Machine Learning

BA

Journal

M

A Neural Conditional Random Field Model Using Deep Features and
Learnable Functions for End-to-End MRI Prostate Zonal Segmentation

for Biomedical Imaging

Alex Ling Yu Hung 30, Kai Zhao 2®, Kaifeng Pang 23®, Haoxin Zheng 13®, Xiaoxi Du 4, Qi Miao 2, Demetri
Terzopoulos 15, Kyunghyun Sung 2

1 the Computer Science Department, UCLA, Los Angeles, CA, USA

2 the Department of Radiological Sciences, UCLA, Los Angeles, CA, USA
3 the Electrical Engineering Department, UCLA, Los Angeles, CA, USA
4 the Bioengineering Department, UCLA, Los Angeles, CA, USA

5 VoxelCloud, Inc., Los Angeles, CA, USA

Abstract

The automatic segmentation of prostate MRI often produces inconsistent performance because certain image slices are
more difficult to segment than others. In this paper, we show that consistency can be improved using Conditional Random
Fields (CRFs), which refine the segmentation results by considering pixel relationships pairwise. In practice, however,
conventional CRFs are susceptible to noise and MRI intensity shifts due to their use of simple binary potentials involving
spatial distance and intensity difference. Such heuristic potential functions are hardly expressive, limiting the network
from extracting more relevant information and having more stable potential calculations. We propose a novel end-to-end
Neural CRF (NCRF) model that utilizes learnable binary potential functions based on deep image features. Experiments
show that our NCRF is a better model for prostate zonal segmentation than state-of-the-art CRF models. The NCRF
improves segmentation accuracy in both the prostate transition zone and peripheral zone such that segmentation results
are consistent across all the prostate slices, which can improve the performance of downstream tasks such as prostate

cancer detection and segmentation. Our code is available at https://github.com/al3x-0-o-Hung/NCRF.
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1. Introduction

Magnetic Resonance Imaging (MRI) is favored for Prostate
Cancer (PCa) diagnosis before biopsy because of its non-
invasive nature (Appayya et al., 2018). According to the
Prostate Imaging Reporting and Data System (PI-RADS
v2.1) (Turkbey et al., 2019), variations in image appearance
and cancer prevalence necessitate different analyses of PCa
lesions in various prostate zones, specifically the Transi-
tion Zone (TZ) and the Peripheral Zone (PZ). Prostate
zonal information is essential for the diagnosis of PCa, and
accurate prostate zonal segmentation should be explicitly
provided for accurate PCa lesion detection and segmenta-
tion. T2-weighted (T2w) MRI is the most common imaging
modality for segmenting the prostate zones. Unfortunately,

©2025 . License: CC-BY 4.0
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the manual annotation of prostate zones requires specialized
expertise and is extremely time-consuming. Only experts
can accurately delineate the prostate boundaries by carefully
examining the correlations between pixels. Therefore, accu-
rate automatic prostate zonal segmentation algorithms are
needed to improve PCa diagnostics and treatment planning.

With the recent emergence of Deep Learning (DL) ap-
proaches, DL-based methods have become the dominant
methods in medical image segmentation, progressively re-
placing traditional techniques (Bakator and Radosav, 2018;
Litjens et al., 2017). U-Net (Ronneberger et al., 2015)
and its variants, such as U-Net++ (Zhou et al., 2018) and
UTNet (Gao et al., 2021), have become the foundational
DL architectures for most state-of-the-art medical image
segmentation methods across various different applications.

261


https://orcid.org/0000-0002-2664-7430
https://orcid.org/0000-0002-2496-0829
https://orcid.org/0009-0001-7613-6559
https://orcid.org/0000-0002-8081-1940
https://orcid.org/0000-0003-4175-5322
https://github.com/aL3x-O-o-Hung/NCRF
https://doi.org/https://doi.org/10.59275/j.melba.2025-gc4c
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=https://doi.org/10.59275/j.melba.2025-gc4c&domain=pdf&date_stamp=
mailto:alexhung96@ucla.edu

Hung et al., 2025

For prostate segmentation, several DL-based methods have
achieved impressive results (Bardis et al., 2021; Ronneberger
et al., 2015; Liu et al., 2020; Zabihollahy et al., 2019; Aldoj
et al., 2020), but they do not model the inter-pixel relation-
ships, thus performing inconsistently across the different
prostate slices (Nai et al., 2020; Hung et al., 2022).

To refine the segmentation results produced by DL-
based methods by better modeling the relationships be-
tween pixels, Conditional Random fields (CRFs) (Lafferty
et al., 2001), a class of discriminative undirected probabilis-
tic graphical models that represent pixel labels as random
variables forming a Markov Random Field (MRF) when
conditioned on observations, have been employed as a post-
processing step (Krahenbiihl and Koltun, 2011; Kamnitsas
et al., 2017; Dou et al., 2017; Dhawan et al., 2019). Others
have proposed training the segmentation network alongside
the CRF in an end-to-end manner, treating the CRF as a
Recurrent Neural Network (RNN) (Zheng et al., 2015). By
modeling the image as a CRF, where pixels serve as ob-
served variables and labels are unobserved variables, better
segmentation results can be achieved through the explicit
modeling of the dependencies between predictions at dif-
ferent pixels via binary potentials (also termed “pairwise
potentials” in the literature).

Typical CRFs, as is used in previous works (Zheng et al.,
2015; Dhawan et al., 2019; Chen et al., 2022), whose binary
potentials are based on pixel intensity similarities and spatial
distance can, in theory, improve the overall performance and
consistency of MRI prostate zonal segmentation; however,
they can be problematic in practice. Due to the noisy nature,
artifacts, and imaging characteristics of MRI, pixels from
the same tissues or organs may exhibit considerably different
pixel intensities (Krupa and Bekiesinska-Figatowska, 2015).
Additionally, bias field signals can cause a certain region
of a tissue or organ to appear darker than others (Guille-
maud and Brady, 1997). On the other hand, prostate
zonal segmentation can be particularly challenging in zones
with relatively narrow morphology or ambiguous boundaries,
where spatial-distance-based CRFs tend to over-smooth and
lose structural detail. Moreover, current methods use prede-
fined functions for binary potentials, limiting the CRF from
more effectively modeling the relationships between pixels.
Our method is designed to better handle such challenges by
learning data-driven binary potentials, rather than relying
on fixed assumptions about intensity or spatial proximity.

In this paper, we introduce a novel end-to-end Neural
Conditional Random Field (NCRF) that uses no predefined
functions or features for binary potentials; i.e., all the fea-
tures and functions to calculate the potentials are learned.
Using learnable functions and deep features to calculate the
binary potentials, which is the main novelty of this work, en-
ables the NCRF to autonomously determine what features
and positional information are most relevant to calculating
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binary potentials while allowing more expressive functions
to model the relationships between pixels. In this work, the
NCRF is applied in 2D prostate MR image analysis, which
is a unique application of CRF-based methods. The main
contributions of our work are as follows:

1. We propose a novel end-to-end NCRF using both learn-
able functions and deep features to calculate binary poten-
tials, enhancing the modeling of inter-pixel relationships.

2. We show that our NCRF achieves great 2D prostate
zonal segmentation performance on Internal Prostate
and Prostate158 (Adams et al., 2022) as well as on
whole prostate segmentation on Promisel2 (Litjens et al.,
2014b), using as backbones both a fully convolutional net-
work, nnU-Net (Isensee et al., 2018), and a transformer
network, U-Net Transformer (Petit et al., 2021).

3. We show that our NCRF yields more consistent perfor-
mance across all prostate parts—i.e., the apex, mid-gland,
and base—by outperforming all competing methods in
each of these regions in both TZ and PZ segmentation.

4. We demonstrate that the prostate zonal segmentation
produced by our NCRF enables superior performance in
downstream tasks, such as prostate cancer detection and
segmentation, compared to competing methods.

2. Related Work

2.1 DL-Based Medical Image Segmentation

U-Net (Ronneberger et al., 2015) revolutionized medical
image segmentation by employing an encoder-decoder Fully
Convolutional Network (FCN) architecture. To further en-
hance segmentation performance, other researchers built
upon U-Net, proposing similar encoder-decoder architec-
tures, like U-Net++ (Zhou et al., 2018), nnU-Net (Isensee
et al.,, 2018), and MSU-Net (Su et al., 2021). With atten-
tion mechanisms and transformer models (Vaswani et al.,
2017) emerging in mainstream computer vision, medical
image segmentation models have been proposed based on
these architectures. MedT (Valanarasu et al., 2021) em-
ployed an axial attention mechanism in conjunction with a
Local-Global (LoGo) training methodology. U-Net Trans-
former (Petit et al., 2021) incorporated self-attention and
cross-attention mechanisms at the skip connections in U-
Net. TNet (Gao et al., 2021) included not only attention
modules but also full transformer blocks at the skip connec-
tions. CoTr (Xie et al., 2021) instead input the concatena-
tion of all the feature maps from skip connections to a trans-
former block to produce the segmentation output. Swin
Transformer (Liu et al., 2021) used a shift window between
consecutive self-attention layers, rather than a fixed-size
window like Vision Transformer (ViT) (Dosovitskiy et al.,
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2020). UNETR (Hatamizadeh et al., 2022) reformulated
3D segmentation as a 1D sequence-to-sequence prediction
using a transformer model.

2.2 Image Segmentation With CRFs

The CRF was first proposed to segment and label sequence
data with a graphical model (Lafferty et al., 2001). At first,
most research focused on modeling the regional pixel or
superpixel correlations with locally-connected CRFs (Shot-
ton et al., 2009; Fulkerson et al., 2009; Triggs and Ver-
beek, 2007). To better model the global dependencies,
Krahenbiihl and Koltun (2011) considered fully connected
CRFs defined on all the pixels in the image. As DL has
increased in popularity, CRFs have also been widely adopted
in medical image segmentation as a post-processing tech-
nique following an FCN in both natural image and medical
image segmentation (Kamnitsas et al., 2017; Dou et al.,
2017; Dhawan et al., 2019). Kamnitsas et al. (2017) used a
fully connected CRF as a post-processing technique to their
proposed dual pathway network for brain lesion segmenta-
tion. Dou et al. (2017) refined their segmentation output
with a CRF. However, using the CRF as a post-processing
technique does not allow end-to-end learning, limiting the
network from adjusting its output to the CRF. Zheng et al.
(2015) treated the CRF as an RNN, enabling end-to-end
training of the entire CNN-CRF pipeline so that the network
can better adapt to the CRF, resulting in improved overall
performance. The same technique was applied in medical
image segmentation and performed well on different organs
and modalities (Xu et al., 2018; Thanh et al., 2021; Li
et al., 2021). Although this has been shown to be effective
in certain applications, these CRFs rely on spatial distance
and differences in intensities between pixels. These heuris-
tics make the method less generalizable to images from
different patients and sources. Chen et al. (2022) proposed
a posterior-CRF that, instead of using pixel intensities for
the CRF binary potentials, makes use of deep features,
increasing the robustness of the model.

2.3 MRI Prostate Zonal Segmentation

For MRI prostate zonal segmentation, Bardis et al. (2021)
applied the U-Net to T2w images. Liu et al. (2020) en-
hanced DeepLabV3+ (Chen et al., 2018) with a Spatial
Attentive Module (SAM) and modeled the epistemic un-
certainty using dropout. Cuocolo et al. (2021) concluded
that ENet (Paszke et al., 2016) outperforms U-Net and
ERFNet (Romera et al., 2017) in MRI prostate zonal seg-
mentation. Zabihollahy et al. (2019) segmented the TZ and
PZ with two separate networks and refined the results with
post-processing. Aldoj et al. (2020) came to the conclusion
that Dense-2 U-Net was the best 2D DL model for prostate
zonal segmentation on ProstateX dataset (Litjens et al.,

2014a). Hung et al. (2022, 2024) used the information from
other slices to guide the segmentation of the current slice
via cross-slice attention mechanisms. Ren et al. (2023) ap-
plied a transformer encoder and decoder framework to MRI
prostate zonal segmentation. CCT-U-Net (Yan et al., 2023),
which was based on a convolution coupled transformer, was
designed to retain edge details and better extract local
features while capturing the long-term correlation between
pixels for zonal segmentation.

3. Methods

3.1 Overview

Our method consists of three phases. In phase I, deep
features F' € RH*WXC are extracted from the input image
I of height H and width W, where C is the number of
features per pixel. In phase Il, the F' are used to compute
both the unary potentials v, and binary potentials v, by
learnable functions for the NCRF. In phase Ill, approximate
mean-field inference (Jordan et al., 1999; Zheng et al.,
2015) is utilized to calculate the predicted segmentation
distribution ) based on the potentials. Fig. 1 illustrates
the pipeline, and more details about the implementation
of each phase are found in Section 3.3. The remainder of
this section is organized as follows: Section 3.2 details how
NCRFs work and how they differ from traditional CRFs; Sec-
tion 3.3 describes the parameterization and implementation
of NCRFs; Section 3.4 outlines how mean-field inference
works on NCRFs.

3.2 Neural Conditional Random Field

CRFs are a class of discriminative undirected probabilistic
graphical models that represent pixel labels as random
variables forming a Markov Random Field (MRF) when
conditioned on the observations. In image segmentation,
the observations are typically the pixel intensities, but in
our NCRF, they are the deep features F'.

Let X;;, for 0 < ¢ < H, 0 < j < W, be the
random variable associated with pixel (i,7) representing
the label, which can take any value from the label set
L=1{0,1,2,..., K —1}, where K is the number of classes.
Given a graph G = (V, E) with set of nodes V' = {X ;}
and set of edges F, as well as observations O, a CRF can
be modeled by a Gibbs distribution

P(X = 10) = S e (<£@O). (1)
where Z(O) is the partition function and the Gibbs energy
is

E@]0) =Y duleiglO)+ >

i,J ((&9),(#",3"))€E

¢b(xi,j7 xi’,j/ ‘O)
(2)
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Figure 1: The NCRF pipeline. The shaded and unshaded nodes denote the labels and observations, respectively, while
the purple and cyan lines denote unary and binary potentials, respectively, in the graphical model. The blue arrows
indicate learnable functions. The deep features are extracted in Phase |. The deep features are then used to calculate

the unary and binary potentials through learnable functions.

mean-field inference.

Given observation O, the unary potentials v, (z; ;|O) de-
scribe the cost of pixel (7, j) having label z; ; and the binary
potentials vy (x; j, i j|O) measure the cost of pixel (4, j)
having label z; j while pixel (i, ;") has label z; j:.

Traditionally, the CRF is constructed as a fully con-
nected CRF, where edges exist between every pixel (Lafferty
et al., 2001; Dhawan et al., 2019; Zheng et al., 2015).
However, full connectivity, which significantly increases
computational and memory demands, may not be necessary,
as the labels of pixels that are far apart generally have
minimal impact on each other. Any dependencies can typ-
ically be captured implicitly through the joint probability
distribution. To balance expressiveness and efficiency, we
construct our NCRF using only the 8 nearest neighbors for
each pixel. This configuration captures both axis-aligned
and diagonal spatial relationships, which are particularly
important for delineating anatomical boundaries that may
not follow strict horizontal or vertical orientations. The
8-connected neighborhood offers a compact yet expressive
graph structure that effectively models local context while
maintaining low computational cost.

Additionally, instead of using a predefined function to
compute the binary potentials, in NCRFs we compute them
as a set of learnable functions implemented by neural net-

264

Finally, the segmentation is computed using approximate

works, parameterized as

Yy 0, (i, xir j1|O)

= fo,(@ij, i jr, 05,01 0, (3, 7), (1", 5));

(3)

i.e., we treat the binary potentials as a function f; g, with
learnable parameters ;. This enables the network to learn
more meaningful functions and deep feature representations.
The unary potentials are also treated as a function with
learnable parameters 6,,:

O) = fuo,(ij,0i;).

(4)

VY0, (Tij

3.3 Parameterization and Network Implementation

In Phase |, deep features F' € RH*WX*C 3re extracted from

the input image I via a neural network fp, parameterized
by 6y, which is the backbone network, i.e. implemented
as a nnU-Net (Isensee et al., 2018) and a U-Net Trans-
former (Petit et al., 2021) in this work. In Phase I, the
deep features I’ are then fed into two separate functions
fu,6, and fp g, for unary and binary potentials, respectively,
and we use a linear layer to compute the unary potential of
each pixel from the corresponding deep features.

The deep features F' are the observations O in com-
puting the binary potentials. First, position information
is incorporated into the function fj g, through positional
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encoding (Vaswani et al., 2017), which has been shown to
be capable of informing deep networks of the positions of
features (Hung et al., 2022; Dosovitskiy et al., 2020). This
is important since CRFs need positional information for op-
timal performance Krahenbiihl and Koltun (2011). We add
the positional encoding PE; ; for pixel (i, j) to the observa-
tion o0; ; at that location to obtain the positionally-encoded

1 / — . . . . 1
observation o; ; = 0;; + PE; j . with

sin(wj) when ¢ = 4k,

cos(wj) when c =4k + 1,
PEijec=1 . .j) (3)

sin(wi) when ¢ =4k + 2,

cos(wi) when ¢ =4k + 3,

where w = exp(4k log(10000)/C), 0 < k < C, and ¢ is the
index of the feature; i.e., the index of the channel. Next, a
Multi-Layer Perceptron (MLP) f, , is used to convert the
new observation o] ; to new deep features

bij = fo,(0; ;) (6)

As these features contain both semantic and positional
information, using separate features for semantic and posi-
tional information is unnecessary (cf., (Lafferty et al., 2001;
Zheng et al., 2015; Chen et al., 2022)). Therefore, the
binary potential between pixel (7, j) taking label z; ; and its
neighbor (i, j') taking label z; j: is calculated as a function
of only the classes x;; and z; j» as well as the new deep
features ¢; j and ¢y j:

Vo(wi 5, Tir j1|O) = fo, | (Tig, Tir jr, big, Pir j)s

where

(7)

(8)

is implemented as the exponential of another function gg, ,
which takes in the difference d(¢; j, ¢i /) between ¢; ; and
¢ ;o and generates K x K matrix

M = exp (g0, (d(6;, 65.7)) ) (9)

representing the binary potentials between different classes.

f95,1 ($’i,ja T gy ¢’i,ja ¢i’,j’) = Mzi,j,x-/ )

1]

3.4 Approximate Mean-Field Inference

After calculating the unary and binary potentials, an ap-
proximate mean-field inference process calculates the final
output probabilities for each class. Algorithm 1, provides
an overview of this process, where () denotes the segmen-
tation probability distribution that approximates the true
distribution P, while IV is the total number of iterations
and Z is the partition function.

During the initialization step, we first initialize @ with
the unary potentials ,:

Q « — exp(—v).

y (10)

which is essentially equivalent to applying a softmax function
over —)y, across all the labels at every pixel.

During the message passing step, we compute an up-
dated pseudo-potential 1) based on the binary potential 1,
and Q:

W (2i40)
“ > Yo Welig e y|0)Qziryr), (11)

((3,9),(#,3"))€E 0<zy <K

where the compatibility of nearby labels and the probabilities
of pixels being from certain classes at different locations
are considered.

Finally, we update the approximate probability distribu-
tion

Q & exp(—), (12)

by adding the unary potential 4, to the pseudo-potential
(G N
Y=y + 9.

We apply these steps for IV iterations to obtain the final
output ) of the NCRF model.

(13)

4. Experiments

4.1 Datasets
4.1.1 Internal Prostate

The images from this private dataset are acquired by 3-Tesla
MRI scanners at a single academic institution. The dataset
comprises 296 patients, with 238, 29, and 29 patients in the
training, validation, and test sets, respectively. The dataset
includes only T2w MR scans with an in-plane resolution of
0.625 mm? and a through-plane resolution of 3mm. The
images are centrally cropped from 320 x 320 to 128 x 128.
Clinical experts manually annotated the prostate TZ and
PZ as ground truths.

4.1.2 Prostatel58

Prostate158 (Adams et al., 2022) is a curated dataset of bi-
parametric 3-Tesla prostate MRI. The slice thickness of the
T2w images is 3mm and the in-plane resolution is 0.47 mm.
We resized the images from 270 x 270 to 180 x 180 and
retained the center 128 x 128 for training and testing. The
dataset is split into 139 images for training and 19 images
for testing. The dataset was annotated by two different
readers, and when annotations by both readers are available
for a subject, we utilize the annotation by reader 1. For
the downstream tasks of PCa detection and segmentation,
we utilized T2w, Diffusion-Weighted Images (DWI), and
Apparent Diffusion Coefficient (ADC) maps. PCa lesions
were annotated in regions where the PI-RADS score was
four or above.
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Algorithm 1 NCRF approximate mean-field inference process

Input: unary potentials 1, and binary potentials
Output: segmentation probability distribution Q

1. Q + % exp(—thy)

2: forn<0to N —1do

3: for every position (7, ) do

> initialize Q

> message passing

> add unary potential
> update @)

4 for every possible label z; ; do

5: (i 510) = (i), (,5)eB 20<ay < Po(Tig, Tir jr|O) Q@ jr)
6: end for

7 end for

8 Pyt

0: Q + 5 exp(—)

10: end for

4.1.3 Promisel?

Promise12 (Litjens et al., 2014b) is a T2w MR image
dataset, comprising 80 MRI cases from 4 different imaging
centers, with 50 cases for training and 30 cases for testing.
We randomly select 10 cases as validation set and leave the
rest 40 cases for model training. Whole-prostate segmenta-
tion annotation was performed by experienced readers, and
all annotations were performed on a slice-by-slice basis.

4.2 Implementation Details and Evaluation Metrics
4.2.1 Backbone Implementation

To show the versatility of our NCRF, we employed an FCN
nnU-Net (Isensee et al., 2018) and a U-Net Transformer (Pe-
tit et al., 2021) as backbone networks. The base number of
filters is 64 for all the networks, and the number of filters
doubles at each layer. The decoder is the exact opposite of
the encoder.

4.2.2 State-of-the-Art Implementation

We compared the prostate zonal segmentation performance
of our NCRF-based segmentation models with that of other
popular methods; specifically, DeepLabV3+ (Chen et al.,
2018), Liu et al's (Liu et al., 2020), nnU-Net (Isensee et al.,
2018), U-Net Transformer (Petit et al., 2021), Zabihollahy
et al's (Zabihollahy et al., 2019), CE-Net (Gu et al., 2019),
MSU-Net (Su et al., 2021), and Dense-2 U-Net (Aldoj
et al., 2020). We implemented the competing models per
the specifications in the above cited original papers.

4.2.3 Baseline Implementation

We also compared our NCRF segmentation models against
other CRF-based segmentation models and a non-CRF-
based segmentation baseline that is simply a naive backbone
network. The first baseline, postproc-CRF, is a non-end-
to-end CRF-based model (Dhawan et al., 2019) in which
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the CRF serves to post-process the output of the backbone
network. The second baseline, spatial-CRF, is an end-to-end
CRF-based model whose binary potentials are based purely
on spatial distance. The third baseline, intensity-CRF, is an
end-to-end CRF-based model whose binary potentials are
based on both spatial distance and pixel intensities (Zheng
et al., 2015). The fourth CRF baseline, posterior-CRF, is an
end-to-end CRF-based model with binary potentials based
on spatial distance and posterior probabilities instead of
pixel intensities (Chen et al., 2022).

4.2.4 NCRF Implementation

We used the squared difference between feature maps as
the difference function d(-) in (9), and we set the number
of iterations in the mean-field inference (Algorithm 1) to
N = 5, as increasing N does not significantly improve
results (Krahenbiihl and Koltun, 2011).

4.2.5 Training Details

We included all the slices from the patients in the training
set during training, including slices without TZ and PZ.
We used cross-entropy loss as the loss function in all the
training procedures, and the Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 1 x 10™* and weight
decay regularization (Loshchilov and Hutter, 2018) with
the parameter set to 1 x 107°. For stable training, the
back-propagating gradient is clipped at 0.01 during each
step of the optimization. All the models were trained from
scratch for 200 epochs and the best model was selected
based on the validation set performance.

4.2.6 Image Normalization

To provide inputs to the models, we normalized the images
in the following ways. For the T2w images, the normalized



Neural Conditional Random Field for End-to-End MRI Prostate Zonal Segmentation

intensity of pixel (7, ) on slice k is

Lijk = (Lijk — 1)/o, (14)

where I; ;1 is the un-normalized pixel intensity, and p and
o are the per-patient pixel intensity mean and standard
deviation, respectively. The DWI and ADC maps were
rescaled to [0, 1] as follows:

ji,j,k = (I; jx — min(J))/(max(I) — min([)), (15)

where max and min take the per-patient maximum and
minimum pixel intensities.

4.2.7 Data Augmentation

For the Internal Prostate dataset, only center crop, hor-
izontal flip, and Gamma transform were performed. For
the Prostate158 and Promisel2 datasets, only center crop
and horizontal flip were used. For a fair comparison, the
data augmentation scheme was kept the same across all
the experiments.

4.2.8 Evaluation Metrics

To assess the segmentation results, we used the Dice Simi-
larity Coefficient (DSC), Relative Absolute Volume Differ-
ence (RAVD), and Average Symmetric Surface Distance
(ASSD), and all these metrics were calculated in a 3D
per-patient manner. For experiments involve statistical
testing, Wilcoxon Signed-Rank test is used. For evaluating
the PCa detection performance, the local maxima on the
output probability map were regarded as PCa detection
points, defined as true positives (TP) if they are within
5mm of any PCa ground truth pixels (Cao et al., 2019).
The relationship between model detection sensitivity and
the number of false positive (FP) predictions per patient
was then analyzed.

4.3 Prostate Zonal Segmentation

We first compared the prostate zonal segmentation perfor-
mance of our NCRF-based methods against other popular
methods on both the Internal Prostate and Prostatel58
datasets. In these experiments, statistical test is also per-
formed using Wilcoxon Signed-Rank test. Table 1 and
Table 2 report the results, showing that the NCRF-based
methods outperform the other popular methods. We note
that NCRF-nnU-Net and NCRF-U-Net Trans. are NCRF-
based methods with nnU-Net and U-Net Transformer as
backbones, respectively. In the tables in this section, * and
T indicate that NCRF-nnU-Net and NCRF-U-Net Trans.
is better than the comparing method with statistical sig-
nificance (p < 0.05) respectively. Specifically, on Internal
Prostate, NCRF-nnU-Net is almost always the best per-
former in both TZ and PZ segmentation, and NCRF-U-
Net Trans. is the second best on TZ segmentation. On

Prostatel58, NCRF-U-Net Trans. is almost always the best
performer in both TZ and PZ segmentation, while NCRF-
nnU-Net is the second best performer. The effectiveness
of our NCRF-based models is thus established by their out-
performance of competing 2D prostate zonal segmentation
models on two different datasets.

Furthermore, we compared our NCRF segmentation
model on the Internal Prostate dataset using both nnU-net
and U-Net Transformer as the backbone against existing
CRF-based segmentation models and naive models lacking
CRFs. Table 3 and Table 4 report the quantitative results.
With nnU-Net as the backbone, our NCRF model achieves
top performance in every metric in segmenting both the
TZ and PZ. spatial-CRF performs decently in segmenting
the TZ with the second-best performance in DSC and
RAVD, but the performance in segmenting the PZ is not
as good. Likewise, posterior-CRF has decent performance
in segmenting the PZ, but its performance in segmenting
the TZ is suboptimal. With the U-Net Transformer as the
backbone, our NCRF model still has top performance in
TZ segmentation in every metric while also having good
performance in PZ segmentation overall. intensity-CRF
appears to be the second best-performing method in TZ
segmentation, and non-CRF is the best in PZ segmentation.
Other methods are less consistent across different backbones
and perform differently when segmenting different prostate
zones, but our NCRF is consistently the top-performing
method on Internal Prostate in the segmentation of different
zones across different backbones.

We performed the same comparison on the Prostate158
dataset, and the results are shown in Table 5 and Table 6.
While using nnU-Net backbone, in segmenting the TZ,
our NCRF model performs best while posterior-CRF has
the second best. In segmenting the PZ, our NCRF model
achieves the best DSC, third best RAVD, and second best
ASSD, while non-CRF has the second best DSC and the best
RAVD and ASSD. Although the NCRF model is not the clear
best in segmenting the PZ, it is one of the top 2 methods.
posterior-CRF achieves good results in segmenting the TZ,
but it has subpar performance in segmenting the PZ. non-
CRF appears to have good performance in segmenting the
PZ, but it is only the third best method in segmenting the
TZ. When using the U-Net Transformer backbone, NCRF
has top performance on both TZ and PZ, while non-CRF
being the second. Compared with using nnU-Net backbone,
the trends are similar in PZ segmentation with NCRF being
the best in DSC, non-CRF being the best in RAVD, and
both of them being comparable in ASSD. However, in
TZ segmentation, posterior-CRF performs the second best
while using nnU-Net but only the fourth while using U-Net
Transformer. Our NCRF model is consistently one of the
top 2 methods in segmenting both the TZ and PZ with
both backbone networks on Prostatel58.
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Table 1: Our NCRF-based methods compared against other popular prostate zonal segmentation methods on Internal
Prostate. Red and blue in this and subsequent tables indicate the best and second best results, respectively. For this and
the next table, * indicates statistical significance (p < 0.05) when comparing against NCRF-nnU-Net, and ! indicates
statistical significance when comparing against NCRF-U-Net Trans.

TZ PZ
DSC(%)1TRAVD(%)J ASSD(mm)] DSC(%)1 RAVD(%)J ASSD (mm)]
DeeplLabV3+ 87.8*1 242+t 0.285*f 79.9*T  38.1*f 0.479*f
Liu et al’s 87.3*T  25.6*T 0.292*T 81.3*T  35.9*f 0.455*T
nnU-Net 88.7*t  22.4*t 0.215* 83.4*  34.2* 0.347
U-Net Transformer 89.41 21.21 0.218 84.0 30.8 0.462
Zabihollahy et al's 89.1*T  21.6*f 0.227 81.4*  38.4* 0.640*T
CE-Net 87.5*  25.3* 0.253*T 80.7*  36.1* 0.524*
MSU-Net 88.6*1  22.4*f 0.214* 82.3*  34.1* 0.431*
Dense-2 U-Net 89.2*  22.1*f 0.217* 82.8*T  32.7*f 0.252
NCRF-nnU-Net ~ 90.4 19.4 0.186 85.0 29.6 0.313
NCRF-U-Net Trans.90.1 19.8 0.187 83.8 32.8 0.453

Table 2: Our NCRF-based methods compared against other popular prostate zonal segmentation methods on Prostate158.

TZ PZ
DSC(%)1TRAVD(%)J ASSD(mm), DSC(%)1t RAVD(%), ASSD(mm)..

DeepLabV3+ 87.9*T  24.6* 0.299* 72.4*T 54,9+ 0.781*1
Liu et al.s 85.9*T  28.5*f 0.383*f 71.5*t 531+ 0.713*f
nnU-Net 87.9f  24.1f 0.279 76.11  45.1f 0.534
U-Net Transformer 89.3F  20.6f 0.311* 7671 434t 0.550
Zabihollahy et al's 89.0*T  22.0*f 0.263* 73.8*T 5031 0.830*T
CE-Net 87.0*"  25.1*f 0.352*f 71.8*1 525+ 0.695f
MSU-Net g7.7*t 238 0.306*f 72.8*t 457t 0.606
Dense-2 U-Net 86.0*T  29.2*f 0.364*f 65.2*1  56.8*T 1.038*f
NCRF-nnU-Net  88.4 22.9 0.223 77.2 47.5 0.557
NCRF-U-Net Trans.89.6 20.5 0.223 77.2 44.5 0.533

The rows of T2w images in Fig. 2 are the input images
to be segmented from the Prostatel58 dataset, and in
the second row, grey and white represent the TZ and PZ,
respectively. Other methods fail to accurately delineate the
shape of PZ.

4.4 Whole-Prostate Segmentation

The results of whole-prostate segmentation on Promisel2
using the nnU-Net and U-Net Transformer backbones are
shown in Table 7. With the nnU-Net backbone, the NCRF
model has the best DSC and the second best RAVD, while
intensity-CRF has the second best DSC and spatial-CRF
has the best RAVD. With the U-Net Transformer backbone,
the NCRF model has the best performance in both metrics,
while intensity-CRF performs well in DSC and posterior-
CRF has the second best performance in RAVD. Our NCRF
model consistently performs well in both metrics, while the

268

other methods, including other CRF-based methods and
non-CRF methods, do well only on a single metric. Although
whole-prostate segmentation is a relatively simpler task than
zonal segmentation and all competing methods perform
decently, our NCRF model has the strongest performance
using either of the two backbones, and it is consistently
robust across the different datasets and backbones. The
addition of the NCRF in the segmentation networks does
improve the segmentation performance even on an easier
task, i.e. whole-prostate segmentation.

4.5 Ablation Study

We performed an ablation study using the Internal Prostate
dataset and the nnU-Net backbone. Table 8 reveals that us-
ing only the learnable function does not appreciably improve
performance, whereas using both the learnable function and
the positional encoding yields the best performance. These



Neural Conditional Random Field for End-to-End MRI Prostate Zonal Segmentation

Table 3: NCRF compared against the baseline methods on the Internal Prostate dataset using the nnU-Net backbone.

TZ Pz
DSC(%)1 RAVD(%)] ASSD(mm)] DSC(%)1 RAVD(%){ ASSD(mm)|
non-CRF 88.7 22.4 0.215 83.4 34.2 0.347
postproc-CRF  88.4 22.8 0.213 83.4 33.1 0.323
spatial-CRF 89.1 21.9 0.222 84.4 31.6 0.349
intensity-CRF ~ 88.5 229 0.232 83.9 32.2 0.328
posterior-CRF  88.8 23.8 0.224 84.6 314 0.302
NCRF 90.4 19.4 0.186 85.0 29.6 0.313

Table 4: NCRF compared against the baseline methods on the Internal Prostate dataset using the U-Net Transformer

backbone.
TZ PZ
DSC(%)t RAVD(%)J ASSD(mm)] DSC(%)t RAVD(%)) ASSD(mm){
non-CRF 89.4 21.2 0.218 84.0 30.8 0.462
postproc-CRF  85.6 27.9 0.240 77.2 40.2 0.508
spatial-CRF 89.3 21.5 0.223 83.2 344 0.497
intensity-CRF 89.6 21.1 0.203 83.2 31.0 0.328
posterior-CRF ~ 89.3 21.9 0.219 83.1 33.4 0.514
NCRF 90.1 19.8 0.187 83.8 32.8 0.453

results suggest that the learnable function by itself cannot
sufficiently calculate the binary potentials without positional
information; i.e., the deep features alone do not contain
enough information about the relative positions of the pixels.
Combining the positional encoding and the learnable func-
tion yields the best performance, as better binary potentials
can be calculated based on the deep features along with
the explicit positional information.

4.6 Performance on Different Parts of the Prostate

DL models are notorious for inconsistent segmentation per-
formance across all parts of the prostate (Hung et al., 2022).
Using the Internal Prostate database and the nnU-Net back-
bone, we further compared our NCRF model against com-
peting methods on all three parts of the prostate, with the
convention that the first and last two image slices constitute
the apex and base, respectively, and the remaining slices
are mid-gland slices. Fig. 3 and Table 9 show that the
NCRF model achieves the best TZ segmentation perfor-
mance across the apex, mid-gland, and base, while being
in the top-2 methods in PZ segmentation on all prostate
parts. Although the spatial-CRF and posterior-CRF models
have comparable TZ and PZ segmentation performance
in the mid-gland, there is a larger gap between their per-
formance and the performance of our NCRF model at the
apex and base. Both the spatial-CRF and posterior-CRF
models tend to have significantly worse performance in the

base, even though they perform decently in the apex and
mid-gland. Notably, non-CRF shows slightly higher PZ
segmentation accuracy in the base, though the improve-
ment is not statistically significant and comes at the cost of
substantially lower performance in other regions. Although
both apex and base regions contain thin anatomical struc-
tures, segmenting the PZ in base slices is more challenging
due to increased anatomical variability, smaller PZ size, and
weaker boundary contrast. The base of the prostate also
interfaces with neighboring structures such as the bladder
and seminal vesicles, which have similar intensity profiles
in T2-weighted MRI and may obscure prostate boundaries.
These factors likely reduce the effectiveness of spatial regu-
larization methods in this region. Despite these challenges,
NCRF maintains top-tier performance across all zones and
regions, with particularly strong improvements in TZ seg-
mentation in all slices and PZ segmentation in apex and
mid-gland.

4.7 Downstream PCa Detection and Segmentation

Using the Prostatel58 dataset, we further evaluated the
zonal segmentation performance by utilizing the segmen-
tation results to perform the downstream task of PCa de-
tection and segmentation. A 2D nnU-Net was trained to
perform the PCa analysis, with a 5-channel input of a T2w
image, a DWI, and an ADC map, along with the segmenta-
tion of the TZ and PZ. During training, we use the ground

269



Hung et al., 2025

Table 5: NCRF compared against the baseline methods on the Prostatel158 dataset using the nnU-Net backbone.

TZ Pz
DSC(%)1 RAVD(%)] ASSD(mm)] DSC(%)1 RAVD(%){ ASSD(mm)|
non-CRF 87.9 24.1 0.279 76.1 45.1 0.534
postproc-CRF  84.4 30.8 0.366 65.7 55.0 0.792
spatial-CRF 87.7 25.2 0.244 75.7 46.5 0.573
intensity-CRF ~ 87.1 25.8 0.277 72.7 51.5 0.694
posterior-CRF  88.2 23.7 0.227 74.6 47.8 0.606
NCRF 88.4 22.9 0.223 77.2 47.5 0.557

Table 6: NCRF compared against the baseline methods on the Prostatel58 dataset using the U-Net Transformer

backbone.
TZ PZ
DSC(%)t RAVD(%)J ASSD(mm)] DSC(%)t RAVD(%)) ASSD(mm){
non-CRF 89.3 20.6 0.311 76.7 43 .4 0.550
postproc-CRF  86.1 26.9 0.311 68.1 52.7 0.735
spatial-CRF 88.5 22.0 0.272 75.4 441 0.553
intensity-CRF  89.0 21.6 0.249 75.8 44.6 0.556
posterior-CRF ~ 88.6 22.4 0.278 73.5 47.0 0.611
NCRF 89.6 20.5 0.223 77.2 445 0.533

Table 7: Comparison of the NCRF model against the base-
line models on the Promisel2 dataset for whole prostate
segmentation with nnU-Net and U-Net Transformer as back-
bones.

nnU-Net U-Net Transformer
DSC(%)T RAVD(%)) DSC(%)t RAVD(%)|
non-CRF 87.8 25.0 88.3 23.9
postproc-CRF 86.3 26.1 83.0 30.7
spatial-CRF 87.9 243 88.1 245
intensity-CRF 88.0 24.8 88.4 24.0
posterior-CRF 87.8 24.8 88.3 23.7
NCRF 88.1 24.6 88.4 23.6

truth TZ and PZ segmentation as input to the PCa analysis
network. During inference, we utilized the prostate zonal
segmentation results from different segmentation methods
as input for the PCa analysis model, to evaluate the effec-
tiveness of the prostate zonal segmentation produced by
different models in the downstream task. Figure 4 shows the
pipeline of this experiment on downstream cancer segmen-
tation and detection. The backbone of all the CRF-based
models was the nnU-Net. Table 10 shows that the PCa
detection sensitivity using the zonal masks produced by
the NCRF model is almost always the most accurate, even
better than using the manual annotation in most cases.
Furthermore, the PCa segmentation using the zonal masks
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produced by our NCRF model is much better than the
competing models, while it is worse than the manual anno-
tation of the prostate zones. This confirms the efficacy of
our NCRF model in improving prostate zonal segmentation
performance and its usefulness in downstream tasks.

Qualitative results are shown in Fig. 2. The first row
shows the T2w images that are used as input to both the
prostate zonal segmentation network and cancer analysis
network. The second row shows the prostate zonal seg-
mentation result, and the third and fourth rows show the
ADC maps and DWI with the predicted and the ground
truth lesion delineated. The green boundaries demark the
predicted cancer lesions, and the purple boundaries indi-
cate the ground truth. As the other models are unable to
successfully differentiate between the TZ and PZ, their cor-
responding lesion segmentations are unsatisfactory. Only by
inputting to the PCa segmentation model the zonal masks
produced automatically by the NCRF model or manually
can we get satisfactory PCa segmentation. This further
demonstrates the capability and consistency of our NCRF
model to perform accurate prostate zonal segmentation.

5. Discussion

Our comparison of NCRF-based segmentation models and
other competing prostate zonal segmentation models shows
that the former are generally the top performing models.
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non-CRF spatial-CRF

postproc-CRF

2w

zonal segmentation
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bwi

intensity-CRF posterior-CRF NCRF manual annotation

Figure 2: Qualitative NCRF segmentation results on the Prostatel58 dataset with the nnU-Net backbone. On the ADC
maps and the DWI, purple demarks ground truth PCa lesions and green demarks the predicted PCa lesions. In the
rightmost column of each case, the manual annotation is the ground truth zonal segmentation, while the result on the
ADC map and the DWI is the PCa lesion segmentation with the ground truth zonal segmentation as input.

Table 8: Ablation study using the Internal Prostate dataset and the nnU-Net backbone, where PE and LF denote

positional encoding and learnable function, respectively.

TZ PZ

PE LF DSC(%)T RAVD(%)l ASSD(mm)| DSC(%)t RAVD(%), ASSD(mm)l
88.7 22.4 0.215 83.4 34.2 0.347
v 89.6 21.2 0.197 84.4 31.5 0.326
v 87.5 223 0.228 83.6 33.6 0.361
v v 90.4 19.4 0.186 85.0 29.6 0.313

In particular, according to Table 1 and Table 2 NCRF-
nnU-Net performs better on the Internal Prostate dataset
whereas NCRF-Transformer U-Net performs better on the
Prostatel158 dataset. Although the U-Net Transformer
and Zabihollahy et al's model perform respectably in TZ
segmentation on both datasets, they are not as good in
PZ segmentation. The NCRF-based models perform more
consistently across both TZ and PZ segmentation.

Considering our experimental results when comparing
NCRF with other CRF-based models in Table 3, Table 4
Table 5 and Table 6, postproc-CRF does not perform well
on prostate image analysis in general, while every other
competing method was at least the second-best approach
on at least one occasion. Judging from the qualitative
results, postproc-CRF tends to over-segment the predicted

regions, especially in the PZ. The reason for this may be the
noisy nature of MRI and the irregular shape of the prostate
zones, especially the PZ, confuses the non-learnable post-
processing since it is based purely on image intensity and
spatial location. We have also observed that the other
CRF-based models sometimes cannot outperform their CRF-
lacking counterparts. The reason still stands if the images
are extremely noisy and there is insufficient data from which
the network can learn. Unlike other methods that rely on
predefined functions to compute binary potentials—forcing
the network to use them regardless of their relevance—our
approach allows the network to learn these potentials adap-
tively. If the binary terms are too difficult or unnecessary
to model for a given task, the network can effectively learn
to ignore them. This may be why our method performs
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Figure 3: Comparison of (a) TZ and (b) PZ segmentation of different prostate parts on the Internal Prostate dataset.

Table 9: DSC (%) comparison of the NCRF model against other CRF-based models on Internal Prostate dataset for

prostate zonal segmentation on different prostate parts. *

against NCRF.

indicates statistical significance (p < 0.05) when comparing

TZ Pz

apex mid-gland base apex mid-gland base
non-CRF 73.6* 92.1* 75.5 78.6* 86.1% 72.3
postproc-CRF 72.5* 91.9* 72.9* 78.6* 86.0* 71.0
spatial-CRF 77.1* 92.7 74.3* 80.5% 87.2 62.2
intensity-CRF 78.3 01.8* 75.6* 79.1* 86.7 65.2
posterior-CRF 78.3* 92.1* 75.2* 80.2 87.1 65.3
NCRF 81.9 93.1 81.3 81.5 87.0 71.0

consistently well compared with the baseline methods.

Regarding the whole-prostate segmentation, shown in
Table 7, all methods perform decently, and our NCRF
model achieves only marginal improvement. Perhaps whole-
prostate segmentation need not exploit many relationships
pairwise to attain satisfactory accuracy, and the perfor-
mance upper bound is determined by the ability of the
backbone network. That said, our NCRF model still ex-
hibits the best performance, meaning that even when such
pixel relationships might not be needed, our approach would
not hurt performance.

Our ablation study in Table 8 reveals that positional
information is crucial for zonal segmentation and that our
NCRF model can reach its full potential only when positional
information is provided. Without it, the network cannot
determine the position of each deep feature, resulting in
suboptimal performance.

As is shown in Figure 2, our NCRF model consistently
outperforms the other methods across different prostate
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parts, and by a larger margin in the more challenging apex
and base regions. This is likely due to its improved ability
to model pixel relationships pairwise, resulting in fewer false
positive predictions in difficult slices.

The main limitation of the NCRF is its high memory
consumption during training, restricting it to connections
only to the 8 immediate neighbors for each pixel. Better
memory optimization could enable denser graph connections,
directly modeling longer-range pixel dependencies. Even
though NCRF adds training and inference time to the model,
the time added is not significant. As for training, it takes
about 80 seconds for a normal nnU-Net and 110 seconds
for NCRF-nnU-Net to train 1 epoch on Internal. To infer
the zonal segmentation on Internal, it takes a normal nnU-
Net 13 milliseconds per patient on average, while it takes
NCRF-nnU-Net 20 milliseconds per patient.

Accurate and consistent automatic prostate zonal seg-
mentation is crucial for the localization and staging of
prostate cancer to enable MRI-targeted biopsy planning
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Figure 4: The pipeline of the cancer analysis experiment. The T2w image are first used as the input to the prostate
zonal segmentation and then used as the input to the PCa segmentation network along with the ADC map, DWI and

the zonal segmentation by the first network.

Table 10: Results of downstream PCa detection and segmentation using zonal masks produced by the different models.

PCa Detection

PCa Segmentation

Sensitivity @ FP/Patient(%)1 DSC(%)7T
0.5 1 1.5 2 2.5 3
non-CRF 429 667 762 762 762 81.0 45.1
postproc-CRF 381 524 619 714 714 714 41.6
spatial-CRF 238 714 762 81.0 81.0 81.0 45.1
intensity-CRF 476 620 714 714 762 762 37.7
posterior-CRF 23.8 476 667 809 809 857 41.7
NCRF 38.1 714 762 810 857 857 50.2
manual annotation 524 714 714 762 81.0 81.0 54.8

and guide for further therapy, including radiation, surgery,
and focal ablation (Sonn et al., 2014). Our proposed NCRF
improves the overall prostate zonal segmentation with im-
proved consistency across all the prostate parts. This allows
clinicians and downstream algorithms to make localizing
prostate cancer easy and quick, without the need to man-
ually annotate the prostate zones. The potential clinical
impact of the proposed NCRF is confirmed by the exper-
iment in Section 4.7, where the different segmentation
methods are used in the downstream PCa detection and
segmentation model. The results demonstrate how the
improved prostate zonal segmentation by NCRF can boost
the PCa detection and segmentation accuracy.

Although our proposed NCRF is currently applied within
the scope of 2D prostate zonal segmentation, its design
is inherently flexible and can be extended to 2.5D and 3D
segmentation frameworks. The spatial message passing
and learned pairwise potentials in NCRF, are not limited

to 3D frameworks. For instance, in prostate zonal segmen-
tation, where the resolution across slices is much poorer
than that within slices, a 3D NCRF can be constructed by
the 8 immediate neighbors within the slice and 2 immedi-
ate neighbors from nearby slices. In cases involving more
isotropic volumes, a full 3D NCRF could incorporate all 26
immediate neighbors (6 face-connected, 12 edge-connected,
and 8 corner-connected), the anatomical context and res-
olution. This potential extensibility could make NCRF a
more versatile module for incorporating structured spatial
relationships in a wide range of medical image segmentation
applications beyond the 2D domain.

6. Conclusions

We have proposed a novel neural conditional random field
model in which all the features and functions that con-
tribute to calculating the binary potentials in the CRF are
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learned, thereby leveraging pairwise pixel relationships by
learning the importance of features and positional informa-
tion. Extensive experiments across three different prostate
image datasets using two different backbone networks have
demonstrated that our NCRF model can achieve tremen-
dous performance under simple training settings without the
need to tune the network extensively. Additionally, we have
shown that the model performs more consistently across
the apex, mid-gland, and base slices of the prostate. Our
ablation study revealed that each component of the model
contributes to its superior performance. Our experiments
on downstream PCa detection and segmentation demon-
strate how the improved prostate zonal segmentation by
the model can be utilized in a clinical setting. Although our
NCRF model was designed for prostate zonal segmentation
in MRI, it can, in principle, be extended to be applicable to
other organs and imaging modalities.
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