Multifocal 

extensive metastases within the cerebellar hemispheres with extensive edema on FLAIR imaging that overlaps between 

the lesions. FLAIR hyperintense edema cannot be separated between individual lesions and thus has to be segmented as 

one whole entity. (H) Prominent metastatic solid lesion within the pons and right vermis/upper cerebellar hemisphere. 

These metastases demonstrate overlapping surrounding edema and result in mass effect with upward herniation of the 

vermis. *T1c = T1 weighted image after contrast administration  For each example A-H, the metastases are segmented 

on the top two panels and non-segmented images are displayed on the bottom two panels. (A) Example of multiple 

small metastases within the gray-white junction are demonstrated on post-contrast T1 weighted imaging and FLAIR 

sequences. (B) Example of multiple small metastases throughout the supratentorial brain including white matter and 

gray-white junction. The metastases are of different sizes with some being punctate and others being larger 

measuring approximately 10 mm in maximum dimension. (C) Large predominantly necrotic metastasis within the left 

frontal lobe with surrounding edema on FLAIR imaging and evidence of mass effect on the surrounding brain 

parenchyma. (D) Large predominantly solid metastasis within the right frontal lobe with prominent surrounding 

edema and associated mass effect on the surrounding brain parenchyma. (E) Large metastasis within the left 

subinsular gray-white interface with evidence of central necrosis but also a prominent solid component of the tumor. 

There is prominent surrounding edema around the large metastasis.  There is an additional metastasis within the left 

cingulate gyrus that is smaller in size and does not contain a necrotic center. (F) Large predominantly solid metastasis 

with internal necrotic components within the left posterior fronto-parietal region. There is prominent surrounding 

edema that is FLAIR hyperintense and T1 hypointense with associated mass effect and mild midline shift. (G) 

Multifocal extensive metastases within the cerebellar hemispheres with extensive edema on FLAIR imaging that 

overlaps between the lesions. FLAIR hyperintense edema cannot be separated between individual lesions and thus 

has to be segmented as one whole entity. (H) Prominent metastatic solid lesion within the pons and right 

vermis/upper cerebellar hemisphere. These metastases demonstrate overlapping surrounding edema and result in 

mass effect with upward herniation of the vermis. *T1c = T1 weighted image after contrast administration 
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Step 1: Presegmentation 

1. UCSF-BMSR nnU-Net 

2. AURORA nnU-NET 
3. Heidelberg nnU-Net 

 
 

 
Fusion of all labels 

Step 3: Technical QC 

 
● Removing random voxels and 

voxels outside the brain mask 
● Ensuring all images have the 

same parameters as the 
SRI24 atlas 

● Verifying the presence of all 
segmentations and masks 
are in the folder with original 

NIfTI images. 

Step 5: Final Approval 
 

 
● All cases finally approved 

by a single senior 

neuroradiologist 

 
 
 
 
 

 

Step 2: Refinement 

● Trainees 
○ Medical students 
○ Residents 

 

 
● Approver I 

○ Board-certified 
attending 

neuroradiologist 

Step 4: Initial Approval 

 
● Approver II 

○ Secondary review by a 

different board- 
certified 

neuroradiologist from 
the approvers pool 

 
Figure 3: BraTS-METS 2023 annotation pipeline. Step 1 of the annotation pipeline includes pre-segmentation of the 
pre-processed images using FETS pipeline with three different published and publicly available metastasis 
segmentation algorithms.  Step 2 includes trainee and board-certified neuroradiologist review of the pre-
segmented images. The trainees pre-viewed all the images first and sent the images to the neuroradiologist; if 
there were too many incorrect segmentations, the neuroradiologist would send the images back to students for 
additional modifications to the segmentations. The students worked in groups and had multiple group review 
sessions to learn about how to make sure segmentations are correct and received real time live feedback from 
neuroradiologists on their questions. As the challenge proceeded, the number of times the images were sent back 
to students was decreased. Step 3 includes technical quality control process, which included algorithm based 
removal of random voxels outside of the brain and partial segmentations that were not fully deleted from false 
positive lesions in Step 2. Step 4 includes secondary review by a new board certified neuroradiologist from the 
approvers pool. If additional changes to the images needed to be done, this neuroradiologist would perform the 
additional segmentations. Step 5 is the final approval step by central board certified neuroradiologist who made 
sure all the images had correct segmentations and the segmentation process was consistent.   

 

4.7 Annotation Refinement and Initial Approval 

 
All pre-segmentations from the three models, along with 

fused segmentations, were provided to the annotators. Sub- 

traction images, in which the non-contrast T1 sequence is 

digitally subtracted from the post-contrast T1 sequence, 

were also provided to aid in the annotation refinement pro- 

cess. Annotations were performed by a diverse group of 

more than 150 student annotators and volunteer neuroradiol- 

ogy experts, under the supervision of annotator coordinators 

(A.J. and K.K.). Cases requiring re-annotation due to in- 

completeness were identified and returned for correction. 

During the process of annotation, the trainees participated 

in group reviews of cases, asked questions, and attended 

lectures by expert imagers. Completed student annotations 

were then reviewed by a pool of 52 experienced board- 

certified attending neuroradiologists (approvers) recruited 

by the American Society of Neuroradiology, ensuring quality 

control and uniformity with the SRI24 atlas standards. 

Approvers reviewed the volunteer annotations and ei- 

ther approved the case or returned it to students for re- 

annotation. Additionally, a QC process was implemented, 

which included removing all random voxels and any voxels 

outside the brain mask, ensuring all images had the same 

parameters (space, orientation, and origin) as the SRI24 

atlas, and verifying the presence of all segmentations and 

segmentation masks are in the folder with original NIfTI 

images. 
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4.8 Annotation Final Approval 

Following refinement, each case underwent a secondary re- 

view by a different board-certified neuroradiologist from the 

approver pool, ensuring accurate metastasis segmentation 

and adherence to inclusion criteria. In cases of discrep- 

ancy, the second approvers made the necessary changes 

themselves without reverting to the trainees. Finally, a 

neuroradiologist (M.A.) with over 6 years of brain tumor 

expertise conducted a final dataset review, 

guaranteeing consistency across all annotations. 

 
4.9 Common Errors of Automated Segmentations 

Based on observations from previous BraTS 

challenges, common errors in automated segmentations 

were identified. The most typical errors in the current 

challenge included: 

1. Automated algorithms missing small metastases. En- 

hancing metastasis was fused using the minority vot- 

ing algorithm to aggregate all enhancing tumor voxels 

identified by the three algorithms. However, many 

small metastases were missed and were manually seg- 

mented by neuroradiology attendings. 

2. Segmentation of white matter changes from microvas- 

cular disease. Peritumoral edema segmentations were 

checked by neuroradiology attendings and 

modified. 

3. The segmentation of non-enhancing lesions that have 

intrinsic T1 hyperintensity. Voxels with intrinsic T1 
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Figure 4: Map of institutions that expressed interest in contributing data to the BraTS-METS challenge. 

 

hyperintensity were manually removed from ET seg- 

mentations. 

 
These insights led to specific adjustments in the anno- 

tation process to enhance accuracy. 

 
4.10 Performance Evaluation Framework 

Participants were offered a baseline approach implemented 

in the Generally Nuanced Deep Learning Framework (GaN- 

DLF), a modular open-source framework maintained by 

the MLCommons organization. GaNDLF provides popular 

comprising only a few voxels, it was clinically significant 

to assess segmentation algorithms based on their capacity 

to accurately detect and delineate both small and large 

lesions. Teams were ranked based on a combination of 

lesionwise Dice and Hausdorff distance scores across all 

evaluated test cases. False positives and false negatives 

were rigorously penalized, receiving a score of 0 for Dice and 

a fixed penalty of 374 for HD95. This methodical approach 

was uniformly applied across the three designated tissue 

classes, with subsequent aggregation of results by taking 

the mean score for each CaseID within each tissue category. 

network architectures, but also allows users to leverage 

the functionality of other libraries, such as PILLOW and 

MONAI. Submissions were packaged in MLCube containers 

as described in the instructions provided in the Synapse plat- 

form. These submissions were registered to MLCommons’ 

MedPerf, an open federated AI/ML evaluation platform. 

MedPerf automated the pipeline of running the participants’ 

Lesion-wise Dice Score = 

LL Dice(li)
 

TP FN FP 
 

 
L 
i 

 

TP + FN + FP 

(1) 
 
 

 
(2) 

models on the evaluation datasets of each contributing site’s 

data and calculating evaluation metrics on the resulting 

predictions. Finally, the Synapse platform retrieved the 

metrics results from the MedPerf server and ranked them 

to determine the winner. 

Performance evaluation was based on Dice scores and 

95% Hausdorff distance (HD95) for individual segmented 

lesions as defined by the three regions of interest: ET, 

TC and WT. Given that BMs are often small, sometimes 
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where L is the total number of GT lesions and TP , 

FP , FN are the number of true positive, false positive and 

false negative lesions respectively. 

All participants were evaluated and ranked using the 

same unseen testing data, which was not accessible to them. 

They were required to upload their containerized 

method to the evaluation platforms. The final top-

ranked teams were announced at the 2023 Medical Image 

Computing and Computer Assisted Intervention Society 

(MICCAI) annual 
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meeting, with monetary prizes awarded to the top-ranked 

teams in both tasks of the challenge. 

For this challenge, each team was ranked relative to 

its competitors for each of the testing subjects, for each 

evaluated region (i.e., ET, TC, WT), and for each measure 

(i.e., Dice and Hausdorff). For example, each team was 

ranked for 59 subjects, for 3 regions, and for 2 metrics, which 

resulted in 59 × 3 × 2 = 354 individual rankings. The final 

ranking score (FRS) for each team was then calculated by 

first averaging across all these individual rankings for each 

patient (i.e., cumulative rank), and then averaging these 

cumulative ranks across all patients for each participating 

team. This ranking scheme has also been adopted in other 

challenges with satisfactory results, such as the Ischemic 

Stroke Lesion Segmentation challenge (Maier et al., 2017). 

We then conducted further permutation testing to deter- 

mine statistical significance of the relative rankings between 

each pair of teams. This permutation testing reflected dif- 

ferences in performance that exceeded those that might be 

expected by chance. Specifically, for each team, we started 

with a list of observed subject-level cumulative ranks, i.e., 

the actual ranking described above. For each pair of teams, 

we repeatedly randomly permuted (i.e., for 100,000 times) 

the cumulative ranks for each subject. For each permuta- 

tion, we calculated the difference in the FRS between this 

pair of teams. The proportion of times the difference in 

FRS calculated using randomly permuted data exceeded the 

observed difference in FRS (i.e., using the actual data) in- 

dicated the statistical significance of their relative rankings 

as a p-value. These values were reported in an upper trian- 

gular matrix, providing insights of statistically significant 

differences across each pair of participating teams. 

 
4.11 Analysis 

The competition framework encompassed evaluations across 

three key regions: ET, TC, and WT, utilizing two primary 

metrics: lesion-wise Dice and lesion-wise HD95. These 

metrics have been developed primarily to evaluate the per- 

formance of models at the level of individual lesions, rather 

than on a whole-image basis. This approach ensured that 

our evaluation did not favor models that only captured large 

lesions, a limitation commonly observed with standard Dice 

scores. By assessing models on a lesion-by-lesion basis, we 

gained insights into their ability to segment all sizes of BMs 

accurately. 

To implement this evaluation framework, we first iso- 

lated the lesion tissues (i.e., ET, TC, WT). We applied 

dilation to the GT labels for WT, TC, and ET to gauge 

the lesion’s extent. This technique ensured that during 

connected component analysis, small lesions adjacent to a 

primary lesion were not misclassified as separate entities. It 

is crucial to note that the GT labels remained unchanged 

throughout this process. We conducted a 26-connectivity 

connected component analysis on the predicted labels and 

compared each component to the corresponding GT label 

on a component-by-component basis. We calculated the 

Dice scores and HD95 scores individually for each lesion (or 

component), assigning the aforementioned penalty, to all 

false positives and negatives. Subsequently, we computed 

the mean score for each specific case. 

Acknowledging the variability in lesion significance aris- 

ing due to human error, a volumetric threshold of 2 voxels 

(2 mm3) was established by an expert panel of clinical radi- 

ologists, below which the models’ performance on deemed 

”small/false” lesions is not considered in the evaluation. 

This approach was primarily adopted to ensure that partic- 

ipants were not unfairly penalized for stray voxels in the 

GT labels, which may result from human error, or for small 

lesions unrelated to the pathology central to the challenge. 

The expert panel of clinical radiologists also determined the 

dilation factor, which was uniformly applied for combining 

lesions in the GT masks. A dilation factor of 1 voxel in 

3D space was chosen because BMs can be small, and it is 

important to avoid combining these small BMs. 

The code and detailed information on the lesion-wise 

evaluation metrics can be found here 1. 

 
4.12 Dataset 

Multiple datasets were contributed by individual institutions 

and were in various stages of annotation and approval 

(Figure 4). 

 

5. Results 

5.1 Dataset Sources 

Our annotation and approval pipeline, as previously de- 

scribed, was applied to datasets from a variety of institu- 

tions, including New York University (NYU), Yale University, 

Washington University, Cairo University (CairoU), Duke Uni- 

versity, and the University of Missouri. The annotated NYU 

dataset is uniquely hosted on the NYU website (access 

to the data can be requested by filling the form)2, sepa- 

rate from the public BraTS repository. As for the UCSF 

dataset, synthetic T2 images were generated and shared 

on the UCSF website3. The Stanford University dataset, 

despite being publicly available, was not incorporated into 

our primary dataset due to the lack of T2 image sequences. 

These datasets were available and optional for additional 

training. For logistical reasons, the UCSF, Stanford, and 

NYU datasets were excluded from the validation and test 

phases of our project. 
 

1. https://github.com/rachitsaluja/BraTS-2023-Metrics 

2. https://nyumets.org/; https://forms.gle/UqE6VMgCtpT21rmu7 

3. https://imagingdatasets.ucsf.edu/dataset/1 
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Table 2: Dataset sources in the BraTS-METS 2023 challenge. In the training dataset, 474 cases from UCSF and 

Stanford were included as optional because they did not have original T2 weighted images. 

 

 
reviewed 

 
 
 
 
 
 
 
 
 
 
 

 
* The NYU dataset is part of the official challenge. Because it is hosted on a separate website, it is not included in the 

validation or test set. 
∧ UCSF and Stanford datasets are not part of the official challenge. Both datasets are provided as optional training sets. 

Table 3: Lesion count and sizes for each dataset group. 
 
 
 
 
 
 

 

(n = 402) 

Validation 

(n = 31) 

Testing 

(n = 59) 

 

139 3 (4) 141 (664) 119 3(3) 591 (3318) 

 
218 2 (3) 132 (613) 193 2 (3) 322 (8624) 

 
 

* The training group does not include the optional UCSF and Stanford datasets. 
 

 

In all, 2712 cases were received from various institutes 

of which 1303 cases were reviewed from eight institutions. 

After 337 cases were excluded, 876 cases were allocated 

into the training (n = 402; UCSF and Stanford datasets 

cases that were optional, n = 474), validation (n = 31), 

and testing (n = 59) groups (Table 2). All the source 

institutions were located in the United States, except for 

one in Egypt. 

 
5.2 Lesion Characteristics 

 
Table 3 provides a detailed overview of lesion count and sizes 

across the different dataset groups used in the BraTS-METS 

2023 challenge. These data demonstrate the variation in 

lesion count and size across the dataset groups. 

5.3 Performance Analysis 

Table 4 provides the relative ranking for each team. Team 

NVAUTO ranked first in the challenge, with an average 

rank across subjects of 7.9 and a PatientWise mean of 0.38. 

Team SY placed second with a PatientWise mean of 0.41 

across all patients. The supplementary material depicts the 

pitfall cases with figures illustrating the false positives or 

missed lesions. 

Figure 5 provides a patient-wise comparison of segmen- 

tation accuracy across the different participating teams. 

The boxplots reflect the distribution of each team’s accu- 

racy per patient case per lesion—across all cases within the 

test dataset, with lower value signifying better performance. 

The teams NVAUTO, SY, and blackbean showed a notably 

higher median accuracy, alongside a relatively narrow in- 

Dataset 

Source 

Total cases Excluded Training Validation Test 

Duke 37 0 26 4 7 

CairoU 45 10 32 1 2 

Missouri 25 3 16 2 4 

WashU 40 1 27 4 8 

Yale 225 30 137 20 38 

NYU*
 221 57 164 0 0 

UCSF∧ 560 236 324 0 0 

Stanford∧ 150 0 150 0 0 

Total 1,303 337 402 31 59 
   (474 optional)   

 

Dataset ET ET ET WT WT WT 

Group lesion-count lesion-count lesion-size lesion-count lesion-count lesion-size 
 (total) median median (total) median median 
  (IQR) (IQR)  (IQR) (IQR) 

Training* 3076 3 (7) 65 (287) 2618 3 (5) 121 (804) 
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Table 4: Top-performing teams ranking with cumulative ranks across subjects. Lower scores indicate better performance. 
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SY 
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BraTS 2023 Ranking 

 

 
0 5 10 15 20 25 

LesionWise Ranking 

(PPV). The lesion detection rate was led by NVAUTO with 

rates of 76% for ET, 78% for TC, and 80% for WT. Closely 

following were blackbean and SY, with both achieving a 

75% detection rate for ET and TC, and 76% and 72% for 

WT, respectively. In terms of sensitivity, NVAUTO again 

showed superior performance, with 90% for ET, 91% for 

TC, and 90% for WT, reflecting a high true positive rate. 

blackbean and SY exhibited comparably high sensitivity, 

around 89-90% across tumor entities. PPV results depicted 

NVAUTO at the forefront with 82% for ET, 84% for TC, 

and 84% for WT. Following suit, blackbean maintained a 

PPV of 79% across all tumor entities, and SY showcased a 

slightly lower yet robust PPV performance with 76%. 

 
Figure 5: BraTS-METS 2023 boxplots of LesionWise rank- 

ing across patients for all participating teams on the BraTS 

2023 test set (lower is better). 

 
terquartile range (IQR). Conversely, DeepRadOnc displayed 

a wider IQR. 

A description of the algorithms used by the top four 
winning teams are shown in Table 5 and Supplementary 
Table 1. NVAUTO (Auto3DSeg for Brain Tumor 
Segmentation from 3D MRI in BraTS 2023 Challenge, 
Andriy Myronenko et al., 2003) utilized the Auto3DSeg 
tool from MONAI. The foundational model architecture 
employed was SegResNet, a U-Net based 
convolutional neural network specifically adapted for 
semantic segmentation, leveraging MONAI's native 
components, including transforms, loaders, losses, and 
network modules. This architecture follows an encoder-
decoder structure, incorporating multiple ResNet blocks 
with batch normalization and deep supervision to 
enhance training stability and performance across 
various network depths. Input to the model consisted of 
a 4-channel concatenation of different MRI scans. This 
input data was normalized to have zero mean and unit 
standard deviation for each channel. Emphasizing data 
variation and robustness, extensive data augmentation 
techniques were applied, including spatial 

transformations such as random rotations, scaling, and 
flips, as well as intensity modifications like random 
adjustments to intensity/contrast, addition of noise, and 
blur. Random cropping to a fixed size of 224×224×144 
pixels was also employed. The training objective was 
defined by a composite loss function combining Dice loss 
and focal loss. This combination aimed at mitigating 
class imbalance by emphasizing difficult-to-segment 
areas and penalizing misclassifications of smaller or 
minority classes. Furthermore, the loss was aggregated 
across deep-supervision sublevels, allowing the network 
to refine segmentations at multiple resolution scales. 
Optimization was performed using the AdamW optimizer 
with an initial learning rate of 2×10−4, which was 
annealed to zero following a cosine schedule. The model 
was trained for a range of 300 to 1000 epochs, using 5-
fold cross-validation. Code reference: GitHub - MONAI 
and SegRes- NetDS. 
SY (3D-TransUNet for Brain Metastases Segmentation in 
the BraTS2023 Challenge, Siwei Yang, 2023) focused on 
employing a 3D-TransUNet architecture (Chen et al., 
2023a). This neural network integrates the strengths of 
both Transformer and U-Net architectures to accurately 
delineate tumor regions, addressing the significant 
variability in their appearance and size. The architecture 
utilized a 3D nnUNet structure as the CNN encoder and 
decoder pathway. The 3D-TransUNet framework 
incorporated a 12-layer Vision Transformer (ViT) as the 
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Team Name Cumulative ranks 

across subjects 

Lesion-wise Rank 

NVAUTO 466 7.9 1 

SY 503 8.5 2 

blackbean 571.5 9.7 3 

CNMCPMI2023 689 11.7 4 

isahajmistry 817 13.8 5 

DeepRadOnc 907.5 15.4 6 

MIASINTEF 1002 17 7 
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Transformer encoder, which processed feature maps 
derived from the convolutional pathway. This ViT 
encoder, initialized with ImageNet pretrained weights 
and further pre-trained using Masked Autoencoder (He 
et al., 2022) on its transformer blocks, captured global 
contextual information essential for distinguishing 
metastases from surrounding brain tissue. A 
complementary Transformer decoder refined 
segmentation predictions by utilizing cross-attention 
mechanisms, effectively fusing global contextual 
insights with localized, multi-scale features obtained 
from the U-Net skip connections. The training objective 
was defined by a hybrid loss function consisting of pixel-
wise cross-entropy loss and Dice loss. The AdamW 
optimizer was employed with a learning rate of 1×10−4 
and dynamically adjusted using a cosine annealing 
scheduler, which gradually reduced the learning rate 
over the course of training. Furthermore, gradient 
clipping was applied during training to stabilize the 
learning process and prevent exploding gradients. 
These optimization strategies collectively contributed to 
the effective training and strong performance of the 
proposed 3D-TransUNet architectures on the brain 
metastases segmentation task. Code reference: 3D 
TransUNet Model. 
Blackbean (Evaluating STU-Net for Brain Tumor 
Segmentation, Ziyan Huang et al., 2023) utilized the 
Scalable and Transferable UNet (STU-Net) model. 
STU-Net is an advancement upon the nnU-Net 
architecture (Isensee et al., 2021), introducing key 
modifications designed to enhance its scalability and 
transferability for large-scale medical image 
segmentation tasks. As a scalable and transferable 
version of nnUNet, the model offers architectural 
flexibility with parameters ranging from 14 million to 1.4 
billion, allowing adaptation based on available 
computational resources. A core innovation is the 
incorporation of residual connections within each 
encoder stage to mitigate gradient diffusion, alongside 
downsampling blocks for more efficient feature 
extraction. For upsampling, STU-Net employs nearest-
neighbor interpolation followed by a 1×1×1 convolution 
layer, which is reported to improve the model's ability to 
generalize and transfer learning across different 
imaging tasks. A compound scaling strategy ensures 
balanced growth in both the depth and width of the 
encoder and decoder components. The model 
demonstrated robust transferability to the BraTS brain 
tumor segmentation task by being pre-trained on the 
TotalSegmentator dataset, which comprises 104 
foreground classes. Blackbean adhered to the default 
data preprocessing, data augmentation, and training 
procedures specified by nnUNet. The optimization was 
performed using the SGD optimizer with a Nesterov 
momentum of 0.99 and a weight decay of 1×10−3. A 
fixed batch size of 2 was used, with each epoch 
consisting of 250 iterations. The learning rate decayed 
according to the poly learning rate policy: 

(1−epoch/1000)0.9. Data augmentation techniques 
included additive brightness, gamma, rotation, scaling, 
mirror, and elastic deformation. The pre-training patch 
size on the TotalSegmentator dataset was 
128×128×128. For the BraTS task, a larger input patch 
size of 160×160×160 was used, with fine-tuning patch 
sizes on downstream tasks automatically configured by 
nnU-Net. Code reference: STU-NET and nnUNetV1. 

CNMC (Model Ensemble for Brain Tumor 

Segmentation in Magnetic Resonance Imaging, Daniel 

Capellan-Martın et al., 2023) employed an ensemble-

based approach for brain tumor segmentation, 

combining predictions from two state-of-the-art deep 

learning models: nnU-Net and Swin UNETR. The 3D 

nnUNet model, a CNN, was trained using 5-fold cross-

validation. Input images were processed in patches of 

128×160×112 voxels, with the model outputting three 

channels corresponding to the three tumor subregions. 

Training utilized a combined Dice loss and cross-

entropy loss function, optimized using the stochastic 

gradient descent algorithm with Nesterov momentum 

(learning rate: 0.01, momentum: 0.99, weight decay: 

3×10−5). Inference was performed using a sliding 

window approach. The vision transformer-based 3D 

Swin UNETR model, a CNN + ViT architecture, was also 

trained using 5-fold cross-validation, processing input 

patches of 96×96×96 voxels. Its output consisted of four 

channels: three for the tumor subregions and one for the 

background. The model was trained by minimizing a 

combined Dice and focal loss function, employing the 

AdamW optimizer (learning rate: 0.0001, momentum: 

0.99, weight decay: 3×10−5). To enhance segmentation 

accuracy and robustness, predictions from both nnU-

Net and Swin UNETR were ensembled using a label-

wise model ensemble approach. The outputs of these 

networks were subjected to a non-linear function, and 

these processed outputs were then combined through 

model ensembling to create ensembled predictions. 

Label-wise post-processing was applied to these 

ensembled predictions to produce the final predictions 

for each label. Given the focus on lesion-wise 

evaluation, this post-processing step included removing 

small, disconnected regions smaller than 50 voxels. 

Hyperparameter optimization for the models was carried 

out using the Optuna framework. 

 
5.4 Detailed Performance by Tumor Entities 

Table 6 delineates the comparative performance of each 

participating team’s Dice scores for each tumor entity (i.e., 

ET, TC, and WT). The team NVAUTO secured the top 

rank across all categories, exhibiting a mean Dice score of 

0.60 for ET, 0.65 for TC, and 0.62 for WT. Notably, SY and 

blackbean shared the second rank in the ET segmentation, 

with a mean of 0.57. Figures 6, 7, and 8 further highlight 

the lesion-wise Dice scores (shown as panels A) and HD95 
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(shown as panels B) for each participating team for each 

tumor entity. 

Figure 9 illustrates a comparative evaluation across the 

three tumor regions of interest where performance of the 

segmentation models is quantified using three metrics: le- 

sion detection rate, sensitivity, and positive predictive value 

5.5 Algorithm Sensitivity to Lesion Size 

Figure 10 provides insight into the models’ performance in 

segmenting lesions of different sizes. This was analyzed by 

calculating a running average within an expanding window 

of tumor volume, starting with only the smallest tumors 

and progressively including larger lesions (Kelahan et al., 

2022). 

The graphs collectively indicate that segmentation al- 

gorithm performance diminishes as tumor size decreases, 

with all teams facing challenges in maintaining high Dice 

scores and lesion detection rates for smaller tumors. The 

HD95 data suggest that algorithms struggled with precision in 

delineating the contours of smaller lesions, reflected in 

greater distances from the ground truth, a trend particularly 

noticeable for tumors less than 100 mm3 in volume. Despite 

these challenges, NVAUTO consistently outperformed its 

counterparts. 

 

6. Discussion 

The use of machine learning in medical imaging has brought 

notable improvements in detecting and segmenting BMs. 

Clinical evaluation of BMs has unique complexity because 

it requires volumetric measurements and organization of 

lesions to provide granular details on individual lesion treat- 
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Table 5: Description of algorithms used by the top 4 winning teams. 
 

Team Name & DL alogrithm Description 
 

NVAUTO (SegResNet from MONAI Auto3DSeg)  • MONAI native (uses transforms, loaders, losses, 

networks components of MONAI) 
• 4-channel input, which is a concatenation of four 

different MRI scans 
• Input data is normalized to have zero mean and 

unit standard deviation for each channel. 
• Employs random cropping to a fixed size of 

224x224x144 pixels 
• AdamW optimizer with a learning rate of 2e-4 

is used in combination with a cosine annealing 

scheduler 
• Model is trained for a range of 300 to 1000 

epochs, using 5-fold cross-validation 
• A combined Dice-Focal loss function is utilized 

for training 
• Data augmentation techniques include spatial 

transformations (random rotations, scaling, flips) 

and intensity modifications (random adjustments 

to intensity/contrast, addition of noise, and blur) 
• Code reference: GitHub - MONAI and SegRes- 

NetDS 
 

SY (3D TransUNet Model (Chen et al., 2023a)) • 3D nnUNet as the CNN Encoder + Decoder 

• 12-layer ViT as the Transformer Encoder with 

ImageNet pretrained weights 
• A hybrid loss function consisting of pixel-wise 

cross entropy loss and dice loss 
• Pre-train the transformer blocks using Masked 

Autoencoder (He et al., 2022) 
• Code reference: 3D TransUNet Model 

 

blackbean (STU-Net) • A scalable and transferable version of nnUNet 

• Larger input patch size: 160 x 160 x 160 
• Poly decay policy 
• Code reference: STU-NET and nnUNetV1 

CNMCPMI2023 (Label-wise model ensemble ap- 

proach) 
• nnU-Net and Swin UNETR CNN + ViT 
• Outputs of these networks are then subjected to 

a non-linear function 
• Processed outputs are combined through model 

ensembling to create ensembled predictions 
• Label-wise post-processing is then applied to 

these ensembled predictions to produce the final 

predictions for each label 
 

 

 

ment history and assess treatment response. Presence of 

BMs is often a prognostic indicator of poor outcome in pa- 

tients with metastatic disease, significantly changing treat- 

ment options and impacting patient survival (Jekel et al., 

2022a; Chen et al., 2023b; Ottesen et al., 2023). The 2023 

BraTS-METS challenge has significantly driven forward 

the development of algorithms designed to manage the 

complex task of BMs segmentation. These algorithms pro- 

vide clinicians with better tools to measure tumor volumes 

accurately, which is crucial for both treatment planning 

and patient outcomes. The varying performance among 

the participating teams underlines the inherent complexity 

https://github.com/Project-MONAI/MONAI
https://docs.monai.io/en/latest/networks.html#segresnetds
https://docs.monai.io/en/latest/networks.html#segresnetds
https://github.com/Beckschen/3D-TransUNet
https://github.com/Ziyan-Huang/STU-Net
https://github.com/MIC-DKFZ/nnUNet
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Table 6: Teams’ Dice scores, reported as mean ± standard deviation (median), and ranking based on individual tumor 

entities. 

 

Team Name  ET   TC   WT  

 Dice score Rank  Dice score Rank  Dice score Rank  

NVAUTO 0.60 ± 0.24 

(0.58) 

SY 0.57 ± 0.28 

(0.57) 

blackbean 0.57 ± 0.26 

(0.58) 

CNMCPMI2023 0.55 ± 0.28 

(0.64) 

isahajmistry 0.49 ± 0.29 

(0.44) 

DeepRadOnc 0.39 ± 0.31 

(0.39) 

1 0.65 ± 0.25 

(0.60) 

2 0.62 ± 0.29 

(0.64) 

2 0.61 ± 0.28 

(0.58) 

4 0.60 ± 0.30 

(0.69) 

5 0.53 ± 0.29 

(0.49) 

6 0.43 ± 0.36 

(0.43) 

1 0.62 ± 0.24 1 

(0.61) 

2 0.60 ± 0.29 2 

(0.61) 

3 0.57 ± 0.28 4 

(0.57) 

4 0.58 ± 0.29 3 

(0.64) 

5 0.48 ± 0.27 5 

(0.43) 

6 0.40 ± 0.31 7 

(0.41) 
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Figure 6: BraTS-METS 2023 boxplots of enhancing tumor Dice scores (A) and 95% Hausdorff distance (HD95) (B) for 

all participating teams on the BraTS 2023 test set. 

 

of tumor segmentation in diverse datasets. This diversity 

in results particularly highlights the difficulty algorithms 

face in consistently identifying and accurately segmenting 

small metastases, which remain a significant hurdle in the 

literature, clinical practice, and for BraTS-METs challenge 

participants. The assessment metric utilized in BraTS- 

METs 2023 challenge penalizes for false negatives and false 

positives, which provides overall low Dice coefficients but 

provides a metric that optimizes for selection of algorithms 

that will be easily translated intocould be further studied to 

be used in diverse clinical practices. The performance 

trends observed in the challenge demon- strate that while 

some progress has been made, the precise detection of small 

metastases continues to be the princi- 
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MIASINTEF 0.39 ± 0.29 6 0.43 ± 0.31 6 0.43 ± 0.32 6 

(0.39)   (0.44)   (0.43)   
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pal challenge, limiting the overall effectiveness of current 

models. Enhancing the sensitivity and specificity of these 

models for small lesion detection is crucial, as this would 

lead to significant improvements in diagnostic accuracy and 

clinical   outcomes. Improving sensitivity of small metastases 

will likely require both larger sample sizes and novel network 

architectures or loss functions that focus on lesionwise de- 

tection as currently employed loss functions are optimized 

towards voxelwise performance. 

 
While multiple algorithms have shown promise in accu- 

rately segmenting BMs with high Dice scores (Dikici et al., 

2020, 2022; Charron et al., 2018; Bousabarah et al., 2020), 

a critical limitation remains in their ability to detect very 
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Figure 7: BraTS-METS 2023 boxplots of tumor core Dice scores (A) and 95% Hausdorff distance (HD95) (B) for all 

participating teams on the BraTS 2023 test set. 
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Figure 8: BraTS-METS 2023 boxplots of whole tumor Dice scores (A) and 95% Hausdorff distance (HD95) (B) for all 

participating teams on the BraTS 2023 test set. 

 

small lesions, i.e., under 5 mm in size. Accurately identifying 

and quantifying every lesion, regardless of size, is paramount 

for effective therapeutic planning and prognosis assessment. 

Fairchild et al. (2024) retrospectively investigated BMs that 

were missed on initial MRIs, despite meeting diagnostic cri- 

teria, but became detected upon subsequent imaging in 

patients undergoing repeat SRS courses (Fairchild et al., 

2024). The radiographic evidence of these metastases could 

often be spotted in earlier scans, suggesting potential for 

improved early detection and treatment planning. This 

issue is particularly pronounced for lesions under 3 mm, 

which may go untreated initially, only to become apparent 

on future imaging (Fairchild et al., 2023). 

The heterogeneity in the appearance of BMs—ranging 

from multiple small lesions to solitary large lesions with vary- 

ing degrees of edema—presents unique challenges in their 

detection and management. Our review of the challenge 
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outcomes shows that Team NVAUTO achieved the highest 

scores, with a mean lesion-wise Dice score of 0.60 to 0.65 

across different tumor entities. While these results place 

them at the forefront, the scores also highlight that there is 

considerable potential for further advancements. The close 

performance of teams like SY and blackbean illustrates the 

competitive nature of the field and emphasizes the need for 

ongoing improvements in precision, especially for smaller 

and more challenging lesions. 

It is essential to highlight how various models devel- 

oped for the 2023 BraTS-METS challenge handled the 

segmentation of these critical, small lesions. Our analysis 

of model performance across different lesion sizes revealed 

significant variations in how these models managed lesion 

detection and characterization. For instance, NVAUTO 

exhibited exceptional performance across all lesion sizes, 

particularly with smaller lesions, surpassing the overall per- 
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Figure 9: Performance metrics across tumor entities—whole 

tumor (WT), tumor core (TC), and enhancing tumor (ET). 

 

 
formance of many other models in the challenge. These 

model performance findings underscore the necessity for 

continuous improvement in the algorithms’ sensitivity to 

tumor size variations, which is crucial for ensuring that all 

lesions, particularly the smaller and potentially more elusive 

ones, are accurately identified and appropriately managed 

in clinical settings. 

In the realm of targeted therapies, such as radiation, 

precision in lesion segmentation directly influences treat- 

ment efficacy, as determining lesion sizes influences SRS 

dose. For example, lesions up to 20 mm may receive up to 

24 Gy, which is adjusted based on the lesion’s diameter to 

prevent severe neurotoxicity (Shaw et al., 2000). Misiden- 

tifying or overlooking even a single small lesion can lead 

to inadequate treatment coverage, potentially resulting in 

suboptimal patient outcomes and increased recurrence rates 

(Kaal et al., 2005; Zindler et al., 2014). This underscores 

the necessity for advancements in diagnostic imaging tech- 

niques and highlights the critical role of machine learning 

technologies in achieving high precision in BMs detection 

and segmentation. In turn, these algorithms have the poten- 

tial to significantly impact treatment response assessments 

and improve workflow efficiencies in clinical practice, 

although significant research on workflows and 

implementation of these algorithms is still needed. 

Accurate detection and precise quantification of lesion 

volumes are critical for determining patient prognosis. Prior 

research has shown that the GTV of metastatic disease 

within the brain significantly impacts patient survival, par- 

ticularly when deciding between equivalent treatment op- 

tions such as surgery and radiotherapy (Routman et al., 

2018; Krist et al., 2022). This precise volume measurement 

helps clinicians choose the most appropriate therapeutic 

approach, ensuring that treatments like SRS or invasive 

surgical interventions are tailored to the patient’s specific 

disease burden. 

The ability to assess the GTV of BMs at diagnosis is 

crucial for patient outcomes. Accurately tracking changes in 

lesion volumes and perilesional edema over time is essential 

for informed decision-making in the post-treatment setting 

(Jalalifar et al., 2023). Treatments for brain metastatic 

disease utilize targeted approaches such as SRS, hypofrac- 

tionated stereotactic radiation therapy (HFSRT), and hip- 

pocampal avoidance whole brain radiotherapy with less 

common use of whole brain radiation therapy due to neu- 

rotoxicity concerns. These techniques are particularly ben- 

eficial for patients with multiple metastases—even over 

50—and rely heavily on precise volumetric localization of 

each metastasis (Simon et al., 2022). Unlike WBRT, which 

uses a 2D plan and does not require detailed localization, 

SRS and HFSRT involve complex 3D planning to accu- 

rately target each lesion. Furthermore, the dynamic nature 

of these metastases—with some increasing in size tran- 

siently before decreasing or resolving, and others possibly 

representing radiation necrosis or recurrence—underscores 

the necessity for reliable monitoring of metastasis sizes in 

relation to treatment timing (Wang et al., 2023a). This 

ongoing surveillance of the contrast enhancing component 

and peri-tumoral edema is vital to differentiate between 

active disease and treatment effects, thereby guiding the 

adjustment of therapeutic strategies (Kaur et al., 2023; 

Jekel et al., 2022a). 

A significant challenge in creating large open science 

datasets involves safeguarding patient privacy and securing 
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Figure 10: BraTS-METS 2023 plot of cumulative average of (A) Dice scores, (B) 95% Hausdorff distance (HD95), and 

(C) lesion detection rate as a function of increasing lesion volume. 

 

sensitive data (Vahdati et al., 2024; Shaw et al., 2024; Wang 

et al., 2024; Gichoya et al., 2023; Davis et al., 2024). This 

can be addressed by establishing robust security measures, 

such as data de-identification using skull and face stripping 

from the MRI scan to remove facial features. Moreover, 

fostering a culture of sharing and collaboration is essential 

for the broad applicability of these algorithms across dif- 

ferent institutions. It is vital to balance promoting open 

science with maintaining patient safety, as this balance will 

drive future advancements in medical image analysis. This 

focus on open science not only broadens access to data but 

also introduces challenges in data handling and annotation, 

particularly for complex cases like BMs. 

In the 2023 inaugural BraTS-METS challenge, a sig- 
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nificant hurdle was the preparation of BMs datasets with 

expert-approved lesion annotations. Unlike other brain tu- 

mors such as glioblastomas or meningiomas, BMs display 

significant phenotypic variability and are often characterized 

by the presence of multiple synchronous lesions. This vari- 

ability and multiplicity greatly complicate the annotation 

process, extending the time required from a few minutes to 

several hours depending on the number and complexity of 

lesions. 

To address this, we introduced an innovative 

educa- tional approach to annotation that not only 

facilitates the development of high-quality annotated 

datasets but also serves as a learning platform for 

annotators. This strategy involves a comprehensive 

educational series on BM imag- 
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ing, basic MRI physics, and the principles of open science. 

This approach emphasizes deliberate learning (Mitchell and 

Boyer, 2020), where student annotators engage deeply with 

the material through practical experience, reinforced by 

weekly hands-on sessions with experts in brain tumor imag- 

ing and a structured curriculum. This method not only 

accelerates the learning curve but also ingrains a thorough 

comprehension of diverse BM presentations, turning the 

annotation process into a valuable educational experience 

and creating a rich training resource for future professionals. 

Additionally, the curriculum includes detailed discussions 

on various brain abnormalities such as microvascular white 

matter damage, microbleeds, and different stages of hemor- 

rhage, further enriching their understanding and capabilities 

in annotating complex imaging datasets. 

While our approach faced challenges due to the hetero- 

geneity of the contributed datasets, this diversity is reflective 

of real-world clinical environments where algorithms must 

perform effectively across a wide range of data variations. 

Many cases were excluded from the analysis due to resec- 

tion cavities, post-treatment changes, or the absence of 

brain parenchymal metastases. Inadequate skull stripping 

sometimes led to the inadvertent removal of metastases or 

failure to detect them, complicating accurate data interpre- 

tation. Furthermore, skull stripping can make it difficult 

to describe and differentiate dural-based lesions, such as 

metastases and meningiomas, and limits the evaluation of 

osseous metastases to the calvarium. 

Another source of heterogeneity was due to differences in 

data acquisition, patient motion, protocols, slice thickness, 

and contrast injection timing that can lead to misregis- 

tration of images on different sequences. Particularly, the 

impact of slice thickness on lesion detectability is crucial, 

especially when targeting subcentimeter metastases. For 

example, the RANO high grade glioma criteria specify lesion 

visibility on two contiguous 5 mm thick slices, underscoring 

the importance of image resolution (Wen et al., 2023). Dur- 

ing our manual segmentation processes, challenges arose 

when matching sequences acquired with varying 2D and 

3D techniques, highlighting disparities in slice thickness 

and voxel sizes. In some instances, the co-registration of 

images appeared misaligned, potentially affecting the pre- 

cision of segmentations. To address some of these issues, 

all images were standardized by registering them to the 

common SRI24 atlas (Rohlfing et al., 2010), promoting 

greater uniformity and adherence to the consensus brain 

tumor imaging protocol. This not only helped to mitigate 

the variations introduced by different imaging protocols but 

also enhanced the general applicability and effectiveness of 

the developed algorithms. These limitations contribute to 

the heterogeneity of data, which can have both positive 

and negative implications. While it can pose challenges 

for developing a uniform segmentation algorithm, it can 

also provide a diverse range of data that can benefit and 

generalize algorithm development. 

While standardization of brain tumor imaging protocols 

(BTIP) have been proposed and are increasingly used in 

clinical trials resulting in improved standardization of image 

acquisition, there is still a significant variability in imaging 

protocols among different imaging practices (Ellingson et al., 

2021, 2015; Kaufmann et al., 2020). Increased implementa- 

tion of standardized imaging protocols ensures consistency in 

the acquisition and interpretation of neuro-oncological 

images, which is crucial for comparing outcomes across 

studies and improving the reliability of lesion measurement 

across different institutions. 

The complexity of annotating ground truth data for 

BMs represents yet another challenge in this year’s BraTS- 

METS challenge, largely due to the typically small size of 

BMs and their frequent occurrence in large numbers within 

a single scan. Annotator fatigue is a notable concern, as the 

meticulous nature of the task can lead to errors or oversight. 

Throughout the annotation process, numerous instances 

necessitated segmentation revisions, as exemplified by the 

initial work done on the Yale BM dataset by a medical 

student, which later required refinement by experienced 

neuroradiologists (Kaur et al., 2023; Cassinelli Petersen 

et al., 2022; Jekel et al., 2022a; Ramakrishnan et al., 2023). 

The need for such revisions became particularly apparent 

when the dataset, along with its segmentations, was in- 

tegrated into the BraTS challenge and adapted to a new 

atlas. This process often revealed previously unnoticed small 

lesions or inaccuracies in the depiction of necrotic tumor 

portions and peritumoral edema on FLAIR images. These 

experiences showcase the imperative of a robust ground 

truth (i.e. reference standard) approach that incorporates 

humans in the loop refinements and utilizes consensus tech- 

niques like STAPLE to ensure the highest data integrity 

(Warfield et al., 2004). The iterative nature of these anno- 

tations underscores the need for multiple rounds of review 

to ensure accuracy and the importance of standardizing 

annotation practices to facilitate more efficient data usage. 

To foster continual improvement and address any discrep- 

ancies, we encourage participants to engage actively with 

the challenge organizers, who are prepared to update and 

refine the segmentation data as necessary to maintain the 

integrity and utility of the dataset. 

 

7. Conclusion 

In the inaugural 2023 BraTS-METS challenge, we have 

addressed both technical and practical challenges in the 

establishment of datasets, high quality reference standard 

annotations, and assessment metrics for the development 

and application of machine learning algorithms for BM seg- 

mentation by challenge participants. The challenge has 
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highlighted the critical need for algorithms capable of de- 

tecting even the smallest lesions, which are often overlooked 

due to human error or obscured by the limitations of imaging 

data. This task is complicated by the necessity of balancing 

the high sensitivity required for detection with the need to 

minimize false positives that can disrupt clinical workflows. 

Previously used CAD in mammography is one of the best 

clinical examples where too many false positives resulted 

in the tool not being used in clinical practice. Therefore, it is 

critical to develop algorithms that minimize false positives. 

In addition, false negatives can result in detrimental effects, 

because missed lesions would not be treated and would 

result in disease progression and potentially further 

metastatic disease. Therefore, it is critical in the field of 

brain metastases to identify algorithms that very low false 

positive and false negative rates. The development of 

refined segmentation algorithms that effectively balance 

sensitivity with specificity is therefore essential. Utilizing 

multi-institutional datasets, the BraTS- METS challenge 

has been instrumental in advancing these developments, 

pushing forward the creation of models that are robust and 

adaptable across varied clinical environments. This approach 

optimizes the precision of these algorithms and potentiates 

their practical applicability, ensuring they can meet the 

nuanced demands of real-world medical prac- tice. Each of 

the top four teams leveraged unique and advanced 

modeling strategies to achieve their high rankings. 

NVAUTO employed MONAI's Auto3DSeg tool with a 

SegResNet foundational model. This U-Net based CNN 

leverages MONAI components and incorporates deep 

supervision for stability using normalized 4-channel 

MRI input. Key to its robustness was extensive data 

augmentation (spatial transformations, intensity 

modifications) and random cropping. Training utilized a 

combination of Dice and focal loss, aggregated across 

deep-supervision levels to mitigate class imbalance, 

optimized by AdamW with cosine annealing and 5-fold 

cross-validation. SY implemented a 3D-TransUNet 

architecture, merging Transformer (ViT) and U-Net 

(nnUNet CNN backbone) strengths for variable tumor 

segmentation. Its pre-trained ViT encoder captured 

global context, while a Transformer decoder with cross-

attention fused global insights with localized U-Net 

features for refined predictions. Training stability was 

achieved using a hybrid cross-entropy/Dice loss, the 

AdamW optimizer with cosine annealing, and gradient 

clipping. Blackbean evaluated the Scalable and 

Transferable UNet (STU-Net), an nnU-Net derivative 

emphasizing scalability (14M-1.4B parameters) and 

transferability. Architectural highlights include encoder 

residual connections and specific upsampling (nearest-

neighbor + 1x1 convolution) for generalization, guided 

by compound scaling. Transferability was boosted by 

pre-training on the TotalSegmentator dataset. It 

adopted nnUNet's default data handling, augmentation, 

and SGD optimization with Nesterov momentum and 

poly learning rate decay. CNMC created an ensemble 

combining the CNN-based nnU-Net and transformer-

based Swin UNETR models. Trained independently via 

5-fold cross-validation with distinct loss functions 

(Dice/CE vs. Dice/Focal) and optimizers (SGD vs. 

AdamW), their outputs were non-linearly transformed 

and merged using label-wise ensembling. Post-

processing removed small regions (<50 voxels) to 

enhance lesion-wise accuracy, with Optuna used for 

hyperparameter tuning. A description of the algorithms 

used by the top four winning teams are shown in Table 

5. 

There are limitations to the 2023 BraTS-METS dataset, 

which include all the images are not in native space and are co-

registed onto a common atlas, therefore the display of the 

images is not the same as in clinical PACS and transfer of 

images outside of this system is not simple. Most of the datasets 

included in 2023 BraTS-METS dataset are from US institutions 

with only a few outside of the US which limits generalizability of 

algorithms that are developed on this data. In addition, current 

dataset does not contain post-operative images of brain 

metastases and does not include segmentation of the resection 

cavity in post-treatment images. There is also lack of 

segmentation of blood products within the images that is 

evidenced as intrinsic T1 hyperintensity or T2 hypointense 

signal. We plan to address these limitations in future challenges 

and provide native space images, recruit post-treatment 

datasets, recruit international datasets, and provide 

segmentations of relevant post-treatment features. As we 

continue to refine these technologies, our goal remains to 

enhance the accuracy of diagnoses and treat- ment 

planning, ultimately improving patient management and 

outcomes in the challenging arena of brain metastasis 

treatment. 
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Doll ár, and Ross Girshick. Masked autoencoders are 

scalable vision learners. In Proceedings of the IEEE/CVF 

conference on computer vision and pattern recognition, 

pages 16000–16009, 2022. 

Fabian Isensee, Marianne Schell, Irada Pflueger, Gianluca 

Brugnara, David Bonekamp, Ulf Neuberger, Antje Wick, 

Heinz-Peter Schlemmer, Sabine Heiland, Wolfgang Wick, 

et al. Automated brain extraction of multisequence mri 

using artificial neural networks. Human brain mapping, 

40(17):4952–4964, 2019. 

Seyed Ali Jalalifar, Hany Soliman, Arjun Sahgal, and Ali 

Sadeghi-Naini. Automatic assessment of stereotactic 

radiation therapy outcome in brain metastasis using lon- 

gitudinal segmentation on serial mri. IEEE Journal of 

Biomedical and Health Informatics, 2023. 

Leon Jekel, Khaled Bousabarah, MingDe Lin, Sara Merkaj, 

Manpreet Kaur, Arman Avesta, Sanjay Aneja, Anto- 

nio Omuro, Veronica Chiang, Bj ö rn Scheffler, et al. 
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Mihály Simon, Judit Papp, Emese Csiki, and Á rp á d  Kovács. 
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Figure 11: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 
 
 
 
 

 

Figure 12: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 13: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 
 
 
 
 

 

Figure 14: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 15: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 
 
 
 
 

 

Figure 16: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 17: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 
 
 
 
 

 

Figure 18: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 19: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 
 
 
 
 

 

Figure 20: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 21: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 
 
 
 
 

 

Figure 22: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 23: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
 
 
 
 

 

 
Figure 24: Supplementary: Examples of Random Voxels Predicted as Non-enhancing tumor core 
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Figure 25: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 26: Supplementary: Pitfall Cases 
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Figure 27: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 28: Supplementary: Pitfall Cases 
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Figure 29: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 30: Supplementary: Pitfall Cases 
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Figure 31: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 32: Supplementary: Pitfall Cases 
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Figure 33: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 34: Supplementary: Pitfall Cases 
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Figure 35: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 36: Supplementary: Pitfall Cases 
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Figure 37: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 38: Supplementary: Pitfall Cases 
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Figure 39: Supplementary: Pitfall Cases 
 
 
 
 
 
 
 
 

 

Figure 40: Supplementary: Pitfall Cases 
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Figure 41: Supplementary: Pitfall Cases 
 

 

 
Figure 42: Supplementary: Pitfall Cases 
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Supplementary Table 1:  
 

Team NVAUTO SY Blackbean CNMC 

Model Name Auto3DSeg (using 
SegResNet) 

3D-TransUNet  STU-Net (Scalable 
and Transferable 
UNet)  

3D nnUNet  3D Swin UNETR  

Architecture U-Net based CNN 
(SegResNet) with 
ResNet blocks, 
deep supervision  

Hybrid 
Transformer & 
U-Net (3D 
nnUNet CNN + 
12-layer ViT)  

Advanced nnU-Net 
with residual 
connections, 
downsampling blocks  

CNN  CNN + ViT  

Key Features MONAI 
components, 
encoder-decoder, 
batch 
normalization  

ViT encoder 
(pre-trained), 
Transformer 
decoder with 
cross-attention  

Scalable (14M-1.4B 
params), transferable 
(pre-trained on 
TotalSegmentator)  

Part of an ensemble, 5-fold cross-
validation  

Input 4-channel MRI 
concatenation, 
normalized  

 nnUNet defaults  Patches 
(128×160×112 
voxels)  

Patches 
(96×96×96 
voxels)  

Loss Function Composite Dice + 
Focal loss, 
aggregated across 
deep-supervision 
levels 

Hybrid pixel-wise 
cross-entropy + 
Dice loss  

nnUNet defaults  Combined Dice + 
Cross-entropy 
loss  

Combined Dice 
+ Focal loss  

Optimizer AdamW (LR: 2e-4, 
cosine annealing)  

AdamW (LR: 1e-
4, cosine 
annealing), 
gradient clipping  

SGD (Nesterov 
momentum: 0.99, 
weight decay: 1e-3), 
poly LR decay  

SGD (Nesterov 
momentum: 0.99, 
weight decay: 3e-
5, LR: 0.01)  

AdamW (LR: 
0.0001, 
momentum: 
0.99, weight 
decay: 3e-5)  

Data Aug. Rotations, scaling, 
flips, intensity 
changes, noise, 
blur  

- Additive brightness, 
gamma correction, 
rotation, scaling, 
mirror, elastic 
deformation  

Additive brightness, gamma 
correction, rotations, scaling, flips, 
elastic deformation 

Patch Size Random crop: 
224×224×144 
pixels  

- Pre-training: 128³, 
BraTS: 160³, Fine-
tuning: nnU-Net auto 
config  

128×160×112 
voxels  

96×96×96 
voxels  

Ensemble No No No Label-wise ensembling & post-
processing  
 

Code Ref. MONAI and 
SegResNetDS  

3D TransUNet 
Model  

STU-NET and 
nnUNetV1  

nnUNet  Swin UNETR  
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