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Abstract

The most popular networks used for cell segmentation (e.g. Cellpose, Stardist, HoverNet,...) rely on a prediction of a
distance map. It yields unprecedented accuracy but hinges on fully annotated datasets. This is a serious limitation to
generate training sets and perform transfer learning. In this paper, we propose a method that still relies on the distance
map and handles partially annotated objects. We evaluate the performance of the proposed approach in the contexts of
frugal learning, transfer learning and regular learning on regular databases. Our experiments show that it can lead to
substantial savings in time and resources without sacrificing segmentation quality. The proposed algorithm is embedded

in a user-friendly Napari plugin.
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1. Introduction

Image segmentation plays a fundamental role in the analysis
of biological images. It enables the extraction of quantita-
tive information on diverse objects ranging from molecules,
droplets, membranes, nuclei, cells, vessels or other struc-
tures. In modern biological research, accurate segmentation
is often pivotal to better understand the mechanisms of
life. The increasing availability of high-throughput imag-
ing technologies has led to a surge in the quantity and
complexity of image data, raising significant challenges and
opportunities. Manual annotation of the resulting images is
labor-intensive, time-consuming, and often impractical for
large-scale datasets. Automated segmentation is therefore
widely accepted as a critical step in biological research.

A simplified history of cell segmentation Image seg-
mentation has long been dominated by handcrafted algo-
rithms. The processing pipelines typically combine popular
tools such as linear filtering, thresholding Otsu (1979), mor-
phological operations Serra and Soille (2012); Legland et al.
(2016), active contour models (Snake) Kass et al. (1988)

©2025 Cazorla, Munier, Morin and Weiss. License: CC-BY 4.0
W) Check for updates

or watershed Vincent and Soille (1991). A significant issue
with handcrafted approaches is that they are usually image-
specific and rely on the manual tuning of a few complicated
hyper-parameters. Although excellent performance can be
achieved, it is often the work of a handful of talented people
and these techniques are not broadly applicable.

The introduction of machine learning and especially
random forests made image segmentation accessible to a
much larger range of researchers. These techniques auto-
matically combine and tune elementary image processing
bricks. They are driven by a few easily interpretable user
annotations. Embedded in well conceived software such
as llastik Berg et al. (2019) or Labkit Arzt et al. (2022),
these techniques heavily contributed to democratize image
segmentation and classification.

Deep learning and convolutional neural networks played
an important role in improving the segmentation perfor-
mance around 2015. For instance, the popular U-Net archi-
tecture Ronneberger et al. (2015) increased the accuracy
on some cell segmentation challenges by more than 10%,
which can be considered as a small revolution. This type
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of neural network architecture seems to be a good prior for
segmenting “natural” images, as suggested by the so-called
Deep Image Prior principle Lempitsky et al. (2018). How-
ever, it can sometimes demonstrate limited effectiveness
when it comes to separating nearby or touching objects.
Many applications in biology involve densely packed objects
(e.g. cells, nuclei) and a pixel-classification U-Net is often
insufficient to perform a satisfactory analysis. To address
this issue, new architectures coming from computer vision
such as Mask R-CNN He et al. (2017) have been developed
and continued improving the performance.

Roughly at the same time, a few approaches (Deep
watershed transform Bai and Urtasun (2017), Deep Regres-
sion of the Distance Map Naylor et al. (2018); Kumar et al.
(2019), StarDist Schmidt et al. (2018), Hover-Net Graham
et al. (2019), Cellpose Stringer et al. (2021), Omnipose Cut-
ler et al. (2022)) have been developed and generated results
with an unprecedented quality. Despite certain differences,
they all share a common underlying principle. The idea is to
make a regression with respect to some distance function.
Given a set of annotated objects, a distance function to the
objects centers or boundaries is computed. A convolutional
neural network is then trained to predict the distance func-
tion rather than a binary map of the objects. The gradient
of this distance function points in opposite directions on
each side of the boundary, which makes it possible to de-
termine them with much greater precision. This principle
created a new gap in the segmentation accuracy, especially
for objects with touching boundaries.

A current trend consists in involving the user in the
training procedure. This “human in the loop” principle was
incorporated in CellPose 2.0 Pachitariu and Stringer (2022).
Users fully annotate patches of the segmented image, to
adapt the neural network weights to the image at hand.

It would be hazardous to call these approaches the
current “state-of-the-art”, since this field is expanding ex-
tremely quickly. However — as of 2025 — we can safely claim
that algorithms based on the distance map are at the basis
of some of the most popular and efficient cell segmentation
methods.

Contributions This work stems from a practical observa-
tion: methods which rely on a regression to the distance
function currently require exhaustive annotations. As the
distance function is a global geometrical property, it is im-
possible to compute it using just a few sketches. Hence, it is
a priori unclear how partial annotations can be used in this
framework, see Figure 1. Cellpose 2 gets around this prob-
lem by allowing the user to annotate patches of interest in
their entirety. Similarly, Sugawara (2023) recently proposed
a simple extension of Stardist and Cellpose by training the
networks on a subset of completely annotated objects. This
is a time-consuming process that does not allow the expert
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to focus on local spots (e.g. a part of boundary) where the
network clearly missed the segmentation.

(a) Image (b) Full annotation

Y

(c) Distance map

(d) Partial annotation

Figure 1: Partial VS full annotation. In (b), the complete
annotation is used to compute the distance map shown in
(c). In (d), it is unclear how to compute it from the partial
object annotation.

In this paper, we introduce a novel idea that allows us
to use the distance function even with partially annotated
objects. After drawing just a few regions and boundaries,
the user can train a task-aware neural network. This ap-
proach capitalizes on the generalization capacity of neural
networks, reducing the overall annotation effort without
sacrificing accuracy. We explore the performance of the
proposed architecture in 3 different settings:

= Few-shot learning: starting from random weights, we
show that just a few partial annotations are already
enough to quickly realize complex cell segmentation anal-
yses. This is interesting when faced with a problem for
which no close pre-trained model exists.

= Transfer learning: starting from Omnipose's optimized
weights, we show that just a few clicks at locations
where the segmentation is inaccurate lead to improved
weights and fast adaptation to out-of-distribution images.
This is the traditional field of transfer learning, domain
adaptation, e.g.. Our contribution here is to show that
this can be done with only a few scattered annotations.

= Large databases: finally, we show that large, but partially
annotated sets can also be used to train high performance
neural networks. This is important since it can signifi-
cantly accelerate the design of segmentation databases.

This evaluation on both small and large-scale dataset, over-
all showcases the advantages of our approach in terms of
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time and resource savings. We developed a Napari plugin
Chiu et al. (2022) named Sketchpose, to assess its poten-
tial, ensure reproducibility of the results and provide an
additional tool to the community. It relies on a modified
version of the Omnipose Cutler et al. (2022) algorithm. The
plugin is currently being downloaded regularly, with 638
downloads to date.

2. Methodology

2.1 Preliminary definitions and notations

In all the paper X refers to the image domain, which
can be understood as a discrete set of coordinates, or as
a continuous domain depending on the context. In the
discrete setting, we let |X| denote the number of pixels of
X.

Definition 1 For an arbitrary set S C X, we let S denote
its boundary. We use the 4-connectivity (top, bottom, left,
right) in the discrete setting.

Definition 2 (Point to set distance) The distance from
a point x € X to aset S C X is defined by

(1)

. def . ’
dist(x,S) = inf — .
ist(x,8) = inf Jlx —xl2

2.2 Omnipose

Our work is based on the Omnipose cell segmentation archi-
tecture Cutler et al. (2022). In this section, we justify this
choice, explain its founding principles and then demonstrate
how they can be adapted to deal with partial annotations.

2.2.1 Why Omnipose

Cellpose Stringer et al. (2021) has now become a standard
in cell segmentation. Its excellent perfomance, process-
ing speed, and ergonomic graphical interface make it a
handy tool for every day cell biology image analysis. How-
ever, it occasionally fails in scenarios involving complex
and elongated objects. In such cases, it tends to produce
over-segmentation, where neighboring objects are split in
smaller fragments.

The Omnipose algorithm Cutler et al. (2022) was con-
ceived in order to address this limitation. The main differ-
ence between Omnipose and Cellpose is the fact that the
distance map is defined as the distance to the cell bound-
aries in Omnipose, while it is defined as a distance to a
cell “centroid” in Cellpose. A weakness of the latter is that
there is no canonical choice to define this center, hence
Omnipose's choice seems more principled. This explains our
decision to choose and base our work on its architecture.

2.2.2 The main principles

Figure 2 summarizes the main ideas behind the Omnipose
architecture and its training. Omnipose is based on a
regular convolutional neural network (CNN), with a U-Net
like architecture Ronneberger et al. (2015). Given an input
2D image with IV pixels, the CNN can be seen as a mapping
Nemni of the form

RQN
Ny(u)) -
(2)
It depends on weights w that should be optimized during a
training stage. It returns 3 different outputs (illustrated on
the top of Figure 2):

RN X
Ni(u)

RN x
(NS (u)

]RN
u

omni
Nw

_)
—

= N?(u) = boundary probability: at every pixel, the value
of this image can be interpreted as a probability of being
a boundary between the objects to segment.

» NZ(u) = distance map: at a given pixel, the value of
this map is equal to:

— The distance of the pixel to the closest object boundary,
if the pixel is inside an object.

— 0 (or a fixed negative value) elsewhere.

= NY(u) = flow field: can be interpreted as the gradient
of the distance map. It is an essential feature of the
Cellpose and Omnipose architectures. Ultimately, the
flow is used through a procedure called Euler integration
to generate a segmentation mask. This is illustrated on
the top right of Figure 2.

2.2.3 The original loss definition

The original training stage involves a collection of K € N
images (ux)1<k<k together with their exhaustive segmenta-
tion masks. For every image uy, in the dataset, an algorithm
creates the gold standard boundary probability b}, distance
map dj; and flow field vi. This is illustrated on the bottom
of Figure 2.

The weights w of the neural network are then optimized
so as to minimize a loss function that compares the output
of the CNN with the gold standard:

. 1 X

inf loss”™™ (w) = — >~ 5(by. b+ (A, di)+v (Vi V1),
k=1

(3)

where bk = Ng)(uk), dk = Ng(uk), Vi = N,LY)(U]C)
In the original Omnipose implementation available on
GitHub, the different losses were defined as follows:

= Boundary loss /5:
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Boundary
probability by

| ) N\

Input image wuy

Process

Gold standard by

Distance
map dy,

Prediction

Euler

Figure 2: A sketch of the Omnipose training procedure

This term compares the predictions b to b* using the
following loss:

150, 1%) f)j S g(blx), b)),

xeX

(4)

where g : R X R — R combines a sigmoid and a binary
cross entropy loss.

= Distance loss /p:

This loss calculates a weighted mean squared error be-
tween the predicted distance fields and the ground truth
distance fields. It is defined as

def AD

tp(d,d) = 3 2 () = ) - oI,

xeX

where p € RY is a weight image with higher values
around the gold standard boundaries.

= Flow loss /y:

This loss is defined as a weighted sum of three losses
by = E‘I, + E% + E?,. The first one is a mean squared
error loss:

def Ay,

E]I;(v,v*) ¥

> IV = v X[l o] (5)

xeX

The second one compares the norms of the vector fields:

def AV,2

|X]

E%;(V, v¥)

> (vl = v xIIH? - plx]- (6)

xeX

The third one aims to minimize the distance between
trajectories generated through the ground truth and
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predicted flows. Trajectories starting from an initial point
z can be generated by simple explicit Euler discretization:

def

xi11(2) = xj(2) + At - v'[xj (2)].

where At is a step-size. Letting L € N denote an
integration time, the “Euler” loss then becomes:

L
> Ixiz) —xi (@3 (7)

zeX =1

E%(V v¥) def v
b
|

|X

It measures how two trajectories generated by Euler
integration using the ground truth and predicted vector
fields deviate. This loss is implemented in the torchVF
library by Peters (2022). For more information, we refer
the reader to the related report.

An inspection of the code reveals that the different
weights have been set empirically as: Ap = 10, A\p = 2,
)\y71 =2, )\V,2 =2, >\V,3 = 1.

Remark 3 The different losses have probably been com-
bined by trial and error to produce the best possible results.
However, there are clear redundancies in the definitions of
the losses, for instance E\l,, 612, and E%)’, are all measuring
the distance between flows using different metrics. In our
implementation, we tried to simplify the losses as much as
possible, while still maintaining a good performance.
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2.3 Adapting to partial annotations

All the principles described above heavily depend on an
exhaustive segmentation of the cells. Indeed, the distance
functions and gradient flows — which are instrumental to
define the loss functions — are global properties which do
change heavily if the objects boundaries are incomplete. In
this section, we describe the main methodological contri-
bution of this paper, which will allow us to handle partial
boundaries.

2.3.1 The gold standard

B *
B e

(e) Not admissible

(b) Valid annotation

Figure 3: (Left) Ground-truth and an admissible annotation
set. (Right) If a stroke contains multiple objects, the object
boundaries have to be drawn. In this example, two nuclei are
present under the blue bow-tie-shaped region. Therefore, a
manual boundary has to be added in the center.

Table 1: Summary of notations.

Notation Description

X =AAUX; Image domain

X True background
Xy True foreground

So Background strokes
S1 Foreground strokes

& True boundaries
B = Bmanual U Bo,1  User-defined boundaries
D

Valid distance set

The notations are summarized in Table 1. We assume
that the domain X = A U A7 is partitioned with the back-
ground set Xy and the foreground set Xj. A difficulty in

instance segmentation is that multiple objects may exist
within the connected components of a region X;. To dif-
ferentiate them, we let (Xj;)i1<j<J, denote a partition of
the set X} as different objects within a similar class. For
instance in Figure 3a, the foreground set X is split in 13
components. A connected component of X; can be split
as X1 2 U & 3. The background set &j is split in a single
component &p 1.
We let

Ji
def
= U Uony (8)
ie{0,1} j=1
denote the set of all edges (or object boundaries) within

the image. It is depicted in red in Figure 3a.

2.3.2 The annotation set

The input of our neural network is a set of “sketches” or
strokes drawn by the user. We let Sp and &; denote the
strokes describing the background and foreground respec-
tively. They are depicted in brown and blue respectively in
Figure 3b. The intersection of the brown and blue strokes
define natural boundaries. We can indeed construct the
touching boundaries By 1 between different strokes as

def

Boa = SoNS,

where X is the closure of X in the continuous setting and
the interface between neighboring pixels in the discrete
setting.

In addition, the user can delineate other boundaries,
denoted Bianual, to separate touching objects within a
class. We can concatenate all the boundaries to obtain a
complete boundary set B defined as

B = Bmanual U BO,I- (9)

For the algorithm to work properly, we require the fol-
lowing set of assumptions.

Assumption 1 (Assumptions on the strokes)

= The strokes correctly separate the background and fore-
ground: Sy C Xy and S1 C A].

= The strokes do not overlap: SyNSy = 0. This is actually
forced by our Napari interface.

= The boundaries B are a subset of the exact boundaries
&, that is:

BCE. (10)

» [fthe stroke S; contains multiple objects, then the bound-
aries between the objects need to be completely drawn
with Banua (see Figure 3d). Letting S def SoUSy
denote the complete stroke set drawn by the user, this

condition reads:
ENS CB. (11)
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2.3.3 The main observation

The main result we will use to define and certify our algo-
rithm is summarized in the following theorem.

Theorem 4 (The valid distance set) Let CB % 95, U

081 U B denote the complete set of annotation boundaries
and define the valid distance set D as

def

= {z € §,dist(z, B) < dist (z,CB)}.  (12)

The following relationships hold:

For all =z €D, dist(z,&) = dist(z, B).
For all €S US1, dist(x,CB) < dist(z,E).

The proof of this theorem is given in Appendix A. This
theorem should be understood as follows. The first identity
informs us that we can compute the exact distance map
dist(z, &) to the set of exact boundaries £ on the valid
set D. This set can be computed using only the partial
annotations of the boundaries B C £ and the different
semantic regions S; C X;. The second inequality tells us
that we have an information everywhere on the strokes Sg
and S;. Moreover, in the case of total annotations, we
get D = X and the proposed idea will lead to a training
equivalent to the one in Omnipose and we can see the
proposed setting as a generalization. Figure 4 schematically
summarizes Theorem 4.

Stroke Dist. map

Valid
dist. map

Boundary  Valid dist. set

Figure 4: Illustration of the valid distance set theorem. All
the pixels in D are closer to B than to the boundaries of S.
The colormap used to represent the distance map exhibits
a progressive shift in colors, transitioning from blue to red.

2.3.4 Adapting the training

A simpler architecture The prediction of the boundaries
NP (u) is not necessary, since only the distance map N¢(u)
and the flow field Ny (u) are needed to compute the final
masks. Hence, we keep the same U-Net architecture, but
remove the channel associated to the boundaries:
RY — RV x RN

u = (Ng(w) , Ny(u)

sketch
N (13)
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Different summation sets Equipped with the valid dis-
tance set D, we are ready to adapt the losses to cope with
partial annotation. In Omnipose, the losses {3, {p, £}, and
E% are defined by summation over the set X (see paragraph
2.2.3). With partial annotation, the gold standard is not
properly defined on this set and we therefore need to change
the summation sets.

Based on Theorem 4, the losses related to the distance
set and to the flows become:

35mel (g, ar) % Ag > (]~ [
| |x€D
gpartial *

We replaced >, -y by >, cp in section 2.2.3 and discarded
the weights p. This means that we compare the ground
truth and prediction only where it makes sense to do so.

Dealing with inequalities Until now, we just used the
first identity in Theorem 4, but the second inequality brings
some additional information. We propose to integrate it in
the training through the additional asymmetric loss:

. A
fnea(q, qr) < P N RepU? (d
D ( ’ ) |Sl U 82’ € ( [Z]

z€S1US2

— d*[z]).
(14)

Putting it all together We can now define the total

sketchpose loss as:

sketch( _ g]p)artial( ,V*) _l_ngartial(d7 d*) +€%16Q(d’ d*)

(15)
where d, v are obtained by the simplified neural network
Nsketch

oeren,

loss w)

2.4 The Sketchpose plugin

A significant part of this work lies in the development of a
user-friendly graphical interface to train and use the neural
network. It is integrated in Napari Chiu et al. (2022), which
is well suited to embedding the Python/PyTorch codes at
the core of our approach.

Sketchpose can be easily installed through either the
pip package manager or Napari's Chiu et al. (2022) built-in
interface. A detailed documentation can be accessed by
clicking on this hyperlink. It offers step-by-step instructions
illustrated by short videos, to assist users in effectively
testing all the capabilities of the plugin.

The user directly draws a few strokes for the background,
foreground and boundaries. The brush size can be adjusted
similarly to usual paint software. An entire stroke boundary
can be added to the boundary set by a double right-click.
The training and drawing can be achieved in parallel to
target the places where the segmentation is inaccurate.


https://sketchpose-doc.readthedocs.io/en/latest/index.html
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The networks can be initialized by random weights or
existing pre-trained weights. The multi-threaded plugin’s
architecture makes it possible to annotate, train and observe
the current segmentation results simultaneously. The user
can annotate regions where the segmentation is inaccurate
in priority, hence reducing the annotation time. The predic-
tions can be restricted to a bounding box at each epoch of
the training process, to reduce the processing time, which
is particularly helpful for large scale images. Finally, users
can work with a single image or a set of images for the
inference and training steps.

3. Experiments

In this paragraph, we conduct several experiments to explore
three distinct use cases of the method.

= Learning from a limited set of annotations on a single
image with randomly initialized neural network weights.

= Learning from a limited set of annotations on a single
image, starting from a pre-trained neural network.

= Learning with randomly initialized weights using a large
dataset with sparse annotations. We study the impact
of the percentage of labeled pixels (10%, 25%, 50% and
100%) on the segmentation quality, when training on
thousands of cells.

After describing the metrics used for validation, we will
turn to the practical results. For all the experiments, we
used a single Nvidia RTX5000 GPU with 16 Gb.

3.1 Evaluation metrics

To quantify the predictions quality, we enumerate the true
positives (TP), the true negatives (TN) and the false posi-
tives (FP). A true positive is an object in the gold standard
that can be matched to an object in the prediction with
an Intersection over Union (loU) criterion higher than a
threshold 7. We let T P(7) denote the total number of true
positives. The total number of estimated objects without
matches is denoted F'P(7) (for false positives). The total
number of gold standard objects without valid matches is
denoted F'N(7) (for false negatives). Utilizing these values,
we compute the object detection accuracy metric (OA(T))
Caicedo et al. (2019) for each image using the formula:

TP(T)
TP(r)+ FP(r)+ FN(7)’

OA(T) =

The reported object dectection accuracy is then com-
puted as the average over all images in the test set.
Additionally, we computed the average DICE and the

Aggregated Jaccard Index defined as follows:

N, ‘AiUBZ‘|7

Z|A

Jaggregated (A7 B) =

|A; N B
average DICE(A, B)
|+ 1Bi] ’

where A and B are a dataset and its groundtruth.

3.2 Training from scratch on a single image

In this section, we will showcase several results achieved
while training from scratch on a small set of images. The
tests are made on a variety of biological structures (den-
dritic cells, osteoclasts, bacteria, insect eggs, adipose tissue,
artistic image of cells).

3.2.1 Training details

For this experiment, the model have been trained for 100
epochs (/ 2 minutes) with a batch size of 16 and image
flips for data augmentation.

3.2.2 Staphylococcus aureus

In the example of Figure 5, we use a microscopy image
of methicillin-resistant Staphylococcus aureus (MRSA) in-
fections, from European Commission, Horizon Magazine
(2020), “Can we reverse antibiotic resistance?”. It is reused
under the European Commission’s reuse policy.

After drawing for less than one minute and training for
100 epochs (= 2'), we achieve a much better result than
the trained model of Omnipose (see Figure 5). The quality
metrics is shown in Figure 5d.

3.2.3 Eggs on a tree leaf

In this section, we picked an image from the Omnipose
dataset, which likely represents eggs of an insect on a tree
leaf. At first sight, the segmentation task is uneasy, since
the objects are tightly connected, with identical textures
and blurry boundaries. We first annotated a subset of 5
eggs in Figure 6b with a minimal amount of background.
The segmentation result after training is already surprisingly
good in Figure 6d, but some objects are not detected, and
others are merged. We annotated 2 extra eggs in Figure
6c. With this extra information, retraining the network now
produces a near perfect segmentation mask, with a single
error (2 pink eggs on the left). This experiment illustrates a
unique feature of Sketchpose: it is possible to interactively
annotate while training. This offers a possibility to label a
minimum amount of regions to reach the desired output.
This principle sometimes called “active learning” or “human-
in-the-loop” Budd et al. (2021) is significantly enhanced
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(b) Omnipose cyto2 model

(a) Sparse labels

Iy
c

o
®

o
>

o
kS

Object detection accuracy

o
N

—— Omnipose
Sketchpose

o
°

0.5 0.9

0.6 0.7 0.8
loU matching threshold

(c) Sketchpose result, trained
from scratch (= 2')

(d) Evaluation of the segmen-
tation quality

Figure 5: (a,b,c) A training from scratch with sparse labels (in blue on the left image). Image credit: Janice Carr, Jeff
Hageman, USCDCP. (d) Evaluation of segmentation quality. Omnipose results are: DICE=0.92, Jaccard index=0.82.

Sketchpose: DICE=0.99, Jaccard index=0.96.

by using partial annotations and the user-friendly Napari
interface.

3.3 Transfer learning on a single image

In this section, we explore the feasibility of improving pre-
trained weights using transfer learning.

3.3.1 Training details

As for the previous experiment, the model have been trained
for 100 epochs (=~ 2 minutes) with a batch size of 16 and
image flips for data augmentation.

3.3.2 Bacteria segmentation

Bacteria are often used as biological models (e.g. in DNA
studies). A precise segmentation can be difficult to achieve,
because they have elongated shapes and can be clustered.

The Omnipose Cutler et al. (2022) model was initially
conceived to address the shortcomings of Cellpose for this
task.

Figure 7 shows how transfer learning with sparse an-
notations can improve the Omnipose results by separating
touching bacterias. Figure 7d shows a quantitative com-
parison of both methods. As can be seen, Sketchpose's
adapted weights provide much higher performance. A vi-
sual inspection indicates that all objects have been correctly
separated, apart from the cluster touching the boundary on
the bottom left.

3.3.3 Adipocytes segmentation

The image in Figure 7e shows a crop of a very large image
of a skin explant provided by DIVA Expertise. One can see
a part of the dermis (in pink) and above it, adipose tissue
(large white circular cells). Adipose tissue is the third skin
layer after the epidermis and dermis, also known as the
hypodermis. Hypodermal cells (adipocytes) secrete specific
molecules (e.g. adiponectin, leptin) which have a direct
impact on the biology of fibroblasts present in the dermis,
and also on keratinocytes present in the epidermis. They
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are the subject of numerous studies (see Bourdens et al.
(2019) and Sadick et al. (2015) for instance). For most of
the studies where skin explants are imaged, we first need
to count the adipocytes number in the image, and remove
any potential outliers detected in the dermis and epidermis.
While Omnipose cyto2 results in some undersegmenta-
tion for this task, the adapted weights provided by Sketch-
pose yields significantly enhanced results. Annotating 6
cells and a training for 100 epochs (less than 1 minute)
were sufficient to significantly improve the quality of the
segmentation and to remove the outliers from the dermis
(see Figure 7c). Figure 7 shows a quantitative comparison
between Omnipose and Sketchpose on this example.

3.3.4 Osteoclasts segmentation

Osteoclasts are responsible for bone resorption, and are
widely studied (see Labour et al. (2016) for instance) as
being responsible for certain pathologies such as osteoporo-
sis when dysfunctional. Their differentiation goes through
several stages, culminating in the activated osteoclast. The
latter is generally large and contains numerous nuclei. At-
lantic Bone Screen (ABS) company is investigating the
effect of different drugs in inducing either proliferation or
cell death in these activated osteoclasts, in order to regulate
their population. To do so, they extract osteoclasts from
biopsies, culture them, apply the drugs and image them
under a bright-field microscope.

The studied image is a crop of an image containing
around 20,000 cells. We can see touching cells presenting
a great variety in size, shape color. The image is complex
to segment and poses a real challenge. What is more,
ABS does not want to count pre-osteoclasts (small black
nuclei), but only the mature cells (according to specific
nuclei criteria). Each study comprises around sixty images,
hence manual counting task performed at ABS is costly
and laborious.

In Figure 7, we present a qualitative depiction that
underscores the enhancement in segmentation accuracy at-
tained through transfer learning with just a few labels. La-
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(a) Image (b) Labeled Set 1 (LS1) (c) Labeled Set 2 (LS2) (d) Sketchpose LS1 ~ 10" (e) Sketchpose LS2 =~ 3’

Figure 6: Progressive training in Sketchpose. In this example, we show that it is possible to improve the segmentation
performance of Sketchpose by progressively annotating at places where the network failed. Here, a quite minimal
annotation set is enough to near perfectly separate the eggs on the leaf.
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Figure 7: Transfer learning experiment. In all cases, just a few strokes are enough to significantly improve the segmentation
quality. (a—d) Bacteria. (a—c) Training with a few sparse labels. (d) Evaluation of segmentation quality. Omnipose:
DICE = 0.81, Jaccard = 0.53. Sketchpose: DICE = 0.90, Jaccard = 0.72. (e—h) Adipocytes. (e—g) Transfer learning
from the Omnipose bact_phase model. (h) Evaluation of segmentation quality. Omnipose: DICE = 0.89, Jaccard =
0.69. Sketchpose: DICE = 0.89, Jaccard = 0.79. Image adapted from Zhu et al. (2021). (i—1) Osteoclasts. (i—k)
Transfer learning from the Omnipose cyto2 model. (I) Evaluation of segmentation quality. Omnipose: DICE = 0.90,
Jaccard = 0.68. Sketchpose: DICE = 0.95, Jaccard = 0.80.

beling required approximately 2 minutes, while the training 3.4 Training from scratch on large datasets
process took about 5 minutes. A quantitative comparison

is available in Figure 7. The aim of this experiment is to highlight the possibility to

train our model on large datasets with sparse annotations.
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We use two different datasets as illustrated in Figure 8.

Microbeseg dataset The Microbeseg dataset Scherr et al.
(2022) contains 826 fluorescent microscopy images of bac-
teria with about 30,000 manually annotated objects). It
contains a mix of datasets from Omnipose and the Cell
Tracking Challenge. It is publicly available here.

PanNuke dataset The PanNuke dataset Gamper et al.
(2019) contains 7,904 image tiles of histopathology slides
stained with H&E across 19 tissue types, each with nuclear
instance segmentations and five-class nuclear type annota-
tions. It is publicly available from Kaggle and is widely used
for benchmarking nucleus segmentation and classification
algorithms.

3.4.1 Selecting annotation subsets

In this section, we investigate the model robustness across
various annotation levels each characterized by a different
percentage of annotated pixels: 10%, 25%, 50%, and 100%.
We generate randomly binary masks by thresholding white
Gaussian noise with a Gaussian filter of variance o2. The
resulting Gaussian process is then thresholded to keep only
a given proportion of pixels.

While the model is stochastic in nature, the generated
data is created once and for all, enabling its deterministic
reuse across multiple training sessions. Figure 9 shows
an image accompanied by four corresponding label masks
illustrating decreasing levels of annotation sparsity.

3.4.2 Training details

For each dataset, we trained the Sketchpose model for
1000 epochs. This takes about 5 hours for the Microbeseg
dataset and 30 hours for the PanNuke dataset using our
Nvidia RTX5000. Each model was trained with the four
percentages of annotated pixels we described above. There
was no data augmentation, except random cropping of the
images to 224x224 pixels. This is the size which was used
in the original Omnipose model.

3.4.3 Results

We evaluated and compared the performance using two al-

ternative models. The first one is the Cellpose 3.0 model Stringer

and Pachitariu (2025), which regresses a distance to the
objects centroids. The second one is the LKCell model Cui
et al. (2024), which is a better performing variant of Cel-
IVit Horst et al. (2024), itself a variant of HoverNet Graham
et al. (2019). These models are among the most popular
and best performing for histopathology images such as the
PanNuke dataset. While they perform classification and
segmentation, we will just compare their ability to segment
objects, as we are not interested in the classification task
here. We trained both LKCell and Cellpose 3.0 from scratch
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on each of the two datasets with complete annotations for
1000 epochs.

We compare the performance using other standard qual-
ity metrics used in instance segmentation. In all the metrics
below, an loU threshold of 50% is used.

= Precision: measures how many of the predicted posi-
tives are actually correct (i.e., the fraction of predicted
segments that are true).

= Recall: how many of the actual positives were correctly
predicted (i.e., how complete the prediction is).

= FI-Score: harmonic mean of precision and recall, balanc-
ing both.

= Detection Quality (DQ): evaluates object-level detec-
tion performance, penalizing missed or extra objects. It
evaluates the ability to detect object instances correctly,
regardless of segmentation quality.

= Segmentation Quality (SQ): measures how well matched
objects are segmented, assuming correct pairing, reflect-
ing the quality of the predicted segment.

The main results are reported in Table 2, and several
key observations emerge.

Best-performing methods On the MicrobeSeg dataset,
Cellpose and Sketchpose (100% annotations) deliver the
best performance, while LKCell lags behind with a 15%
lower Fl-score. Conversely, on PanNuke, LKCell outper-
forms both competitors with a 4-6% F1-score gain, con-
firming its suitability for this dataset.

Impact of annotation density For MicrobeSeg, reducing
annotation density leads to a significant performance drop
for Sketchpose: around 10% at 50-25% annotations, and
up to 20% with only 10%. Depending on the application,
such degradation may or may not be acceptable.

The situation is more favorable for PanNuke. Sketch-

pose maintains stable performance, with only a 4% drop
when reducing annotations from 100% to 10%. Given that
sparse annotations likely reduce annotation time by a factor
of ten, this is a promising result—especially since random
sampling was used. In practice, targeted annotations by an
expert would likely yield even better outcomes.
This contrast may stem from dataset characteristics:
PanNuke contains simpler, roughly convex objects, while
MicrobeSeg features elongated or irregular shapes, making
annotation density more critical.

loU matching thresholds To provide a refined view of
the performance, we also plot the Fl-score as a function
of the loU matching threshold in Figure 10. There, we
see that the ranking between the methods is stable up to
a mathcing threshold of 70%, which is usually considered
a high precision segmentation in biological imaging. A
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(a) A raw image. (b) Fully annotated.

(

)

c) 509

0

(e) 10%

Figure 9: Annotations example with four different sparsity levels and a domain regularity o = 50.

surprising phenomenon is that Sketchpose trained with 25%
of annotations performs better than the 50% model on the
MicrobeSeg dataset. Similarly, the 50% model performs
better than the 100% model on the PanNuke dataset. This
might indicate that carefully selected annotations can lead
to better results than complete annotation, or helps reducing
the influence of errors in the gold-standard database.

Sketchpose is the first distance-based method allowing
to take advantage of this observation.

4. Discussion & conclusion

We introduced Sketchpose, an open-source plugin to extend
the applicability of Omnipose to partial annotations. From
a methodological aspect, we developed a theory making
it possible to use distance functions, despite having only
access to partial information on the objects boundaries.
From a more practical viewpoint, we developed an inter-
active interface within Napari, which facilitates efficient
online learning with a real-time visualization of the training
progress. The multi-threaded implementation allows users

to continue annotating while the neural network trains or
infers.

The new training procedure was tested in three different
frames: i) training a neural network from scratch and just
a few strokes, ii) improving the weights of a pre-trained
network (a.k.a. transfer learning or human in the loop), iii)
training with massive, but partial annotations.

For point i), frugal annotation works surprisingly well
on a few test cases despite really limited information. A
dozen strokes are already enough to provide results on par
— or better — than pre-trained networks.

For point ii), our experiments demonstrated the poten-
tial benefits of using transfer learning. That is, starting
with a pre-trained Omnipose models, we can further refine
it using our methodology.

As for point iii), the conclusions are diverse. For datasets
containing simple object shapes, such as PanNuke, it seems
that a limited number of annotations (down to 25%) is
sufficient to achieve results on par or even better than com-
plete annotations. For more complex objects, it seems that
complete annotations are still preferable. These conclusions
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Table 2: Comparison of segmentation methods trained and tested on the MicrobeSeg and PanNuke datasets using
various metrics. All values are computed with an loU threshold of 50%.

MicrobeSeg dataset PanNuke dataset
LKCell Cellpose 100% 50% 25% 10% || LKCell Cellpose 100% 50% 25% 10%
Precision 0.73 0.88 0.77 0.63 0.68 0.55 0.82 0.88 0.86 0.84 0.78 0.75
Recall 0.65 0.75 0.89 086 0.83 0.78 0.84 0.71 0.71 075 0.77 0.73
F1-Score 0.66 0.79 0.81 069 072 0.60 0.83 0.78 0.77 079 0.77 0.73
DICE 0.82 0.86 0.85 0.85 0.83 0.80 0.88 0.87 0.87 0.88 0.87 0.87
Jaccard 0.73 0.79 075 075 0.72 0.69 0.81 0.79 0.79 0.80 0.79 0.77
Det. Quality (DQ)  0.73 0.88 0.77 0.63 0.68 0.55 0.82 0.88 0.86 0.84 0.78 0.75
Seg. Quality (SQ) 0.73 0.79 0.75 075 0.72 0.69 0.81 0.79 0.79 0.80 0.79 0.77
Cellpose
0.8 0.8l LKCell
’ — 100%
— 50%
0.7 25%
0.6 10%
o 2 0.6
o o
O O
$0.4 0.5
— —
L Cellpose L
LKCell 0.4
0.21 = 100%
—_— 50% 0.3
25%
0.0 10% 0.2
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loU matching threshold

(a) Fl-score over the Microbeseg test dataset.

loU matching threshold
(b) Fl-score over the PanNuke test dataset.

Figure 10: Evaluation of segmentation F1l-score over Microbeseg’s and PanNuke's test datasets as a function of the
percentage of annotated pixels compared to Cellpose and LKCell.

should be validated on a case by case basis, but the ability
to annotate while training make it possible to take the
minimal amount of annotation time for a given task.

The method also shows a few limitations. First, it would
benefit from faster training times to make the method even
more interactive. We plan to improve this aspect in the
forthcoming versions. Second, it is important to mention
that our formalism is currently restricted to the two dimen-
sional setting with two labels (background / foreground).
Extending the methodology to numerous classes is rather
straightforward, and the proposed ideas extend directly to
this case. However, the proposed strategy do not extend to
3D directly. It could be used if the user was able to delineate
a surface surrounding the objects of interest, but not just
curves in 2D. Indeed, this would result in an empty valid
distance set (see Theorem 4) and unadapted loss functions.
This limitation of the method must be put into perspective
by the fact that even the Cellpose 3D model is based on 2D
predictions only, which are aggregated in post-processing.
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In summary, the proposed method demonstrated numer-
ous qualities in 2D for partial annotations. We showed that
it is possible to train complex networks with a few sketches,
reducing the annotation burden significantly. Further devel-
opments are needed to accelerate the training process and
for a multi-class extension in 3D.
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Appendix A. Proof of the valid distance set
theorem

We start with a basic observation.

Proposition 5 (Properties of the distance function)
= A C Ay = Vx € X, dist(x, A2) < dist(x, A1).

» A C As and x € Ay = dist(x,0A;) < dist(x,0Asz).
Proof The first item is direct:

dist(x,.41) = inf dist(x’,x)

x'e Ay
> inf dist(x',x) = dist(x, Az).
x/'€As
Here is one proof of the second iten by separating the
two cases: either z € A; or z € 0A;.

= Casel: x € OA;. This case is trivial since dist(x, 0.A;) =
0 < dist(x, d.As) by positivity of the distance.
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m Case 2: x € ./(1.
show that the open ball of radius dist(x,0.4;) centered
in z is included in A;. Precisely

B Y B (z,dist(x,0A41)) € A € Ay, (16)

Indeed having Equation (16) established implies by con-
traposition that

0As C fizc - B¢ (17)

where the first inclusion is given by 9.As def Ay \ A; C
/igc. Therefore, taking infimum with respect to these
sets, implies the following inequalities and by the way the
intended result.

dist(x,0A2) = Gl](g)lf4 |z — ||
2€0 A2

> inf |z —al
ZEAQC

> inf ||z — z|| = dist(x,0.A;).
zeBe

So let's prove Equation (16) by contradiction, assume
that there exists z € BN A;°. Notice that [z,2] N A;°
is a compact set (here [z, z] denotes the closed segment
between the points  and z). Thus

s def

z* = argmin |z — 2|

z'elw,2)NAL
is well defined and the semi-open segment [z, z*[ is in-
cluded in A;. This implies that z* € 0.A; since the
sequence zy et (1 -3z —2) € [2,2°[C Ay
converges to z*. The contradiction comes from

dist(x,0A41) < [|z* — z|| < ||z — | < dist(x,0A;).

The first inequality holds because z* € 9.A;, the second
one because z* € [z, z] and last one because z € B.

By proof by contradiction, Equation (16) holds.

In conclusion, in all cases the inequality is verified. |

Theorem 4 can be proven in two steps. First, notice
that the inclusion B C &£ (Assumption 1) and the first bullet
in Proposition 5 implies that dist(x,&) < dist(x, B) for
any x € X.

Let’s establish the converse inequality. Let x denote an
arbitrary point in D. Aiming for a proof by contradiction,
assume that dist(x, &) < dist(x, B). We can proceed by
separating two cases:

» Case 1: dist(x,€) = 0. This implies that x € £ since
the set £ is closed as a finite union of closed sets 04 ;.
Moreover, as x belongs to D, in particular x belongs to
S. ltis sufficient to apply (11) and obtain x € ENS C B
which is inconsistent with dist(x, B) > 0

In that case, the key argument is to &« Case 2: r def

dist(x,€) > 0. The point x verifies

dist(x, B) < dist(x,CB) as x € D. Let us define r o
dist(x, &) > 0 and
def .

e = dist(x,CB) — dist(x, &)
> dist(x, B) — dist(x,£) > 0

by assumption. Since x belongs to S, there exists ig €
{0,1} such that x € S;,. Because dist(x,&) = r, there
exists a point z € € such that r < ||x — z|s =7 + /2

— Case 2.a: z € S;,. By assumption (11), the contradic-
tion comes quickly since now

2€S,NECSNECBCCB (18)

and this implies the contradictive inequality
r+¢e =dist(x,CB) < |[|[x —z|]2 <r+¢e/2.

— Case 2.b: z ¢ S;,. In that case, we may define the
point y on the line [x, z] which is the nearest from the
point x and also in 0S;,. Since y € 9S;, C CB, it
implies a contradiction as intended:

r+e=d(x,CB) < ||x,P(s)||2

=sllx—zls < ||x—z|2=7+e/2.

The point y is defined as P(s) where the map P : ¢ —
tz + (1 — t)x assigns to each scalar t € [0, 1] a point
P(t) of the line and set

def

s = inf ¢

P(t)ES;, (19)
Since P(0) =x € S;, and P(1) =z ¢ S,,, the scalar
s is well defined. The remaining task is to show that
P(s) € 0S;,. The argument works by construction
and with a topological argument. Indeed, by definition
of the infimum, there exists a sequence 0 < 1, — 0
such that P(s +1,) ¢ Si,, thus P(s) ¢ S;,. Also
by definition, for all 0 < n <'s, P(n) € S,,, thus
P(s) € S;,

In both cases, the assumption dist(x, &) < dist(x, B) leads
to a contradiction. We deduce that dist(x, £) > dist(x, B).

The second inequality in Theorem 4 is a consequence
of the property (10). Indeed, this property implies that
we can separate the strokes S; into connected components
S; ;. These are subsets of the connected components &; ;/
for some ;7' depending on j. The inequality is then just a
consequence of Proposition 5.
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