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Abstract
Recent studies have shown that Machine Learning (ML) models can exhibit bias in real-world scenarios, posing significant
challenges in ethically sensitive domains such as healthcare. Such bias can negatively affect model fairness, model
generalization abilities and further risks amplifying social discrimination. There is a need to remove biases from trained
models. Existing debiasing approaches often necessitate access to original training data and need extensive model
retraining; they also typically exhibit trade-offs between model fairness and discriminative performance. To address these
challenges, we propose Soft-Mask Weight Fine-Tuning (SWiFT), a debiasing framework that efficiently improves fairness
while preserving discriminative performance with much less debiasing costs. Notably, SWiFT requires only a small
external dataset and only a few epochs of model fine-tuning. The idea behind SWiFT is to first find the relative, and yet
distinct, contributions of model parameters to both bias and predictive performance. Then, a two-step fine-tuning process
updates each parameter with different gradient flows defined by its contribution. Extensive experiments with three bias
sensitive attributes (gender, skin tone, and age) across four dermatological and two chest X-ray datasets demonstrate
that SWiFT can consistently reduce model bias while achieving competitive or even superior diagnostic accuracy under
common fairness and accuracy metrics, compared to the state-of-the-art. Specifically, we demonstrate improved model
generalization ability as evidenced by superior performance on several out-of-distribution (OOD) datasets. Our code is
available at: https://github.com/vios-s/SWiFT.
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1. Introduction

M achine Learning (ML) has revolutionized medi-
cal imaging applications, driving breakthroughs
in areas such as computer-aided diagnosis, dis-

ease progression monitoring, and radiotherapy planning
(Mehrabi et al., 2021). Despite these successes, a critical
concern has emerged: ML models often exhibit bias to-
ward certain sub-populations defined by sensitive human
attributes such as age, skin tone and gender. This bias
is prevalent across various medical image analysis models,
regardless of the training data modalities (e.g. dermato-
logical images (Bevan and Atapour-Abarghouei, 2022), X-
rays (Seyyed-Kalantari et al., 2020), MRI (Puyol-Antón

et al., 2021)) or the body parts involved (e.g. skin (Bissoto
et al., 2020), chest (Marcinkevics et al., 2022)). For exam-
ple, Bevan and Atapour-Abarghouei (2022) demonstrated
that a melanoma diagnosis system trained predominantly
on light-skinned images performs poorly on patients with
dark skin tones. In this case, the model does not learn
the correct classification strategy based on skin lesions, but
rather shows a preference for erroneous correlations between
sensitive attributes (i.e. skin tone) and diagnosis, as shown
in Figure 1. Such biased decision-making systems can lead
to disparate diagnostic performance across demographic
groups, poor generalization to scenarios where these spu-
rious correlations are missing, and further perpetuate and
exacerbate social discrimination (Xu et al., 2023). Thus,
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Original Image Baseline SWiFT (Ours)

Figure 1: An illustration of melanoma classification bias
using the ISIC dataset. Left: column shows original im-
ages. Middle: Class Activation Maps (CAM) generated
by a standard ERM pre-trained model (Baseline). Right:
CAMs after debiasing with our method, SWiFT. High and
low activation values are indicated with red and blue, re-
spectively. Rows correspond to different skin tones: light
skin (top), dark skin (middle and bottom). The baseline
ERM classifier heavily relies on bias features (i.e., skin tone)
and performs poorly on images with dark skin. In contrast,
SWiFT primarily captures disease-relevant features and per-
forms better on images with different skin tones.

there is an urgent need to investigate bias mitigation strate-
gies to improve fairness, out-of-distribution generalization
ability, and trustworthiness of AI in healthcare.

Several methods have been proposed to mitigate bias
and improve fairness and generalizability in medical imaging
analysis; however, two critical challenges remain. Firstly,
most existing debiasing approaches focus on modifying
datasets before training (i.e. pre-processing (Puyol-Antón
et al., 2021)) or incorporating fairness during training (i.e. in-
processing (Bissoto et al., 2020)). Although these tech-
niques can produce fair predictions with comparable dis-
criminative performance across subgroups, they require
access to the original training data and involve com-
putationally intensive model retraining. This depen-
dency on large-scale datasets and the need for retraining
limit their scalability in real-world scenarios. Yet, recent
work (Kirichenko et al., 2023) suggests that even when
neural networks exhibit significant bias, they still learn
features, necessary for strong classification performance,
sufficiently well. This insight indicates that debiasing does

not necessarily require learning from scratch; instead, it
can be achieved through post-processing techniques such
as fine-tuning pre-trained models. Moreover, leveraging the
knowledge embedded in pre-trained models allows for effi-
cient optimization and fast convergence (Hendrycks et al.,
2019). Therefore, we conjecture that debiasing is achievable
with minimal fine-tuning on a small, task-specific dataset.

The second major challenge in debiasing is the trade-off
between mitigating bias and preserving the model’s dis-
criminative ability . A biased model trained with standard
empirical risk minimization (ERM) often encodes two types
of features: core features that should causally contribute
to prediction and bias features that likely capture spurious
correlations or irrelevant information. These features are
often entangled in complex ways (Le et al., 2023). Existing
debiasing techniques struggle to distinguish between these
feature types (Zietlow et al., 2022), and tend to indiscrim-
inately modify parameters that contribute to bias. While
this approach may successfully eliminate bias features, it
often inadvertently impacts core features, thereby improving
fairness at the cost of degrading discriminative performance.
To tackle this challenge, we propose a targeted debiasing
method that operates at the parameter level. Specifically,
we differentiate model parameter updates, during debiasing,
with respect to their importance to both bias and core fea-
tures. This allows for a precise intervention that mitigates
bias by adjusting the most influential parameters while min-
imizing perturbations to the parameters that encode core
features.

We propose an efficient and effective debiasing frame-
work, called Soft-Mask Weight Fine-Tuning (SWiFT). Un-
like pre- or in-processing debiasing methods, SWiFT requires
only a few epochs of fine-tuning instead of full model retrain-
ing. Furthermore, our approach uses only a small external
dataset (in our experimental work, no more than 25% of
the original training set size), thus eliminating the need for
extensive or often inaccessible training data – a common
practical limitation. Compared to post-processing methods,
SWiFT effectively preserves core features for prediction
while removing bias features, yielding superior debiasing
and discriminative performance across diverse metrics. As
illustrated in Figure 2, SWiFT operates under the following
procedure: given a pre-trained biased model, the first step
is to generate a parameter-wise soft-mask, which quantifies
each network parameter’s relative contribution to bias versus
prediction performance. During debiasing, this soft-mask
constrains gradient flows during backpropagation, ensuring
minimal changes to parameters important for prediction and
preserving core features. Next, SWiFT employs a two-step
debiasing strategy: firstly, it fine-tunes the feature extractor
parameters with gradient flows modulated by the soft-mask
to remove bias from features; secondly, to eliminate bias
from incorrect feature compositions within the classification
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Figure 2: SWiFT is a masked-based fine-tuning post-processing approach. (1) A soft-mask is generated by calculating
weight importance to the bias and prediction functions. (2) The parameters of the feature extractor E(·) are selectively
fine-tuned using the soft-mask to debias features, followed by fine-tuning a masked re-initialized classification head C(·)
to re-combine debiased features.

head, we partially re-initialize its parameters to erase the
weights of previously learned, bias features. The entire head
is then fine-tuned to learn a robust feature combination
with only the core features. Our main contributions are
summarized as follows:

• We propose a novel debiasing framework capable of mit-
igating bias and improving fairness and generalizability,
without compromising model discriminative performance.
Our framework circumvents expensive full model retrain-
ing and original training data access requirements.

• A soft-mask generation technique that quantitatively
measures network parameter contributions towards bias
features vs. core features, enabling targeted debiasing
through differentiated parameter updates. To the best
of our knowledge, our work is the first to employ model
parameter soft-masking to the debiasing task.

• We propose a two-step fine-tuning strategy that is model-
agnostic and effectively removes model bias through only
a few epochs of fine-tuning on a small external dataset.

• Experiments on four out-of-distribution (OOD) derma-
tological disease and two OOD chest X-ray datasets
demonstrate that SWiFT outperforms nine state-of-the-
art (SOTA) methods, with respect to both fairness and
discriminative capabilities.

A preliminary version of this work, named BMFT (Xue
et al., 2024), was presented at the MICCAI FAIMI Work-
shop 2024. In this journal extension we include: i) four
methodological modifications that improve generalization,
robustness, and effectiveness over our previous method.
First, we introduce a novel soft-mask generation module
that enables more adaptive and fine-grained model updates.
Unlike the previous hard-mask, which optimizes parame-
ters based on a predefined threshold and freezes others,

soft-mask does not fully block parameters and keeps most
parameters trainable. This provides the network with greater
capacity to update parameters towards core features and
removes the need for exhaustive threshold tuning. Sec-
ond, we propose a partial classification head re-initialization
strategy. It preserves well-learned core features that facili-
tates feature re-combination with faster convergence speed.
Third, we improve the loss function with dynamic balancing
between classification loss and fairness constraints, enhanc-
ing adaptability across different tasks and datasets. Finally,
we extend SWiFT to handle multi-attribute bias removal
scenarios. Modifications are accompanied with new ex-
periments which demonstrate the respective improvements
compared to BMFT and other baselines. ii) New experi-
mental validation. We perform new experiments with 5-fold
cross-validation, introduce new experimental domains with
chest-xray datasets, and evaluate SWiFT on two additional
network architectures, EfficientNet-B3 and DenseNet-121,
to validate its robustness and generalization to different
scenarios. Lastly, we conduct comprehensive ablation stud-
ies to analyze the contribution of each module, the role of
the external dataset, and the sensitivity to hyperparameters.
iii) Additional experiments analysis: we provide an in-depth
analysis of the experimental results with additional quan-
titative evaluations and qualitative insights through Class
Activation Maps (CAMs).

2. Related Work

In this section, we firstly review fairness challenges in med-
ical imaging classification tasks. We next provide a brief
survey on recent debiasing methods proposed to tackle
these challenges, and finally discuss existing mask fine-
tuning techniques, highlighting how our soft-mask-based
debiasing approach builds upon and extends previous work.
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2.1 Bias and Fairness in Medical Imaging

Bias and fairness are widely reported in medical imaging
analysis (Luo et al., 2024; Wang et al., 2017; Zhang et al.,
2022). Bias in ML systems leads to unfair decision-making,
thus undermining model fairness. Bias can arise from var-
ious sources, including label noise, data imbalance, and
spurious correlations (Mehrabi et al., 2021). A critical con-
cern is bias amplification, where biases in the training data
are amplified by model predictions during deployment (Dutt
et al., 2024). This not only compromises model fairness
and generalization, but also risks exacerbating social dis-
crimination (Mehrabi et al., 2021). Achieving fairness in
medical AI is thus both a technical challenge and an ethi-
cal imperative. Fairness in ML systems is often measured
through group fairness (Mehrabi et al., 2021), which aims
to ensure similar average outcomes across demographic
groups. Common metrics for group fairness include sta-
tistical parity difference (SPD)(Marcinkevics et al., 2022),
equal opportunity (EO) (Hardt et al., 2016), and equalized
odds (EOdds)(Hardt et al., 2016). However, optimizing for
group fairness can lead to a reduction in individual fairness,
often resulting in decreased prediction accuracy (Zietlow
et al., 2022). Therefore, debiasing is inevitably a multi-
objective challenge that seeks to simultaneously achieve
good discriminative performance and good fairness.

2.2 Debiasing Methods

Existing bias mitigation methods in medical imaging can be
categorized into three groups: pre-processing, in-processing,
and post-processing. Pre-processing methods debias the
training data before the training process. Current ap-
proaches include either transforming data representations to
eliminate correlations between feature representations and
sensitive attributes (Zhang et al., 2022), (Yuan et al., 2023)
or augmenting data distributions to equalize the training
distribution across different demographic groups (Oguguo
et al., 2023), (Zietlow et al., 2022). Pre-processing meth-
ods often require extensive data processing efforts, and
commonly used data augmentation strategies (e.g. color
permutation (Park et al., 2022)) may not be suitable for
certain medical modalities (e.g. CT scans). In-processing
methods address fairness during the model training process,
typically by modifying the loss function to regularize the
model and mitigate bias. For example, Zafar et al. (2017)
incorporate bias-specific regularization terms in the loss
function. Jung et al. (2023) employed a classwise distribu-
tionally robust optimization framework to mitigate group
disparities. Zhao et al. (2022) used adversarial learning to
remove sensitive information. In-processing methods cannot
explicitly protect the underrepresented group when enforcing
the fairness constraints, often resulting in accuracy drops
for both groups. Additionally, both pre- and in-processing

methods necessitate access to the original training data and
require model retraining, limiting their efficiency in real-
world scenarios. Post-processing techniques, in contrast,
are performed after training and achieve fairness by modify-
ing model predictions or parameters. Oguguo et al. (2023)
achieve fairness by flipping unfavorable predictions of the
minority group on instances where the model exhibits high
uncertainty. Marcinkevics et al. (2022) and Wu et al. (2022)
mitigate unfairness by pruning parameters based on their
contribution to bias. However, debiasing by simply chang-
ing specific sample predictions or removing neurons may
be problematic. Such approaches can be unfair to certain
individuals and may cause the model to lose information
about core features, leading to unsatisfactory trade-offs
between accuracy and fairness (Chen et al., 2024).

To address the outlined challenges, our method applies
fine-tuning over only a few epochs using a small external
dataset, without the need to modify the data or retrain the
model. Our approach considers both prediction and bias
constraints by estimating model parameter contributions
towards core and bias features, resulting in high overall
accuracy and fairness.

2.3 Mask Fine-tuning

Fine-tuning a model that has been pre-trained on a large
dataset towards a specific downstream task is common prac-
tice in machine learning (Ben Zaken et al., 2022). Leverag-
ing the knowledge embedded in pre-trained models often
enables downstream tasks to be learned with significantly
less data compared to training from scratch. Mask fine-
tuning methods are a family of techniques designed to
improve the fine-tuning process by controlling parameter
updates according to their importance on the objective.
Current approaches, such as Parameter Efficient Fine Tun-
ing (Ben Zaken et al., 2022; Dutt et al., 2024), employ the
binary-mask (hard-mask) to select a subset of parameters
to update while freezing the rest. Hard-masks typically
require extensive hyperparameter tuning to determine the
optimal selection rate of parameters for fine-tuning versus
freezing (Wu et al., 2022; Dutt et al., 2024). Moreover,
we note that hard-masks provide only a relatively blunt
tool to differentiate the contributions of specific parameters
towards the objective. Konishi et al. (2023) proposed the
use of soft-masks in continual learning tasks, which are flex-
ible and efficient. We investigate a soft-mask fine-tuning
strategy to mitigate bias and improve fairness. Overall,
our method demonstrates the superiority of soft-mask over
binary-mask in terms of both fairness and accuracy.
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3. Methodology

The core idea of our method, see Figure 2, is to discrim-
inately control model parameter updates based on their
relative individual contributions to both bias and predictive
performance. Key to our method is the soft-mask gen-
eration, which regulates model parameter updates during
debiasing. The debiasing process consists of a two-step
fine-tuning strategy that uses the soft-mask to debias the
model feature extractor and the classification head, sequen-
tially. Before we proceed to detail our method we begin
with preliminaries.

3.1 Preliminaries

Problem Formulation We study a supervised image classifi-
cation problem where we will impose fairness considerations.
We define disjoint training, validation, and test datasets
such that Dtrain ∪ Dvalid ∪ Dtest = {xi, yi, ai}, where xi

denotes input image i with class label yi, and ai is a 1D
binary vector that represents the presence or absence of
sensitive attributes for sample i (e.g. skin tone, gender,
age). In this work we assume binary prediction targets and
sensitive attributes (i.e. yi, ai ∈ {0, 1}). Let fθ(·) denote a
biased (i.e. lacking in group fairness) model parameterized
by θ. We assume a decomposable model consisting of a
feature extractor E(·) and a classification head C(·), which
is pre-trained on the original training data Dtrain.

Our goal is to debias fθ(·), as measured by ex-
isting fairness metrics such as Statistical Parity Differ-
ence (SPD) (Dwork et al., 2012) and Equalised Odds
(EOdds) (Hardt et al., 2016), by fine-tuning for only a few
epochs with the external dataset De. With this procedure,
we aim to enhance the model’s reliance on core features and
further improve its generalizability, which can be evidenced
by improved AUC on various OOD test datasets Dtest that
share the same sensitive attribute ai.
External Dataset Preparation The external dataset can
be readily constructed from labeled data that shares the
same task categories as the training data Dtrain. As a proof
of concept, our experimental work constructs De from each
task’s respective validation dataset. The external dataset
must contain samples both with and without biased fea-
tures. This enables the debiasing method to accurately
identify biased representations within the pre-trained model
and subsequently mitigate them during model fine-tuning.
To avoid introducing new sources of biases (i.e., group
attribution bias, label bias) from De, we employ common
group-balancing strategies (Zhang et al., 2022; Mao et al.,
2023) to prepare our external dataset. Specifically, we keep
all data from the smallest attribute group, and subsam-
ple the data from the other group to the same size and
classification label ratios. Therefore, our method does not
require the same label or sensitive distributions between the

final external dataset and the training/test data; in fact, it
leverages the balanced distribution across sensitive groups
within De to effectively debias the model.

3.2 Soft-Mask Generation

Model parameters contribute non-uniformly to bias features
that affect fairness and core features that drive predictive
performance (Wu et al., 2022; Dutt et al., 2024). There-
fore, parameters require differentiated adjustment during
debiasing. To address this, we define a soft-mask that as-
signs larger updates to parameters contributing primarily to
bias and smaller updates that preserve features crucial for
prediction. In this way, the core features are retained while
bias is mitigated. To construct our mask, we calculate the
respective per-parameter importance according to relevant
prediction and bias functions.
Prediction function We adopt Weighted Binary Cross
Entropy (WBCE (Xue et al., 2024)), which is a robust cross-
entropy term w.r.t. class imbalance – a common trait of
medical imaging datasets (Bevan and Atapour-Abarghouei,
2022; Puyol-Antón et al., 2021):

LWBCE =
∑

i

(
− Nn

Nn+Np
yi log(pi) − Np

Nn+Np
(1 − yi) log(1 − pi)

)
. (1)

Bias function We use the differentiable proxy of
EOdds (Hardt et al., 2016):

B(fθ, De) = tpr + fpr, (2)

where

tpr =
∣∣∣∣∑i

(1−ai)yi log(fθ(xi))∑
i
(1−ai)yi

−
∑

i
aiyi log(fθ(xi))∑

i
aiyi

∣∣∣∣ , (3)

fpr =
∣∣∣∣∑i

(1−ai)(1−yi) log(fθ(xi))∑
i
(1−ai)(1−yi)

−
∑

i
ai(1−yi) log(fθ(xi))∑

i
ai(1−yi)

∣∣∣∣ , (4)

where fθ(xi) provides a predictive probability for sample
xi under a binary classification task. EOdds requires that
a model’s predictions are independent of sensitive group
memberships with different sensitive groups having the
same false positive rates and true positive rates. The
EOdds is defined for binary sensitive attributes. To extend
its application to multi-attribute scenarios, we employ a
targeted optimization strategy. Specifically, we first identify
the attribute groups with the highest and lowest Area Under
the Curve (AUC) scores to serve as proxies for the most
advantaged and disadvantaged groups. We then apply the
EOdds bias function to this pair of groups. The effectiveness
of this approach is evaluated in Section 5.1.3.
Estimating parameter importance Previous work (Foster
et al., 2024; Kirkpatrick et al., 2017) has demonstrated that
the parameter importance towards an objective function
can be effectively calculated using the Fisher Information
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Matrix (FIM). Given a probability density function (PDF)
p(De|θ), the FIM over dataset De is defined by:

I(θ, De) = −EDe
▽2

θ log p(De|θ). (5)

The full FIM is an n×n matrix, typically making the calcula-
tion computationally expensive. Thus we follow Foster et al.
(2024); Kirkpatrick et al. (2017) and further approximate
the FIM using its diagonal values, as given by:

I(θ, De) = −E

[(
∂ log p(De|θ)

∂θ

)(
∂ log p(De|θ)

∂θ

)⊤
]

.
(6)

Given a pre-trained model fθ and the external dataset
De, the log-likelihoods of the prediction PDF and bias PDF
are simply the negative of the WBCE function and bias
function in Eq. (2), respectively. Therefore, the parameter
importance, in terms of influencing prediction accuracy, is
given by:

Il(θ, De) = E

[(
∂LWBCE(De|θ)

∂θ

)(
∂LWBCE(De|θ)

∂θ

)⊤
]

. (7)

Whereas, the parameter importance in terms of influencing
model bias can be computed by:

Ib(θ, De) = E

[(
∂B(De|θ)

∂θ

)(
∂B(De|θ)

∂θ

)⊤
]

. (8)

Mask Construction Having defined estimates for param-
eter importance, with respect to both predictive accuracy
and bias, we design our weight soft-mask according to the
relative ratio between the introduced importance terms. We
denote each continuous scalar element of the weight mask
as Mi, where i is the weight index. An element of the mask
is defined as:

Mi =
∣∣∣∣∣tanh

(
Norm(Ii,b)
Norm(Ii,l)

)∣∣∣∣∣ , (9)

where Ii,l and Ii,b are the i-th diagonal elements of the
FIMs in Eq. (7) and Eq. (8), respectively, and Norm(·) de-
notes min–max normalization. Normalizing gradients with
respect to each network layer helps us avoid discrepancies
due to large differences in gradient magnitude. The com-
ponents of Eq. (9) serve specific purposes. First, since the
two importance terms may have different numerical scales,
we normalize them with respect to each network layer. This
ensures their ratio provides a meaningful measure of a pa-
rameter’s relative contribution to bias versus prediction.
Our choice is empirically validated in Section 5.2.2, where
we show that min-max normalization yields superior results
compared to z-score normalization for this task. Second,
the raw ratio of these terms is unbounded. We therefore
apply the hyperbolic tangent (tanh) function to introduce
non-linearity and map the unbounded input to a finite in-
terval. Finally, since the magnitude of the gradient rather

Bias Importance

Importance Soft Mask

Prediction Importance

Parameter Index

Figure 3: Soft-mask generation process. Each model param-
eter is assessed for (a) bias importance and (b) prediction
importance for dark and light skin tone groups on the
Fitzpatrick-17k dataset. The x-axis is the index of parame-
ters of the ResNet-50. The soft-mask (c) is created using
Eq. (9). The black dotted boxes highlight those parameters
that show different importance towards prediction accuracy
and bias: parameters with high prediction but lower bias
importance (left dotted box), and parameters with high
bias but lower prediction importance (right dotted box).

than its sign indicates a strong importance (i.e., values
near −1 and +1 are both significant), we take the abso-
lute value. This ensures that each mask element Mi lies
within the range [0, 1]. Due to this construction, a higher
value of Mi represents a weight that is predicted to have
larger importance for attribute bias and a less significant
impact on predictive accuracy. The parameters with higher
mask values will constitute the significant updates during
fine-tuning. In the following section, we provide a strategy
that uses this signal to remove the detrimental influence of
model bias, while retaining information embedded in core
features. An illustrative example of bias importance, pre-
diction importance, and the resulting soft-mask is provided
in Figure 3.

3.3 Two-Step Fine-Tuning

Model bias typically originates from two key sources (Le
et al., 2023): (1) the entanglement between harmful bias
features (typically spurious or irrelevant) and useful core
(causal) features, within the feature extractor; and (2) the
incorrect composition of representations in the classification
head (i.e., bias features are highly weighted in the classifi-
cation head, causing the final predictions to rely on bias).
Our method establishes a two-step fine-tuning process to
address the two key sources sequentially.
Feature Extractor: Soft-Mask Fine-Tuning Core fea-
tures that exist in pre-trained models are often entangled
with bias features (Le et al., 2023). To address this, our first
fine-tuning step debiases the feature extractor E(·) while
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keeping the classification head C(·) frozen. The goal of
this fine-tuning process is two-fold: to remove bias features
that may compromise fairness and to preserve core features
essential for accurate prediction. We achieve this goal by
optimizing the feature extractor with a bias-specific loss
function, while constraining updates of prediction-important
parameters. Specifically, we fine-tune the feature extractor
on De using a loss function that combines the WBCE loss
LWBCE with a fairness constraint (Eq. 2):

L = βLWBCE(fθ, De) + (1 − β)B(fθ, De), (10)

where B(fθ, De) represents our objective relating to reduc-
ing bias. The hyperparameter β ∈ [0, 1] explicitly balances
the prediction accuracy and fairness objectives. β is fixed
within each step of our two-step fine-tuning pipeline, but
may differ between steps. In this first step, we set β to a
small value ϵ to prioritize feature debiasing during feature
extractor fine-tuning. During the backward pass, we modify
the gradients of all parameters in the feature extractor us-
ing the soft-mask. This mask modulates each parameter’s
update according to its relative bias-prediction importance
ratio:

g′
i = Migi, (11)

where gi and g′
i represent the original and modified gradients

of the ith model parameter θi, respectively. This soft-
masked gradient adjustment ensures that parameters critical
for prediction accuracy are updated less aggressively, while
bias-related parameters are targeted for more significant
modification.
Classification Head: Re-initialization and Fine-tuning
The previous fine-tuning step reduces bias originating from
core and bias feature entanglement in the feature extractor.
We introduce here our second step to re-combine debiased
features within the classification head. Since the feature
extractor already contains well-learned representations, fine-
tuning the classification head is known to converge very
quickly, often before model parameters can be sufficiently
updated towards new or modified objectives (Li et al., 2020).
In our setting, this results in classification decisions remain-
ing heavily influenced by original features rather than de-
biased features (Zhang et al., 2017), limiting fairness and
accuracy gains. To address this issue, we propose parameter
re-initialization as an effective strategy to push significant
and meaningful updates in the classification head, thus
promoting the learning of correct combinations of debiased
core features (Ramkumar et al., 2024; Kirichenko et al.,
2023).

Recent works (Xue et al., 2024; Mao et al., 2023)
suggest strategies that re-initialize the entire classification
head C(·). This risks losing all discriminative ability of the
pre-trained model where recovery would require retraining,
typically not achievable by small epoch counts. Therefore,

we alternatively re-initialize only a portion of parameters,
based on the mask calculated using Eq. 9. Parameters with
high mask values, indicating their disproportionately strong
influence on the bias features, are re-initialized to zero.
This zero re-initialization strategy is inspired by Le et al.
(2023) where it was shown that, for an unbiased model
trained on a balanced dataset, most classification head
parameters converge to zero. In our setting, re-initializing
bias-important parameters to zero facilitates rapid conver-
gence towards an unbiased state where it is understood that
subsets of parameters can be initialized to zero without
causing training degeneracy (Zhao et al., 2022). The re-
initialization threshold γ is determined by the mean value of
the mask calculated on the classification head parameters.
The partial re-initialization process is shown as Eq. (12).

θ′
i =

{
0, if Mθi

≥ γ
θi, otherwise,

(12)

Finally, we fine-tune the re-initialized classification head
while keeping the feature extractor frozen, using the Eq. (10)
objective. Different from the first step, we typically set a
much larger hyperparameter value of β = 1 − ϵ at this
stage, to place more emphasis on retaining the model’s
discriminative capability.

4. Experimental Setup

We next detail our experimental work where the proposed
method is validated under two inference tasks: skin lesion
classification and chest X-ray classification. In the follow-
ing subsections we introduce the considered tasks, provide
implementation details and evaluation settings.

4.1 Datasets and Pre-processing

In both tasks, we perform a five-fold cross-validation to evi-
dence the efficacy and statistical significance of our method.
The original dataset is split into training set and validation
set with an 80:20 ratio, ensuring no overlap. The model is
pre-trained on the training dataset and was debiased via
fine-tuning on the external dataset (i.e. constructed from
the validation dataset). The debiased model is then tested
on various out-of-distribution (OOD) test datasets, which
may exhibit distributional shifts in both disease labels and
sensitive attributes, relative to the training data.

4.1.1 Skin Lesion Classification

We use the International Skin Imaging Collaboration (ISIC)
Challenge Dataset for pre-training and fine-tuning. We treat
“melanoma” as the negative class and all other lesions as
the positive class. We combine 2017 (Codella et al., 2018),
2018 (Codella et al., 2019), 2019 (Tschandl et al., 2018;
Hernández-Pérez et al., 2024) and 2020 (Rotemberg et al.,
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2021) ISIC challenge data, and remove duplicate images
across different years, totaling 56,863 images. Among these,
45,489 images are used for training, while 11,374 images
are reserved as the validation dataset in each fold. We
consider two sensitive attributes: skin tone and gender.
We maintain the same skin tone annotation as Bevan and
Atapour-Abarghouei (2022) for training data. To build
the group-balanced external dataset De, we select c. 3,600
images for skin tone and c. 11,000 for gender. All images
are pre-processed with center-cropping and resizing to size
256×256.

For testing, our study employs four OOD datasets with
skin images for melanoma detection. Fitzpatrick-17k (Groh
et al., 2021) contains 16,577 images across six skin tone
levels, which we group into light (1-3) and dark (4-6) cate-
gories. DDI (Daneshjou et al., 2022) offers 656 images with
skin tone annotations. Interactive Atlas of Dermoscopy (At-
las) (Lio and Nghiem, 2004) and PAD-UFES-20 (Pacheco
et al., 2020) contain gender labels with 1,011 images and
2,298 images, respectively.

4.1.2 Chest X-ray Classification

We train a model on the large-scale chest X-ray dataset
MIMIC-CXR (Johnson et al., 2019). We use only frontal
view images, and resize to 224×224 pixels. We consider a
binary classification problem of “pneumothorax” and “No
Findings”, where these classes are treated as positive and
negative, respectively. The problem definition is consis-
tent with previous chest X-ray fairness research (Seyyed-
Kalantari et al., 2020; Zhang et al., 2022). In each cross-
validation fold, 61,502 images are randomly selected for
training, while the remaining 15,376 images are used as the
validation set. We focus on two sensitive attributes (gender
and age) since the groups of these attributes are previously
shown to have disparate classification outcomes (Wang
et al., 2017; Zhang et al., 2022). For age, we categorize
individuals into a younger group (≤ 65 years old) and an
older group (> 65 years old), following established defi-
nitions in (Singh and Bajorek, 2014). 14,950 images for
gender and 10,360 images for age are selected to build the
external dataset De for fine-tuning.

We evaluate our method on two OOD datasets; Chex-
pert (Irvin et al., 2019) and Chest-Xray8 (NIH) (Wang
et al., 2017). We select CXRs with “Pneumothorax”, “No
Findings” labels from Chexpert and NIH, which are 21,040
and 10,815 images, respectively. Both datasets include
sensitive attributes: gender (Female and Male) and age
(0–80), making them suitable for assessment of fairness
and accuracy metrics.

4.2 Implementation

We conduct experiments in PyTorch using one NVIDIA
A100 40GB GPU. For skin lesion classification, We ap-
ply ImageNet-pretrained ResNet50 and Efficient B3 as the
model backbone. The models are trained for 200 epochs
using an SGD optimizer with a batch size 128 and a learn-
ing rate 1e-4. For chest X-ray classification, we choose
ImageNet-pretrained ResNet50 and DenseNet-121 as the
backbone. The models are trained for 100 epochs using
an Adam optimizer with a batch size of 128 and a learning
rate of 1e-4. The pre-training process for both tasks follows
previous fairness research (Bevan and Atapour-Abarghouei,
2022; Mao et al., 2023; Zhang et al., 2022; Marcinkevics
et al., 2022). For debiasing the model, we fine-tune the skin
pre-trained model and the chest X-ray pre-trained model for
an additional 20, 10 epochs, respectively, which are 10% of
the initial training duration. Equal epoch counts are used
for both stages of two-step fine-tuning. The fine-tuning
process shares the same optimizer and batch size as the
training process. Data augmentation was applied in both
training and fine-tuning, which includes random flipping,
random transpose, and z-score normalization.

4.3 Comparison Method and Evaluation Metrics

We compare our methods with nine recent SOTA mod-
els. The model pre-trained on the training dataset Dtrain
is our basic Baseline. FullFT-RW (Zhang et al., 2022)
fine-tunes the pre-trained model on the group-balanced
external data De using only the prediction loss. FullFT-
Reg (Cherepanova et al., 2021) fine-tunes the pre-trained
model on the non group-balanced dataset Dval using a com-
bination of prediction loss and fairness constraints in the
form of Eq. (10). FullFT-FDR (Le et al., 2023) combines
data balancing and fairness constraints, fine-tuning all pa-
rameters on the dataset De with the loss function specified
in Eq. (10). LLFT (Mao et al., 2023) fine-tunes only the
last layer of a deep classification model to promote fairness.
Similarly, DiffGda (Marcinkevics et al., 2022) fine-tunes
on an external dataset, using a bias-aware loss function to
steer network optimization. FairPrune (Wu et al., 2022)
improves fairness by pruning parameters based on weight
saliency. DiffPrune (Marcinkevics et al., 2022) prunes pa-
rameters based on their contributions to bias. BMFT (Xue
et al., 2024) is a hard-mask based fine-tuning method for
debiasing (our work, prior to SWiFT).

To evaluate the discriminative performance of different
models, we use the area under the curve (AUC) as a primary
performance metric, and statistical parity difference (SPD)
((Daneshjou et al., 2022)) and equalized odds (EOdds)
((Hardt et al., 2016)) as fairness metrics, similar to previous
work (Dutt et al., 2024; Chen et al., 2024; Wu et al., 2022).
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Figure 4: Comparison of performance as a function of fine-tuning epochs on skin tone for the skin lesion classification
task and age for the chest X-ray classification task. ResNet-50 backbone. (a) and (b) are on the Fitzpatrick-17k dataset
for skin tone debiasing, (c) and (d) are on the Chexpert dataset for age debiasing. The performance reaches steady after
20 epochs for skin tone debiasing and 10 epochs for age debiasing.

4.4 Hyperparameter Validation

Determining the optimal number of fine-tuning epochs is
important for effectively balancing computational efficiency
and debiasing performance for our experimental work. We
empirically explore the impact of the number of fine-tuning
epochs on skin tone debiasing in skin lesion classification
and age debiasing in the chest X-ray classification. The
results are shown in Figure 4. The 0th epoch is the pre-
trained baseline model. As we can see, both prediction and
fairness metrics improve even with only 5% of the original
training epochs (i.e., 10 epochs for skin tone debiasing,
and 5 epochs for age debiasing), and become steady after
10% of the original training epochs. The debiasing time
increases linearly with the number of fine-tuning epochs.
Moreover, the AUC tends to decrease as the number of
epochs increases, likely due to overfitting during fine-tuning
on the small dataset. Based on these findings, we select
10% of the training epochs (i.e., 20 epochs for skin tone

debiasing and 10 epochs for age debiasing) for subsequent
evaluation and comparison with other methods.

5. Results

We report performance across our investigated experimental
scenarios where we aim to answer our primary question: can
model fairness be improved, and discriminative performance
maintained, under data and compute frugal regimes? Fur-
ther, we conjecture that debiased models should generalize
effectively across different data distributions and sensitive
attributes. Towards exploring this point we evaluate the
fairness and predictive accuracy of our approach on several
OOD test datasets, each with distinct sensitive attributes.

5.1 Comparison with SOTA Debiasing Methods
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Table 1: Comparison of debiasing methods on skin tone and gender. ResNet-50 model pre-trained on ISIC dataset
(MEAN±STD). Results are consistently denoted best and second best for all Tables.

Attr. Methods Fitzpatrick-17k DDI
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Skin Tone

Baseline 0.586±0.008 0.144±0.008 0.159±0.007 0.601±0.005 0.101±0.020 0.113±0.025
FullFT-RW (Zhang et al., 2022) 0.586±0.009 0.146±0.013 0.160±0.011 0.592±0.008 0.126±0.020 0.141±0.022
FullFT-Reg (Cherepanova et al., 2021) 0.589±0.006 0.118±0.015 0.131±0.012 0.587±0.006 0.116±0.042 0.126±0.034
FullFT-FDR (Le et al., 2023) 0.587±0.013 0.110±0.015 0.123±0.012 0.580±0.008 0.128±0.040 0.128±0.038
LLFT (Mao et al., 2023) 0.571±0.016 0.097±0.016 0.113±0.014 0.590±0.013 0.069±0.037 0.088±0.043
DiffGda (Marcinkevics et al., 2022) 0.586±0.008 0.144±0.006 0.156±0.008 0.600±0.005 0.106±0.015 0.116±0.017
FairPrune (Wu et al., 2022) 0.560±0.007 0.101±0.012 0.120±0.015 0.564±0.028 0.102±0.046 0.119±0.055
DiffPrune (Marcinkevics et al., 2022) 0.589±0.008 0.116±0.006 0.127±0.006 0.598±0.004 0.086±0.010 0.097±0.009
BMFT (Xue et al., 2024) 0.651±0.012 0.119±0.013 0.114±0.012 0.610±0.015 0.099±0.015 0.094±0.020
SWiFT (Ours) 0.668±0.013 0.092±0.028 0.096±0.026 0.625±0.010 0.063±0.030 0.064±0.036

Atlas PAD
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Gender

Baseline 0.788±0.005 0.026±0.008 0.031±0.010 0.717±0.009 0.009±0.005 0.036±0.014
FullFT-RW (Zhang et al., 2022) 0.788±0.006 0.021±0.007 0.022±0.006 0.718±0.008 0.011±0.008 0.035±0.020
FullFT-Reg (Cherepanova et al., 2021) 0.780±0.005 0.024±0.011 0.041±0.018 0.703±0.017 0.018±0.005 0.036±0.030
FullFT-FDR (Le et al., 2023) 0.779±0.006 0.030±0.011 0.040±0.019 0.702±0.018 0.012±0.007 0.051±0.031
LLFT (Mao et al., 2023) 0.774±0.004 0.019±0.006 0.024±0.003 0.701±0.008 0.012±0.006 0.031±0.018
DiffGda (Marcinkevics et al., 2022) 0.786±0.005 0.030±0.013 0.035±0.018 0.723±0.008 0.011±0.008 0.022±0.014
FairPrune (Wu et al., 2022) 0.691±0.051 0.016±0.010 0.018±0.010 0.619±0.057 0.018±0.014 0.055±0.019
DiffPrune (Marcinkevics et al., 2022) 0.768±0.008 0.006±0.004 0.012±0.008 0.719±0.010 0.010±0.013 0.033±0.015
BMFT (Xue et al., 2024) 0.787±0.005 0.005±0.005 0.014±0.006 0.727±0.011 0.005±0.005 0.032±0.032
SWiFT (Ours) 0.789±0.005 0.012±0.007 0.010±0.006 0.728±0.009 0.006±0.005 0.031±0.004

Table 2: Comparison of debiasing methods on skin tone and gender. Efficient-B3 model pre-trained on ISIC dataset.

Attr. Methods Fitzpatrick-17k DDI
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Skin Tone

Baseline 0.625±0.008 0.039±0.005 0.047±0.007 0.600±0.008 0.082±0.008 0.101±0.014
FullFT-RW (Zhang et al., 2022) 0.625±0.009 0.049±0.007 0.053±0.012 0.600±0.009 0.112±0.019 0.121±0.022
FullFT-Reg (Cherepanova et al., 2021) 0.610±0.006 0.029±0.009 0.032±0.012 0.594±0.005 0.089±0.004 0.119±0.007
FullFT-FDR (Le et al., 2023) 0.616±0.008 0.030±0.013 0.029±0.015 0.603±0.005 0.080±0.015 0.109±0.022
LLFT (Mao et al., 2023) 0.612±0.008 0.014±0.009 0.028±0.009 0.596±0.012 0.029±0.018 0.055±0.023
DiffGda (Marcinkevics et al., 2022) 0.610±0.068 0.019±0.008 0.025±0.006 0.589±0.018 0.041±0.041 0.055±0.050
FairPrune (Wu et al., 2022) 0.571±0.051 0.039±0.025 0.047±0.018 0.594±0.033 0.064±0.043 0.064±0.035
DiffPrune (Marcinkevics et al., 2022) 0.591±0.017 0.032±0.021 0.029±0.016 0.587±0.016 0.067±0.022 0.078±0.020
BMFT (Xue et al., 2024) 0.640±0.005 0.029±0.013 0.035±0.014 0.603±0.009 0.050±0.005 0.070±0.008
SWiFT (Ours) 0.644±0.007 0.013±0.001 0.019±0.014 0.607±0.007 0.019±0.013 0.025±0.014

Atlas PAD
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Gender

Baseline 0.785±0.003 0.028±0.005 0.013±0.003 0.599±0.017 0.009±0.006 0.029±0.026
FullFT-RW (Zhang et al., 2022) 0.784±0.002 0.026±0.012 0.010±0.006 0.601±0.012 0.015±0.010 0.023±0.015
FullFT-Reg (Cherepanova et al., 2021) 0.787±0.004 0.035±0.007 0.018±0.008 0.592±0.012 0.012±0.008 0.037±0.020
FullFT-FDR (Le et al., 2023) 0.787±0.003 0.036±0.013 0.021±0.008 0.594±0.013 0.017±0.009 0.049±0.032
LLFT (Mao et al., 2023) 0.785±0.005 0.035±0.015 0.025±0.013 0.604±0.039 0.026±0.017 0.041±0.027
DiffGda (Marcinkevics et al., 2022) 0.786±0.002 0.025±0.007 0.011±0.006 0.594±0.009 0.007±0.006 0.033±0.021
FairPrune (Wu et al., 2022) 0.747±0.017 0.031±0.030 0.025±0.013 0.551±0.023 0.020±0.012 0.031±0.022
DiffPrune (Marcinkevics et al., 2022) 0.741±0.010 0.025±0.020 0.009±0.003 0.599±0.017 0.010±0.006 0.032±0.029
BMFT (Xue et al., 2024) 0.781±0.012 0.009±0.006 0.024±0.015 0.624±0.015 0.011±0.007 0.020±0.018
SWiFT (Ours) 0.785±0.003 0.009±0.005 0.006±0.004 0.631±0.010 0.015±0.006 0.014±0.002

5.1.1 Quantitative Results

Table 1 through Table 4 report predictive accuracy and
fairness scores achieved by all debiasing methods across
various data modalities, sensitive attributes, and network
architectures. Overall, our method demonstrates substan-

tial improvements in fairness while maintaining high accu-
racy. For example, in debiasing skin tone using ResNet-50,
SWiFT achieves an SPD and EOdds of 0.092 and 0.064,
representing reductions of 36.1% and 37.6% compared to
the Baseline model’s 0.144 and 0.101, on Fitzpatrick 17k,
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Table 3: Comparison of debiasing methods on gender and age attributes. ResNet-50 model pre-trained on MIMIC datasets.

Attr. Methods Chexpert NIH
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Gender

Baseline 0.871±0.005 0.013±0.006 0.013±0.007 0.785±0.012 0.031±0.012 0.041±0.016
FullFT-RW (Zhang et al., 2022) 0.865±0.009 0.014±0.006 0.014±0.008 0.789±0.011 0.032±0.013 0.041±0.015
FullFT-Reg (Cherepanova et al., 2021) 0.867±0.007 0.011±0.005 0.012±0.007 0.789±0.011 0.032±0.016 0.038±0.014
FullFT-FDR (Le et al., 2023) 0.865±0.009 0.014±0.006 0.014±0.008 0.790±0.011 0.032±0.014 0.041±0.014
LLFT (Mao et al., 2023) 0.880±0.006 0.014±0.005 0.009±0.004 0.786±0.008 0.033±0.009 0.048±0.012
DiffGda (Marcinkevics et al., 2022) 0.867±0.008 0.010±0.005 0.012±0.008 0.788±0.011 0.030±0.015 0.040±0.015
FairPrune (Wu et al., 2022) 0.860±0.008 0.019±0.008 0.012±0.004 0.781±0.012 0.017±0.010 0.035±0.015
DiffPrune (Marcinkevics et al., 2022) 0.855±0.007 0.007±0.004 0.009±0.005 0.773±0.022 0.014±0.004 0.036±0.016
BMFT (Xue et al., 2024) 0.876±0.005 0.004±0.004 0.011±0.004 0.797±0.008 0.033±0.014 0.036±0.011
SWiFT (Ours) 0.880±0.005 0.010±0.005 0.007±0.004 0.791±0.011 0.040±0.016 0.035±0.008

Chexpert NIH
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Age

Baseline 0.871±0.005 0.109±0.023 0.051±0.011 0.785±0.012 0.063±0.024 0.078±0.018
FullFT-RW (Zhang et al., 2022) 0.871±0.006 0.106±0.023 0.050±0.009 0.786±0.011 0.061±0.023 0.071±0.016
FullFT-Reg (Cherepanova et al., 2021) 0.865±0.007 0.098±0.021 0.045±0.006 0.790±0.011 0.047±0.020 0.077±0.011
FullFT-FDR (Le et al., 2023) 0.869±0.006 0.098±0.021 0.044±0.005 0.788±0.011 0.050±0.020 0.071±0.013
LLFT (Mao et al., 2023) 0.867±0.014 0.119±0.019 0.056±0.015 0.782±0.007 0.083±0.014 0.081±0.004
DiffGda (Marcinkevics et al., 2022) 0.862±0.009 0.091±0.027 0.044±0.006 0.789±0.011 0.050±0.026 0.075±0.012
FairPrune (Wu et al., 2022) 0.837±0.052 0.090±0.029 0.044±0.006 0.776±0.010 0.071±0.017 0.071±0.025
DiffPrune (Marcinkevics et al., 2022) 0.865±0.006 0.101±0.013 0.042±0.006 0.778±0.016 0.054±0.018 0.063±0.016
BMFT (Marcinkevics et al., 2022) 0.870±0.004 0.108±0.009 0.038±0.008 0.791±0.015 0.057±0.011 0.066±0.011
SWiFT (Ours) 0.873±0.003 0.059±0.019 0.025±0.008 0.792±0.011 0.049±0.017 0.062±0.011

respectively. Additionally, these values are 15.1% and 27.3%
better than those achieved by the best SOTA method. The
AUC of SWiFT improves upon other methods in most cases,
and consistently outperforms the pre-trained Baseline model.
Similar trends are observed in chest X-ray debiasing where
SWiFT achieves improvements of 34.4% in SPD and 34.2%
in EOdds compared to the best SOTA when debiasing the
age attribute using ResNet-50. Our preliminary method,
BMFT, similarly achieves a desirable balance between debi-
asing and classification performance, with improved AUC
and fairness metrics compared to other baselines. How-
ever, our proposed SWiFT consistently outperforms BMFT
with a higher AUC and lower SPD and EOdds on most
datasets, proving the effectiveness of our methodological
modifications. Additionally, SWiFT eliminates the need for
hyperparameter tuning of the hard-mask threshold, provid-
ing a more flexible and adaptive masking approach.

In cases where SWiFT does not achieve the highest
AUC or fairness scores, the leading alternate method often
exhibits trade-offs, i.e., they show improved performance
in one metric yet degraded performance elsewhere, some-
times performing even worse than the Baseline. For exam-
ple, DiffPrune achieves the best SPD in debiasing gender
with ResNet-50 backbone on the Atlas dataset, however, it
demonstrates a 2.5% decrease in AUC, with respect to the
Baseline. This illustrates a critical flaw in these alternate
approaches: they often achieve fairness by ‘leveling down’,
a process that degrades the accuracy across all subgroups
with a greater degradation occurring for the better per-

forming groups. Such methods do not force the model to
learn robust, unbiased representations but rather risk find-
ing a simplistic solution where all groups perform equally
poorly (Zietlow et al., 2022). In contrast, our method con-
sistently demonstrates improved AUC over the pre-trained
model baseline in nearly all settings. This indicates that
SWiFT can enhance fairness without sacrificing the model’s
discriminative capabilities. We further note one exception:
on the CheXpert dataset, SWiFT with a DenseNet-121
backbone showed a slight decrease in AUC (0.001) com-
pared to the Baseline when debiasing for age. We conjecture
that this minor degradation is likely due to the DenseNet
architecture. The densely-connected nature and large num-
ber of parameters may make it prone to overfitting and
more difficult to optimize, particularly when learning new
debiased features (Yuan et al., 2019). These factors lead to
poor generalization, especially when fine-tuning on smaller
datasets. Despite this, SWiFT still outperformed other de-
biasing methods in this challenging scenario. The trade-off
is minimal and limited to this specific architectural choice,
underscoring the overall robustness of our approach.
Pruning is not always the best strategy We observed
that pruning-based methods (e.g., Diffprune, FairPrune)
underperform fine-tuning-based methods in AUC on most
test datasets (Tables 1–4), revealing that pruning often fails
to preserve the discriminative capability of the pre-trained
model. Furthermore, pruning methods exhibit high variance
across different folds of cross-validation, indicating that
their performance is neither stable nor generalizable across
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Table 4: Comparison of debiasing methods on gender and age attributes. DenseNet-121 model pre-trained on MIMIC
datasets.

Attr. Methods Chexpert NIH
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↓ EOdds ↓

Gender

Baseline 0.880±0.006 0.012±0.011 0.010±0.005 0.803±0.005 0.030±0.008 0.027±0.007
FullFT-RW (Zhang et al., 2022) 0.880±0.006 0.015±0.011 0.011±0.007 0.801±0.005 0.033±0.008 0.030±0.007
FullFT-Reg (Cherepanova et al., 2021) 0.879±0.004 0.010±0.007 0.011±0.006 0.801±0.005 0.034±0.010 0.027±0.008
FullFT-FDR (Le et al., 2023) 0.878±0.005 0.008±0.005 0.014±0.008 0.802±0.005 0.034±0.008 0.029±0.006
LLFT (Mao et al., 2023) 0.884±0.004 0.019±0.009 0.011±0.006 0.795±0.006 0.033±0.009 0.029±0.009
DiffGda (Marcinkevics et al., 2022) 0.875±0.004 0.015±0.016 0.013±0.010 0.802±0.005 0.034±0.009 0.029±0.008
FairPrune (Wu et al., 2022) 0.715±0.113 0.018±0.019 0.019±0.020 0.796±0.005 0.024±0.011 0.024±0.009
DiffPrune (Marcinkevics et al., 2022) 0.879±0.007 0.012±0.011 0.009±0.006 0.802±0.005 0.029±0.008 0.026±0.006
BMFT (Xue et al., 2024) 0.883±0.005 0.011±0.005 0.009±0.009 0.805±0.006 0.032±0.008 0.026±0.011
SWiFT (Ours) 0.887±0.003 0.009±0.005 0.009±0.003 0.805±0.004 0.039±0.004 0.027±0.003

Chexpert NIH
AUC ↑ SPD ↓ EOdds ↓ AUC ↑ SPD ↑ EOdds ↓

Age

Baseline 0.880±0.006 0.120±0.011 0.048±0.011 0.803±0.005 0.071±0.009 0.065±0.013
FullFT-RW (Zhang et al., 2022) 0.879±0.004 0.124±0.008 0.052±0.008 0.799±0.004 0.073±0.006 0.068±0.015
FullFT-Reg (Cherepanova et al., 2021) 0.875±0.005 0.115±0.008 0.044±0.009 0.799±0.005 0.050±0.010 0.065±0.024
FullFT-FDR (Le et al., 2023) 0.877±0.004 0.116±0.010 0.045±0.010 0.799±0.006 0.048±0.011 0.062±0.027
LLFT (Mao et al., 2023) 0.869±0.007 0.130±0.006 0.061±0.006 0.801±0.004 0.080±0.010 0.061±0.009
DiffGda (Marcinkevics et al., 2022) 0.874±0.005 0.118±0.009 0.047±0.009 0.802±0.005 0.064±0.006 0.065±0.020
FairPrune (Wu et al., 2022) 0.829±0.049 0.123±0.037 0.063±0.027 0.771±0.044 0.068±0.020 0.058±0.020
DiffPrune (Marcinkevics et al., 2022) 0.872±0.010 0.111±0.011 0.043±0.010 0.801±0.005 0.071±0.010 0.058±0.014
BMFT (Xue et al., 2024) 0.877±0.008 0.116±0.008 0.043±0.006 0.803±0.005 0.070±0.013 0.060±0.008
SWiFT (Ours) 0.879±0.006 0.111±0.011 0.042±0.011 0.804±0.002 0.061±0.009 0.058±0.019

different environments.
Fine-tuning utility. Our experiments analyzed the effective-
ness of different fine-tuning strategies. First, the simplistic
approach of fine-tuning on a balanced dataset (i.e., FullFT-
RW) yields inconsistent results. While it demonstrates
fairness gains on some datasets, it sometimes degrades fair-
ness performance even below that of the original pre-trained
model (i.e., Baseline). This indicates that when a model has
already learned strong spurious correlations, re-weighting
of the dataset, alone, is insufficient to unlearn them. The
model may instead overfit to the previously learned biased
representations, leading to poor generalization and fairness
on OOD datasets. In contrast, those integrating fairness
constraints (i.e. FulFT-Reg, FullFT-FDR and DiffGda) con-
sistently achieve lower EOdds than those relying solely on
cross-entropy loss (i.e. FullFT-RW). This illustrates that
explicitly incorporating the bias-related terms function into
the loss is a more effective debiasing strategy than rely-
ing solely on data balancing. Moreover, LLFT generally
yields higher AUC and lower bias compared to full fine-
tuning methods FullFT-RW, FullFT-Reg and FullFT-FDR,
highlighting the importance of mask fine-tuning to avoid
overfitting and maintain a better trade-off between classi-
fication performance and fairness. However, LLFT’s poor
AUC in certain scenarios indicate that fine-tuning only the
last layer from scratch requires that core features are well
captured and isolated from bias features. In contrast, our
proposed method fine-tunes both the feature extractor and

the last layer, which mitigates the bias from different com-
ponents of the model and exhibits the best performance in
terms of AUC, SPD and EOdds across most datasets.
Different bias, different difficulty. Comparing Baseline
results for gender and age attribute debiasing in Chex-
pert using ResNet50 (see Tables 3), the pre-trained model
demonstrates less inherent bias for gender when compared
to age, as indicated by lower SPD and EOdds. Further-
more, Table 3 shows that SWiFT achieves better EOdds
improvements for the age attribute c.f. gender, e.g., EOdds
is 45.9% lower than Baseline for age while is 23.1% for
gender. This suggests that attributes with more inherent
bias in the pre-trained model are easier for bias mitigation
strategies to identify and rectify. Conversely, less inherent
bias in the pre-trained model indicates that most core fea-
tures are captured by the pre-trained model, which may
limit the potential for AUC improvement.

5.1.2 Qualitative Analysis

Figure 5 shows exemplary Class Activation Map
(CAM) (Zhou et al., 2016) visualizations from the skin
classification task. We select images from both the be-
nign and malignant class, as well as different skin attribute
groups. The qualitative results in general follow the same
behavior of the quantitative results described earlier: Our
proposed method provides the best visual results, compared
to the best fine-tuning-based method LLFT and the best
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Figure 5: CAM visualization for four Fitzpatrick-17k test
images. Original images (Original Image), CAM pre-trained
model (Baseline Model), CAM fine-tuning based SOTA
Method (LLFT (Mao et al., 2023)), CAM pruning-based
SOTA Method (Diffprune (Marcinkevics et al., 2022)), CAM
post-debiasing model (SWiFT (Ours)). High, low activation
indicated by red, blue respectively.

pruning-based method Diffprune. Specifically, SWiFT suc-
cessfully redirects attention away from unwanted features,
i.e., skin tone, and towards core features, i.e., lesion areas.
By constrast, DiffPrune demonstrates smaller activation re-
gions and diminished focus on core features, which indicates
that it indiscriminately removes neurons responsible for both
bias and core features, leading to loss of information neces-
sary for accurate classification. Although LLFT outperforms
the Baseline and DiffPrune with better visual lesion areas, it
can still struggle to capture core features when the Baseline
model has not learned them robustly. These observations
provide clear evidence for the trade-offs detailed in our
quantitative results. While prior SOTA methods tend to
sacrifice the model’s focus on core features to improve fair-
ness, our method promotes better representation learning
and improves overall performance.

5.1.3 Extension to multiple attributes

In the previous sections, we assumed that the sensitive
attribute is binary. Towards exploring realistic settings, with
more complex fairness-related issues, we further discuss the
generalization of our method to multi-attribute scenarios.
We consider a problem framing that allows us to reduce
the multi-attribute problem to multiple instances of binary-
attribute debiasing. It has been previously observed that
solely optimizing for worst-group performance can effec-

tively address distribution shifts and mitigate sub-group
performance disparities (Sagawa et al., 2019; Liu et al.,
2021). We therefore focus on optimizing the worst group
via guidance from the best group. Specifically, we reduce
the problem to a binary attribute task through selection of
the best and worst groups, as defined by AUC, and use the
samples from these two groups for optimization. We vali-
date the multi-attribute generalization ability of our method
on six skin tone groups and five age groups. As Table 5
shows, our method is consistently effective in both overall
AUC, the worst-group AUC, and the AUC gap between the
best and the worst group.

Table 5: Comparison of performance of non-binary at-
tributes of skin tone for the skin lesion classification task
and age for the chest X-ray classification task. ResNet-50
backbone.

Attr. Methods Fitzpatrick-17k
Overall AUC ↑ Min. AUC ↑ Gap. AUC ↓

Skin Tone Baseline 0.586±0.008 0.589±0.007 0.048±0.010
SWiFT (Ours) 0.599±0.025 0.596±0.021 0.030±0.005

Chexpert
Overall AUC ↑ Min. AUC ↑ Gap. AUC ↓

Age Baseline 0.871±0.005 0.813±0.005 0.072±0.007
SWiFT (Ours) 0.880±0.001 0.825±0.002 0.068±0.004

5.2 Ablation Study

We conduct ablative studies on both skin lesion and chest
X-ray classification tasks to evaluate the effectiveness of
SWiFT in key aspects pertaining to soft-mask utility, effi-
cacy of our fine-tuning components, and the adaptability
to external dataset sizes. To this end, we investigate:
1) soft-mask performance compared to the random-mask
and hard-mask strategies, and 2) how each step of our
fine-tuning process individually impacts fairness and dis-
criminative performance, and 3) performance sensitivity to
different sizes of the external dataset.

5.2.1 Sensitivity to masking strategy

We use a soft-mask to preserve discriminative capability
while performing debiasing. To evaluate efficacy, we per-
formed a sensitivity study comparing our soft-mask with
both a random and a hard-mask. A random soft-mask
assigns values by randomly sampling from the [0, 1] range.
A hard-mask converts the importance scores into binary
values based on a predefined threshold. Parameters with
importance scores above the threshold are adjusted, while
others remain fixed. We search for the optimal fine-tuning
rates in {0.1, 0.3, 0.5, 0.7, 0.9}. The results of the ablation
experiments are shown in Table 6. Both soft- and hard-
mask strategies outperform random-mask, illustrating the
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effectiveness of our mask generation process. Moreover,
hard-mask performs worse than soft-mask with higher SPD,
EOdds and much lower AUC. This shows the difficulty
of finding optimal binary mask thresholds. Soft-masking
proves to be more flexible and effective in achieving im-
proved fairness-prediction trade-offs.

Table 6: Comparison of random, hard-masks and our pro-
posed mask generation method on skin and gender at-
tributes for the skin lesion classification task. ResNet-50
backbone.

Attr. Methods Fitzpatrick-17k
AUC ↑ SPD ↓ EOdds ↓

Skin Tone
Random 0.615±0.012 0.119±0.016 0.128±0.011
hard-mask 0.622±0.002 0.099±0.017 0.102±0.017
SWiFT (Ours) 0.668±0.013 0.092±0.028 0.096±0.026

Atlas
AUC ↑ SPD ↓ EOdds ↓

Gender
Random 0.787±0.004 0.017±0.009 0.017±0.008
hard-mask 0.788±0.004 0.023±0.013 0.023±0.006
SWiFT (Ours) 0.789±0.005 0.012±0.007 0.010±0.006

5.2.2 Sensitivity to mask normalization strategy

Table 7: Comparison of random, hard-masks and our pro-
posed mask generation method on skin and gender at-
tributes for the skin lesion classification task. ResNet-50
backbone.

Attr. Methods Fitzpatrick-17k
AUC ↑ SPD ↓ EOdds ↓

Skin Tone z-score 0.655±0.012 0.109±0.011 0.105±0.009
SWiFT (Min–Max) 0.668±0.013 0.092±0.028 0.096±0.026

Chexpert
AUC ↑ SPD ↓ EOdds ↓

Age z-score 0.880±0.005 0.087±0.028 0.040±0.007
SWiFT (Min–Max) 0.873±0.003 0.059±0.019 0.025±0.008

For our soft-mask construction, we employ Min-Max
normalization over the commonly used z-score method. As
shown in Table 7, Min–Max normalization yields superior
performance in both AUC and fairness metrics. We attribute
this improvement to our mask’s objective: determining the
relative ratio between parameter importance for bias and
for prediction. Min-Max normalization preserves the shape
and relative relationships of the original parameter impor-
tance distribution (Singh and Singh, 2020). In contrast,
z-score normalization, which re-centers and rescales the
data, can distort these crucial relationships. Recognizing
that Min-Max normalization is sensitive to outliers, we
will explore alternative strategies, such as percentile-based
normalization, in future work.

5.2.3 Effectiveness of two-step combination

SWiFT consists of two core steps that contribute to its
performance: mask fine-tuning of the feature extractor and
partial re-initialization followed by full classification head
fine-tuning. To assess the impact of each step, we con-
ducted an ablation study where we compare performance
of (i) feature extractor fine-tuning only, (ii) classification
head re-initialization and fine-tuning only and (iii) the full
pipeline. The results, shown in Table 8, indicate a sig-
nificant performance decline when either step is removed.
However, each individual step still outperforms the Baseline,
supporting our hypothesis that bias originates from both
feature extraction and feature combination. The integra-
tion of both steps effectively eliminates bias from these two
sources, resulting in superior performance in terms of both
prediction accuracy and fairness.

Table 8: Comparison of performance when ablating fine-
tuning components for both skin tone and gender attributes
under the skin lesion classification task. ResNet-50 back-
bone.

Attr. Methods Fitzpatrick-17k
AUC ↑ SPD ↓ EOdds ↓

Skin Tone
SWiFT (w/o 2nd step) 0.605±0.009 0.125±0.011 0.125±0.010
SWiFT (w/o 1st step) 0.586±0.005 0.146±0.009 0.146±0.007
SWiFT (Ours) 0.668±0.013 0.092±0.028 0.096±0.026

Atlas
AUC ↑ SPD ↓ EOdds ↓

Gender
SWiFT (w/o 2nd step) 0.787±0.007 0.025±0.009 0.021±0.015
SWiFT (w/o 1st step) 0.788±0.005 0.022±0.007 0.019±0.014
SWiFT (Ours) 0.789±0.005 0.012±0.007 0.010±0.006

5.2.4 Re-initialization effectiveness

To evaluate the effectiveness of our partial re-initialization
strategy, we compare SWiFT with two re-initialization
variants, i.e., no classification head re-initialization, and
full classification head re-initialization. The results are
shown in Table 9. As we can see, both full and partial
re-initialization achieve higher accuracy and fairness than
the no re-initialization approach, indicating that parameter
re-initialization can effectively remove bias and recombine
core predictive features. However, partial re-initialization
achieves even better results, particularly in terms of AUC.
This finding suggests that resetting all parameters in the
classification head may lead to catastrophic forgetting of
previously learned representations, which complicates the
optimization process and ultimately results in suboptimal
performance. In contrast, partial re-initialization preserves
parameters, important for core features, thus providing
favorable seeding for fast and effective fine-tuning.
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Figure 6: Sensitivity analysis for the re-initialization threshold γ. AUC and fairness performance is plotted against the
resulting proportion of re-initialized parameters in the classification head, under a ResNet-50 backbone. The x-axis
represents the percentage of parameters re-initialized based on having the highest mask scores. (a) Results for skin tone
debiasing on the Fitzpatrick-17k dataset. (b) Results for age debiasing on the CheXpert dataset. The star (⋆) indicates
the performance of our proposed method, where the re-initialization proportion is automatically determined by the mean
value of the soft-mask calculated on the classification head.

Table 9: Comparison of performance of partial re-
initialization vs full re-initialization strategies of skin tone
for the skin lesion classification task and age for the chest
X-ray classification task. ResNet-50 backbone.

Attr. Methods Fitzpatrick-17k
AUC ↑ SPD ↓ EOdds ↓

Skin Tone
No Reinit 0.608±0.019 0.112±0.019 0.103±0.019
Full Reinit 0.619±0.016 0.109±0.024 0.105±0.015
SWiFT (Partial) 0.668±0.013 0.092±0.028 0.096±0.026

Chexpert
AUC ↑ SPD ↓ EOdds ↓

Age No Reinit 0.873±0.004 0.104±0.022 0.044±0.008
Full Reinit 0.876±0.004 0.106±0.017 0.043±0.007
SWiFT (Partial) 0.873±0.003 0.059±0.019 0.025±0.008

5.2.5 Ablation on the Re-initialization Threshold

We investigate the sensitivity of varying our classification
head re-initialization threshold, γ. Our analysis compares
our proposed heuristic (i.e., setting γ to the mean of the
mask) against a range of thresholds defined by quantiles of
the mask distribution. This corresponds to re-initializing a
varying proportion (from 10% to 90%) of classification head
parameters with the highest soft-mask values. As shown in
Figure 6, the optimal re-initialization ratio is task-dependent
and varies across the Fitzpatrick-17k and CheXpert datasets.
Notably, our proposed method of setting γ to the mean
value of the soft-mask calculated on the classification head
parameters consistently yields near-optimal prediction and
fairness performance without requiring an exhaustive pa-
rameter search. This demonstrates that using the mean

mask value is a sufficiently effective choice.

5.2.6 Ablation on the Number of Samples

Figure 7 demonstrates the sensitivity of SWiFT perfor-
mance w.r.t. number of samples on the external dataset.
We conducted experiments using {0, 0.2, 0.4, 0.6, 0.8, 1}
proportions of the full external dataset, where the 0- sample
condition corresponds to the pre-trained Baseline model.
As the number of samples increases, the AUC improves
while bias decreases. For skin tone, the AUC and bias reach
stable after the dataset exceeds 0.4 of its total size (i.e.,
1400 samples). Notably, even with a very small external
dataset (i.e., 20% of the dataset with 700 samples), SWiFT
outperforms the Baseline in both accuracy and fairness. A
similar trend emerges in age debiasing on Chexpert, where
only 20% of the validation dataset provides a significant
improvement in fairness with minimal impact on AUC. The
relatively modest increases in AUC across different sample
sizes on CheXpert may stem from the already high baseline
performance of the pre-trained model, leaving limited room
for further improvement. Overall, these findings suggest
that SWiFT can operate effectively with relatively small
external datasets, highlighting its ease of construction and
promising potential for practical advantages in real-world
clinical deployments.

5.3 Soft-mask Visualizations and Interpretations

We analyze the distribution of our soft-mask across the
layers (residual block group) of a ResNet-50 model to un-
derstand how our method allocates parameter updates to
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Figure 7: Comparison of performance of different size of the external dataset of skin tone for the skin lesion classification
task and age for the chest X-ray classification task. ResNet-50 backbone. (a) is on the Fitzpatrick-17k dataset for skin
tone debiasing, (b) is on the Chexpert dataset for age debiasing.

(a) Layer 1 Importance Mask

(b) Layer 2 Importance Mask

(c) Layer 3 Importance Mask

(d) Layer 4 Importance Mask
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Parameter Index

Figure 8: An illustration of the soft-mask in each Layer
(Residual block group/ConvN x) of the ResNet-50 on ISIC
dataset for skin tone debiasing. The x-axis is the index
of parameters in each layer of the ResNet-50. The color
indicates the corresponding mask value for each parameter.

address bias and improve core feature learning. Our findings
reveal that our mask adaptively identifies different sources
of bias depending on the task and model’s initial state.

For the skin tone debiasing task on the ISIC dataset
(Figure. 8), the highest mask values are concentrated in
the early-to-middle layers (e.g., Layer 2 and Layer 3). This
suggests that the updates address the low-level features
associated with skin tone bias. Moreover, as the pre-trained
has a suboptimal initial AUC, updating shallow layers also

(a) Layer 1 Importance Mask

(b) Layer 2 Importance Mask

(c) Layer 3 Importance Mask

(d) Layer 4 Importance Mask

Parameter Index

Parameter Index

Parameter Index

Parameter Index

Figure 9: An illustration of the soft-mask in each Layer
(Residual block group/ConvN x) of the ResNet-50 on
MIMIC dataset for age debiasing. The x-axis is the in-
dex of parameters in each layer of the ResNet-50. The color
indicates the corresponding mask value for each parameter.

improves core representations for better prediction accuracy.
In contrast, for the age debiasing task on the MIMIC dataset
(Figure. 9), where the model already has a high initial AUC,
the mask correctly focuses updates on the deeper layers
(e.g., Layer 4). Since the model’s core representations
are well-learned, our mask targets the high-level semantic
features encoded in deeper layers, which are more likely to
be entangled with the abstract concept of age.
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6. Limitations and Future Work

Our study has several limitations. First, our experiments
were conducted primarily on binary classification tasks with
binary sensitive attributes. Although our ablation study pro-
vides initial evidence that our method can extend to multi-
attribute settings, a comprehensive evaluation on more com-
plex multi-class classification problems is a key next step.
However, the core mechanism of our method—disentangling
parameter updates based on their importance to task per-
formance versus fairness — is conceptually general. This
framework is not intrinsically tied to any specific accuracy
or fairness function; therefore, we believe our method can
be extended to deal with more diverse prediction or bias
settings. Second, our current implementation uses a fixed
soft-mask, which is computed once before fine-tuning. This
design is based on the assumption that, given the small
number of fine-tuning epochs, the relative importance of
parameters remains largely stable. This avoids the com-
putational overhead of repeatedly recomputing the mask.
However, exploring an adaptive masking strategy, where the
mask is updated dynamically, remains a promising direction
for future work, especially for applications require longer
fine-tuning. Third, while setting the classification head
re-initialization threshold to the mean mask value proves to
be an effective strategy, future work could explore methods
for learning this threshold adaptively. An adaptive threshold
may provide a more fine-grained and performant approach
to re-initialization.

7. Conclusion

Our study advances bias mitigation in discriminative mod-
els trained on dermatological and chest X-ray data. Our
method distinguishes core features from biased features,
towards enhancing fairness without sacrificing classification
performance. Our two-step fine-tuning approach reduces
bias under small epoch counts (∼10% of original training
compute), while remaining agnostic to the choice of model
architecture. We thus present an efficient solution, applica-
ble in resource limited scenarios. The challenge of obtaining
diverse datasets with comprehensive metadata and sensi-
tive attributes remains a limitation. However, unlike other
methods, our approach requires only a small dataset for
debiasing, partially alleviating this factor.
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