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Abstract
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images
and extensive annotated data, limiting clinical applicability. This paper introduces a novel synthetic data framework
tailored for stroke lesion segmentation, expanding the SynthSeg methodology to incorporate lesion-specific augmenta-
tions that simulate diverse pathological features. Using a modified nnUNet architecture, our approach trains models
with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue
without reliance on specific sequence-based training. Our method achieves robust out-of-domain performance where
conventional approaches fail, with in-domain performance of 48.2% Dice compared to 57.5% for conventional training.
Crucially, even with oracle knowledge of the optimal domain adaptation method - an unrealistic scenario in practice -
conventionally-trained models cannot match our synthetic approach in out-of-domain settings. The framework demon-
strates that synthetic pre-training provides fundamental robustness unachievable through test-time adaptation alone.
Our approach reduces reliance on domain-specific training data and helps bridge the gap between research-grade and
clinical scans to improve clinical stroke neuroimaging workflows. PyTorch training code and weights are publicly avail-
able at https://github.com/liamchalcroft/SynthStroke, along with an SPM toolbox featuring a plug-and-play model at
https://github.com/liamchalcroft/SynthStrokeSPM.
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1. Introduction

S emantic segmentation is a critical component of
neuroimaging pipelines, enabling precise quantifica-
tion of anatomical structures and lesions for ap-

plications like tracking disease progression and planning
treatments. In research settings, segmentation labels are
typically derived from high-quality, standardised structural
scans (e.g., MPRAGE) that benefit from consistent field-
of-view, spacing, orientation, and minimal artifacts. In
contrast, clinical scans often exhibit significant variability
in these factors, which can severely impact deep learning
model performance. Consequently, models trained on ho-
mogeneous research-grade data may not generalise well to
the diverse, lower-quality images encountered in clinical
practice.

Both traditional probabilistic methods (Ashburner and
Friston, 2005) and modern deep discriminative methods
(Isensee et al., 2020) require prior information to be pro-

vided for a given sequence - in the case of a traditional
method this may be an atlas or template, and in mod-
ern methods this would come in the form of training data.
Atlas-based methods build a template of the anatomical
structure of the brain, which may be deformed into align-
ment with a new subject to assign voxel-wise anatomical
classes. This is proven to be robust for delineating healthy
structure even with shifts in contrast (Puonti et al., 2016),
however it is non-trivial to include classes of pathology such
as stroke within such a model, due to the inherent hetero-
geneity in location and geometric properties. In the context
of generative models, lesions may be included in the form
of anomaly detection as demonstrated in Seghier et al.
(2008). This method is not however directly attempting to
label the pathology, and (by design) will label physiological
changes such as ventricular enlargement in addition to the
responsible infarct.

Deep discriminative models trained using supervised
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learning have been able to reach human-level performance
when tested in-domain on large datasets for a variety of
brain pathologies and imaging modalities (Baid et al., 2021;
de la Rosa et al., 2024). There is still however a signifi-
cant gap when trying to translate these models to clinical
data, where each hospital is likely to vary both in the scan-
ning equipment used and the choice of imaging sequences
(Nguyen et al., 2024). This poses a significant challenge to
the adoption of deep learning for automating the labelling
of clinical data, which could greatly help to accelerate the
translation of modern research in stroke prognosis (Lough-
nan et al., 2019).

To extend such methods to the open-ended domain of
clinical scans, models often need to perform on sequences
for which no training data may be available. To this end,
domain randomisation via synthetic data has been shown
to give impressive results for healthy brain parcellation in
SynthSeg (Billot et al., 2023). In this method, a set of
ground truth healthy tissues are used to generate synthetic
images, under the assumption that each tissue class’ in-
tensity distribution should roughly follow a Gaussian. By
assigning random Gaussian distributions to each class, a
deep learning model can learn to extract shape informa-
tion for parcellation in a way that is invariant to the input
image’s relative tissue contrast, hence allowing the model
to be used on any sequence at test-time, without training
data or prior knowledge of the sequence. This method of
training with synthetic data has since been extended to
tasks such as image registration (Hoffmann et al., 2022,
2023, 2024), image super-resolution (Iglesias et al., 2021,
2023), surface estimation (Gopinath et al., 2023, 2024a)
and vascular segmentation (Chollet et al., 2024). A com-
prehensive overview is available in Gopinath et al. (2024b).

An additional benefit of this method is that the ’for-
ward model’ of creating an MRI (or CT) image from tissues
of different physical properties is a perfect 1:1 mapping to
the ’inverse model’ of labeling the tissues (i.e. segmenta-
tion) from the acquired image. In structures that exhibit a
large amount of inter-rater variability, this is likely to help
prevent a model from imitating under- or over- segmenta-
tion from imperfect ground truths - the images segmented
are generated from the corresponding segmentation labels
and so labels will always be a consistent method of seg-
mentation.

Prior work to SynthSeg demonstrated the potential of
encoding anatomical priors in a neural network through
pre-training with unpaired parcellation labels (Dalca et al.,
2018). Such methods face significantly larger challenges
when applied to the heterogeneous shape and spatial distri-
bution of lesions. In healthy parcellation, anatomical struc-
tures have consistent positions across individuals (e.g., the
brainstem reliably appears in the same region of the brain),
a regularity that has motivated atlas-based approaches to

parcellation. In contrast, lesions are highly variable across
individuals - not only in number and size but also in their
spatial distribution. Unlike anatomical structures, lesions
cannot be reliably mapped to a specific location or shape
within an atlas. Although the exact site of lesion initi-
ation is often influenced by the brain’s vascular architec-
ture - meaning that certain regions are statistically more
susceptible to stroke due to the location of large blood
vessels - the resulting lesion’s size, shape, and spread are
highly variable. Multiple sclerosis serves as an exception,
with lesions that are somewhat predictable in their white
matter localisation (Lassmann, 2018), enabling modelling
through synthetic deep learning frameworks (Billot et al.,
2021; Laso et al., 2024) and traditional probabilistic mod-
els (Cerri et al., 2021). More recently, Liu et al. (2024) has
shown promising results by training a SynthSeg-like model
on lesion labels from various pathologies, providing a foun-
dation for fine-tuning on multiple downstream datasets.

Robust open-domain stroke segmentation remains an
unsolved challenge. Most domain-specific frameworks for
stroke lesion segmentation are targeted towards lesion-pasting
(Zhang et al., 2021; Dai et al., 2022; Basaran et al., 2023),
aiming to augment the anatomical variety without making
any attempt to augment the variety in image contrasts.
Likewise, label-conditioned generative models such as Tu-
morGAN (Li et al., 2020) can similarly only generate new
lesioned brains within the learned distribution of image in-
tensities. None of these works approach the task of ro-
bustness to shifts in image appearance, instead focusing
on shape-related augmentation.

In our work, we extend the SynthSeg framework to
the task of stroke lesion segmentation via a novel lesion-
pasting method that better simulates variety in lesion ap-
pearance. Our hybrid approach trades a statistically sig-
nificant 9.3% median Dice reduction in-domain (57.5%
vs 48.2%, p<0.001) for improved out-of-domain robust-
ness. Crucially, we demonstrate that even with oracle
knowledge of the optimal domain adaptation method, con-
ventional training cannot match our synthetic approach in
out-of-domain scenarios. We validate this on a compre-
hensive range of lesion datasets with a wide distribution
of image characteristics and lesion physiology. To assist
in widespread evaluation of this framework, we release Py-
Torch training code/weights, and a MATLAB toolbox for
SPM to reduce the barrier to clinical adoption.

2. Methods

Terminology and Notation
For clarity, we define the key terms used throughout this
work:

• TTA (Test-Time Augmentation): A procedure at in-
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ference where multiple augmented versions (here gener-
ated by flips) of an input are processed and their predic-
tions averaged to improve robustness.

• DA (Domain Adaptation): Techniques applied at test
time to adapt a trained model to new data distributions.

• Oracle DA: The hypothetical best-case scenario where
the optimal DA method is known a priori for each dataset/modality
combination.

2.1 Synthetic Data Generation Framework
Rationale. Our goal is to create a large, diverse and per-
fectly labelled training set without the labour of voxel-wise
annotation. We therefore generate paired image-label vol-
umes by composing healthy tissue maps with realistically
shaped stroke lesions, followed by intensity synthesis and
heavy image-quality augmentation (Fig. 2).

(i) Healthy-tissue label bank. Instead of the 100+ FreeSurfer
classes used by SynthSeg, we adopt the nine posterior tis-
sue maps produced by MultiBrain (Brudfors et al., 2020).
This reduces memory usage, speeds up sampling and still
retains the GM/WM/CSF boundaries that matter for lesion
realism (Fig. 1).

(ii) Lesion Copy-Paste (Lesion-CP). We extend Soft-
CP (Dai et al., 2022) with random dilate/erode ’feathering’
and a spatially varying bias-field multiplier (MONAI Ran-
dom Bias Field (Cardoso et al., 2022)) to mimic penumbral
intensity fall-off (Middleton et al., 2024).

(iii) Intensity sampling. Each tissue class is assigned
µ ∼ U(0, 255), σ ∼ U(0, 16) and Gaussian blur FWHM ∼
U(0, 2). For stroke lesions we modulate the copy-pasted
mask with the bias field to create intra-lesion heterogeneity.
We sample from a single Gaussian distribution, with the
implications of this choice examined via Hartigan’s dip-test
in Appendix A.

(iv) Image-quality augmentations. Table 1 summarises
every random transform (bias field, affine, elastic, skull-
strip imperfection, noise, resolution, motion, contrast, etc.).

Future work will explore mixture-of-Gaussians modelling
(Ashburner and Friston, 2005) to represent lesions that are
simultaneously hyper- and hypo-intense.

With this synthetic data generation pipeline established,
we now describe the datasets, network architecture, and
training procedures used in our experiments.

2.2 Training Data and Sampling
Healthy maps: OASIS-3 (N=2 679, 2 579/100 train/val)
with MultiBrain segmentation, all warped to ICBM space.
Lesion masks: ATLAS (N=655, 419/105/131 train/val/test)

(a) FreeSurfer (Puonti et al., 2016)

(b) MultiBrain (Brudfors et al., 2020)

(c) MultiBrain (skull-stripped)

Figure 1: Sample generated images using different labels
for a single subject. 1a: FreeSurfer anatomical labels.
1b: MultiBrain tissue labels. 1c: MultiBrain tissue labels
masked to simulate skull-stripping.

aligned to the same space. During sampling we paste one
random ATLAS lesion onto one random OASIS subject and
on-the-fly augment as above.
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Table 1: Parameter ranges for every image-quality augmentation used during synthetic training. † indicates augmenta-
tions applied only to synthetic data and not to real ATLAS samples.

Category Transform Sampling range / notes

Bias field Multiplicative bias Control points U(2, 7), strength U(0, 0.5)
Affine Rotation U(−15◦, 15◦) on each axis

Shear U(0, 0.012)
Zoom U(0.85, 1.15)

Elastic Deformation grid Control points U(0, 10), max disp. U(0, 0.05)
Skull-strip flaw† Dilation p = 0.3, radius = 2 vox.

Erosion p = 0.3, radius = 4 vox.
Noise Gaussian (SNR) SNR U(0, 10), smoothed by g-factor U(2, 5)
Resolution† Slice anisotropy Thk. factor U(1, 8) (base res. 1 mm3)
Contrast Gamma γ = 10N (0,0.6)

Motion blur† PSF width (FWHM) U(0, 3) vox.
Flip Mirror on each axis p = 0.8

. . .Healthy tissue
(N>2000)

Lesion binary
(N>400)

Random label 
selection

Lesion paste + 
INU augment

Tissue intensity 
assignment

LSEG(ŷ, y)

UNet

Figure 2: Schematic overview of the data generation process. Lesions are sampled from a template-normalised bank of
lesion binary masks, and healthy tissue maps are sampled from a template-normalised bank of MultiBrain segmentations.
Pasting of lesions onto healthy tissue maps is performed using a spatially varying lesion intensity to simulate penumbra.
Tissue intensities may then be sampled from Gaussian distributions and image-label pairs used to train a segmentation
model in a supervised manner.

2.3 Network Architecture and Optimisation

Backbone. 3D U-Net (nnUNet template) with six levels
(16 → 32 → 64 → 128 → 320 channels), PReLU activations
and one residual unit per block (Isensee et al., 2024).
Output channels. Background + Gray Matter (GM) +
White Matter (WM) + GM/WM Partial Volume + Cere-
brospinal Fluid (CSF) + Lesion (total six channels) for
Synth; Background + Lesion for Baseline. When real
images (binary GT) enter the mixed loader we mask the
loss to the lesion channel only.
Training schedule. 1923 crops, batch 1, 1 200 epochs ×
500 iterations (=6 × 105 updates), AdamW (η0 = 10−4,
weight-decay 0.01, poly LR decay with power 0.9), com-
bined Dice + CE loss, dropout 0.2, gradient-norm clip 12.
Data-loader mixing. Synthetic : Real ratio = 2 579 : 419

(mirrors sample counts). Real MPRAGE images receive the
same spatial/intensity transforms as synthetic batches.
Comparison model. WMH-SynthSeg (Laso et al., 2024;
Fischl, 2012) is included as an ”off-the-shelf” robust-lesion
baseline, but its training labels target small, periventricular
WMHs and differ substantially from large-cortical stroke
lesions.

2.4 Domain Adaptation Methods

At test time we evaluate a diverse set of unsupervised
domain-adaptation (DA) techniques to determine: (i)
whether the Baseline model can, under an oracle choice of
DA method, match the performance of the DA-free Synth
model, and (ii) whether Synth’s inherent robustness offers
a better starting point for DA on truly unseen data.
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We tested six DA methods (TTA, DAE, TENT, PL,
UPL, DPL) and report the best-performing configuration
for each modality/dataset combination as Oracle DA in
Tables 2-5. This represents an upper bound on baseline
performance, as in practice one cannot know a priori which
DA method will work best. Full individual results for all
methods appear in Appendix B, Tables 10-13.
DA techniques evaluated.
(1) TTA - Test-Time Augmentation (Wang et al. (2019);
denoted TTA). Eight mirror-flipped volumes (23 axis-flip
combinations) are inferred, logits averaged, and softmax/argmax
yields the mask. This heuristic is cheap and rarely degrades
performance.
(2) DAE - Denoising Auto-Encoder Regularisation (Karani
et al., 2021). We train a 3-layer denoising auto-encoder to
regularise noisy labels for both Baseline and Synth. At
inference a three-layer normalisation network (3×3×3 ker-
nels, 16 channels) is prepended to the frozen segmentor;
its activation is

f(x) = exp −x2

σ2 , (1)

where σ is learned. For each test image the network
is re-initialised and optimised for 100 steps to minimise
Dice + L2 loss between segmentation logits and their DAE-
cleaned counterpart.
(3) TENT - Test-Time Entropy Minimisation (Wang
et al., 2021). Because 3D memory limits rule out batch-
norm adaptation, we instead optimise an identical normali-
sation network (initialised from scratch per subject) for 100
steps to minimise Shannon entropy

H(ŷ) = −
∑

c
pc(ŷ) log pc(ŷ), (2)

with pc the class-c softmax probability.
(4) PL Family - Pseudo-Labelling (Self-Training) (Chen
et al., 2021). Three variants are tested:

• PL: threshold softmax at τ = 1.5
NC

to keep only high-
confidence voxels, where NC is the total number of out-
put classes.

• UPL: PL plus uncertainty masking via 10-sample Monte-
Carlo dropout (variance > 0.05 discarded).

• DPL: full ”prototype-consistency” pipeline that further
removes voxels inconsistent with decoder-feature proto-
types.

All PL variants fine-tune all segmentation weights for
2000 iterations with weighted cross-entropy.
Common optimiser settings. Every trainable DA method
(DAE, TENT, PL, UPL, DPL) uses AdamW (Loshchilov
and Hutter, 2019) with learning-rate 0.002 and weight-
decay 0.01. TTA is inference-only and therefore parameter-
free.

2.5 Large-Scale Pseudo-Labelling

Because the synthetic pipeline decouples image realism
from label accuracy, we can tolerate imperfect pseudo-
labels. We therefore use Baseline + TTA to annotate 1159
chronic stroke MPRAGE scans from PLORAS Sample 1
(Seghier et al., 2016); this PLORAS-MPRAGE cohort
feeds the mixed loader exactly like ATLAS.

3. Experiments

3.1 Datasets

Models were validated on four stroke-lesion datasets. We
assessed the models’ in-domain performance on the hold-
out test set for the ATLAS dataset (131 subjects, 1 mm
isotropic MPRAGE). Out-of-domain (OOD) robustness was
evaluated on three additional cohorts: the ISLES 2015
dataset (Maier et al., 2017) (N=28 subjects with skull-
stripped T1w/T2w/FLAIR/DWI), the ARC dataset (Gib-
son et al., 2024; Johnson et al., 2024) (N=229 T2w, 202
T1w, 85 FLAIR; N=84 subjects have all three), and the
hospital scans from 661 acute-stroke patients in PLORAS
Sample 2 (N=106 T2w, 300 FLAIR, 255 CT), collectively
referred to as PLORAS (Price et al., 2010). ISLES and
PLORAS also introduce an acute-versus-chronic shift. There
is no overlap in patients between the PLORAS hospital
scans (acute) and the PLORAS MPRAGE cohort described
in Section 2.5.

For PLORAS, images are resampled from the original
2 mm isotropic resolution to 1 mm to maintain a single
preprocessing pipeline, acknowledging that this constitutes
a second resampling step.

3.2 Experimental Design

Pre-processing and inference. All test images are re-
oriented to RAS, resliced to 1 mm 3 voxels, histogram-
normalised and z-scored. Inference uses a 1923 sliding
window with 50 % overlap and a Gaussian blending ker-
nel (σ = 0.125). Test-time augmentation (TTA) averages
logits over all eight combinations of left-right, anterior-
posterior and inferior-superior flips.

Multi-modal ensembles. When multiple MR sequences
are available for the same subject (ISLES 2015, ARC) we
average the per-modality logits before the softmax. This
simple ensembling mimics a realistic clinical deployment.

Pseudo-label training. Pseudo-labels are generated for
the PLORAS MPRAGE cohort with the Baseline + TTA
model. A new Baseline and a new Synth model are then
re-trained using the union of ATLAS and pseudo-labelled
data, following exactly the same optimisation schedule as
the originals.
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3.3 Evaluation Metrics
Prior to metric computation, predictions and ground truth
are resliced to 1 mm and zero-padded to 2563 voxels. We
report Dice and Surface-Dice (Seidlitz et al., 2022) (1 mm
tolerance) in the main text; HD95, absolute volume differ-
ence (AVD), absolute lesion difference (ALD), lesion-wise
F1, true-positive rate (TPR) and false-positive rate (FPR)
appear in Appendix B.

Dice quantifies volumetric overlap (1 = perfect, 0 =
none), whereas HD95 captures boundary error while being
robust to outliers. AVD reports absolute volume mismatch
in cm3. ALD counts mismatches in the number of con-
nected components, and lesion-wise F1 scores per-lesion
detection accuracy. TPR and FPR follow standard defini-
tions.

3.4 Comparison Methods
We evaluate four primary approaches:

(i) Baseline: A standard 3D U-Net trained solely on
real MPRAGE images from the ATLAS dataset (N=419)
using supervised learning. This represents the conventional
approach of training on a single modality with manual an-
notations.

(ii) Oracle DA: The baseline model enhanced with
the single best-performing domain adaptation method (se-
lected post-hoc from TTA, TENT, DAE, PL, UPL, DPL)
for each modality. This represents the theoretical upper
bound of what domain adaptation can achieve when the
optimal method is known - an unrealistic scenario in prac-
tice.

(iii) WMH-SynthSeg: The pre-trained white mat-
ter hyperintensity model from Laso et al. (2024); Fischl
(2012), included as an off-the-shelf robust lesion segmen-
tation baseline. Note that this model was trained for small
periventricular WMH lesions, which differ substantially from
large cortical stroke lesions.

(iv) Synth (Ours): Our proposed approach using syn-
thetic data generation as described in Section 2. The
model is trained on a mixture of synthetic data (gener-
ated from OASIS healthy maps + ATLAS lesion masks)
and real ATLAS MPRAGE images, following the frame-
work illustrated in Figure 2.

For fair comparison, TTA is only applied when a model
is explicitly labelled ”+TTA” or when it is selected as the
Oracle DA. All candidate maps are binarised via argmax
on posterior probabilities without additional calibration or
threshold tuning.

4. Results

Overall results are shown in Figure 3, which compares
(i) the Baseline, (ii) the Oracle DA (best-performing do-

main adaptation for Baseline only), (iii) WMH-SynthSeg,
and (iv) the DA-free Synth model. Oracle DA represents
the hypothetical best-case scenario where the optimal DA
method is known a priori for each dataset/modality. Tables
2, 3, 4 and 5 provide comprehensive results for all tested
domain adaptation methods on both Baseline and Synth
models.

4.1 ATLAS

The ATLAS dataset represents the in-domain scenario with
T1-weighted images matching our training distribution. Ta-
ble 2 shows performance on the held-out test set. The
conventional Baseline achieves a median Dice of 57.5 %,
whereas our Synth model reaches 48.2 %, a 9.3 % gap
that represents the ’price of robustness’ we accept for the
larger out-of-domain gains reported later. Surface Dice
follows the same trend (49.4 % vs. 38.1 %).

Applying test-time augmentation (Baseline+TTA) changes
Dice by <0.1 %, indicating that TTA adds little benefit
when the evaluation domain is already aligned with train-
ing.

The off-the-shelf WMH-SynthSeg, trained for small
periventricular WMH lesions, scores only 7.3 % Dice, con-
firming that cortical stroke in ATLAS lies well outside its
intended scope.

A paired Wilcoxon test (Appendix Figure 7) verifies
that the Baseline–Synth Dice difference is statistically sig-
nificant, underscoring that domain-invariant training still
sacrifices some in-domain accuracy. Voxel-level metrics in
Appendix Table 10 reveal the Baseline achieves a higher
recall but at the cost of more false positives, suggesting a
tendency to over-segment.

Worst Scanner Syndrome. This in-domain drop is
consistent with the ’Worst Scanner Syndrome’ hypothe-
sis (Moyer and Golland, 2021), which posits that many
domain-invariance strategies pull feature quality toward the
least informative - or noisiest - domain. As the next Re-
sults sections demonstrate, that modest in-domain penalty
is offset by substantial gains on heterogeneous clinical data.

Table 2: Median results on the ATLAS hold-out set
(N=131). Best score shown in bold. Student’s t distri-
bution 95% confidence intervals given in brackets.

Modality Model Dice (%) Surface Dice (%)

T1w

Baseline 57.5 (52.3-62.7) 49.4 (44.5-54.3)
Baseline+TTA 57.5 (52.2-62.8) 49.5 (44.5-54.5)

WMH-SynthSeg 7.3 (4.8-9.7) 8.9 (6.9-10.9)
Synth (Ours) 48.2 (43.1-53.4) 38.1 (33.4-42.7)
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Figure 3: Dice and Surface Dice metrics for all reported datasets. ’Oracle DA’ represents the hypothetical best-case
scenario where optimal DA method is known a priori for each dataset/modality and applied to the baseline model.

4.2 ARC
The ARC dataset contains research-quality chronic stroke
scans, representing a moderate domain shift from our AT-
LAS training data. We expect T1w performance to be
strongest given its proximity to the training domain.

Table 3 shows performance on ARC, comparing Base-
line, Oracle DA (best possible domain adaptation for Base-
line), WMH-SynthSeg, and our Synth approach. For T1w,
both baseline and Oracle DA achieve 75.2% Dice, with
Synth at 72.3% - all maintaining strong performance (Ap-
pendix Figure 8 shows statistical significance). However,
T2w reveals dramatic differences: baseline drops to 0.4%
and Oracle DA to 0.1%, while Synth maintains 26.8%.
FLAIR shows intermediate performance with Oracle DA at
12.4% versus Synth at 14.1%. The ensemble results are
particularly striking: Oracle DA achieves only 11.7% while
Synth reaches 60.2%.

This pattern - strong baseline performance on T1w but
catastrophic failure on other modalities even with optimal
DA - demonstrates that synthetic pre-training provides fun-
damental robustness unachievable through post-hoc adap-
tation.

4.3 ISLES 2015
ISLES 2015 contains skull-stripped sub-acute stroke scans,
representing our most challenging domain shift with both
acquisition and pathology differences from the chronic AT-
LAS training data.

The results in Figure 3 and Table 4 show that the Synth
model outperforms the Baseline model in all modalities in

Table 3: Median results on the ARC dataset (N=229).
Best score shown in bold. Student’s t distribution 95%
confidence intervals given in brackets. ’Oracle DA’ rep-
resents the hypothetical best-case scenario where optimal
DA method is known a priori for each dataset/modality
and applied to the baseline model.

Modality Model Dice (%) Surface Dice (%)

T1w

Baseline 75.2 (71.5-79.0) 41.7 (39.1-44.4)
Oracle DA 75.2 (71.3-79.0) 42.1 (39.4-44.8)

WMH-SynthSeg 8.3 (6.8-9.8) 8.9 (7.7-10.1)
Synth (Ours) 72.3 (68.4-76.2) 33.7 (31.2-36.2)

T2w

Baseline 0.4 (0.0-1.4) 1.2 (0.8-1.7)
Oracle DA 0.1 (0.0-0.4) 1.0 (0.8-1.2)

WMH-SynthSeg 3.2 (2.2-4.2) 6.0 (5.2-6.8)
Synth (Ours) 26.8 (23.3-30.2) 12.0 (10.4-13.6)

FLAIR

Baseline 12.0 (7.6-16.3) 6.3 (4.7-7.8)
Oracle DA 12.4 (5.8-19.0) 7.7 (5.2-10.2)

WMH-SynthSeg 2.4 (0.9-3.9) 4.3 (3.0-5.5)
Synth (Ours) 14.1 (9.7-18.5) 6.6 (4.8-8.4)

Ensemble
Baseline 3.4 (1.3-5.4) 2.0 (0.8-3.2)

Oracle DA 11.7 (8.6-14.7) 6.3 (4.7-7.8)
Synth (Ours) 60.2 (56.6-63.8) 26.3 (24.3-28.4)

regards to both Dice and Surface Dice with high statisti-
cal significance in the Dice metric evidenced in Appendix
Figures 11-13. Baseline performance is near-zero across
all modalities. Oracle DA shows minimal recovery: 10.5%
for T1w (still below Synth’s 11.0%) and 0.0% for all other
modalities (T2w, FLAIR, DWI). In contrast, Synth achieves
11.0% (T1w), 11.1% (T2w), 21.2% (FLAIR), and 5.6%
(DWI). The ensemble demonstrates the starkest contrast:
0.0% for both baseline and Oracle DA versus 42.3% for
Synth.

The poor performance correlates with high false posi-
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tive rates rather than missed detections (Appendix Table
12), suggesting models struggle with tissue discrimination
in this domain. When baseline predictions fail catastrophi-
cally, no DA method can recover meaningful performance.

It is also evident from Table 4 that the model perfor-
mance is highly dependent on the choice of image sequence
available. The ensemble improves performance over indi-
vidual sequences in ISLES2015 (Table 4) but shows mixed
results in ARC, suggesting dataset-specific benefits rather
than universal improvement. Although we only show the
upper limit of an ensemble of all four sequences, it is ex-
pected that in cases where fewer sequences are available
we will still observe constructive gains from post-hoc en-
sembling.

Table 4: Median results on the ISLES2015 dataset
(N=28). Best score shown in bold. Student’s t distribution
95% confidence intervals given in brackets. ’Oracle DA’
represents the hypothetical best-case scenario where opti-
mal DA method is known a priori for each dataset/modality
and applied to the baseline model.

Modality Model Dice (%) Surface Dice (%)

T1w

Baseline 0.0 (0.0-7.4) 0.0 (0.0-4.8)
Oracle DA 10.5 (0.0-21.7) 3.8 (0.0-9.9)

WMH-SynthSeg 0.0 (0.0-4.5) 0.7 (0.0-3.9)
Synth (Ours) 11.0 (1.2-20.8) 3.4 (0.0-8.5)

T2w

Baseline 0.0 (0.0-0.5) 0.3 (0.0-1.0)
Oracle DA 0.0 (0.0-0.2) 0.0 (0.0-0.6)

WMH-SynthSeg 0.1 (0.0-2.5) 0.8 (0.0-3.0)
Synth (Ours) 11.1 (0.7-21.6) 7.1 (2.7-11.5)

FLAIR

Baseline 0.0 (0.0-0.0) 0.0 (0.0-0.0)
Oracle DA 0.0 (0.0-0.0) 0.0 (0.0-0.0)

WMH-SynthSeg 0.3 (0.0-2.3) 0.8 (0.0-3.0)
Synth (Ours) 21.2 (8.5-34.0) 14.7 (9.0-20.3)

DWI

Baseline 0.0 (0.0-0.0) 0.0 (0.0-0.0)
Oracle DA 0.0 (0.0-0.0) 0.0 (0.0-0.0)

WMH-SynthSeg 0.4 (0.0-2.2) 1.3 (0.0-3.6)
Synth (Ours) 5.6 (0.0-14.4) 4.1 (0.8-7.4)

Ensemble
Baseline 0.0 (0.0-0.0) 0.0 (0.0-0.0)

Oracle DA 0.0 (0.0-0.0) 0.0 (0.0-0.0)
Synth (Ours) 42.3 (30.2-54.5) 19.1 (12.7-25.4)

4.4 PLORAS

The PLORAS dataset represents the most extreme domain
shift with real clinical data exhibiting large diversity in ac-
quisition protocols and slice thickness. We expect minimal
baseline performance given these challenging conditions.
For all available modalities, the Synth model outperforms
the baseline with statistical significance in Dice (see Ap-
pendix Figures 15 - 17).

Results in Table 5 demonstrate the most extreme per-
formance gap between conventional training and our syn-
thetic approach. On this challenging clinical dataset, Ora-
cle DA achieves at most 0.2% Dice (CT modality), while
our Synth model achieves 11.9%, 25.4%, and 11.3% for
T2w, FLAIR, and CT respectively. The near-total fail-
ure of both baseline and Oracle DA on real clinical data

- where acquisition protocols, slice thickness, and image
quality vary substantially - validates our core hypothesis:
domain adaptation cannot substitute for domain-invariant
training when deployment conditions diverge significantly
from training data. Even WMH-SynthSeg, despite being
trained for robustness, achieves only 0.0-4.9% Dice, likely
due to its focus on small periventricular lesions rather than
large cortical strokes. Full results for all individual DA
methods are provided in Appendix Table 13. A number
of samples are also visualised for this dataset in Figure 4.

Table 5: Median results on the PLORAS dataset (N=661).
Best score shown in bold. Student’s t distribution 95%
confidence intervals given in brackets. ’Oracle DA’ rep-
resents the hypothetical best-case scenario where optimal
DA method is known a priori for each dataset/modality
and applied to the baseline model.

Modality Model Dice (%) Surface Dice (%)

T2w

Baseline 0.0 (0.0-1.3) 0.1 (0.0-0.6)
Oracle DA 0.1 (0.0-2.2) 0.1 (0.0-0.8)

WMH-SynthSeg 4.9 (4.0-5.8) 0.0 (0.0-0.0)
Synth (Ours) 11.9 (6.7-17.1) 8.4 (6.1-10.7)

FLAIR

Baseline 0.0 (0.0-0.4) 0.0 (0.0-0.2)
Oracle DA 0.0 (0.0-0.4) 0.0 (0.0-0.2)

WMH-SynthSeg 4.6 (4.2-5.0) 0.0 (0.0-0.0)
Synth (Ours) 25.4 (22.5-28.3) 8.5 (7.4-9.6)

CT
Baseline 0.0 (0.0-1.1) 0.0 (0.0-0.5)

Oracle DA 0.2 (0.0-0.5) 0.3 (0.0-0.7)
WMH-SynthSeg 0.0 (0.0-0.0) 0.0 (0.0-0.0)

Synth (Ours) 11.3 (8.0-14.6) 7.9 (6.0-9.8)

4.5 Domain Adaptation
Tables 3, 4 and 5 demonstrate that even with oracle selec-
tion of the optimal domain adaptation method, the base-
line model cannot match Synth performance in out-of-
domain settings. We evaluated six established DA tech-
niques (TTA, TENT, DAE, PL, UPL, DPL) on both base-
line and Synth models to determine whether domain adap-
tation could enable baseline generalisation. Complete re-
sults in Appendix Tables 11-13 consistently show that poor
initial baseline predictions prevent effective adaptation. In
contrast, when applied to our Synth model, several DA
methods yield substantial improvements, demonstrating the
potential for compound gains when robust pre-training is
combined with appropriate post-hoc adaptation.

Analysis of complete DA results (Appendix Tables 11-
13) reveals DAE as the most consistently effective method
for Synth. DAE achieves substantial improvements: ARC
T2w increases from 26.8% to 54.3% Dice, ISLES T1w from
11.0% to 31.1%, and PLORAS CT from 11.3% to 23.9%.
TTA provides modest gains for PLORAS FLAIR (25.4%
to 29.4%), while TENT benefits ARC FLAIR (14.1% to
36.1%). Pseudo-labeling methods (PL, UPL, DPL) show
high variance - occasionally strong but often catastrophic.

The key finding: while DA cannot rescue baseline mod-
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Figure 4: Sample visualisations in the PLORAS dataset. Green indicates a true positive prediction, red a false positive,
and blue a false negative.
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els trained on narrow data, it can enhance robustly pre-
trained models. Synth+DAE consistently outperforms both
Synth alone and Baseline+Oracle DA, demonstrating com-
plementary benefits.

Our domain adaptation experiments serve primarily to
establish an upper bound on baseline model performance.
Even with oracle knowledge of the optimal DA method for
each dataset/modality combination - an unrealistic sce-
nario in practice - the baseline model cannot match Synth
performance in out-of-domain settings. Full DA results for
all methods appear in Appendix Tables 11-13. While indi-
vidual DA methods show varied effectiveness, the key find-
ing is that synthetic pre-training provides robustness that
cannot be recovered through test-time adaptation alone.
This underscores the value of appearance-invariant train-
ing, even with our current limitations in modelling stroke
heterogeneity through single Gaussian distributions. Do-
main adaptation results varied substantially by method and
modality, with no single approach providing consistent im-
provements. We present all tested combinations rather
than cherry-picking optimal results, as real-world deploy-
ment would lack oracle knowledge of the best DA method
for unseen data.

4.6 Ablation: To mix or not to mix?

For all experiments shown thus far, the Synth model used
a mix of both synthetic data and the real ATLAS dataset.
In order to evaluate whether this decision is justified, an
ablation is performed where the Synth model using mixed
real/synthetic data is compared to a model trained with
only synthetic data. This model is trained in the exact
same manner as described previously for the baseline and
Synth models. Results for the test datasets ATLAS, ARC
and ISLES 2015 are shown in Tables 6, 7 and 8 respectively.

The results reveal a nuanced picture. For in-domain
and near-domain T1w data (ATLAS, ARC), mixing with
real data provides clear benefits, with pure synthetic train-
ing achieving only 19.7% and 46.7% Dice respectively com-
pared to 48.2% and 72.3% for mixed training. However,
for several out-of-domain scenarios, pure synthetic training
surprisingly often outperforms mixed training: ARC T2w
(62.6% vs 26.8%), ISLES T1w (30.4% vs 11.0%), and
ISLES FLAIR (37.2% vs 21.2%). This suggests that in-
cluding real T1w data may inadvertently bias the model
toward T1w-specific features, reducing generalisation to
other modalities. The T2w and FLAIR improvements with
pure synthetic training may reflect these sequences’ dif-
ferent tissue contrast patterns, which are better captured
by unbiased synthetic variation than by a model partially
trained on T1w-specific features. Further improving the
realism of the generated lesions with methods proposed in
Liu et al. (2025) may aid in closing the gap for the model

trained only on synthetic data, potentially achieving both
in-domain performance and out-of-domain generalisation.

Table 6: Median results for ablation and pseudo-label ex-
periments on the ATLAS test set (N=131). Best score
shown in bold. Student’s t distribution 95% confidence
intervals given in brackets.

Modality Model Dice (%) Surface Dice (%)

T1w

Baseline 57.5 (52.3-62.7) 49.4 (44.5-54.3)
Baseline+Pseudo 59.8 (54.8-64.7) 48.6 (44.0-53.3)

Synth (no real data) 19.7 (15.5-23.9) 14.6 (12.3-16.9)
Synth (Ours) 48.2 (43.1-53.4) 38.1 (33.4-42.7)

Synth+Pseudo 49.6 (44.5-54.7) 38.2 (33.8-42.6)

Table 7: Median results for ablation and pseudo-label ex-
periments on the ARC test set (N=229). Best score shown
in bold. Student’s t distribution 95% confidence intervals
given in brackets.

Modality Model Dice (%) Surface Dice (%)

T1w

Baseline 75.2 (71.5-79.0) 41.7 (39.1-44.4)
Baseline+Pseudo 75.9 (72.1-79.7) 38.2 (35.8-40.7)

Synth (no real data) 46.7 (43.0-50.4) 18.2 (16.5-20.0)
Synth (Ours) 72.3 (68.4-76.2) 33.7 (31.2-36.2)

Synth+Pseudo 74.3 (70.4-78.2) 36.8 (34.3-39.3)

T2w

Baseline 0.4 (0.0-1.4) 1.2 (0.8-1.7)
Baseline+Pseudo 1.4 (0.3-2.4) 3.0 (2.5-3.4)

Synth (no real data) 62.6 (58.8-66.5) 30.9 (28.7-33.0)
Synth (Ours) 26.8 (23.3-30.2) 12.0 (10.4-13.6)

Synth+Pseudo 37.2 (33.2-41.1) 14.7 (12.7-16.7)

FLAIR

Baseline 12.0 (7.6-16.3) 6.3 (4.7-7.8)
Baseline+Pseudo 14.5 (10.1-18.9) 7.0 (5.5-8.5)

Synth (no real data) 9.6 (7.0-12.3) 7.3 (6.1-8.6)
Synth (Ours) 14.1 (9.7-18.5) 6.6 (4.8-8.4)

Synth+Pseudo 12.9 (8.4-17.3) 6.3 (4.4-8.1)

Ensemble

Baseline 3.4 (1.3-5.4) 2.0 (0.8-3.2)
Baseline+Pseudo 12.4 (9.7-15.0) 6.5 (5.1-8.0)

Synth (no real data) 59.7 (56.2-63.1) 26.0 (24.2-27.9)
Synth (Ours) 60.2 (56.6-63.8) 26.3 (24.3-28.4)

Synth+Pseudo 69.4 (65.8-73.0) 34.0 (31.7-36.3)

4.7 Use of Pseudo-labelling
The use of synthetic data for semi-supervised pseudo-label
training is also explored through the use of the PLORAS
MPRAGE dataset (N=1159), distinct from the PLORAS
hospital scans used in the Experiments. This approach
leverages a key advantage of our framework: because syn-
thetic training decouples image generation from label ac-
curacy, the model can tolerate and potentially benefit from
imperfect pseudo-labels. Results in Figure 6 and Tables 6,
7 and 8 demonstrate an overall positive effect of pseudo
labels in the Synth model, with the exception of FLAIR
images in ISLES 2015.

Notable improvements include: ARC T2w increasing
from 26.8% to 37.2% Dice, ISLES T1w from 11.0% to
17.9%, and ARC ensemble from 60.2% to 69.4%. The
baseline model shows minimal improvement with pseudo-
labels in out-of-domain scenarios (e.g., ISLES ensemble re-
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Figure 5: Dice and Surface Dice metrics for all reported datasets, for models trained on different combinations of
real/synthetic data.

Table 8: Median results for ablation and pseudo-label ex-
periments on the ISLES 2015 test set (N=28). Best score
shown in bold. Student’s t distribution 95% confidence
intervals given in brackets.

Modality Model Dice (%) Surface Dice (%)

T1w

Baseline 0.0 (0.0-7.4) 0.0 (0.0-4.8)
Baseline+Pseudo 0.3 (0.0-9.1) 0.0 (0.0-4.0)

Synth (no real data) 30.4 (21.3-39.6) 9.4 (4.1-14.8)
Synth (Ours) 11.0 (1.2-20.8) 3.4 (0.0-8.5)

Synth+Pseudo 17.9 (7.6-28.3) 8.0 (2.1-13.8)

T2w

Baseline 0.0 (0.0-0.5) 0.3 (0.0-1.0)
Baseline+Pseudo 0.1 (0.0-0.7) 0.4 (0.0-1.1)

Synth (no real data) 7.4 (0.0-18.4) 8.1 (3.0-13.1)
Synth (Ours) 11.1 (0.7-21.6) 7.1 (2.7-11.5)

Synth+Pseudo 18.1 (7.1-29.1) 9.5 (4.4-14.5)

FLAIR

Baseline 0.0 (0.0-0.0) 0.0 (0.0-0.0)
Baseline+Pseudo 0.0 (0.0-0.3) 0.0 (0.0-0.4)

Synth (no real data) 37.2 (25.5-48.9) 16.0 (10.8-21.1)
Synth (Ours) 21.2 (8.5-34.0) 14.7 (9.0-20.3)

Synth+Pseudo 4.2 (0.0-17.3) 3.9 (0.0-9.8)

DWI

Baseline 0.0 (0.0-0.0) 0.0 (0.0-0.0)
Baseline+Pseudo 0.0 (0.0-0.4) 0.0 (0.0-0.0)

Synth (no real data) 8.2 (0.0-16.8) 5.1 (2.0-8.3)
Synth (Ours) 5.6 (0.0-14.4) 4.1 (0.8-7.4)

Synth+Pseudo 5.6 (0.0-14.7) 4.3 (0.8-7.8)

Ensemble

Baseline 0.0 (0.0-0.0) 0.0 (0.0-0.0)
Baseline+Pseudo 0.0 (0.0-0.0) 0.0 (0.0-0.0)

Synth (no real data) 27.2 (15.7-38.8) 15.6 (10.3-20.9)
Synth (Ours) 42.3 (30.2-54.5) 19.1 (12.7-25.4)

Synth+Pseudo 50.1 (37.6-62.6) 24.9 (18.7-31.1)

mains at 0.0%), suggesting that pseudo-labelling cannot
overcome fundamental domain shift. The FLAIR degra-
dation in ISLES 2015 (21.2% to 4.2%) may indicate that
pseudo-labels from chronic MPRAGE data introduce biases

incompatible with acute FLAIR lesion appearance. The in-
domain ATLAS dataset also shows a notable improvement
for both models as a result of pseudo labels, with a more
marked increase in the baseline model, suggesting pseudo-
labels effectively expand the training distribution when the
domain gap is small.

These results across four diverse datasets - from research-
quality ATLAS to challenging clinical PLORAS scans - re-
veal consistent patterns that warrant deeper analysis of the
fundamental principles underlying domain robustness.

5. Discussion

Our results reveal fundamental principles about domain
robustness in medical image segmentation. The consis-
tent failure of domain adaptation to rescue baseline mod-
els - even with oracle selection of the optimal method -
demonstrates that post-hoc adaptation cannot substitute
for domain-invariant training. This finding challenges pre-
vailing assumptions about the sufficiency of test-time adap-
tation for clinical deployment.

The compound effect observed with Synth+DAE sug-
gests that synthetic pre-training and test-time adaptation
address different aspects of domain shift. Synthetic train-
ing provides feature representations invariant to appear-
ance changes, while DA methods fine-tune these represen-
tations to specific test-time distributions. However, this
synergy only emerges when the base model already pos-
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Figure 6: Dice and Surface Dice metrics for all reported datasets, for models trained with/without an additional training
dataset of MPRAGE images and pseudo-labels.

sesses sufficient robustness - when initial predictions fail
catastrophically (as with baseline models on ISLES 2015
and PLORAS), no amount of adaptation can recover per-
formance.

The variable benefit of multi-modal ensembling - sub-
stantial for ISLES 2015 but mixed for ARC - indicates that
fusion strategies must consider dataset-specific character-
istics rather than assuming universal improvement. Clinical
deployment should balance single-modality robustness with
opportunistic multi-modal fusion.

6. Limitations and Future Directions

Appendix A confirms that 20–40% of lesions in several
cohorts are multimodal, underscoring the central limita-
tion of our single-Gaussian sampling. While our spatially-
varying approach introduces intra-lesion heterogeneity, it
does not address the multi-modal nature of stroke appear-
ance. Future implementations should explore mixture mod-
els to capture lesions that simultaneously exhibit hyper-
and hypo-intense regions within the same pathology. It
may also be advantageous to paste several lesions per sub-
ject, each assigned its own independently sampled inten-
sity profile. This would allow a single synthetic brain to
display chronic hypointense scars alongside acute hyper-
intense infarcts, better reflecting the heterogeneous lesion
chronology typically observed in stroke cohorts.

Additional qualitative results in Appendix Figures 18 -

23 display further positive and negative results across the
available image modalities within the PLORAS dataset. A
number of failure modes may be observed here, such as
missing cerebellar lesions or under-segmenting large hemi-
spheric lesions.

Although results in the paper provide strong evidence
of the raw value of the segmentation metrics, it is impor-
tant to further validate that the predictions made from the
trained model are useful for downstream tasks. This could
be validated by comparing predictivity of the segmenta-
tion masks for functional scores such as the Comprehensive
Aphasia Test (CAT) (Hope et al., 2024) or the NIH Stroke
Score (NIHSS).

In the context of neuroimaging data, there are many
shifts in domain beyond those related to scanner sequence
and resolution targeted in this work. Shifts related to
anatomical shape, brought on by changes in demographics
or the presence of confounding conditions such as atro-
phy are of equal importance to shifts in image appearance.
Prior work has attempted to model such factors through
the use of causal inference and counterfactual generation
(Pawlowski et al., 2020; Pombo et al., 2023; Ribeiro et al.,
2023). It is conceivable that such an approach could be
used to introduce morphological changes to the healthy
tissue maps to create a model that is agnostic to shifts in
domains related to both shape and appearance.

While this study focused on stroke, the results are ex-
pected to translate to other similar domains, such as haem-
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orrhage and glioblastoma. Future work will compare the
impact of the mixing proportions of real and synthetic
data. Additionally, the utility of multi-modal data in a
multi-channel model will be examined versus post-hoc av-
eraging of individual modality predictions. Lesions often
appear differently across modalities, so a model trained
with multi-channel inputs is expected to leverage these dif-
ferences more effectively. This relationship between multi-
channel inputs may better be modelled using quantitative
MRI data.

7. Conclusion

In this study, we introduced a novel synthetic data gen-
eration and training framework for stroke lesion segmen-
tation, building on the success of prior works in healthy
brain parcellation. A model trained using this novel frame-
work was evaluated on a wide range of datasets covering
research and clinical data, and chronic and acute stroke
pathologies. Our experiments demonstrate that synthetic
pre-training provides fundamental robustness unachievable
through test-time adaptation alone. While accepting a
9.3% median Dice reduction in-domain (48.2% vs 57.5%),
our approach maintains performance where conventional
methods fail entirely. Even with oracle knowledge of the
optimal domain adaptation method - an unrealistic scenario
in practice - conventionally-trained models cannot match
our synthetic approach in out-of-domain settings.

Our results demonstrate that even imperfect appear-
ance modelling can provide substantial benefits for cross-
modality segmentation. Incorporating recent contemporary
work on realistic lesion simulation (Liu et al., 2025) may
further improve performance both in- and out-of-distribution.

Qualitative results in Figure 4 demonstrate the poten-
tial of the model as a starting checkpoint in an active-
learning framework such as MONAI Label (Diaz-Pinto et al.,
2024), where predictions may be refined to generate train-
ing data for task-specific fine-tuning. The uncertainty of
healthy-tissue segmentations via MC dropout may also pro-
vide an effective heuristic for prioritising items to refine/label
in such a framework (Nath et al., 2021).

Results also showed the potential benefit of the model
for semi-supervised learning through pseudo labelling, where
predicted labels may be fed back into the model with much
less caution than is typically required when training with
real images (Pham et al., 2021; Xu et al., 2024). The ab-
lation study revealed that pure synthetic training can out-
perform mixed training for certain out-of-domain modal-
ities, suggesting opportunities for further optimisation of
the real/synthetic data balance. A simple solution to fur-
ther reinforce this may be to train a real/fake discriminator
to perform automated quality-control and threshold opti-
misation for the generated binary maps.

Our approach reduces reliance on domain-specific train-
ing data and helps bridge the gap between research-grade
and clinical scans to improve clinical stroke neuroimag-
ing workflows, providing a foundation for more robust and
widely applicable lesion segmentation tools.
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Appendix A. Lesion-intensity unimodality

Motivation. Most classical stroke-segmentation pipelines,
including our synthetic generator, implicitly assume that
the grey-level distribution of a lesion is unimodal. That
assumption underpins common appearance priors such as
single-Gaussian modelling and simple intensity normalisa-
tion. However, chronic infarcts often contain a mixture of
tissue constituents, and in CT the same infarct can include
both hypo- and hyper-dense cores. Quantifying how often
real lesions violate unimodality therefore informs whether
richer mixture-based priors are warranted.

Experiment. For every connected component in each
dataset, we extracted the raw voxel intensities and applied
Hartigan’s dip test (Hartigan and Hartigan, 1985) to the
empirical one-dimensional distribution. A lesion was la-
belled unimodal when the null hypothesis of unimodality
could not be rejected at α = 0.05; otherwise it was clas-
sified as multimodal. For efficiency, we randomly subsam-
pled at most 2048 voxels per lesion before testing. Table
9 summarises the counts.

Findings. Across MRI datasets the majority of lesions
were indeed unimodal, but a non-negligible tail of multi-
modal cases emerged:

• ATLAS (chronic MPRAGE T1w) showed > 95% uni-
modal lesions; only 80 of 1818 connected components
exhibited multimodality, in line with mature cavities whose
signal is dominated by a single CSF-like class.

• ISLES 2015 exhibited 12-38% multimodal lesions de-
pending on modality, reflecting mixed-phase tissue in a
sub-acute cohort.

• ARC (chronic research scans) retained a high unimodal
rate in T1w/T2w but FLAIR contained 39% multimodal
lesions.

• PLORAS revealed the strongest departure: while T2w/FLAIR
remained largely unimodal, CT lesions were predomi-
nantly multimodal (58%), underscoring how density het-
erogeneity dominates in CT.

Implications. A single-Gaussian appearance prior is
largely adequate for T1w/T2w MRI, where ≥ 80% of le-
sions were unimodal; it begins to break down for modalities
that emphasise subtle tissue heterogeneity - most notably
FLAIR and especially CT. Adopting explicit mixture-based
priors, or synthetically sampling lesions with mixed inten-
sities, therefore represents a principled next step for im-
proving model robustness across modalities and imaging
protocols.

Table 9: Counts of connected-component lesions that are
unimodal or multimodal in each dataset–modality pair.
For every lesion larger than 10 voxels we sampled at most
2048 raw intensity values and ran Hartigan’s dip test; fail-
ure to reject the null hypothesis of unimodality at α = 0.05
yields the Unimodal label, otherwise Multimodal. AT-
LAS is split into the subjects used for model development
(T1w [Train]) and the held-out evaluation set (T1w [Vali-
dation]).

Dataset Modality Unimodal Multimodal

ATLAS T1w [Train] 1384 65
T1w [Validation] 354 15

ISLES2015

T1w 52 9
T2w 46 15
FLAIR 54 7
DWI 38 23

ARC
T1w 286 64
T2w 335 48
FLAIR 90 57

PLORAS
T2w 203 14
FLAIR 712 29
CT 248 342

Appendix B. Further segmentation metrics

Additional metrics are reported below in Appendix Tables
10 - 13 for all datasets. Here we report individual scores
for each DA method, for both the baseline model and our
Synth model.

Table 10: Mean results on ATLAS hold-out set (N=131).
Best score shown in bold. FPR values are shown as a
multiple of 10−3.

Modality Model Dice HD95 AVD ALD LF1 TPR FPR

T1w

Baseline 0.500 44.3 7.60 3.48 0.480 0.510 0.251
Baseline+TTA 0.503 41.4 7.34 2.52 0.537 0.502 0.234
Synth (Ours) 0.456 47.4 8.73 2.26 0.536 0.426 0.200
Synth+TTA 0.455 48.3 8.51 1.76 0.559 0.424 0.191
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Table 11: Mean results on the ARC dataset (N=229). Best
score per column is shown in bold. FPR values are shown
as a multiple of 1000.

Modality Model Dice HD95 AVD ALD LF1 TPR FPR

T1w

Baseline 0.646 24.5 18.04 6.19 0.335 0.600 1.178
Baseline+TTA 0.648 23.7 18.33 3.42 0.442 0.598 1.126

Baseline+TENT 0.077 144.9 75.50 3.51 0.180 0.060 0.285
Baseline+DAE 0.614 26.2 26.53 3.15 0.507 0.685 2.238
Baseline+PL 0.325 67.5 146.72 175.61 0.017 0.613 10.342

Baseline+UPL 0.341 74.4 48.10 22.84 0.244 0.262 0.695
Baseline+DPL 0.340 52.5 52.48 9.53 0.324 0.247 0.465
Synth (Ours) 0.609 27.9 22.88 1.99 0.613 0.539 0.953
Synth+TTA 0.611 27.0 24.08 1.84 0.640 0.534 0.885

Synth+TENT 0.560 33.4 26.71 2.42 0.528 0.604 2.385
Synth+DAE 0.613 23.4 20.60 2.26 0.581 0.640 1.903
Synth+PL 0.311 158.6 48.41 260.54 0.017 0.310 2.303

Synth+UPL 0.340 56.3 54.57 20.35 0.334 0.243 0.457
Synth+DPL 0.255 58.3 63.36 7.44 0.530 0.169 0.339

T2w

Baseline 0.040 76.8 73.80 47.12 0.044 0.063 6.778
Baseline+TTA 0.023 77.0 71.83 26.00 0.054 0.036 6.819

Baseline+TENT 0.000 148.5 85.40 5.11 0.047 0.000 0.206
Baseline+DAE 0.056 75.8 123.49 10.09 0.113 0.134 10.938
Baseline+PL 0.006 78.8 127.78 353.31 0.007 0.014 12.731

Baseline+UPL 0.000 256.0 85.74 2.57 0.013 0.000 0.185
Baseline+DPL 0.000 256.0 85.74 2.57 0.013 0.000 0.185
Synth (Ours) 0.299 66.2 40.79 38.81 0.060 0.304 2.282
Synth+TTA 0.284 66.2 43.70 16.00 0.117 0.274 1.893

Synth+TENT 0.321 55.5 43.43 15.09 0.140 0.326 1.663
Synth+DAE 0.437 40.8 40.19 11.43 0.196 0.410 1.344
Synth+PL 0.384 65.5 40.26 22.77 0.095 0.475 3.881

Synth+UPL 0.120 50.7 73.30 22.71 0.172 0.074 0.484
Synth+DPL 0.055 52.3 78.43 47.28 0.108 0.032 0.447

FLAIR

Baseline 0.193 66.2 52.15 49.49 0.049 0.205 4.532
Baseline+TTA 0.202 65.7 47.98 25.98 0.090 0.197 3.719

Baseline+TENT 0.011 165.6 79.40 4.94 0.070 0.008 0.628
Baseline+DAE 0.287 54.8 75.47 11.09 0.232 0.327 5.981
Baseline+PL 0.126 81.9 162.13 382.66 0.007 0.240 13.548

Baseline+UPL 0.000 256.0 82.36 2.62 0.035 0.000 0.497
Baseline+DPL 0.000 256.0 82.36 2.62 0.035 0.000 0.497
Synth (Ours) 0.199 59.3 60.36 17.69 0.150 0.157 1.349
Synth+TTA 0.190 56.4 62.98 8.36 0.256 0.143 1.185

Synth+TENT 0.340 49.7 46.05 5.01 0.247 0.286 1.582
Synth+DAE 0.263 51.5 53.14 5.88 0.248 0.215 1.581
Synth+PL 0.276 96.8 45.97 93.18 0.027 0.255 2.133

Synth+UPL 0.029 99.1 80.44 4.79 0.272 0.016 0.520
Synth+DPL 0.010 146.9 81.38 7.11 0.189 0.005 0.512

Ensemble

Baseline 0.107 53.3 77.04 22.20 0.309 0.071 1.137
Baseline+TTA 0.087 65.8 78.91 9.10 0.429 0.057 1.126

Baseline+TENT 0.003 238.0 85.73 2.60 0.054 0.002 0.185
Baseline+DAE 0.212 51.3 73.84 39.25 0.168 0.212 2.350
Baseline+PL 0.016 76.1 70.76 512.92 0.004 0.014 3.869

Baseline+UPL 0.000 256.0 85.74 2.57 0.013 0.000 0.185
Baseline+DPL 0.000 256.0 85.74 2.57 0.013 0.000 0.185
Synth (Ours) 0.525 34.9 35.60 10.09 0.356 0.451 0.770
Synth+TTA 0.530 33.0 36.51 4.50 0.470 0.452 0.696

Synth+TENT 0.451 39.1 38.50 11.12 0.370 0.412 0.960
Synth+DAE 0.579 27.6 27.52 6.77 0.432 0.531 0.923
Synth+PL 0.529 50.2 33.21 29.02 0.106 0.515 1.551

Synth+UPL 0.244 53.0 65.77 9.80 0.470 0.159 0.310
Synth+DPL 0.172 71.4 71.62 13.97 0.414 0.107 0.284

Appendix C. Wilcoxon Significance Tests

Significance measures are provided below in Figures 7 - 17
as Wilcoxon signed-rank test values for pairwise compar-
isons between models on each dataset. ’Oracle DA’ rep-
resents the hypothetical best-case scenario where optimal
DA method is known a priori for each dataset/modality
and applied to the baseline model. Median Dice values are
shown along the diagonal.

Table 12: Mean results on the ISLES2015 dataset (N=28).
Best score per column is shown in bold. FPR values are
shown as a multiple of 1000.

Modality Model Dice HD95 AVD ALD LF1 TPR FPR

T1w

Baseline 0.115 84.2 38.14 3.32 0.269 0.076 0.034
Baseline+TTA 0.091 113.2 40.11 1.96 0.311 0.058 0.012

Baseline+TENT 0.002 178.2 43.77 2.14 0.161 0.001 0.001
Baseline+DAE 0.246 68.2 48.07 7.18 0.285 0.191 1.604
Baseline+PL 0.040 81.6 42.79 643.29 0.003 0.039 1.979

Baseline+UPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Baseline+DPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Synth (Ours) 0.222 70.5 30.49 7.14 0.208 0.168 0.162
Synth+TTA 0.230 78.5 31.41 2.18 0.349 0.163 0.085

Synth+TENT 0.076 108.2 33.79 40.86 0.103 0.058 0.265
Synth+DAE 0.268 58.1 29.18 3.64 0.316 0.223 0.293
Synth+PL 0.050 76.9 42.55 3.93 0.321 0.028 0.008

Synth+UPL 0.000 241.7 43.79 2.04 0.050 0.000 0.000
Synth+DPL 0.001 221.7 43.77 2.46 0.127 0.000 0.000

T2w

Baseline 0.007 65.4 50.81 15.00 0.078 0.044 2.786
Baseline+TTA 0.003 65.5 48.97 6.86 0.095 0.025 2.260

Baseline+TENT 0.001 142.6 43.38 3.75 0.050 0.001 0.085
Baseline+DAE 0.006 71.5 88.17 9.43 0.071 0.069 5.805
Baseline+PL 0.002 74.2 71.28 155.21 0.013 0.005 5.055

Baseline+UPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Baseline+DPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Synth (Ours) 0.231 74.8 52.73 11.82 0.166 0.443 3.534
Synth+TTA 0.245 74.6 50.99 4.68 0.279 0.454 3.379

Synth+TENT 0.215 77.4 33.44 20.11 0.109 0.276 1.755
Synth+DAE 0.255 63.1 31.10 4.61 0.280 0.328 1.437
Synth+PL 0.245 73.3 37.57 13.71 0.161 0.288 2.280

Synth+UPL 0.152 63.3 31.06 12.43 0.138 0.116 0.631
Synth+DPL 0.111 58.6 35.25 8.11 0.172 0.073 0.143

FLAIR

Baseline 0.000 71.4 40.06 10.79 0.018 0.000 0.515
Baseline+TTA 0.000 112.9 41.24 3.43 0.000 0.000 0.238

Baseline+TENT 0.000 119.0 43.47 4.32 0.000 0.000 0.021
Baseline+DAE 0.000 80.1 61.65 15.29 0.015 0.004 3.679
Baseline+PL 0.000 77.1 43.43 70.43 0.009 0.000 0.490

Baseline+UPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Baseline+DPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Synth (Ours) 0.314 62.9 18.84 10.61 0.154 0.346 0.975
Synth+TTA 0.329 82.1 18.37 3.50 0.275 0.359 0.891

Synth+TENT 0.127 79.0 28.03 34.54 0.031 0.107 0.460
Synth+DAE 0.274 55.7 20.25 7.86 0.152 0.305 0.989
Synth+PL 0.252 75.7 50.59 111.43 0.036 0.330 3.176

Synth+UPL 0.232 137.9 24.88 3.04 0.271 0.187 0.111
Synth+DPL 0.205 145.6 25.16 7.36 0.236 0.168 0.191

DWI

Baseline 0.000 80.1 42.63 5.54 0.023 0.000 0.138
Baseline+TTA 0.000 102.8 43.83 2.43 0.000 0.000 0.133

Baseline+TENT 0.000 103.9 43.52 1.89 0.000 0.000 0.021
Baseline+DAE 0.000 76.2 40.04 11.21 0.025 0.000 2.123
Baseline+PL 0.004 77.5 40.33 835.36 0.001 0.004 0.726

Baseline+UPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Baseline+DPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Synth (Ours) 0.193 82.5 47.64 16.71 0.100 0.352 2.741
Synth+TTA 0.204 81.1 44.32 8.39 0.187 0.336 2.344

Synth+TENT 0.104 86.6 30.71 38.50 0.051 0.108 0.882
Synth+DAE 0.185 80.4 39.10 12.36 0.106 0.262 2.139
Synth+PL 0.186 85.2 81.64 17.43 0.120 0.397 5.759

Synth+UPL 0.179 60.8 32.42 19.43 0.154 0.155 0.268
Synth+DPL 0.089 117.4 39.27 3.75 0.300 0.060 0.031

Ensemble

Baseline 0.000 242.8 43.79 2.00 0.000 0.000 0.000
Baseline+TTA 0.000 256.0 43.79 2.11 0.000 0.000 0.000

Baseline+TENT 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Baseline+DAE 0.000 231.0 43.68 2.00 0.000 0.000 0.007
Baseline+PL 0.000 198.9 43.79 2.11 0.024 0.000 0.000

Baseline+UPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Baseline+DPL 0.000 256.0 43.79 2.11 0.000 0.000 0.000
Synth (Ours) 0.370 60.4 19.68 7.50 0.234 0.339 0.256
Synth+TTA 0.378 69.7 20.01 2.75 0.348 0.334 0.223

Synth+TENT 0.111 114.8 32.23 3.21 0.235 0.089 0.047
Synth+DAE 0.365 51.4 19.84 3.75 0.354 0.331 0.204
Synth+PL 0.246 60.7 29.01 21.18 0.125 0.188 0.150

Synth+UPL 0.016 218.2 42.52 5.18 0.131 0.009 0.000
Synth+DPL 0.033 187.3 41.09 6.04 0.223 0.020 0.000

Appendix D. Additional Qualitative Results

Results are shown below in Figures 18 - 23 for failure and
success cases for the three different sequences in the PLO-
RAS dataset.
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Figure 7: Wilcoxon signed-rank test values for Dice metric measurements in the ATLAS T1w dataset.

Figure 8: Wilcoxon signed-rank test values for Dice metric measurements in the ARC T1w dataset.
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Figure 9: Wilcoxon signed-rank test values for Dice metric measurements in the ARC T2w dataset.

Figure 10: Wilcoxon signed-rank test values for Dice metric measurements in the ARC FLAIR dataset.
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Figure 11: Wilcoxon signed-rank test values for Dice metric measurements in the ISLES 2015 T1w dataset.

Figure 12: Wilcoxon signed-rank test values for Dice metric measurements in the ISLES 2015 T2w dataset.
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Figure 13: Wilcoxon signed-rank test values for Dice metric measurements in the ISLES 2015 FLAIR dataset.

Figure 14: Wilcoxon signed-rank test values for Dice metric measurements in the ISLES 2015 DWI dataset.
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Figure 15: Wilcoxon signed-rank test values for Dice metric measurements in the PLORAS T2w dataset.

Figure 16: Wilcoxon signed-rank test values for Dice metric measurements in the PLORAS FLAIR dataset.
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Figure 17: Wilcoxon signed-rank test values for Dice metric measurements in the PLORAS CT dataset.

Table 13: Mean results on the PLORAS dataset (N=661).
Best score per column is shown in bold. FPR values are
shown as a multiple of 1000.

Modality Model Dice HD95 AVD ALD LF1 TPR FPR

T2w

Baseline 0.028 80.3 112.82 12.22 0.101 0.064 9.638
Baseline+TTA 0.020 79.1 92.69 11.02 0.103 0.045 8.409

Baseline+TENT 0.005 101.5 30.79 5.12 0.020 0.007 1.849
Baseline+DAE 0.044 82.7 204.49 2.64 0.276 0.123 14.983
Baseline+PL 0.000 235.8 32.46 2.13 0.009 0.004 1.696

Baseline+UPL 0.000 256.0 32.47 2.12 0.009 0.004 1.695
Baseline+DPL 0.000 256.0 32.47 2.12 0.009 0.004 1.695
Synth (Ours) 0.250 71.9 40.20 8.42 0.243 0.371 4.156
Synth+TTA 0.253 70.5 37.00 4.75 0.329 0.361 3.917

Synth+TENT 0.202 77.0 61.99 21.23 0.118 0.330 5.612
Synth+DAE 0.291 58.7 23.68 4.28 0.307 0.312 2.969
Synth+PL 0.162 81.0 33.28 8.58 0.179 0.186 3.737

Synth+UPL 0.101 66.0 25.80 11.07 0.186 0.073 2.014
Synth+DPL 0.053 72.1 28.44 3.42 0.212 0.036 1.832

FLAIR

Baseline 0.010 74.2 42.12 18.69 0.033 0.013 2.839
Baseline+TTA 0.006 74.6 38.04 12.57 0.026 0.008 2.119

Baseline+TENT 0.000 106.3 37.65 4.99 0.014 0.003 0.718
Baseline+DAE 0.027 76.2 98.18 3.81 0.155 0.055 7.805
Baseline+PL 0.000 249.9 39.25 2.46 0.000 0.002 0.582

Baseline+UPL 0.000 256.0 39.25 2.53 0.000 0.002 0.582
Baseline+DPL 0.000 256.0 39.25 2.53 0.000 0.002 0.582
Synth (Ours) 0.296 72.1 48.04 17.93 0.137 0.415 3.443
Synth+TTA 0.314 71.4 41.15 9.07 0.213 0.412 2.967

Synth+TENT 0.221 79.4 48.21 9.87 0.140 0.280 3.362
Synth+DAE 0.304 63.6 43.34 8.82 0.199 0.359 3.258
Synth+PL 0.279 84.3 81.32 20.01 0.156 0.519 5.573

Synth+UPL 0.145 78.5 31.51 15.50 0.115 0.108 1.028
Synth+DPL 0.243 80.1 25.71 13.82 0.146 0.224 1.514

CT

Baseline 0.029 70.9 28.01 8.54 0.084 0.032 1.492
Baseline+TTA 0.017 125.0 27.63 4.11 0.076 0.011 0.593

Baseline+TENT 0.000 207.7 28.74 2.59 0.018 0.000 0.550
Baseline+DAE 0.064 78.2 78.65 2.98 0.198 0.106 5.426
Baseline+PL 0.011 78.3 79.93 2010.46 0.002 0.032 6.333

Baseline+UPL 0.000 256.0 28.87 2.84 0.000 0.000 0.542
Baseline+DPL 0.000 256.0 28.87 2.84 0.000 0.000 0.542
Synth (Ours) 0.234 66.8 19.71 5.43 0.233 0.204 0.965
Synth+TTA 0.229 85.2 20.34 2.65 0.317 0.195 0.913

Synth+TENT 0.222 58.6 20.82 9.17 0.139 0.210 1.245
Synth+DAE 0.307 51.6 23.81 4.13 0.258 0.298 1.657
Synth+PL 0.000 110.0 26.69 34.56 0.002 0.001 0.714

Synth+UPL 0.000 255.0 28.86 2.84 0.000 0.000 0.543
Synth+DPL 0.000 256.0 28.87 2.84 0.000 0.000 0.542
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Figure 18: Sample visualisations of successful cases in the PLORAS T2w dataset. Green indicates a true positive
prediction, red a false positive, and blue a false negative.
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Figure 19: Sample visualisations of failure cases in the PLORAS T2w dataset. Green indicates a true positive prediction,
red a false positive, and blue a false negative.
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Figure 20: Sample visualisations of successful cases in the PLORAS FLAIR dataset. Green indicates a true positive
prediction, red a false positive, and blue a false negative.
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Figure 21: Sample visualisations of failure cases in the PLORAS FLAIR dataset. Green indicates a true positive
prediction, red a false positive, and blue a false negative.
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Figure 22: Sample visualisations of successful cases in the PLORAS CT dataset. Green indicates a true positive
prediction, red a false positive, and blue a false negative.
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Figure 23: Sample visualisations of failure cases in the PLORAS CT dataset. Green indicates a true positive prediction,
red a false positive, and blue a false negative.
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