Machine Learning

BA

Journal

for Biomedical Imaging

Robust deformable image registration using synthetic data and transfer
learning

Iris D. Kolenbrander 12®, Matteo Maspero 34®, Josien P.W. Pluim 1

1 IMAG/e Group, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands

2 Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, The Netherlands

3 Computational Imaging Group for MR Diagnostics & Therapy, University Medical Center Utrecht, The Netherlands
4 Department of Radiotherapy,University Medical Center Utrecht, The Netherlands

Abstract

Deep learning models have recently achieved accuracy comparable to traditional iterative methods for deformable
image registration. However, their performance often degrades when test data deviate from the training distribution,
for example due to changes in imaging protocols or subject demographics. While data augmentation can improve
robustness, it may not account for all types of domain shifts, particularly those that are unpredictable. To address
this limitation, recent approaches have explored training on synthetic images with diverse structures and intensities to
promote generalization across modalities and anatomical regions. Nevertheless, the robustness of such models to other
types of domain shifts, and their adaptability to specific registration tasks, remains unclear. In this study, we investigate
whether transfer learning can enhance registration model robustness under unforeseen domain shifts. We first train a
generic, weakly supervised model on synthetic data, then fine-tune it on target domains. Specifically, we examine: (1)
how design factors in synthetic data influence cross-domain performance (e.g., brain MRI vs. lung CT); (2) the efficiency
of fine-tuning compared to training from scratch; and (3) the robustness of fine-tuned models on previously unseen
datasets. Our results show that the fine-tuned model achieved the most consistent registration performance across
datasets. It also required fewer training epochs and less target domain data than from-scratch training. Furthermore,
while the use of random geometric shapes and dynamic contrast in the synthetic data was critical for cross-domain
performance, we found that different target domains may benefit from different synthetic data. These findings support
transfer learning as a promising strategy to improve robustness to diverse domain shifts in deformable image registration.
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1. Introduction

Deformable image registration is crucial in medical image
analysis. It aligns two medical images, one fixed and one
moving, by estimating a nonlinear spatial transformation,
which is often parametrized as the displacement vector field
(DVF). Traditional registration methods update the DVF
iteratively by optimizing an objective function that balances
image similarity and regularization. This process can take
several minutes per image pair.

In contrast, deep learning models can register images
in seconds, making them well-suited for time-critical ap-
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W) Check for updates

plications such as image-guided intervention, surgery, and
adaptive radiotherapy (Terpstra et al., 2021; Chehab et al.,
2023; Kolenbrander et al., 2024). These models are trained
on large datasets of image pairs and once trained, they
can predict the DVF directly in a single forward pass. This
enables fast and accurate registration on new image pairs
(Balakrishnan et al., 2019; Hering et al., 2021; Hoffmann
et al., 2022; Mok et al., 2024).

Despite this advantage, deep learning-based registra-
tion faces a significant challenge in generalizing to unseen
data variations. Differences in imaging protocols, scanner
types, anatomical sites, or populations can introduce dis-
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crepancies that affect registration (Ketcha et al., 2019; Mok
et al., 2024). Addressing these domain shifts is essential
for ensuring its reliable usage in clinical settings.

Data augmentation is often used to address this chal-
lenge (Chlap et al., 2021). Common methods include ge-
ometric transformations, e.g., affine transformations, and
intensity modifications, e.g., gamma transformations, con-
trast adjustments, and noise injection (Terpstra et al., 2021;
de Vos et al., 2024). However, the effectiveness of data
augmentation may diminish when domain shifts are unpre-
dictable because the augmented data may not accurately
represent new, unseen variations. This can lead to subopti-
mal model performance.

Recently, Hoffmann et al. (2022) proposed generating
synthetic training data to improve the robustness of registra-
tion models. Their approach involved training a model on
synthetic images with diverse structures and intensities to
promote generalization across different MRI contrasts and
anatomical regions, including the heart and brain. While
this method enables models to handle substantial domain
shifts, such as changes in imaging modality, many clinical
scenarios require models that are fine-tuned for specific
registration tasks. In addition, it is unclear whether this
approach improves robustness to other types of domain
shifts, such as variations in scanner types, imaging proto-
cols, image quality, or patient demographics.

This is where transfer learning can be valuable. It
aims to transfer knowledge from a generic model to a
specific domain, producing a model that is both robust
and domain-specific. Typically, this involves pre-training
a model on a source dataset and then fine-tuning it on
a target domain dataset. One of the main advantages
is its reduced dependency on large, diverse, and labeled
datasets from the target domain, a benefit demonstrated
across various medical image analysis tasks (Oliveira and dos
Santos, 2018; Kang and Gwak, 2019; Li et al., 2024). For
instance, models pre-trained on the ImageNet dataset, such
as AlexNet and ResNet, have been successfully applied to
disease classification tasks (Wang et al., 2021; Talo et al.,
2019). In 3D semantic segmentation, where annotated
medical datasets are often scarce, pre-training becomes even
more critical. To address this challenge, Li et al. (2024)
constructed a large, annotated CT dataset for supervised
pre-training. Their findings showed that pre-training on a
related dataset improved performance on the target task and
enabled the model to segment previously unseen structures
and classify diseases more accurately.

Research on transfer learning in deformable image reg-
istration is still limited. Some studies focus on adapting
a model to a single unseen image pair during testing (in-
stance optimization), which improves the registration of
out-of-distribution samples (Ferrante et al., 2018; Guan
et al., 2021; Zhu et al., 2021; Wang et al., 2022; Mok et al.,
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2024). However, this optimization adds around a 30-second
delay to the registration process (Mok et al., 2024; Wang
et al., 2022). Transferring models to entire datasets has
received little attention. One recent effort in this direction
is UniGradlCON (Tian et al., 2024), a universal registration
model that was trained using a composite dataset contain-
ing over 5,000 images from multiple modalities (CT and
MRI) and anatomical regions (lung, knee, brain, and ab-
domen). As one of the first universal registration models,
UniGradlCON paves the way toward transfer learning. In
this work, we focus on a transfer learning approach that
does not require a large composite dataset of acquired
images for pre-training.

This study investigates whether transfer learning, based
on synthetic data training, can improve the robustness of
deformable image registration models under unforeseen do-
main shifts. Our contributions are threefold: (1) We study
how design factors in the synthetic data influence cross-
domain performance, including different imaging modalities
(CT and MRI) and anatomical regions (lung and brain); (2)
We investigate the efficiency of fine-tuning versus training
from scratch in lung CT registration; (3) We assess the ro-
bustness of fine-tuned models on previously unseen datasets
in lung CT and brain MRI registration. The transfer learn-
ing approach is compared against training from scratch and
data augmentation.

2. Methods

We first describe the deep learning models used in our
study, followed by the transfer learning strategy, including
the pre-training and fine-tuning stages. We then present
the synthetic data used for pre-training and the data used
for fine-tuning and performance evaluations. Finally, we
describe the evaluation metrics and methods used for com-
parison. Our code is available at https://github.com/
iriskolenbrander/robust-DIR.

2.1 Deep learning models

The U-Net architecture is used throughout this study (Ron-
neberger et al., 2015), using a single U-Net to understand
the impact of synthetic data design (Section 3.1), and a
cascaded U-Net in transfer learning experiments (Section
3.2) (Figure 1). The U-Nets predict a displacement vector
field (DVF: ¢) that aligns the moving image to the fixed
image. The DVF is parameterized as a stationary velocity
vector field (Balakrishnan et al., 2019), which represents a
constant-in-time (stationary) flow and produces a smooth
and invertible DVF when integrated. This integration uses
the five-step scaling and squaring method (Arsigny et al.,
2006).
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2.1.1 Single U-Net:

The U-Net has four convolution blocks in the encoder (256
filters) and three in the decoder (256), skip connections,
and a registration head consisting of four convolution blocks
(256) (Figure 1). Each convolution block contains a 3D con-
volution with a kernel size of three, followed by LeakyRelU
activation (slope=-0.2). The registration head produces a
stationary velocity field at half the resolution of the input
images. This vector field is integrated and resampled to
obtain the full-resolution DVF.

2.1.2 Cascaded U-Net:

The cascaded U-Net contains two U-Nets with configura-
tions similar to the single U-Net. The first U-Net (64 filters)
operates at half the image resolution, and a second U-Net
(128 filters) operates at full image resolution (Figure 1).
Its output is upsampled to a full-resolution DVF, which
deforms the input to the second U-Net. The two predicted
DVFs are combined into a single DVF. Several studies have
shown that cascaded models improve registration compared
to single networks (Mok and Chung, 2020; Jiang et al.,
2020; Hering et al., 2021).

2.2 Transfer learning

The transfer learning approach involves pre-training deep
learning registration models on synthetic data, followed by
fine-tuning on a specific target dataset. Both stages used
weak supervision.

2.2.1 Model pre-training

The model is first trained on synthetic data, comprising gray
value moving and fixed images (M, F) and corresponding
segmentation labels (Lys, Lr) (section 2.3.1 details the
synthetic data). The segmentation labels are used solely
during training and are not required as input to the model
at inference. The objective function (£) includes a Dice loss
term (Lpjce) that maximizes the overlap between the fixed
and deformed moving segmentation labels (Equation 1).
It also includes a regularization term (L,c4), which is the
L2-norm of the DVF gradients scaled by the regularization
weight ().

L = Lpice(LF, Ly, d) + Aﬁreg(ﬁb): (1)

Let L% and ng be the one-hot representations of the
label j in the fixed and moving label maps L and Lj;. The
Dice loss is the average Dice loss of all labels j € [1, J]:

ESNU TV RRES,
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Here, ® denotes voxel-wise multiplication, |Lj] represents
the sum of all non-zero voxels in the label map, Vo(p) =

(a%(ip), 8%(25]”) ad)(( )) and P is the number of voxels in the
DVF.

2.2.2 Model fine-tuning

The model is fine-tuned by further training it on the lung
CT training set (detailed in section 2.3.2) or the brain MRI
training set (detailed in section 2.3.3) using the same train-
ing procedure described in Section 2.2.1. The objective
function is similar to equation 1 with the Dice loss maxi-
mizing the overlap of the target domain segmentations, i.e.,
segmentations of the pulmonary veins and arteries for lung
CT fine-tuning and brain structure segmentations for brain
MRI fine-tuning.

2.2.3 Training details

We train the models in 1000 epochs (unless otherwise
specified) using the Adam optimizer and a batch size of
one on a PC with an Nvidia A100-SXM4 40GB vRAM
GPU. Model convergence is verified based on the average
validation Dice: when the change in Dice running average
(averaged over three epochs) was below 0.0001 for four
consecutive epochs. We tune the learning rate and the
regularization weight in 17 validation runs with a random
search in the ranges [0.00005-0.001] and [0-10], finding the
optimal learning rate of 0.0001 and regularization weight
of 0.75.

2.3 Data
2.3.1 Synthetic data

Based on the method of Hoffmann et al. (2022), we generate
images with random structures and intensities (Figure 2).
We begin with generating random label maps. Then, each
label map is deformed using a pair of deformations, ¢ and
o1, to form a pair of fixed and moving label maps. Finally,
these are turned into gray value images.

Step 1. Label map generation: We generate 100 3D
label maps with a size of 192 x 192 x 192. Each label map
contains 26 (J) labels that can occur multiple times within
a single map. The maps are saved to disk for reuse in each
epoch. The label maps contain shapes of random geometry,
rectangles, or spheres (Figure 2). To study the impact
of shape size, we also created three separate datasets of
random geometry with small, medium and large random
shapes. The methods to create the different label maps are
detailed in Appendix A.
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Figure 1: Neural network architectures: A single U-Net was used for experiments involving synthetic data design, while a
cascaded U-Net (two U-Nets) was used in experiments focused on transfer learning. Each U-Net has C channels (filters)
in each convolutional block. The ) operation indicates applying the DVF (¢) to an image.

Step 2. Deformation generation: Two DVFs, ¢ and
¢, are generated using the method of Hoffmann et al.
(2022) to deform each label map, thereby obtaining the
fixed and moving label maps, respectively. Each DVF starts
as three grids with sizes s x s x s x 3 for s € [24,12,6]. The
grid values are sampled from N(O,aé) with o4 sampled
between 0 and 3. The three grids are upsampled to full-
sized stationary velocity fields through linear interpolation,
which are summed and integrated through scaling and
squaring (step=5) to produce the DVF. Each epoch, a new
set of ¢ and ¢,s deformations is generated on the fly
to increase the variety of synthetic data. Although both
¢r and ¢ps are individually diffeomorphic, the composed
transformation between the fixed and moving labels is not
necessarily diffeomorphic.

Step 3. Image generation: A 3D gray value image is
created from each fixed and moving label map. We assign
to each label j in the label map a Gaussian distribution
N(uj,ajz) from which the image intensities are sampled
independently. For each label j € [1,J], p; and o; are
sampled from uniform distributions ¢(a,,, b,) and U (as, by).
The images are generated on the fly for each training epoch
by sampling new values for p; and o; for each image pair.
We study three configurations for setting 1; and o; (Figure

2):

» Static: The same p; and o values generate the fixed
and moving images within an image pair, resulting in
similar fixed and moving image appearances. Here, a,
and b, are set to 0.1 and 1.0, and a, and b, to 0.02
and 0.1. We expect this configuration to be optimal for
mono-modal registration.

Dynamic: Different 1; and o values generate the fixed
and moving images within an image pair, resulting in
different fixed and moving image appearances. Similar
to the static configuration, a, and b, are set to 0.1 and
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1.0, and a, and b, to 0.02 and 0.1. We expect this
configuration to be critical for multi-modal registration.

Dynamic*: Similar to the dynamic configuration, but
with larger o; values sampled from U(ae, by) with a,
0.05 and b, = 0.2. This configuration results in more uni-
formly distributed intensities with fewer and less intense
peaks and allows us to study the effect of the distribu-
tion on the registration. This is important because we
observed that acquired images of various types (including
CT and MR) naturally have flatter intensity distributions
than those generated with dynamic contrast.

Unlike Hoffmann et al. (2022), we do not include image
corruptions such as synthetic bias fields and contrast aug-
mentation to generalize the process beyond MRI, as our
experiments also include other image types. We also remove
the simulated partial volume effects, further simplifying the
generation of images. We verified that removing these
corruptions did not affect the registration (Appendix D.1).

2.32 Lung CT

3D thoracic CTs were obtained from three open-access
datasets: NLST (Team, 2013; Aberle et al., 2011), DIR-
Lab (Castillo et al., 2009a,b), and DIR-Lab-COPDgene
(Castillo et al., 2013). The NLST dataset is used for
training (fine-tuning), validation, and testing. The DIR-
Lab and DIR-Lab-COPDgene datasets are used as hold-out
test sets to evaluate robustness across datasets. These
datasets originated from different sources, and the imaging
parameters varied (Table B.1, Appendix B).

1. NILST: The dataset includes longitudinal pairs of low-
dose CTs of 210 adults at high risk for lung cancer. We
use a dataset version with readily preprocessed images,
which had voxel sizes of 1.5 x 1.5 x 1.5 mm and image
sizes of 224 x 192 x 224 voxels (Learn2Reg, 2023). Fur-
ther preprocessing of the images included cropping to
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Figure 2: Synthetic data: (1) Label maps are generated containing structures of different shapes (random geometry,
rectangles, and circles) and sizes (medium, small, and large); (2) A label map is deformed with synthetic DVFs (¢r
and ¢)7) to form a pair of a fixed and a moving label map; (3) The label maps are turned into gray value images
by sampling their intensities from label-specific Gaussian distributions ./\/'(,uj,ajz) for j € [1,J], where p1; and o; are
sampled based on static, dynamic, and dynamic* configurations.

192 x 192 x 192 voxels, clipping the gray value inten-
sities to the range [-1000; 200] Hounsfield Units (HU),
and scaling to the range [-1; 1]. The data is divided
into 170, 20, and 20 image pairs for training, validation,
and testing. The dataset provided automatic segmen-
tations of the lungs, pulmonary veins and pulmonary
arteries, along with matched points within the lungs (ap-
proximately 1000-3500 points per image pair) (Isensee
et al., 2021; Heinrich et al., 2015). Since these points
are matched automatically, we will refer to them as key-
points instead of landmarks. We use the segmentations
for weakly supervised model training and the keypoints
for evaluation.

. DIR-Lab: The dataset contains 4D CTs of 10 adults
treated for thoracic malignancies. Each 4D CT consists
of 10 breathing phases, from which we include the end-
expiration and end-inspiration phases (3D CTs), used as
fixed and moving images, respectively. The images are
resampled to voxel sizes of 1.5 x 1.5 x 1.5 mm, center-
cropped to a standard size of 192 x 192 x 192 voxels,

clipped to the range [-1000; 200] HU, and scaled to
the range [-1; 1]. For evaluation, the dataset provides
300 manually annotated landmark pairs within the lungs.
Rough lung masks were obtained by thresholding below
-250 HU and extracting the largest connected compo-
nent. These masks were used exclusively for iterative
registration (Section 2.4.1).

3. DIR-Lab-COPDgene: The dataset contains paired ex-

piratory (fixed) and inspiratory (moving) breath-hold CTs
of 10 adults with chronic obstructive pulmonary disease.
We applied the same preprocessing steps as for DIR-Lab,
including lung mask extraction used for iterative registra-
tion. As with DIR-Lab, the dataset provides 300 paired
manual landmarks for evaluation.

2.3.3 Brain MRI

The 3D brain MR images from three open-access datasets
were used: The Open Access Series of Imaging Studies
(OASIS) (Marcus et al., 2007; Hoopes et al., 2021), the In-
formation eXtraction from Images (IXI) dataset (IXI, 2024),
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and the paired3T dataset (Chen et al., 2023). OASIS is
used for training (fine-tuning), validation, and testing. The
other two datasets are used as hold-out test sets to evaluate
robustness across datasets or to evaluate the synthetic data
design.

1. OASIS (T1-weighted MRI): We used a readily prepro-
cessed dataset (Marcus et al., 2007; Hoopes et al., 2021)
with T1l-weighted MRIs acquired at 1.5 Tesla of 414
subjects, including healthy adults and adults diagnosed
with mild to moderate Alzheimer's disease. The images
have a size of 180 x 192 x 180 after skull-stripping, affine
alignment to a standard atlas (FreeSurfer (Fischl, 2012)),
resampling of voxel sizes to 1 x 1 x 1 mm, cropping, and
gray value scaling to the range [-1; 1]. We zero-pad these
images to 192 x 192 x 192 voxels. The data is divided
into 312 images for training, and 51 images each for
validation and testing. In the training set, each subject
is used as a moving image and registered to a randomly
selected fixed image, creating 312 image pairs. For vali-
dation and testing, one randomly selected subject serves
as the fixed image, and all other subjects are registered
to it, creating 50 image pairs in each set.

2. IXI (T1-weighted MRI): We used 78 T1-weighted MRIs
of healthy adults, which were acquired at 1.5 or 3 Tesla
and collected from three different hospitals (IXI, 2024).
The images range in size from 130 — 150 x 256 x 256
with voxel sizes of 1.2 x 0.94 x 0.94. We preprocessed
the images, including skull stripping, affine alignment to
a standard atlas (FreeSurfer (Fischl, 2012)), resampling
of voxel sizes to 1 x 1 x 1 mm, cropping to 192 x 192 x
192 voxels, and gray value scaling to the range [-1; 1].
We included 26 scans from each hospital, from which
we randomly selected one subject as the fixed image,
to which all other scans from the same hospital were
registered, resulting in 75 image pairs.

3. Paired3T (T1 and T2-weighted MRI): The dataset
contains paired T1 and T2-weighted MRIs of 10 healthy
adults (without reported history of neurological or psy-
chiatric diseases), which were acquired at 3 Tesla (Chen
et al., 2023). The purpose of this dataset was two-fold:
1) To evaluate multi-modal registration (T1 to T2) in
Section 3.1; 2) To perform mono-modal registration (T1
to T1) to evaluate cross-dataset robustness in Section
3.2.2. We perform inter-subject registration, using all
unique subject combinations, resulting in 45 image pairs
for evaluation. In Section 3.1, we obtain the from-scratch
model by performing a three-fold cross-validation with
training sets of 6 subjects each, where each subject serves
as the fixed image once and all other subjects (moving
images) are registered to it, resulting in 30 training image
pairs.
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The provided images have a size of 256 x 304 x 308 and
voxel sizes of 0.65 x 0.65 x 0.65 after face information
removal and rigid alignment (T1 to T2). We performed
skull-stripping, affine alignment of the moving images to
the fixed image (Elastix (Klein et al., 2009)), resampling
of voxel sizes to 1 x 1 x 1 mm, cropping to 192 x 192 x 192
voxels, and gray value scaling to the range [-1; 1].

All datasets provide semi-automatic labels for 35 cortical
and subcortical brain structures, which were obtained using
FreeSurfer (Fischl, 2012). We use a selection of structures
for validation, which include the cerebral cortex, brainstem,
lateral ventricle, and hippocampus labels, representing vary-
ing structure sizes and shapes and different brain areas.

2.3.4 Synthetic deformation model

We augment the training data on the fly during fine-tuning
to increase the data diversity and ensure a good baseline
registration. Specifically, we generate synthetic deforma-
tions to create virtual new subjects with augmented brain
MRIs or lung CTs. There is a 0.5 probability of generating
a new subject; otherwise, we use the original real subject.

Each on-the-fly generated subject consists of a synthetic
fixed—moving image pair. The synthetic moving image is
created by deforming the original moving image with ¢,
a full-resolution DVF of size 192 x 192 x 192 x 3 voxels,
obtained by upsampling a coarse 6 x 6 x 6 x 3 grid with
displacement values between -4 and 4 voxels via third-
order B-spline interpolation. The synthetic fixed image is
created through ¢psor, which models typical anatomical
motion (e.g., expiratory breathing motion in lung CT or
inter-patient variation in brain MRI) based on a statistical
deformation model from Corral Acero et al. (2019) (detailed
in Appendix C). The combined DVF of ¢4,y and ¢arar
deforms the original moving image to obtain the synthetic
fixed image.

2.4 Evaluation
2.4.1 Comparisons

We compared transfer learning with training from scratch,
both with and without data augmentation, as well as with
baseline iterative registration.

From-scratch training:  From-scratch training is achieved
using random (Kaiming) initialization of the model's train-
able parameters and the same training procedure as for
fine-tuning.

Data augmentation: = Data augmentation included con-
trast and noise augmentations. Contrast augmentation
involved scaling the image intensities (v) with a probability
of 0.5 during training (v = v % (1 + factor)), where the
factor is randomly sampled between -0.5 and +0.5. Noise
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augmentation involved adding Gaussian noise (N(0,0.2))
to the image intensities with a probability of 0.5.

Iterative registration: Lung CT registration was per-
formed in Elastix (Klein et al., 2009) using the approach
from Staring et al. (2010), which optimizes the normalized
cross-correlation (NCC) and bending energy term (weight
factor 0.05) in two stages via stochastic gradient descent
in a multiresolution scheme of five resolutions. In the first
stage, the optimization runs 1000 iterations in each of five
resolutions, where the images are downsampled with factors
of 16, 8, 4, 2, and 1, and the B-spline grid spacing is set
to 80, 80, 40, 20, and 10 mm. In the second stage, the
NCC is computed inside the lung mask of the fixed image,
and the optimization runs 2000 iterations in each resolution
with downsample factors of 4, 3, 2, 1, and 1, and B-spline
grid spacings of 80, 40, 20, 10, and 5 mm.

Brain MRI registration was performed in ANTs with
symmetric normalization, using NCC as the objective func-
tion and a multi-resolution scheme (Avants et al., 2008,
2009). The optimization runs 100 iterations in each of four
resolutions, where the images are downsampled with factors
of 8, 4, 2, and 1.

2.4.2 Metrics

The accuracy of lung CT registration is evaluated using the
keypoint/landmark error, computed as the Euclidean dis-
tance for every pair of moving and fixed points. Brain MRI
registration is evaluated using the 95th percentile Hausdorff
distance (HDgs) and the average symmetric surface dis-
tance (ASSD) of the fixed and deformed moving contours.
We also evaluate visual image alignment after registration,
using the structural similarity index measure (SSIM) in all
mono-modal registration tasks. SSIM was computed with
a window size of 11 for brain registration and 21 for lung
registration, to better accommodate larger misalignments.
Furthermore, we evaluate the standard deviation of the
logarithm of the DVF's Jacobian determinant (SDLogJ)
and the percentage of non-positive values of the Jacobian
determinant (indicative of undesired tissue folding).

2.4.3 Statistical analysis

We assessed whether evaluation metrics differed significantly
between methods. For keypoint and landmark errors, values
were first averaged across all landmarks per subject. Overall
differences were tested using repeated measures ANOVA on
rank-transformed data. When significant differences were
found with ANOVA, pairwise comparisons were conducted
using the Wilcoxon signed-rank test. Bonferroni correction
was applied to account for multiple comparisons, based on
the number of metrics multiplied by the number of method
pairs.

3. Experiments
3.1 Training on synthetic data

This section identifies critical factors in the design of syn-
thetic data that make a model applicable to different target
domains. Specifically, we study the effect of different label
map structures and intensity sampling configurations. A
single U-Net is trained (using different synthetic datasets)
in 200 epochs and evaluated on lung CT and brain MRI
registration.

3.1.1 Structures

We compare three different structure shapes, random geo-
metric, rectangular, and circular, and three different struc-
ture sizes of random geometric shapes (Section 2.3.1). We
use dynamic contrast as the intensity distribution configura-
tion and evaluate the resulting models on the NLST (lung
CT) and OASIS (brain MRI) validation sets.

3.1.2 Intensity distribution

We study the impact of different intensity configurations on
image registration. Specifically, our objective is to under-
stand how the original method of Hoffmann et al. (2022),
i.e., with different appearances for fixed and moving images
(mimicking a multi-modal registration problem), affects
mono-modal and multi-modal registration tasks. To ad-
dress this, we train models on synthetic data of dynamic,
dynamic*, and static configurations (Section 2.3.1) using
random geometric shapes (medium size). We evaluate the
resulting models on the NLST (lung CT), OASIS (brain
MRIt1.11), and Paired3T (brain MRIt1.12) validation sets.

3.2 Transfer learning

This section investigates the efficiency and robustness of
transfer learning. The cascaded U-Net is pre-trained in 1000
epochs (using the optimal synthetic data configuration) and
fine-tuned in 300 epochs on either the lung CT training set
(NLSTyain) or the brain MRI training set (OASIS;rain). For
comparison, from-scratch cascaded U-Nets are trained in
300 epochs on the same datasets.

3.2.1 Efficiency

We investigate the efficiency of transfer learning in lung CT
registration. The validation Dice (of the pulmonary veins
and arteries’ segmentations) was monitored during training
to evaluate the convergence speed of both fine-tuned and
from-scratch models. Furthermore, we examine the impact
of different training subsets with dataset sizes (N) of 10, 20,
30, 50, 75, 100, and 170 (the complete NLST¢.in dataset)
image pairs on the validation keypoint error. We also
include a scenario with "infinitely” many synthetic training
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subjects (N = o0), created on the fly using the statistical
deformation model (Section 2.3.4). Each experiment is
carried out three times (except for N = 170 and N = c0)
with different random seeds to minimize the potential bias
of stochastic processes.

3.2.2 Robustness

We assess model robustness across datasets of the same
modality and anatomical region but acquired in different
studies. More specifically, the datasets originate from differ-
ent institutions and were acquired with different scanners
and imaging protocols (Table B.1, Appendix B). NLST and
OASIS, while used for fine-tuning, serve as in-distribution
datasets, while the others are considered out-of-distribution.

4. Results

4.1 Training on synthetic data
4.1.1 Structures

Training with random geometric shapes resulted in the best
overall registration (Table 1). In lung CT registration, ran-
dom shapes achieved a median (interquartile range, IQR)
keypoint error of 3.5 mm (2.0-7.4), which was not sig-
nificantly different from the 4.3 mm (2.5-7.9) observed
with both circles and squares. In brain MRI registration,
random shapes resulted in lower HDgs and ASSD values
than circles and squares. For instance, the cerebral cortex
had a median HDgs of 2.2 mm (2.2-2.3), compared to 3.0
mm (2.6-3.2) and 2.6 mm (2.3-2.9) when using circles
and squares, respectively (p<0.05). Similarly, the brain-
stem’'s median ASSD was 0.6 mm (0.5-0.6), outperforming
circles (1.0 mm, 0.8-1.1) and squares (0.8 mm, 0.8-0.9)
(p<0.05)).

While shape size had a smaller impact, medium-sized
shapes provided the best alignment for most brain structures
(Table 1). In the lungs, they achieved a keypoint error of 3.5
mm (2.0-7.4), which was smaller than the 3.8 mm (1.9-9.1)
of large shapes (p<0.05) and not significantly different from
the 3.2 mm (1.4-9.9) of small shapes (p=0.06) (Table 1).
Based on these findings, medium-sized random geometric
shapes were used for the remainder of the study. Folding
was 0.00 (0.00-0.00) for all shape and size configurations.

4.1.2 Intensity distribution

Static contrast achieves the best mono-modal lung and
brain registrations (NLST and OASIS) (Table 2). For ex-
ample, it achieved a median (IQR) keypoint error of 2.9
mm (1.4-6.6) in lung CT registration compared to 3.5 mm
(2.0-7.5) with dynamic contrast (p<0.05) and 4.8 mm (3.0-
8.9) with dynamic* contrast (p<0.05). In brain MRIt1.11
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registration of the cerebral cortex, it achieved HDgs and
ASSD values of 1.4 mm (1.4-1.6) and 0.6 mm (0.6-0.7),
compared to 2.2 mm (2.2-2.3) and 0.9 mm (0.9-0.9) for dy-
namic contrast (p<0.05). However, static contrast fails in
multi-modal brain MRIt1.17 registration (Paired3T); for ex-
ample, the brainstem HDgs increased from 4.5 mm (4.0-5.9)
before registration to 11.7 mm (10.2-13.3) after registration
(p<0.05). In addition, we observed unstable training with
static contrast beyond 200 epochs.

Dynamic contrast, on the other hand, showed more
consistent performance across both mono-modal (NLST,
OASIS) and multi-modal (Paired3T) registration tasks (Ta-
ble 2). For instance, it achieved a median HDgs of 3.6 mm
(3.0-4.2) of the lateral ventricle, compared to the 14.7 mm
(13.8-15.2) of static contrast (p<0.05). The consistency
of dynamic contrast likely stems from the model’s ability to
learn structural correspondences independent of intensity.
Dynamic* contrast, despite having intensity distributions
similar to CT and MRI, does not further improve regis-
tration compared to dynamic contrast and even degrades
performance in lung CT (p<0.05). This may be due to
increased image noise, introducing discrepancies between
the training and validation noise levels. Folding was 0.00
(0.00-0.00) for all contrast configurations. We used dy-
namic contrast for all subsequent experiments due to its
consistent performance and training stability.

4.2 Transfer learning
4.2.1 Efficiency

The lung CT registration model is fine-tuned in 22 epochs
when pre-trained on synthetic data, compared to 47 epochs
required for training from scratch (Figure 3a). The fine-
tuned model achieves reasonable accuracy (median error < 2
mm) with just 20 image pairs, whereas training from scratch
requires 75 image pairs, representing a 73% reduction in
training data (Figure 3b). Notably, pre-training alone leads
to keypoint errors similar to those achieved with training
from scratch with around 30 image pairs, even without
fine-tuning (solid line at 0 image pairs). Finally, the model
trained with the complete training dataset and the on-
the-fly-generated synthetic subjects (o0) achieves the best
registration accuracy, making it the model of choice for
further evaluation.

4.2.2 Robustness

The fine-tuned models achieve the most consistent registra-
tion across unseen lung CT and brain MRI datasets (Figure
4 and Table D.2, Appendix D.2).

The fine-tuned model outperformed from-scratch mod-
els in DIR-Lab-COPDgene, improving the median (IQR)
landmark error from 3.5 mm (1.8-8.5) and 6.0 mm (2.5-
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Table 1: The effect of the structures’ shape and size in the synthetic dataset on brain and lung registration. The best

median (IQR) values, excluding the from-scratch model, are highlighted in bold. *p < 0.05
Keypoint error (mm) | SSIM + SDLogJ |
Before reg. 6.9 (4.7-11.1) 0.31 (0.23-0.37)
| From-scratch 2 (1.3-4.6) 0.55 (0.50-0.60)  0.33 (0.30-0.35)
Circles 4.3 (2.5-7.9)* 0.57 (0.50-0.63)  0.56 (0.53-0.62)
| Squares 4.3 (2.5-7.9)* 0.56 (0.51-0.61)  0.49 (0.47-0.54)
Random 3.5 (2.0-7.4)* 0.56 (0.53-0.61)  0.35 (0.32-0.36)
| Randomgma 3.2 (1.4-9.9)* 0.59 (0.56-0.67)* 0.30 (0.28-0.33)*
Randomjyge 3.8 (1.9-9.1) 0.55 (0.51-0.62) 0.30 (0.29-0.31)*
Brain MRI (OASIS)
Cerebral cortex Brainstem Lat. Ventricle Hippocampus SSIM 4 SDLogJ |
HD 2.2-3.2 2 (3.3-6.2 .0 (2.7-3.7
Before reg. % ¥ 0 (30-33) 8 (2.2-3.2) (3.3-6.2) 30(27-3.7) 0.69 (0.68-0.70) -
ASSD | 1(1.1-1.1) 2(1.0-1.3)  1.4(1.2-25) 1.2 (1.1-15)
HD 14-1.4 0(1.0-1.0 1.0 (1.0-1.0 1.2 (1.2-1.2
From-scratch % | A ) ( ) ( ) ( 'l o083 (0.82-0.84) | 0.47 (0.44-0.52)
ASSD | 6 (0.6-0.7) 3(0.3-04)  0.3(0.3-0.3) 0.4 (0.4-0.4)
HD 2.6-3.2 8 (2.2-3.0) 2.4 (2.0-3.0)* 2.9 (2.6-3.3
Circles % ¥ ( ) ( ) ( ) ( )| o (0.75-0.77)  0.39 (0.39-0.43)
ASSD | .0 (0.9-1.0) 0(0.8-1.1) 0.8 (0.7-0.9)* 0 (0.9-1.1)
HD 2.3-29 2 (22-2.8) 2.5 (1.9-4.0)* 5(2.1-3.2
Squares % ¥ 6(23-29) ( ) 25(1.9-40) (21-32) 14 27 (0.75-0.78)* |  0.40 (0.39-0.42)
ASSD | 9 (0.9-1.0) 8 (0.8-0.9) 0.8 (0.7-1.1)* 9 (0.8-1.1)
HD 2.2 (2.2-2.3)* 1.4 (1.4-1.7)* 2.2 (1.8-3.9)* 2.2 (1.9-2.6)*
Random % ¥ ( 3) ( 7 (1.8-3.9) (1.926)* | 77 (0.75-0.78)*  0.23 (0.23-0.24)
ASSD | | 0.9 (0.9-0.9)* 0.6 (0.5-0.6)* 0.8 (0.7-1.3)* 0.8 (0.7-1.0)*
HD 4 (2.3-2.6) 1.4 (1.4-1.7)* 2.3(1.8-5.4) 2.2 (1.9-2.7)*
Randomgman o5 | ( ) ( ) ( ) ( ) 0.76 (0.74-0.77) 0.26 (0.25-0.28)
ASSD | 9 (0.9-1.0) 0.6 (0.5-0.6)* 0.8 (0.6-1.3)* 0.8 (0.7-1.0)*
HD 2 (2.2-2. 1.4 (1.4-2.0)* 2.8 (2.2-5.4) 2.2 (2.0-2.7)*
Randomiage % ¥ (22-2.5) ( 0) 8 (2.2-54) (2.0-2.7) 0.76 (0.74-0.77)  0.22 (0.22-0.23)*
ASSD | 9 (0.9-1.0) 0.6 (0.5-0.7)* 0.9 (0.7-1.6) 0.8 (0.7-1.0)*
a) Validation metric curves b) Training data efficiency ,
0.98 AT 7/ 4
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Figure 3: The training and data efficiency of transfer learning. @) The mean validation metrics (Dice and

) in the

first 100 epochs of model training on lung CT data. The stars (x) mark the epochs corresponding to convergence (when
the change in the Dice running average was below 0.0001 for four consecutive epochs). b) The median validation error
achieved with different subsets of the training data (10, 20, 30, 50, 75, 100, 170 (all NLST} qin) image pairs). oo
denotes the scenario including on-the-fly generated synthetic subjects. The markers and error bars indicate the median
values and the minimum and maximum of three repeated experiments.

13.3) (with and without data augmentation) to 2.3 mm
(1.3-4.7) (p<0.05) (Figure 4a and Table D.2a, Appendix
D.2). These substantial improvements (62% and 34% error
reductions) are likely related to the substantial train-test
discrepancy in respiratory motion. In DIR-Lab-COPDgene,

subjects were instructed to inhale with maximum effort
(Table B.1, Appendix B), resulting in large pre-registration
landmark errors of 22.4 mm (13.6-32.2) (Figure 5).

contrast, the training dataset (NLST) contains images
from different time points, not respiratory phases, with
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Table 2: Effect of different intensity sampling methods (static, dynamic, dynamic*) in the synthetic dataset on brain
MR (T1-T1 and T1-T2) and lung CT registration. The best median (IQR) values, excluding the from-scratch model,

are highlighted in bold. *p < 0.05

Lung CT (NLST)

Keypoint error (mm) |

SSIM

SDLogJ

Brain MRIt;.11 (OASIS)

Before reg. 6.9 (4.7-11.1) 0.31 (0.23-0.37) -
From-scratch 22 (1.3-4.6) 0.55 (0.50-0.60)  0.33 (0.30-0.35)
Static 2.9 (1.4-6.6)* 0.67 (0.60-0.70)*  0.39 (0.35-0.42)
Dynamic 3.5 (2.0-7.5) 0.56 (0.53-0.61)  0.35 (0.32-0.36)
Dynamic* 4.8 (3.0-8.9) 0.49 (0.47-0.56) 0.31 (0.30-0.32)*

Brain MRIt;.12 (Paired3T)

Cerebral cortex Brainstem Lat. Ventricle Hippocampus SSIM SDLogJ
HD 0(3.0:3. 2.8 (2.2-3.2 42 (3.3-6.2 0(27-3.
Before reg. % ¥ 30(3.0-3.3) 8 (22:32) (3:362) 30 (2.7-3.7) 0.69 (0.68-0.70) -
ASSD | | 1.1 (1.06-1.14) 1.15 (0.98-1.32) 1.4 (1.18-2.54) 1.22 (1.06-1.46)
From-scratch | 1095+ | 14 (14-14) 1.0 (1.0-L.0) 1.0 (1.0-1.0) L2 (1212) | o (0.82-0.84) | 0.47 (0.44-0.52)
ASSD | | 0.7 (0.6-0.7) 0.4 (0.3-0.4) 0.3 (0.3-0.3) 0.4 (0.4-0.4)
HD 1.4 (1.4-1.6)* 14 (14-1.7) 1.4 (1.2-2.2)* 1.8 (1.8-2.1)*
Static % ¥ ( 6) ( ) ( ) 8 (L82.1)* | o0 (0.83-0.86)* |  0.33 (0.32-0.35)
ASSD | | 0.7 (0.6-0.7)* 0.5 (0.5-0.6)* 0.5 (0.5-0.7)* 0.6 (0.6-0.7)*
HD 2 (2.2-2. 4 (1.4-1.7 2 (1.8-3. 2 (1.9-2.
Dynamic % ¥ (22:2.3) ( ) 839) (19:26) |77 (0.75-0.78) | 0.23 (0.23-0.24)
ASSD | | 0.9 (0.9-0.9) 0.6 (0.5-0.6) 8 (0.7-1.3) 0.8 (0.7-1.0)
HD 2.3 (2.2-2. 1.4 (1.4-1.7 1(2.6-4. 25 (2.1-3.
Dynamic* % ¥ 3 (2:2:26) ( ) 6-4.8) 5(21:30) | 4 (0.74-0.76) | 0.18 (0.18-0.19)*
ASSD | 9 (0.9-1.0) 6 (0.6-0.6) 1.0 (0.9-1.5) 0 (0.8-1.1)

0. 0. 1.

Cerebral cortex Brainstem Lat. Ventricle Hippocampus SSIM SDLogJ

Before reg, | T v | 28 (2.6-3.1) 45 (4.0-5.9) 4.8 (4.1-5.9) 28(27-3.7) ) )
ASSD | .0 (0.9-1.0) 1.7 (1.4-2.0) 1.5 (1.5-1.6) 1.0 (1.0-1.2)

From-ccratch | 1o ¢ 1(2.0-2.2) 4.1 (2.8-4.9) 2.1 (1.9-2.6) 1.8 (1.6-2.1) | 032 (030032)
ASSD | .8 (0.8-0.8) 1.3 (1.0-1.5) 0.7 (0.6-0.7) 0.7 (0.7-0.8)

HD 4.8 (4.4-5. 11.7 (10.2-13. 14.7 (13.8-15.2 7.1 (6.8-7.

Static % ¥ 8( 50) (10.2-13.3) (13.8-15.2) (6:875) - | 0.48 (0.47-0.49)
ASSD | | 1.3 (1.3-1.3) 32(27-3.7) 47 (4.3-4.8) 2.4 (2.2-2.5)
_ * _ * _ * _ *

Dynamic HDgs | | 2.3 (2.2-2.6) 3.6 (3.0-4.1) 3.6 (3.0-4.2) 2.1 (2.0-2.4) | 0.20 (0.20-0.21)*
ASSD | | 0.9 (0.8-0.9)* 1.1 (0.9-1.2)* 0.9 (0.8-1.0)* 0.7 (0.7-0.8)*
HD 2.7 (2.3-3.1)* 7 (3.2-5.1 4.1 (2.7-4.5)* 2.1 (1.9-2.5)*

Dynamic* % ¥ (2.3-3.1) 37(3251) ( 5) (1.9-2.5) -1 0.17 (0.17-0.17)*
ASSD | | 0.9 (0.8-0.9)* 1.3 (1.0-1.4) 1.1 (0.9-1.2) 0.7 (0.7-0.9)*

pre-registration landmark errors of 6.9 mm (4.7-11.1).

In the other out-of-distribution lung CT dataset, DIR-
Lab, the fine-tuned model performed comparably to the
from-scratch models with and without data augmentation,
achieving landmark errors of 1.3 mm (0.9-1.9), 1.3 mm (0.9,
1.9), and 1.4 mm (0.9-2.0), respectively (p>0.1) (Figure
4a and Table D.2a, Appendix D.2). Interestingly, the fine-
tuned model resulted in slightly lower keypoint errors in
the (in-distribution) NLST dataset (p<0.05), with 92% of
keypoints under 2 mm, compared to 85% and 88% for the
from-scratch models with and without data augmentation.
The pattern in the DIR-Lab landmarks' cumulative density
before registration, visible at 2.5 mm intervals, is likely
caused by the original slice thickness (Figure 4a).

The fine-tuned model showed small improvements com-
pared to from-scratch models in brain MRI datasets. In IXI,
it achieved marginally better HD and ASSD values than
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from-scratch training when averaged over the brain struc-
tures (p<0.05) (Table D.2b, Appendix D.2). However, the
accuracy of most individual brain structures was comparable
(Figure 4b). In the Paired3T dataset, the fine-tuned model
had a slightly better accuracy than the from-scratch models
for most brain structures, with HDgs improvements be-
tween 6% and 14%. For example, it achieved median (IQR)
HDgs 1.8 mm (1.6-2.8) for the lateral ventricle, compared
to 1.9 mm (1.7-3.1) and 2.0 mm (1.7-3.0) for the model
trained from scratch with and without data augmentation
(p<0.05).

A notable additional finding is that the pre-trained
model produced higher SDLogJ values than the other mod-
els in lung registration (Table D.2, Appendix D.2), which is
indicative of less smooth deformation fields. For example,
the pre-trained model and the fine-tuned model had respec-
tive median (IQR) SDLogJ values of 0.37 (0.33-0.39) and
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0.21 (0.21-0.24) (p<0.05) in the lung NLST dataset. In
contrast, the pre-trained model produced lower SDLogJ val-
ues than the other models in the brain OASIS dataset (0.27
(0.27-0.28) vs. 0.57 (0.56-0.60) for fine-tuned, p<0.05),
which were accompanied with lower SSIM values (0.78
(0.77-0.79) vs. 0.83 (0.83-0.84), p<0.05).

5. Discussion

This study investigates transfer learning for deep learning
models in deformable image registration. We pre-trained
a model on synthetic data and then fine-tuned it on tar-
get data, resulting in robust performance across different
datasets. Fewer training epochs and less target domain data
were required compared to training a model from scratch,
as demonstrated in lung CT registration.

Synthetic images were generated using random geomet-
ric shapes and dynamic contrast, following Hoffmann et al.
(2022), to promote generalization across anatomies and
modalities. While random geometric shapes and dynamic
contrast were important to achieving the most consistent
registration across tasks, we found that different target
tasks may benefit from different synthetic data. For exam-
ple, static contrast achieved the best mono-modal brain
registration. After pre-training on exclusively synthetic data,
the model performed worse than iterative registration and
from-scratch models and produced less smooth deforma-
tion fields in lung registration. These findings highlight the
importance of model fine-tuning on target domain images,
contrasting previous reports by Hoffmann et al. (2022) and
He et al. (2022), who found competitive accuracies with
synthetic training data alone. Two factors might explain
the lower accuracy in our study: (1) Training was limited
to 1000 epochs on synthetic data from 100 pre-set label
maps, and (2) image corruptions were excluded to simplify
data generation. However, additional analysis confirmed
that these factors are not the leading causes of the reduced
accuracy (Figures D.2 and D.3, Appendix D.1).

Fine-tuning the model significantly improved perfor-
mance, producing domain-specific models that remained
robust to discrepancies between training and test data.
The largest robustness gains over from-scratch training
were observed in the DIR-Lab-COPDgene dataset (34-62%,
NLSTrqin —DIR-Lab-COPDgene) and Paired3T dataset
(6-14%, OASIS¢,4in, —Paired3T). Other studies have im-
proved cross-dataset robustness using test-time instance
optimization, for example, improving the landmark error
from 4.1 to 2.1 mm in DIR-Lab-COPDgene (50%) (Wang
et al., 2022) and the Dice from 0.79 to 0.82 mm in brain
MRI data (3%) (Zhu et al., 2021; Mok et al., 2024). Our
approach achieves comparable improvements without re-
quiring additional computational time, making it better
suited for time-sensitive applications.

However, robustness did not improve across all datasets.
For example, DIR-Lab and IXI showed minimal improve-
ment. One possible explanation is that the from-scratch
models were already robust to differences between these
datasets and the training set (disease pathology, scan type,
scanner manufacturer, and imaging protocol), leaving lim-
ited room for improvement. The negligible impact of data
augmentation in these datasets supports this interpreta-
tion. To compare transfer learning and data augmentation
further, we conducted additional experiments involving sim-
ulated domain shifts (Appendix D.3). Interestingly, both
approaches led to comparable improvements, even when
the augmentation strategies were specifically tailored to the
simulated shifts.

The fine-tuned model achieved registration accuracies
close to state-of-the-art methods. In DIR-Lab, it reached
a mean (SD) landmark error of 1.6 (1.3) mm, comparable
to the errors of leading methods, which ranged from 1.1
(0.8) mm to 1.6 (1.6) mm (Hering et al., 2021; Mok and
Chung, 2020; Hansen and Heinrich, 2021; Eppenhof and
Pluim, 2019; Fu et al., 2020) (Table D.3, Appendix D.5).
The DIR-Lab-COPDgene dataset posed a greater challenge
due to large initial deformations caused by breath-hold CT
scans taken at maximum inhalation. Our approach achieved
an average error of 4.3 (median 2.3) mm, compared to the
errors between 1.3 and 2.3 mm of other methods (Hansen
and Heinrich, 2021; Heinrich and Hansen, 2022; Wang et al.,
2022; Tian et al., 2024) (Table D.3, Appendix D.5). These
competing methods used breath-hold CT data from COPD
patients for training, better matching the test set, and
used techniques more suited for large deformations, such
as discretized displacements (Hansen and Heinrich, 2021),
keypoint correspondences (Heinrich and Hansen, 2022), and
cascaded networks with four levels and three resolutions
(Tian et al., 2024). Our use of a simpler two-level cascaded
U-Net may have limited performance on large deformation
registration.

An additional observation was that the pre-trained
model behaved differently across target domains, producing
less smooth deformations in the lungs than in the brain.
These findings may stem from the synthetic training defor-
mations, which were non-diffeomorphic and did not fully
represent the target data. Lung datasets involved larger
deformations (up to 16 voxels in DIR-Lab-COPDgene ver-
sus 11 voxels in the synthetic data), while brain datasets
involved smaller displacements (up to four voxels).

This study used a simple approach to investigate the
feasibility of transfer learning in deformable image registra-
tion. A limitation is that we did not focus on finding the
best possible transfer learning strategy. Further improve-
ments may be expected from more advanced techniques
such as learning rate warm-up, progressive layer unfreezing,
or domain adaptation. These strategies are promising for
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addressing issues such as catastrophic forgetting. Further-
more, our method relied on weak supervision using Dice
loss, which limits its applicability to settings with target
domain labels. Additional experiments in Appendix D.4
illustrate that the underlying concept extends to unsuper-
vised settings without labels. However, they only serve as
proof of concept, as the model was not optimized for this
setting.

An alternative to transfer learning based on synthetic
data is pre-training on acquired images. Tian et al. (2024)
demonstrated this with UniGradlCON, trained on over 5,000
images spanning multiple modalities and anatomies. Fine-
tuning the model with target datasets achieved state-of-the-
art performance. For reference, we report UniGradlCON's
published accuracy on the DIR-Lab-COPDgene dataset,
on which it outperformed our method (Table D.3, Ap-
pendix D.5). However, it is difficult to directly compare
performances because different network architectures were
used. Like UniGradlCON, our work highlights the potential
of transfer learning for deep learning-based image registra-
tion. Synthetic data offers a key advantage: it eliminates
the need for large, labeled datasets of acquired images.
Our approach required only a small fraction of target do-
main data for fine-tuning, making it valuable in clinical
scenarios where data are scarce or unrepresentative, such
as radiotherapy for rare tumors or cancer types.

6. Conclusion

This paper presents a transfer learning approach based on
pre-training with synthetic data to improve the robustness
of deep learning-based image registration. Our approach
remained robust to a broader range of domain shifts than
data augmentation and reduces the need for large and
diverse training datasets from multiple centers. Transfer
learning promises to improve robustness to discrepancies
between training and real-world data in deep learning-based
deformable image registration.
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Appendix A. Label map generation

3D label maps were generated as part of the synthetic
pre-training data pipeline using the following procedure:

= Random geometry: The label maps are generated from
a Gaussian image. To obtain the Gaussian image, we
first form a set of 26 (J) 3D grids of size sy, X sy X sy,
which contain values sampled from a Gaussian distri-
bution A/(0,1). The grids are then upsampled to full-
resolution images by linear interpolation, deformed using
a DVF denoted as ¢35, and concatenated to obtain the
Gaussian image (size 192x192x 192 x J). The label map
is obtained from this image by assigning the channel j
with the highest value for each pixel. The small, medium
and large geometric shapes were created by setting s,
to 12, 6, and 3 and by, to 10, 50, and 50, respectively.

The DVF denoted as ¢9 is obtained similarly to ¢
and ¢y (in the main manuscript) but from a different
starting grid. It starts as a 6 X 6 X 6 x 3 grid with
values sampled from a Gaussian distribution /\/'(0,03)2)
with o4, sampled uniformly between 0 and 1. The grid
is upsampled to a full-resolution image through linear
interpolation, resulting in a stationary velocity vector
field, which is integrated through scaling and squaring
(step=b) to produce the DVF.

» Rectangles: The label maps are generated from 26 (J) 3D
grids of size 8 x 8 x 8 with gray values sampled between
0 and 1 at 1000 random pixel locations. The grids are
upsampled to full-size (192%) images and concatenated
into a 26-channel image, from which a label map is
obtained by assigning the channel with the highest value.

= Spheres: The label maps are generated by drawing 2000
j-valued spheres per label j € [1,26] in a full-size (1923)
image. Each sphere’s location is randomly assigned, and
its radius is randomly sampled between 15 and 25 pixels.

Appendix B. Imaging parameters

This study evaluates the registration accuracy across datasets
of the same modality and anatomical region but acquired as
part of different studies. The imaging parameters of each
dataset are detailed in Table B.1.

Appendix C. Statistical deformation model

We generated synthetic training subjects on the fly (Figure
C.1), applying synthetic deformations to the original images.
The synthetic deformations are created using a statistical
model of deformations Corral Acero et al. (2019), which
captures the variations in the deformations between images,
representing breathing motion in lung CT and inter-patient

deformations in brain MRI. We follow three steps to obtain
the model and construct synthetic deformations:

Step 1. Iterative registration: \We iteratively registered
the fixed and moving images of a subset of 50 training
subjects (from NLSTyqin or from OASIS;,4in) to obtain
a set of representative deformations. The registration was
performed in SimpleElastix (Simplel TK Python extension)
with B-spline registration, optimizing the NCC similarity
metric and a bending energy term (weight factor=1.0) via
stochastic gradient descent in a multi-resolution scheme
of four resolutions. The optimization ran 256 iterations in
each resolution, and the final B-spline parameter grid is
23 x 23 x 23 x 3.

Step 2. Dimensionality reduction: The resulting B-
spline grids were used to build a model capturing 80% of
the deformations’ variations. The 50 B-spline parameter
grids were flattened into 50 arrays and organized as columns
in a matrix, obtaining three matrices M; (size 232 x 50)
for three directions i (i € z,y,z). We calculated the
average B-spline parameters (M;) for each matrix along
the second dimension. We also reduced each matrix’s
second dimension, through principal component analysis
(PCA), to a set of Eigenvectors U; (setting the number
of principal components to capture 80% of the variations).
The Eigenvectors were scaled with the Eigenvalues.

Step 3. Deformation construction: For each direction
i (i € x,y,z), the scaled Eigenvectors were combined with
the average B-spline parameters and a random component
x to construct the synthetic deformation parametrized by
B-splines, the ¢pyspline,i:

(4)

Here, x is a matrix with values sampled from the uniform
distribution U(—c, +c) with ¢ sampled between 4000 and
6000 for lung deformations and 2000 and 4000 for brain
deformations. Finally, the full-resolution DVF, ¢psor, was
obtained by upsampling @uspiine,; through third-order B-
Spline interpolation and concatenating the directions.

(bbspline,i =M;+U;-x

Diffeomorphic properties: While B-spline parameteri-
zation promotes smooth DVFs, it does not guarantee in-
vertibility (i.e., diffeomorphism). For lung registration, the
synthetic DVFs showed foldings between 0% and 0.3%,
and SDLogJ values ranging between 0.14 and 1.1 (with a
95th percentile of 0.38). For brain registration, the folding
ranged between 0.0% and 0.025%, while SDLogJ values
ranged between 0.13 and 0.40. These indicate that the
DVFs were predominantly smooth.

Appendix D. Additional findings
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Figure C.1: Example synthetic lung CTs generated with the statical deformation model

D.1 Synthetic data: the impact of image corruption
removal and the number of label maps

We studied the impact of image corruptions (synthetic
bias fields, contrast augmentation, and simulated partial
volume effects) on registration accuracy. A U-Net was
trained in 200 epochs on synthetic images with and without
these corruptions and evaluated on brain MRI and lung
CT validation sets. None of the corruptions improved the
registration consistently (Figure D.2).

We also assessed the impact of the number of label
maps in synthetic data by training a cascaded U-Net on 100
label maps (1000 epochs) and 1000 label maps (100 and
200 epochs). These setups achieved comparable registration
accuracies on brain MRI and lung CT (Figure D.3). A slight
improvement in lung CT registration was observed with
1000 label maps and extended training. The comparable
accuracy for 100 and 1000 label maps may be explained
by the on-the-fly deformation during training, resulting in
unique fixed and moving label maps, and the on-the-fly
generation of gray-value images. This approach ensures
that no training image pair is identical even with only 100
synthetic label maps.
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D.2 Robustness: All evaluation metrics

Table D.2 presents all evaluation metrics, including the
Structural Similarity Index (SSIM), folding, and the standard
deviation of the logarithm of the Jacobian determinant
(SDLogJ).

D.3 Robustness against introduced variations in CT

This section assesses the robustness of the fine-tuned lung
CT registration model under controlled intensity and dose
modifications in the NLST test set images.

Experimental set-up: The images in the test set are
modified using intensity and dose perturbations. The fine-
tuned lung CT registration model is evaluated on these
modified test sets while comparing it with training from
scratch and data augmentation, i.e., contrast and noise
augmentations that mimic intensity and dose variations
(section 2.4.1 in the main manuscript).

Intensity variations involve shifting the HU window by
clipping the image intensities between -1100 and 100 HU.
Dose variations involve simulating ultralow-dose CTs from
the original low-dose CTs by adding noise patch-wise to
the original CTs. To do this, we first extract the noise
power spectrum (NPS) from a homogeneous patch (size
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Figure D.3: Effect of 100 or 1000 label maps in the synthetic data on brain MR and lung CT registration.

32 x 32 x 32) in an original CT. We then use this NPS to
filter noise sampled from a Gaussian distribution (N(0, 1))
through multiplication in the frequency domain. For each
patch (size 32 x 32 x 32) in the original CT (patch,),
the new ultra-low dose CT patch (patch,,,,) is obtained as
follows:

new

patch,.,, = patchorig—k]-"_1 {\/ NPS '}"{patchnoise}}*a*ao

(5)
Here, F indicates the fast Fourier Transform, patch, . is
a patch with sampled noise, and o is the standard deviation
of the image intensities in the original CT.

Results: The fine-tuned lung CT registration model reg-
isters the shifted HU-window and ultra-low-dose datasets
slightly better than the model trained from scratch and
achieves similar registrations as data augmentation (Figure
D.4). For example, it resulted in 87.5% of keypoints with
errors below 2 mm on the ultra-low-dose dataset, compared
to the 77.3% of the from-scratch model and 87.9% of the
model trained with data augmentation.

D.4 Unsupervised fine-tuning

This section evaluates the feasibility of transfer learning
with unsupervised fine-tuning in settings without target
domain labels, focusing on lung CT registration.

Experimental set-up: We start with the pre-trained cas-
caded U-Net, trained using weakly supervised learning on
synthetic data, and then fine-tune it using unsupervised
learning on the NLSTy,,i, dataset. The fine-tuning proce-
dure follows the same setup as the weakly supervised fine-
tuning described in Section 2.2.2 of the main manuscript,
with the only change being the Dice term in the objective
function, which is replaced with an intensity-based image
similarity term. The similarity term is the normalized mu-
tual information (NMI) computed at three resolution levels
to capture both local and global image similarity:

5=2

Eintensity—based (Fv M) = Z
s=0

% LM (F(S),M(S)) (6)

Here, F(5) and M(®) are the fixed and moving images,
respectively, downsampled by a factor 2° using average
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pooling. Although the normalized cross-correlation would
be a logical choice for the intensity-based loss term, our
preliminary experiments resulted in unstable training.

We compare the fine-tuned model to unsupervised mod-
els trained from scratch, with and without data augmen-
tation (Section 2.4.1), as well as to the pre-trained model
without fine-tuning and the model fine-tuned with weak
supervision.

Results: The fine-tuned model achieved the most consis-
tent registration performance across lung CT datasets, show-
ing improvements in landmark errors over models trained
from scratch (Figure D.5). In the NLST dataset, it achieved
a median (interquartile range, IQR) landmark error of 1.9
mm (IQR: 1.1-3.7), compared to 2.7 mm (1.4-5.4) and 2.2
mm (1.1-4.4) (p<0.05) for from-scratch models with and
without data augmentation, respectively. Similarly, in the
DIR-Lab dataset, the fine-tuned model achieved an error of
2.1 mm (1.3-4.0), while the from-scratch models reported
3.5 mm (1.8-6.7) with augmentation and 3.1 mm (1.7-6.3)
without (p<0.05).

These findings illustrate that transfer learning extends
to unsupervised settings, suggesting broader potential in
settings without target domain labels. In addition, they sug-
gest that data augmentation did not improve registration
accuracy and even slightly degraded it. Finally, unsupervised
fine-tuning underperformed compared to weakly supervised
fine-tuning, potentially due to the method not being opti-
mized for this setting (e.g., learning rate and regularization
weight).

D.5 Comparison of existing works on DIR-Lab

The DIR-Lab datasets (DIR-Lab-4DCT and DIR-Lab-COPDgene)
are widely used as benchmarks for evaluating the registra-
tion accuracy. Numerous studies have documented the
registration errors for each subject. Table D.3 showcases
these reported results from various deep learning-based
registration methods alongside our findings.
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Table B.1: The datasets’

imaging parameters. NR: Not reported

Parameter Dataset
NLST DIR-Lab DIR-Lab-COPDgene
Subjects (N) 210 10 10
Train/val/test (N image pairs) 170/20/20 0/0/10 0/0/10

Pathology

Subjects at high risk
for lung cancer

Esophageal or lung cancer

Chronic obstructive
pulmonary disease (COPD)

Imaging site

33 different U.S.
medical centers

Houston (USA)

NR

General Electric (GE) Discovery

Scanner type Various SiF PEIF(ET sermmas GE VCT 64-slice scanner

Manufacturer Various GE HealthCare Technologies, GE HealthCare Technologies,

Waukesha, WI Waukesha, WI

Scan period August 2002-April 2004 NR NR

Subject positioning NR Supine ‘ Supine

el ekl Normal expiration

Breathing instructions NR . and maximum
breathing

effort full inspiration

4D binning

NA; longitudinal
low-dose CT scans

Phase binning

NA; Breath-hold CT

Table pitch (mm) Various 1,375
Tube voltage (kV) Various NR | 120
Tube current (mA) Various NR 400 (inhale); 100 (exhale)
Effective exposure (mAs/pitch) Various ‘ 200 (inhale); 50 (exhale)
Axial plane voxel spacing (mm) Various 0.97-1.16 0.59-0.74
Slice thickness (mm) Various 25 | 25
Image dimensions (voxels) Various 256-512 x 256-512 x 94-136 512 x 512 x 102-135
p Dataset
arameter 0ASIS IXi Paired3T
Subjects (N) 414 78 10
Train/val/test (N image pairs) 312/50/50 0/0/75 0/0/45

Healthy adults and

Pathology adults diagnosed with mild Healthy adults Healthy adults
to moderate Alzheimer's disease

. . . R Various hospitals in L : Guy's Hospital, hool of Medici f th iversit,

Imaging site Washington University arious hospitals in Londen: Guy's Hospital, | School of Medicine of the University

Hammersmith Hospital,and Institue of Psychiatry

of North Carolina at Chapel Hill

Scanner type 1.5 Tesla 1.5 and 3 Tesla 3 Tesla Magnetom Prisma
Manufacturer Siemens Philips and GE ‘ Siemens
Axial plane voxel spacing (mm) 1 0.94 0.65
Slice thickness (mm) 1.25 1.20 | 0.65
Image dimensions (voxels) 256x256x128 130 150x256x256 256x304x308
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Table D.2: All evaluation metrics for lung CT and brain MRI registration. The HDgs and ASSD values are averaged

over all brain structures (cerebral cortex, brainstem, lateral ventricle, hippocampus).

a) Lung CT

NLSTtmm — NLSTtest

Landmark error (mm) |

SSIM ¢

Folding (%) |

SdLogJ |

Pre-trained
Pre-trained + fine-tunedy st
From-scratchy st

From-scratchy st \w augmentation

2.4 (1.4-4.4)
0.8 (0.6-1.2)*
0.8 (0.6-1.2)*

0.9 (0.6-1.4)

0.61 (0.54-0.64
0.60 (0.56-0.69
0.59 (0.53-0.68
0.59 (0.56-0.69

—_ o — —

0.00 (0.00-0.00)
0.00 (0.00-0.00)
0.00 (0.00-0.00)
0.00 (0.00-0.00)

0.37 (0.33-0.39)
0.21 (0.21-0.24)*
0.21 (0.19-0.24)*
0.22 (0.21-0.25)*

NLST;,qin — DIR-

Lab

Pre-trained
Pre-trained + fine-tunedy st
From-scratchy st

From-scratchy st \w augmentation

3.0 (1.9-5.5)

1.3 (0.9-1.9)*
1.4 (0.9-2.0)*
1.3 (0.9-1.9)*

0.85 (0.82-0.87)
0.83 (0.77-0.85)
0.81 (0.77-0.85)
0.83 (0.78-0.86)

0.00 (0.00-0.00)
0.00 (0.00-0.00)
0.00 (0.00-0.00)
0.00 (0.00-0.00)

0.29 (0.29-0.31)
0.16 (0.15-0.17)
0.14 (0.13-0.15)*
0.17 (0.16-0.18)

NLST: 4in — DIR-Lab-C

OPDgene

Pre-trained
Pre-trained + fine-tunedy, st

From-scratchy st

From-scratchy st \w augmentation

16.3 (6.3-30.1)
2.3 (1.3-4.7)*

6.0 (2.5-13.3)
3.5 (1.8-8.5)

b) Brain MRI

0.51 (0.48-0.54)
0.54 (0.50-0.62)
0.50 (0.46-0.55)
0.55 (0.51-0.60)

0.00 (0.00-0.00)
0.00 (0.00-0.00)
0.00 (0.00-0.00)
0.00 (0.00-0.00)

0.62 (0.45-0.68)
0.29 (0.23-0.32)*
0.26 (0.24-0.29)*
0.29 (0.23-0.32)*

OASIS,; 4ir, — OASIS;
HDgs | ASSD | SSIM 1 Folding (%) | SdLogJ |
Pretrained | 2.2 (21-27) | 0.82(0.78-0.96) |  0.78 (0.77-0.79) | 0.00 (0.00-0.00)* | 0.27 (0.27-0.28)*
Pre-trained + fine-tunedoasis | 1.1 (1.1-1.2)* | 0.42 (0.41-0.44) | 0.83 (0.83-0.84)* |  0.04 (0.04-0.04) |  0.57 (0.56-0.60)
From-scratchpasis | 1.1 (1.1-1.2)* 0.42 (0.40-0.44) | 0.84 (0.83-0.84)* 0.04 (0.03-0.04) 0.57 (0.55-0.61)
From-scratchpasis \w augmentation | 1.1 (1.1-1.2)* | 0.41 (0.40-0.43)* | 0.84 (0.83-0.84)* 0.04 (0.03-0.04) 0.57 (0.55-0.59)
OASIS,; 4, — IXI
Pre-trained | 3.0 (2.4-3.6) |  0.85 (0.81-0.96) |  0.86 (0.85-0.89) |  0.00 (0.00-0.00) |  0.26 (0.25-0.27)
Pre-trained + fine-tunedpasis | 2.0 (1.8-3.0)* | 0.67 (0.65-0.71)* | 0.89 (0.89-0.91)* 0.00 (0.00-0.00) 0.24 (0.21-0.30)
From-scratchoasis | 2.2 (1.9-3.1) | 0.69 (0.66-0.74) | 0.89 (0.88-0.91)* |  0.00 (0.00-0.00) | 0.22 (0.20-0.23)*
From-scratchpasis \w augmentation 2.2 (1.9-2.9) 0.69 (0.65-0.74) | 0.89 (0.88-0.91)* 0.00 (0.00-0.00) | 0.22 (0.19-0.26)*
Pre-trained | 2.8 (2.3-35) | 0.82(0.77-0.96) | 0.82 (0.81-0.83) |  0.00 (0.00-0.00) |  0.27 (0.27-0.28)
Pre-trained + fine-tunedoags | 2.0 (1.9-2.8)* | 0.74 (0.69-0.86)* | 0.86 (0.85-0.87)* |  0.00 (0.00-0.00) |  0.28 (0.27-0.30)
From-scratchoasis | 2.4 (2.1-3.3) | 0.79 (0.74-0.89) | 0.85 (0.84-0.86)* |  0.00 (0.00-0.00) | 0.25 (0.25-0.26)*
From-scratchpasis \w augmentation 2.4 (2.1-3.3) 0.80 (0.76-0.91) | 0.86 (0.85-0.87)* 0.00 (0.00-0.00) | 0.25 (0.24-0.26)*
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shifted HU-window ultra-low dose
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Figure D.4: Model robustness under intensity discrepancies: shifted HU window and ultra-low-dose. The first row shows
the registration accuracy as the cumulative density of keypoints vs. the registration error, and the second row contains
examples of the intensity variations applied.
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Figure D.5: The unsupervised model's robustness across lung CT datasets, shown as the cumulative density of points
(keypoints or landmarks) vs. the registration error.
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Table D.3: Mean =+ standard deviation (SD) of the landmark registration error (in mm) of several deep-learning-based registration methods evaluated on
the DIR-Lab datasets (4DCT and COPDgene). The SD is calculated across all landmarks from all subjects. Note that most methods, as opposed to ours,
were trained on 4DCT or breath-hold CTs from COPD patients (e.g., from the COPDgene study archive data), representing an in-distribution performance
evaluation. *Model is fine-tuned to a single image pair at test time (also called instance optimization or one-shot learning)

Iris Kolenbrander, Matteo Maspero, and Josien Pluim, 2025

Before reg Eppenhof and  LungRegNet Hering LapIRN* VM++ *  uniGradlCON  GraphregNet PLOSL* Adapted

" Pluim 2019 2020 et al. 2021 2024 2022 2024 2021 2022 Model (ours)

4DCT-01 3.80 +£2.78 - 098 £ 054 0.99 +0 .47 0.99 £+ 0.46 - - 0.86 1.12 + 0.48 1.24 4+ 0.60
4DCT-02 4.34 + 3.90 1.24 + 0.61 0.98 + 0.52 0.98 + 0.46 0.97 £+ 0.47 - - 0.90 1.06 £ 0.48 1.15 £ 0.58
4DCT-03 6.94 £+ 4.05 - 1.14 + 0.64 1.11 £0.61 1.10 £ 0.61 - - 1.06 1.23 + 0.64 1.26 £ 0.64
4DCT-04 9.83 £ 4.85 1.70 £+ 1.00 1.39 + 0.99 1.37 £1.03 1.33+0.95 - - 145 1.49 +0.96 1.72 £ 1.04
4DCT-05 7.48 £ 5.50 - 143 +£1.31 132+£136 134+121 - - 1.60 1.61 +1.24 158 £ 1.34
4DCT-06 10.89 + 6.96 - 2.26 + 2.93 1.15 +£1.12 1.16 + 0.66 - - 159 1.45+0.79 1.79 £ 131
4DCT-07 11.03 £ 7.42 - 142 +1.16 1.05+ 081 1.16 +0.62 - - 1.74 140+ 0.78 2.13 +2.16
4DCT-08 14.99 + 9.00 - 3.13 + 3.77 122 £+ 144 1.19 + 0.96 - - 146 1.41+1.08 1.96 + 2.05
4DCT-09 7.92 +£ 3.97 1.61 + 0.82 1.27 + 0.94 1.11 £ 066 1.16 £+ 0.65 - - 158 1.39 +£0.72 1.66 + 1.05
4DCT-10 7.30 + 6.34 - 1.93 + 3.06 1.05 +£0.72 1.08 £+ 0.58 - - 1.71 133 4+0.72 147 £ 1.02
Mean 8.46 + 6.58 1.52 + 0.85 1.59 + 1.58 1.14 £0.76 1.15+0.71 1.33 - 139 +£129 135+ 0.79 159 +£1.33
COPD-01 | 26.33 + 11.44 - - - - - - 138 1.36 +0.78 5.00 + 6.07
COPD-02 | 21.79 + 6.47 - - - - - - 2.09 2.06 +1.90 436 + 4.17
COPD-03 12.64 + 6.40 - - - - - - 122 1.36 +£0.73 1.55 £ 0.90
COPD-04 | 29.58 + 12.95 - - - - - - 158 1.75 + 0.98 6.22 + 6.31
COPD-05 | 30.08 + 13.36 - - - - - - 1.37 150+ 0.81 7.78 + 8.51
COPD-06 | 28.46 + 9.17 - - - - - - 1.10 1.45+0.90 3.53 + 3.83
COPD-07 21.60 +£ 7.74 - - - - - - 1.19 131+ 0.76 2.59 + 2.26
COPD-08 | 26.46 + 13.24 - - - - - - 119 154+1.01 5.08 + 5.80
COPD-09 | 14.86 + 9.82 - - - - - - 0.99 121 +£0.77 2.95 + 3.88
COPD-10 | 21.81 4+ 10.51 - - - - - - 1.38 1.79 £ 1.16 3.74 £ 281
Mean | 23.36 4+ 11.87 - - - - 2.16 1.93 1.34 +£1.44 153 +0.98 4.28 £5.33
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