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Abstract

Deep learning models are increasingly applied to electrocardiogram (ECG) analysis to optimise cardiovascular care.
However, potential biases within these models may impact their reliability and clinical applicability. This study investigates
potential sex bias in deep learning models for 12-lead ECG classification of Sinus Rhythm (SR), Atrial Fibrillation (AF),
and Myocardial Infarction (MI). We evaluate three model architectures—Convolutional Neural Network, xResNet101,
and a Residual Network with an attention mechanism—under varying sex ratios in the training data. Among these
models, the attention-based Residual Network demonstrated the highest and most equitable performance, particularly in
SR and AF classification. MI classification exhibited pronounced sex-based disparities, even with balanced training data.
These findings underscore the importance of incorporating fairness considerations in the development of clinical deep
learning systems to ensure reliable and unbiased performance across diverse patient populations. Moreover, optimising

lead selection may further enhance both fairness and overall model performance.

Keywords
Deep learning, Electrocardiography, Classification, Bias

Article informations
https://doi.org/https://doi.org/10.59275/j.melba.2025-9fe7
Sanchez. License: CC-BY 4.0

Volume 3, Received: 2025-04-18, Published 2025-09-05
Corresponding author: m.galanty@uva.nl

Special issue: Fairness of Al in Medical Imaging (FAIMI) 2025

©2025 Maria Galanty, Bjorn van der Ster, Alexander P. Vlaar and Clara I.

W) Check for updates

Guest editors: Veronika Cheplygina, Aasa Feragen, Andrew King, Ben Glocker, Enzo Ferrante, Eike Petersen, Esther

Puyol-Antén, Melanie Ganz-Benjaminsen

1. Introduction

eep learning in the medical domain—including elec-
D trocardiogram (ECG) analysis—is advancing rapidly,

with numerous studies highlighting its potential for
detecting and predicting abnormalities (Ribeiro et al., 2020;
Singh et al., 2022). By automating complex pattern recog-
nition, deep learning offers opportunities to improve diag-
nostic precision and streamline clinical workflows. However,
despite its potential, concerns about algorithmic bias have
gained increasing attention. Studies have shown that the
performance of deep learning models can be compromised
by various biases (Vokinger et al., 2021). Bias in medical
Al has been documented across several domains, includ-

ing ophthalmology (Khan et al., 2021), radiology (Kaushal
et al., 2020; Petersen et al., 2022; Larrazabal et al., 2020),
and cardiology (Lee et al., 2023, 2025).

Interpretation of ECGs can be significantly impacted by
physiological factors, including age, sex, and race, each of
which influences cardiac electrophysiology. These variations
can lead to diagnostic inaccuracies or disparities in health
care outcomes, highlighting the need for diversified ECG
evaluation criteria (Zheng et al., 2025; Kittnar, 2023). Vari-
ability in ECG characteristics across racial groups presents
important clinical challenges, influencing diagnostic accu-
racy and clinical decisions. Because traditional ECG norms
are predominantly based on studies involving Caucasian
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Figure 1: Distribution of labels across age groups (18-39, 40-59, 60-79, 80+) for males and females. The graph shows
the prevalence of Atrial Fibrillation, Sinus Rhythm, and Myocardial Infarction in different age categories, separated by

sex.

populations, applying these norms universally can result in
diagnostic inaccuracies in other racial groups. A notable
example includes the higher incidence of early depolarisation
observed among African Americans, frequently mistaken for
myocardial infarction (M), leading to unwarranted invasive
procedures and medical treatments (Zheng et al., 2025).
Additionally, age-related hormonal changes can alter ECG
patterns significantly, contributing to further diagnostic
complexity across different age groups (Kittnar, 2023).

Sex differences in electrocardiography are also well doc-
umented. As reported by Kittnar (2023), men generally
exhibit certain distinct ECG characteristics due to variations
in heart size and muscle mass, whereas women tend to have
a higher heart rate throughout adolescence and adulthood.
These distinctions are influenced by sex hormones, particu-
larly during puberty, when hormonal changes begin to shape
the heart's electrical activity differently in males and females.
Importantly, these differences are not static—they evolve
with age and hormonal changes, such as those occurring
during menopause, which can significantly increase cardio-
vascular risk in women. Zeitler et al. (2022) emphasises the
clinical implications of these sex-specific patterns, especially
for diagnosing and managing arrhythmias. For example, a
prolonged QT interval—which reflects the time the heart's
ventricles take to recover between beats—carries a higher
risk of arrhythmias in women, highlighting the need for
sex-specific thresholds in diagnosis and treatment (Zeitler
et al., 2022).

Atrial fibrillation (AF) is the most common cardiac ar-
rhythmia. While AF is more prevalent in men, women
are more likely to present with persistent AF and expe-
rience atypical symptoms such as weakness and fatigue
(Giammarino et al., 2025). Accumulating evidence high-
lights sex-specific differences in the physiological, electri-
cal, and structural characteristics of the atria in AF (Gi-
ammarino et al., 2025; Odening et al., 2019). Variations
in sex hormones influence ECG features such as P-wave

morphology—males typically exhibit longer P-waves with
lower variability—and higher age-related prevalence of AF.
Additionally, males tend to have longer RR intervals than
females (Odening et al., 2019; Laureanti et al., 2020).

Building on this, Sau et al. (2025) introduced an Al-
ECG biomarker, known as the sex discordance score, to
identify females with disproportionately elevated cardiovas-
cular risk, enabling more targeted risk factor modification
and enhanced clinical surveillance. Despite such advances,
female representation in cardiovascular clinical trials remains
low, and the generalisation of male-centric findings to all
populations has introduced risks of misdiagnosis or under-
treatment (Tobb et al., 2022). Neglecting these sex-specific
differences in both clinical practice and Al development per-
petuates systematic disadvantages for one sex. Given that
cardiovascular disease remains the leading cause of mortal-
ity worldwide (Roth et al., 2020), it is essential that ECG
interpretation—and the Al tools supporting it—account for
physiological differences, including those between males and
females, to ensure accurate diagnosis, equitable treatment,
and improved outcomes for all patients.

Despite these known physiological distinctions, only
a few deep learning studies have explicitly investigated
sex-related biases in the development or evaluation of ECG-
based models. For instance, Kaur et al. (2024) investigated
disparities in race, sex, and age in the performance of convo-
lutional deep learning models predicting heart failure within
five years using 12-lead ECGs. Notably, model performance
declined with age and was significantly worse in Black pa-
tients aged 0 to 40 compared to other racial groups within
this cohort, with the most pronounced disparity observed in
young Black women. Integrating race, ethnicity, sex, and
age into the model architecture, training separate models for
racial groups, and ensuring equal racial representation did
not resolve these disparities. However, using individualised
probability thresholds led to improved F1 scores.

Alday et al. (2022) examined biases related to sex, age,
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Figure 2: Graphical representation of the dataset creation process, illustrating the key steps involved in data preprocessing,
stratification, and distribution across different training regimes

and race among 56 algorithms participating in the 2021
PhysioNet Challenge. The training and validation sets used
in the challenge were balanced in terms of sex (male and
female) and race (Asian, Black, White, Other). They found
significant performance differences of algorithms in several
evaluation metrics across sex, race and age groups. e.g, the
Challenge Score was 12% lower for female subjects on the
test set.

Noseworthy et al. (2020) analysed model performance
by race and ethnicity for a convolutional neural network de-
signed to identify patients with low left ventricular ejection
fraction based on 12-lead ECG. This model was devel-
oped in a predominantly homogeneous population (96%
non-Hispanic White), and their study demonstrated that
although ECG characteristics vary by race, this did not
affect the model’s overall performance.

Previous studies (Kaur et al., 2024; Alday et al., 2022;
Noseworthy et al., 2020) have made valuable contributions
to the field by highlighting the presence of demographic
disparities in ECG-based deep learning models. These works
have played a substantial role in raising awareness of po-
tential biases and promoting the development of fairer
Al systems. However, this research has primarily focused
on evaluating the fairness of already-developed algorithms
(Kaur et al., 2024; Alday et al., 2022; Noseworthy et al.,
2020), without explicitly investigating how sex imbalance
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in training data may contribute to model bias. While
demographic bias has been explored across intersecting di-
mensions—such as race, age, and sex—sex itself has rarely
been isolated as the central variable of analysis. Given the
well-established physiological differences between males and
females, there is a strong need for a dedicated investigation
into sex-specific bias in ECG classification and the extent
to which these differences may affect model performance.
Such a study would also benefit from evaluating whether
mitigation strategies—such as sex-balanced datasets or
sex-specific model development—can enhance performance
accuracy for both sexes. Addressing this gap is essential
for understanding the role of sex-based physiological varia-
tion in algorithmic behaviour and for advancing fairness in
clinical Al applications.

To address this need, the present study systematically
evaluates sex bias in deep learning models for ECG classifica-
tion. We explore three model architectures—Convolutional
Neural Network (CNN) (LeCun et al., 1989), xResNet101
(He et al., 2016) and Residual Network with an Atten-
tion Mechanism (Nejedly et al., 2021). Using a dataset
comprising multiple diagnostic categories—Sinus Rhythm
(SR), Atrial Fibrillation (AF), and Myocardial Infarction
(MI)—we assess the impact of sex imbalance in training
data and quantify performance differences between male
and female patients. Our goal is to explore whether sex-
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based physiological differences contribute to model bias.
This work contributes to the growing field of fairness in
medical Al by providing focused insights into sex-related
bias in ECG-based cardiovascular diagnostics.

2. Methods
2.1 Dataset

In this study, we utilised the following publicly available
datasets from the PhysioNet Computing in Cardiology Chal-
lenge 2021 (Reyna et al., 2021, 2022): the China 12-Lead
ECG Challenge Database, the China 12-Lead ECG Chal-
lenge Database Extra, PTB-XL, the Georgia 12-Lead ECG
dataset, the Chapman University dataset, the Shaoxing Peo-
ple's Hospital 12-Lead ECG Database, and the Ningbo First
Hospital 12-Lead ECG Database. These datasets constitute
a publicly accessible 12-lead ECG repository, encompassing
multiple datasets with standardised labelling scores. The
repository includes patient demographic information such
as sex and age, but does not provide unique patient identi-
fiers. Figure 1 illustrates the distribution of age, sex, and
diagnostic categories across the merged dataset.

The following label mappings were applied to the in-
vestigated categories: Sinus Rhythm encompassed sinus
rhythm, sinus bradycardia, and sinus tachycardia; Atrial
Fibrillation corresponded to atrial fibrillation; and My-
ocardial Infarction included acute myocardial infarction,
anterior myocardial infarction, and myocardial infarction.

The data was resampled to a unified frequency of 500
Hz, underwent pre-processing to remove low-frequency and
high-frequency noise using a zero-phase filtering approach.
Specifically, a third-order Butterworth bandpass filter (But-
terworth, 1930) was applied with a frequency range of 1
Hz to 47 Hz to remove unwanted signal components while
preserving relevant physiological information (Nejedly et al.,
2021). The samples were randomly segmented to a fixed
length of 4096 data points or zero-padded when neces-
sary. Subsequently, z-score normalisation was applied to
standardise the data across all samples.

2.2 Training and test datasets creation

To investigate the impact of varying sex ratios on model
performance, a structured division of the dataset was es-
sential. The accompanying graphical representations in
Figure 2 visualise the training and test datasets creation
process. Patients younger than 18 years, as well as those
with missing values for sex or age, were excluded from the
analysis. Due to the absence of unique patient identifiers,
there was a heightened risk of data leakage, potentially
resulting in overly optimistic performance estimates. With-
out unique identifiers, records from the same patient could
inadvertently appear in both training and testing datasets,

compromising the validity of model evaluation. To mit-
igate this, we implemented a strategy to minimise data
leakage. Specifically, we generated pseudo-identifiers for
patients based on their age, sex, and source dataset. Pa-
tients sharing identical values for these attributes were
assigned exclusively to either the training or the testing set.
Subsequently, patients were categorized into four distinct
age groups: 18—-40, 40-60, 60-80, and 80+ years. The
dataset was then partitioned into five folds, with stratifi-
cation carefully maintained across age groups, sex, data
sources, and the diagnostic categories of interest, to ensure
representative and unbiased splits.

From the fold designated as the test set, we created
two separate test sets—one for male and one for female
patients—by selecting an equal number of patients per
diagnostic category while maintaining stratification for age
group and data source. For the training sets, we constructed
datasets with varying sex ratios: 0% female 100% male
(Fv), 25% female 75% male (Fas5), 50% female 50% male
(F50), 75% female 25% male (F7;5), and 100% female
0% male (F1pp). These proportions were maintained not
only across the entire training set but also within each
diagnostic category under investigation. 10% of the training
set was utilised as a validation set, with the selection process
ensuring the diagnostic distribution. Detailed distribution
of training and test set sizes across categories stratified by
age group can be found in the Appendix (Table 4) as well
as test set distribution for each fold (Table 3). Furthermore,
we ensured that the training set size remained consistent
across different folds and experimental configurations.

2.3 Models

In this study, we evaluated the potential presence of sex-bias
in deep learning-based ECG diagnosis using three distinct
multi-class (3 classes) neural networks: a standard convo-
lutional neural network (CNN) (LeCun et al., 1989), an
xResNet101 (He et al., 2016), and the winning architecture
from the PhysioNet Computing in Cardiology Challenge
2021 (Nejedly et al., 2021). The selected models span a
range of architectural complexities, from relatively simple
convolutional neural networks to deeper and more advanced
residual networks with the attention mechanism. This
diversity enables a comprehensive assessment of model per-
formance and potential biases. Additionally, CNNs and
residual networks are among the most widely used architec-
tures for ECG classification tasks (Ansari et al., 2023).

The CNN model comprised four convolutional blocks,
each including a convolutional layer with kernels sized [5, 5,
3, 3] and filter counts of [64, 64, 128, 128]. Each convolu-
tional layer was immediately followed by a ReLU activation
function and a max-pooling layer. The convolutional blocks
were subsequently connected to two fully connected linear
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Table 1: Integrated mean performance metrics—ROC AUC, pROC AUC, and PR AUC—for ResNet with Attention,
xResNet101, and CNN on female (F) and male (M) test sets across varying sex ratios in the training data. Statistical
significance of differences between female and male test sets is assessed using the Mann-Whitney U test (as in Larrazabal
et al. (2020)) and indicated next to male values as follows: **** (P < 0.0001), *** (0.0001 < P < 0.001), **
(0.001 < P <0.01), * (0.01 < P <0.1); no marker indicates non-significant differences (P > 0.1).

ResNet with Attention xResNet101 CNN
ROC pROC PR ROC pROC PR ROC pROC PR
Train AUC AUC AUC AUC AUC AUC AUC AUC AUC
Ratio F M F M F M F M F M F M F M F M F M
Atrial Fibrillation
Fo 0.97 097 094 095 0.84 0.82 0.97 0.97 0.94 0.94 0.78 0.77 0.97 0.96** 0.92 0.92 0.74 0.73
Fys 097 097 095 0.95 0.84 0.82 0.97 0.97* 0.94 0.94 0.79 0.78 0.97 0.97** 0.93 0.93*** 0.77 0.74*
Fso 0.99 098 0.97 096 0.88 0.86 0.97 0.97* 0.94 0.93** 0.79 0.76** 0.97 0.96** 0.93 0.92*** 0.76 0.74*
F;s 098 098 096 0.96 0.86 0.86 0.98 0.97** 0.95 0.94*** 0.81 0.78** 0.97 0.96*** 0.94 0.92*** 0.77 0.73
Fioo 0.99 098 0.97 096 0.87 0.85 0.98 0.97*** 0.95 0.93*** 0.80 0.75*** 0.97 0.96*** 0.93 0.91*** 0.75 0.71**
Sinus Rhythm
Fo 0.96 096 090 0.90 0.99 0.99 0.94 0.93 0.86 0.85 0.99 0.99 0.93 0.93 0.84 0.84 0.99 0.99
Fzs 096 096 091 090 0.99 0.99* 0.94 0.93 0.86 0.85 0.99 0.99 0.94 0.92** 0.85 0.83 0.99 0.99**
Fso 097 096 092 091 0.99 0.99 0.94 0.93* 0.85 0.84 0.99 0.99 0.93 0.92* 0.85 0.83 0.99 0.99*
F;s 096 096 091 0.89 0.99 0.99 0.94 0.93** 0.87 0.85** 0.99 0.99** 0.93 0.92** 0.85 0.83* 0.99 0.99*
Fioo 0.97 096 0.92 091 0.99 0.99 0.94 0.92*** 0.86 0.82*** 0.99 0.99*** 0.93 0.91** 0.84 0.82* 0.99 0.98**
Mpyocardial Infarction
Fy 0.93 0.95* 0.86 0.89* 0.64 0.72** 0.94 0.95* 0.86 0.89** 0.64 0.72*** 0.93 0.95** 0.85 0.88** 0.63 0.70***
Fys 094 094 0.87 0.88* 0.66 0.71 0.94 0.95* 0.87 0.89** 0.66 0.72*** 0.94 0.95 0.86 0.88* 0.63 0.70***
Fso 095 095 0.88 0.89 0.69 0.73 0.94 0.95 0.87 0.89* 0.67 0.73*** 0.94 0.95 0.87 0.88 0.64 0.70***
Fr;s 094 095 0.88 0.88 0.68 0.71 0.94 0.95 0.88 0.89 0.68 0.71 0.94 0.95 0.87 0.88 0.66 0.68
Fioo 0.95 095 0.88 0.89 0.69 0.70 0.95 0.95 0.88 0.88 0.68 0.69 0.94 0.94 0.87 0.87 0.65 0.65
layers. et al., 2019).

The xResNet101 architecture employed a deep residual
learning approach, consisting of 101 layers and leveraging
skip connections that facilitate the training of significantly
deeper models without degradation in performance.

The PhysioNet Challenge-winning architecture was based
on custom ResNet blocks optimised for ECG classification,
using large convolutional kernels (15 in the first layer, 9
in residual layers with stride 2x). Outputs were processed
through a multi-head attention mechanism and refined via
adaptive max pooling. While the proposed architecture
used an ensemble of models, we employed a single copy of
the proposed model. Further in work we will be referring
to this model as ResNet with Attention.

Given the significant class imbalance in our dataset,
we used focal loss (Lin et al., 2017) for optimisation, with
hyperparameters set at & = 0.75 and v = 2. The Adam
optimiser (Kingma and Ba, 2014) was employed for model
training. The initial learning rate was set at 0.001 and was
decreased by a factor of 0.1 whenever the validation loss
failed to improve for five consecutive epochs. Training was
halted early if no improvement in loss was observed for five
epochs after reaching the lowest permitted learning rate,
with a maximum of two learning rate reductions allowed
and an overall epoch limit set at 100. All experiments
were conducted with a batch size of 128. Models were
implemented in Python utilising the PyTorch library (Paszke
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2.4 Performance evaluation

Our analysis focused on comparing model performance be-
tween male and female test sets under identical training
conditions and investigating how variations in training set
composition influenced results for each sex. Model perfor-
mance was assessed using standard performance metrics:
Receiver-operating characteristic curve area under the curve
(ROC AUC) and precision-recall AUC (PR AUC). Due to
high class imbalance, partial ROC AUC (pROC AUC) met-
ric with a False Positive rate cut-off point at 0.20 has also
been reported. All models were evaluated using 5-fold cross-
validation to ensure robust and generalisable performance
estimates. To investigate if there is a statistical significance
difference between various training conditions among the
two populations, we used Mann-Whitney U test and report
significance following Larrazabal et al. (2020).

2.5 Additional experiments

We conducted two additional analyses using the model
that achieved the highest overall classification performance.
First, we analysed performance stratified by patient age to
investigate potential age-related variability in model accu-
racy. This evaluation aims to assess the model’s consistency
and reliability across different age groups.



Investigating sex bias in ECG classification for Atrial Fibrillation, Sinus Rhythm and Myocardial Infarction

"90UDJRJ4Ip JUEdIUSIS OU SI0USP SAUI| YaNs Jo
9ouasqy (¢¢ 9|qel 99S) 1591 N ASUYAA-UUBA BY3 UO paseq uolleiuasaidal xas
%,00T PUE %0 YHM paUleJ) S|PPOW USaMIS] S92URJDJIp JuedlIuSIs A||ediisiiels
1Y311y81y saul| Asu8 1o |BIUOZIIOH ’S|EAI91UI SDUSPIHUOD 94 GH 91BDIPUI SEedle
papeys ‘senjea HNY DOYd Suipuodssiiod sy smoys sixe-A ay3 pue ‘19s
Suluiesy syl ul xss yoes jo S3ejusdsad sy sjusssudas sixe-x sy -elep
Buluresy ay1 ul solnes xas Julkiea ssoude s19s 1591 (|A) 9jew pue (4) sjews)

uo—(2) NND Pue ‘(q) TOTIONSIYX ‘() U0nUSNY YHm I9NSOY—S[opow
994y3 Joj sdueuwdopsd YNy DOYd |eied Suimoys siold sui g aunSi4

TOTIONS?YX (9)

ejep Buiuiely syj ul xas usalb ayj Jo oijey

%001 %GL %08 %S %0
| h A h | )
Loso g
=
n Q
||||||| L rseo
e e == — P = —— — o ———— & —=——— W
4 F060 A
g
Ls60 &
00T
uoljDieU| [BIPIRI0A
. . . . . <ro
roso g
— | =
| e U I e ey S & Fsso 2
||||| m— z
Loso &
z
Ls60 &5
001
wiyAyy snuis
, . , . \ sro
p—
slewss —— | gg9 B
X35 m.
tsgo 2
2
L 060 &
- i 4 »
e o= ====== —— === |0 5
00T

uone||udl |2l

NND (2)

ejep Buiulely 3U3 Ul X3S USAIB au3 Jo oi3ey

%00T %SL %0S %ST %0
L L L L L

SL0

t+ 080

+ 580

+ 060

tS60

00T

uoljdieju) [e1pledokp

GLO

t 080

- G8'0

+ 060

+S60

wuIAUY snuls

t+ 080

580

060

- G6'0

00T

uone||uqy [y

uoIULIIY YuMm 19Nsay (e)

ejep Bululely 3y3 Ul Xas uanb ay3 Jo oijey

%001 %SL %08 %S2T %0
L L L L

- 080

LS80

- 060

LS80

00T

L 080

LGB0

L0680

LGB0

wAyy snuig

GL'0

- 080

LS80

- 060

rS6'0

uone|uqy [ey

00T

2NV 204 lered 2NV D0y |erjed

NV 0¥ [ened

2NV D0Y leiyed 2NV D04 letued

2NV D04 leied

387



Maria Galanty, Bjorn van der Ster, Alexander P. Vlaar and Clara I.

Sanchez, 2025

Females Males
«
c .
* .
-g, 1.0 1.0
© c o
= 0.8 0.8
S
i 0.6 0.6
®
£ 0.4 0.4
< o2 0.2
L
0.0 0.0 100% F §
X
&
stk 5% F 3
—_— ek =
E O 1.0 1.0 <
= o ©
E‘S 08 0.8 50% F 'a_J
« ©
" 2 o6 0.6 25%F E
EZ 0.4 0.4 £
£ 5o .
" g 0% F
2 02 0.2
0.0 0.0/
c otk
° kKoK o
= e o 100% M &
v 1.0 1.0 o
© x
E  os Tt 0.8 75%M &
— ()]
8 06 0.6 £
3 50% M G
] 0.4 0.4 =
()
% 02 02 25%M B
0.0 0.0
80+ 18-39 40-59 60-79 80+ 0% M
Age Group Age Group

Figure 4: Bar plots showing partial ROC AUC performance across four age groups (18-39, 40-59, 60-79, and 80+) for
three different classes (Atrial Fibrillation, Sinus Rhythm, and Myocardial Infarction), stratified by sex ratio in training.
The left column shows results for the female test set (in orange), while the right column shows results for the male test
set (in blue). Within each column, bar colour intensity increases with the proportion of the corresponding sex in the
training data (e.g., 100% Female or 100% Male). Error bars represent 95% confidence intervals, and brackets with stars
indicate statistical significance between specified age groups. Horizontal lines indicate statistically significant differences
between age groups, based on the Mann-Whitney U test (see Table 1). Statistical significance notations are consistent
with those used in Table 1, where asterisks () denote levels of significance; absence of a line indicates no significant

difference.

Second, motivated by prior evidence from Grzelak et al.
that ECG leads Il and V6 provide stronger representation of
left atrial activity—particularly relevant for atrial fibrillation
detection—we investigated whether sex-related disparities
in classification accuracy vary with different combinations
of ECG leads. Specifically, we evaluated model performance
using only leads Ill and V6 to assess whether this lead
configuration influences classification accuracy differently
between sexes. This experiment was motivated by prior
findings indicating that these leads are particularly informa-
tive for left atrial activity, and aimed to investigate whether
their use introduces or mitigates sex-related disparities in
model performance.

2.6 Interpretability analysis

To gain insight into the models’ decision-making processes
and better understand sources of performance disparities,
we incorporated model interpretability techniques. For
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the ResNet with Attention architecture, we visualised the
learned attention maps to highlight which regions of the
ECG signal the model focuses on during prediction. For
models without attention mechanisms, we applied Gradient-
weighted Class Activation Mapping (Grad-CAM) (Selvaraju
et al., 2017) to generate gradient-based saliency visuali-
sations. Additionally, we used Uniform Manifold Approxi-
mation and Projection (UMAP) (Mclnnes et al., 2018) to
project the latent feature representations from the penulti-
mate layer of each trained model into a lower-dimensional
space, with test samples annotated by sex. This approach
enables a qualitative assessment of the structure of the
learned embeddings and their relationship to demographic
subgroups.

3. Results

The performance results for the three evaluated models:
ResNet with Attention, xResNet101, and CNN—are sum-
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Figure 5: Interpretability visualisations of different models for atrial fibrillation samples

Table 2: Mean performance metrics—ROC AUC, partial
ROC AUC (pROC AUC), and precision-recall AUC (PR
AUC)—for the ResNet with Attention model using only
leads Il and V6. Abbreviations and statistical significance
notations are consistent with those used in Table 1.

ResNet with Attention (leads 11l and V6)

ROC pROC PR
AUC AUC AUC
F M F M F M
Atrial Fibrillation

Fo 0.99 0.99 0.97 0.97 0.88 0.88
F>s 099 099 097 0.97 0.89 0.88
Fso 099 099 0097 0.97 0.88 0.88
F7s 099 098 097 0.97 0.89 0.87
Fip0 0.99 098 0.97 0.97 0.88 0.87
Sinus Rhythm
Fo 0.96 0.96 0.90 0.90 0.99 0.99
F»s 096 096 0.90 0.90 0.99 0.99
Fso 096 096 091 0.90 0.99 0.99
F7s 096 095 0.90 0.89 0.99 0.99*
Fip0 096 096 0.90 0.89 0.99 0.99
Mpyocardial Infarction
Fo 0.90 0.93* 0.80 0.85** 0.51 0.64**
F>s 091 0.93* 0.81 0.85* 0.54 0.63*
Fso 0.90 0.92* 0.81 0.84 0.53 0.61*
F7s 090 092 0.80 0.83 0.52 0.57*
Fip0 091 092 0.82 0.84 0.54 0.59*

marized in Table 1. This table reports mean AUC values
across varying sex-based training data ratios, along with
corresponding significance levels. To illustrate how model
performance changes as the proportion of a given sex in
the training data increases, Figure 3 depicts trends in mean
partial ROC AUC. For each model, results on male test
sets are shown in solid blue, while results on female test
sets are represented by dashed orange lines. Performance is
reported across three classes: AF, SR, and MI.

Further analysis of age-specific performance for the
highest-performing model, ResNet with Attention, is pre-
sented in Figure 4. This figure displays bar plots of partial
ROC AUC values stratified by four age groups (18-39,
40-59, 60-79, and 80+ years). Results are further stratified
by the sex of the test data: outcomes for female test sets
are shown in orange (left column), and those for male test

sets in blue (right column). Within each group, darker bar
shades represent a higher proportion of the corresponding
sex in the training data (e.g., 100% Female or 100% Male).

Figure 5 shows interpretability visualisations for samples
labelled as atrial fibrillation, focusing on Lead I. In Figure
5a, we display query—key attention maps across all heads
for a given sample. Figure 5b overlays attention scores from
the 7th head directly onto the normalised ECG waveform,
highlighting relevant regions. Figure 5c presents Grad-CAM
visualisations from the XResNet-101 model using the first
layer of the third block. In Figure 5d, Grad-CAM is applied
to the CNN model from its final convolutional layer, using
a threshold of 0.2 to improve clarity.

In addition, we conducted a targeted experiment using
only ECG leads Ill and V6, informed by prior work suggesting
their enhanced sensitivity to left atrial activity relevant for
atrial fibrillation detection (Grzelak et al.). The results,
summarised in Table 2, present mean values for ROC AUC,
pROC AUC, and PR AUC for the ResNet with Attention
model, grouped by sex.

4. Discussion

This study demonstrates that sex imbalance in training
data can impact the performance and generalisation of
deep learning models in 12-lead ECG classification, with
effects varying by task, age group, and model architecture.
Among the evaluated models, the ResNet Attention Mech-
anism emerged as the most robust and equitable across
sexes, particularly in the classification of AF and SR. Its
performance remained relatively unbiased across varying sex
ratios, suggesting that certain architectural features—such
as attention mechanisms—may confer greater resilience
to demographic bias. Our findings also suggest that over-
representation of one sex in training does not guarantee
improved performance for that subgroup. Instead, balanced
or female-inclusive training datasets tend to yield more
generalisable models, even enhancing outcomes for male
patients. This raises critical questions about the utility of de-
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veloping entirely separate models for different demographic
groups and underscores the importance of fairness-aware
model design.

Age-stratified analysis further revealed that model per-
formance peaks in middle-aged groups (40-79 years), while
younger (18-39) and oldest (80+) cohorts showed greater
variability, likely due to sample scarcity and higher co-
morbidity rates, respectively. These age effects intersect
with sex-based disparities and reinforce the need for demo-
graphically representative datasets during training.

Finally, our results highlight a persistent performance
gap in MI classification between male and female patients,
even under-balanced training. This may stem from phys-
iological sex differences in ECG presentation, diagnostic
interpretation challenges, or disparities in the quality of care
provided—particularly for females experiencing M.

General models performance

Among the models, ResNet with Attention consistently
achieved the highest or comparable performance across all
metrics and classification tasks, regardless of sex or training
ratio. For instance, in the MI task with balanced train-
ing data (F%0), the ResNet with Attention reached a ROC
AUC of 0.95 for both females and males, a pROC AUC of
0.88/0.89, and PR AUC of 0.69/0.73, respectively. xRes-
Net101 followed closely, while CNN trailed in most tasks,
particularly in PR AUC—suggesting it struggles more with
correctly identifying positive cases under class imbalance.

Sex-specific performance across varying training set
composition

All three evaluated models—ResNet with Attention, xRes-
Net101, and CNN—exhibited varying levels of disparity
between sexes when classifying AF and SR across different
sex ratios in the training data. Performance variation was
more pronounced in MI classification, where all models’
sensitivity to sex-based imbalances became more apparent.
While ROC AUC scores remained consistently high—partly
due to class imbalance—pROC AUC and PR AUC pro-
vided deeper insight into performance trade-offs and bias,
particularly under skewed data conditions.

ResNet with Attention demonstrated the smallest sex-
based disparities. For both AF and SR classification, the
best results were achieved when the training data had either
a balanced sex ratio or consisted entirely of female sam-
ples—a pattern observed for both male and female test sets.
In the AF task under fully balanced training (F5p), the PR
AUC was 0.88 for females and 0.86 for males—a gap of 0.02.
Similar trends were observed across other ratios and diag-
nostic categories. These performance differences between
male and female test sets were not statistically significant
across the various sex ratios, suggesting that the model
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maintained equitable performance regardless of training
composition. In contrast, xResNet101 showed increasing
performance disparity between sexes as the proportion of
female samples in the training data grew, particularly for AF
and SR. In the AF task under Fjgg, female PR AUC reached
0.80, while male PR AUC dropped to 0.75-a statistically
significant difference. Likewise, in SR classification under
F1p0, male pROC AUC fell to 0.82, while female perfor-
mance reached 0.86. CNN exhibited the most pronounced
sex-based discrepancies. In the AF task at Frs, female PR
AUC was 0.77 compared to 0.73 for males.

Across all models MI classification exhibited the largest
sex-based performance gaps. Even under fully balanced
training (F5), the PR AUC for MI in females remained
consistently lower than in males (ResNet with Attention:
0.69 vs. 0.73; xResNet: 0.67 vs. 0.73; CNN: 0.64 vs. 0.70).
Notably, the PR AUC gap of 0.09 in the CNN model (Fp)
was the widest, highlighting how female predictions suffer
in precision. Even with balanced training, female PR AUC
scores for M| remain lower, suggesting that performance
disparities cannot be fully attributed to dataset imbalance.
These persistent gaps might stem from underlying physi-
ological factors, labelling inaccuracies, as well as possible
historical disparities in diagnosis or treatment.

As illustrated in Figure 3a, which plots pROC AUC
for the highest-performing model (ResNet with Attention)
across varying sex ratios in the training data, a noteworthy
trend emerges for AF and SR: performance on male test sets
decreases as the proportion of male samples in the training
set increases. In the AF classification task, models trained
exclusively on female data (Figo) achieved higher pROC
AUC scores (0.96) on male test sets than models trained
solely on male data (Fp: 0.95), with the difference being
statistically significant. On the other hand, female test
performance increased consistently with greater female rep-
resentation in training, across all diagnostic categories. This
suggests that training on female ECGs may enhance gener-
alisation even for male patients. A possible explanation lies
in physiological differences, such as females’ higher average
heart rate Kittnar (2023), which results in more cardiac
cycles—and potentially more informative patterns—within
fixed-length ECG segments. These findings highlight the
asymmetric impact of training data composition on model
performance and underscore the potential benefits of incor-
porating female-rich data for improved generalisability.

Age-specific performance for ResNet with Attention

Figure 4 illustrates the partial ROC AUC performance of
ResNet with Attention across age groups (18-39, 40-59,
60-79, and 80+) with results stratified by sex and training
set composition. A general trend emerges, showing more
stable performance in the middle-aged population (40-79
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years).

Female test performance in AF peaked in the 40-59 and
60—79 age groups, especially under female-heavy training
conditions. The 18-39 group consistently lagged, but this
is likely due to the sparse representation of this age group
for AF and MI classes (on average 3 males and 6 females
per fold), limiting statistical power. In male test sets, AF
performance also favoured the middle-aged groups. Notably,
models trained with lower male representation performed
better on male test sets, again indicating that female data
may provide features with broader generalisability.

SR classification results remained similar across fe-
male age groups, but the lowest and most unstable per-
formance was observed in the 18-39 group when training
used only male data, emphasising the detrimental effect of
sex-mismatched training for the female population. Male
SR classification showed minimal variation across age, with
a slight dip in the 40-79 age range as male representation
increased in training. This further supports the idea that
over-representation of one sex does not equate to optimal
performance for that sex.

MI classification showed the most pronounced age-
related trends among the diagnostic tasks. Female pROC
AUC scores peak in the 40-59 and 60-79 age groups. The
most substantial performance gains were observed when
comparing various training settings in the youngest group
(18-39); however, due to the under-representation of the
young population in the dataset for MI, results for this group
should be interpreted with caution. For male test sets, the
highest MI classification performance was observed in the
40-59 age group. Balanced training data consistently yields
strong results across all male age groups above 39. Inter-
estingly, for the 80+ age group in both sexes, the highest
classification performance was achieved when models were
trained on data exclusively from the same sex. However, this
group also exhibited wide confidence intervals, indicating
greater performance variability and lower reliability.

Interpretability analysis

Figure 5 offers interpretability visualisations for samples
labelled as AF, revealing how different model architectures
process and prioritise input features. In Figure 5a, the
attention matrices across all eight heads show structured
patterns, with many heads consistently attending to peri-
odically aligned regions. These patterns reflect the model’s
ability to capture and cyclically attend to recurring temporal
features in the ECG waveform—such as QRS complexes
or R-R intervals—critical for detecting AF. This temporal
self-alignment might allow for distributed and context-aware
representation learning. As illustrated in Figure 5b, the 7th
attention head overlays a smooth and physiologically coher-
ent importance pattern over the ECG trace, reinforcing the

model’s capacity to attend to features spanning longer time
horizons, not just directly neighbouring ones, suggesting
that the model is attending not only to local events but
also to temporally extended dependencies.

The Grad-CAM visualisations from XResNet (Figure
5¢) and CNN (Figure 5d) highlight prominent features like
R-peaks, demonstrating both models’ ability to detect key
ECG patterns. A 0.2 threshold was applied to enhance
clarity, with visualisations shown from a single network
layer. However, due to their underlying architectures, these
models lack explicit mechanisms for capturing long-range
temporal and cyclic dependencies. This limitation stems
from their architectural design: while xResNet incorporates
residual connections that mitigate vanishing gradients and
enable deeper feature integration, allowing it to capture
longer-term dependencies than standard CNNs, it still lacks
the explicit attention mechanism required for capturing
dependencies over extended and periodic intervals. Classical
CNNs without residual connections remain constrained to
local spatial features.

This architectural constraint stands in contrast to the
attention-based ResNet, which is specifically designed to
integrate information across long-range temporal depen-
dencies. As a result, it produces a more distributed and
temporally nuanced representation of the ECG signal. These
differences in model design may help explain observed per-
formance disparities, particularly across demographic sub-
groups. For instance, sex-related physiological characteris-
tics—such as the typically faster heart rates and distinct
P-wave morphology seen in females with AF—can lead to
subtle variations in ECG patterns. Attention-based models,
by capturing the global context of the signal, are better
positioned to detect these nuanced and dispersed features.
This capability likely contributes to their superior overall per-
formance and greater fairness across different demographic
groups.

Additionally, we applied UMAP to visualise (Figure 6
in the Appendix) the latent space representations. The
resulting UMAP plots did not show a clear separation be-
tween male and female samples, regardless of the model's
overall predictive performance. This indicates that, in the
learned latent space, sex is not a primary axis of variation
for the models. Thus, the models do not appear to encode
sex as a dominant feature in their final representations,
suggesting that observed performance differences are not
due to explicit clustering by sex but may arise from more
subtle interactions between ECG features and sex-related

physiology.

ResNet with Attention using Leads Il and V6

This experiment assessed whether using only leads Il and
V6—known to better capture left atrial activity (Grzelak
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et al.)—affects sex-related disparities in ECG classification
performance. For AF, results using only leads Ill and V6
matched or slightly outperformed those from the 12-lead
configuration. Moreover, compared to 12-lead settings, the
results are less influenced by the training set ratio, with no
significant differences observed between male and female
test sets. This supports the clinical relevance of these leads
for atrial signal detection and suggests that lead selection
can reduce sex-based disparities in AF classification. For
SR, performance remained high and comparable across both
configurations, with no substantial sex differences observed.
In contrast, for MI, reducing to two leads led to a noticeable
drop in performance, especially for female patients. Signifi-
cant gaps in PR AUC and pROC AUC between sexes were
observed across all training ratios, indicating that leads Ill
and V6 are insufficient for capturing Ml-related features,
which are more spatially distributed. Overall, these findings
suggest that targeted lead selection may improve fairness
and efficiency for some conditions where left atrial activity
and P-wave morphology are central(e.g., AF), but can intro-
duce or amplify disparities in others (e.g., MI), depending
on the underlying cardiac pathology and signal distribution.

4.1 Limitations and Future Work

Despite the insights offered by this study, several limitations
should be acknowledged.

Firstly, although we investigated three deep learning ar-
chitectures, the findings may not generalise to other model
types or clinical tasks beyond ECG-based classification of
AF, SR, and MI. Further analysis should focus on the emerg-
ing class of foundation models for ECG analysis, such as
ECG-FM (McKeen et al., 2024). However, these models are
typically trained on large collections of datasets—including
the ones used in this study—making it infeasible to fairly
evaluate them under the current experimental design. Fu-
ture work could assess how these large-scale models address
or amplify bias, and whether their generalisation comes at
the cost of subgroup performance consistency.

Given the strong performance and fairness character-
istics of the attention-based ResNet model observed in
our study, future research could explore combining this
architecture with complementary fairness-enhancing strate-
gies—such as data augmentation to address subgroup im-
balance, debiasing techniques during training, or post-hoc
calibration—may further improve model equity and gener-
alisability.

Secondly, the dataset exhibited inherent demographic
imbalances, particularly in the younger (18-39) age group
for AF and MI. These subgroups were under-represented,
limiting the robustness of subgroup analyses. Additionally,
the absence of unique patient identifiers means that, despite
our use of a pseudo-identifier strategy to minimise overlap
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between training and test sets, we cannot fully exclude the
possibility of residual data leakage.

Third, our evaluation was limited to binary biological sex
as a proxy for physiological differences. This binary approach
may overlook critical nuances in ECG patterns influenced
by hormone levels, comorbidities, and social determinants
of health, potentially failing to capture the full spectrum
of cardiovascular risk within each sex (Sau et al., 2025).
Future research direction could involve integrating more
comprehensive clinical and demographic metadata, such as
hormonal profiles, BMI, and medication use.

Our study revealed a persistent performance gap in
MI classification between males and females, even under
balanced training conditions. While all models showed
higher precision-recall performance on male test sets, per-
formance for females consistently lagged behind. This gap
may stem from sex-based differences in ECG manifesta-
tions of MI, under-representation of females in historical
diagnostic datasets, or differences in clinical care pathways.
Future research should investigate whether these gaps are
a result of physiological signal differences, data labelling
inaccuracies, or broader clinical biases, and whether fairness-
aware training strategies could help mitigate performance
disparities.

5. Conclusion

In conclusion, this study emphasises that fairness investiga-
tions are essential in clinical machine learning applications,
particularly when working with heterogeneous populations.
Physiological differences between sexes do not inherently
degrade model performance, but if unaddressed, training
biases can lead to systematic disparities. While ensuring
representative training data may improve model fairness
and generalisation, its impact should be carefully assessed
and validated. At the same time, model architecture ap-
pears to play a critical role in mitigating bias and enhanc-
ing equity in Al-driven healthcare systems. In particular,
architectures that incorporate mechanisms for capturing
long-range temporal and cyclical dependencies—such as
attention—demonstrate not only superior overall perfor-
mance but also greater robustness to demographic variabil-
ity, suggesting that architectural design choices can directly
influence a model’s fairness. Finally, targeted lead selection
may help improve fairness in some conditions (e.g., AF)
but may worsen it in others, underscoring the need for
condition-specific evaluation.
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Appendix A. Tables and Figures

Table 3: Number of samples per diagnostic category, stratified by age group and sex, for the test set in each fold. The
abbreviations used are Atrial Fibrillation (AF), Sinus Rhythm (SR), Myocardial Infarction (MI), Females (F) and Males

(M).
AF SR Ml Other | AF SR Ml Other

Age F M
Fold 0
18-39 3 817 9 21 1 663 18 17
40-59 32 2104 89 35 73 1572 61 45
60-79 310 1300 228 70 307 1993 244 112
80+ 163 610 115 49 127 603 118 34
Total 508 4831 441 175 508 4831 441 208
Fold 1
18-39 7 1117 6 15 4 604 32 10
40-59 32 1244 48 65 83 2204 176 97
60-79 281 1980 220 94 316 1654 283 94
80+ 184 490 257 22 101 369 40 30
Total 504 4831 531 196 504 4831 531 231
Fold 2
18-39 1 433 4 28 3 595 8 15
40-59 57 1572 104 32 55 1788 200 15
60-79 125 2225 337 101 108 1817 221 111
80+ 72 235 18 27 89 265 34 11
Total 255 4465 463 188 255 4465 463 152
Fold 3
18-39 6 659 2 21 5 500 4 13
40-59 54 2063 78 61 83 1042 100 80
60-79 237 1694 141 137 295 2960 182 100
804+ 197 508 120 63 111 422 55 28
Total 494 4924 341 282 494 4924 341 221
Fold 4
18-39 4 1059 11 3 2 1026 19 26
40-59 34 2095 51 56 65 2061 96 78
60-79 214 2090 203 90 279 2506 265 57
80+ 185 567 149 36 91 218 34 15
Total 437 5811 414 185 437 5811 414 176
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Table 4: The mean and standard deviation of the number of samples for each diagnostic category, grouped by age and
presented separately for females (F) and males (M), are reported for both test sets and the training sets under each
training regime.

AF SR Ml Other
Age F M F M F M F M
Test Set

18-39 442 3+2 8174283 678+203 6t4 1611 18+9 1646

40-59 42413 72+12 1816390 1733457 74+24 127459 50+15 63+33

60-79 233471 261+87 1858+368 21864538 226471 239+39 99+24 95422

80+ 160451 103+16 482+146 376+151 132+86 56136 39+17 24+10

Total 4404107 440+107 | 4972+501 49724501 438+69 438+69 205+44 198+33
0% Females 100% Males

18-39 0 14+£2 0 2757+184 0 590+11 0 577462

40-59 0 201+£12 | O 72394377 | 0 541+63 | O 18764135

60-79 0 984+102 | O 88204603 0 957445 0 43304270

80+ 0 453428 0 1526+144 0 201425 0 1670148

Total O 1742489 | 0 203414575 | 0 1758+£70 | O 84531369
25% Females 75% Males

18-39 741 4548 83370 2067+137 4+1 11+1 23249 435146

40-59 7446 40647 1866110 54274290 42+3 220+8 465+29 1407+£97

60-79 227418 717134 1897+£88 6618+456 233420 738+74 100673 32464200

80+ 132421 151+19 497136 1146107 159+12 340421 415435 1251+114

Total 440418 1318452 | 50944145 15257+434 | 438+29 1309460 | 2118+106 6339+273
50% Females 50% Males

18-39 1342 30+5 1668+141 1378+£89 8+1 710 461+17 290432

40-59 149412 270431 37294217 3615+191 84+7 149+7 034457 038+64

60-79 453435 478+23 3790+182 44134298 465433 493+49 2018+137 21614135

80+ 265443 101+12 | 98675 764169 318+23 228+14 | 836467 833£78

Total 880+£35 879435 10173£290 101704289 | 875448 876138 42494202 42224185
75% Females 25% Males

18-39 1943 15+3 25014211 688+44 1342 310 694126 145+17

40-59 223+£18 135416 | 5585+325 1806496 126+11 7545 1410486  467+36

60-79 680453 239+11 56871275 2208+148 697154 245426 30214210 1078470

80+ 397464 5046 1479+114 379133 480+37 114+9 1252+99 418+39

Total 1319452 439+18 15252+423 5082+137 131675 437+16 63771309 2109499
100% Females 0% Males

18-39 2644 0 3334+280 O 1742 0 926+34 0

40-59 298425 0 74431433 0 167+£13 0 1884+116 O

60-79 906471 0 75794361 0 934471 0 4028+281 O

80+ 520486 O 1964+150 O 642451 0 1674+134 0

Total 1758+70 O 20320+563 0 1760+107 O 8511+410 O
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Table 5: Results for ResNet with Attention including means, standard deviation and p-values (p-val) for ROC AUC,
partial ROC AUC (pROC AUC), and precision-recall AUC (PR AUC)

ROC AUC pROC AUC PR AUC
F M p-val F M p-val F M p-val
Atrial Fibrillation
Ey 0.97 0.0 097 £0.01 0.4206 | 0.94 + 0.02 0.95 £0.01 0.8413 | 0.84 £ 0.04 0.82 & 0.01 0.1508
Fy; | 097 +0.01 097 £0.01 0.8413 | 095+ 0.01 0.95+0.02 1.0 0.84 + 0.02 0.82 +£0.04 0.4206
Fso [ 099+00 098 £0.01 0.3095| 097 £0.01 0.96 +0.01 0.3095 | 0.88 = 0.02 0.86 + 0.02 0.2222
F7s 1098 +0.01 098 +£0.01 0.6905| 0.96 +£0.01 096 +0.01 1.0 0.86 + 0.04 0.86 £0.03 1.0
Figo | 099 £ 0.01 098 £0.0 0.2222 | 0.97 £0.01 0.96 +0.01 0.3095 | 0.87 = 0.04 0.85 + 0.04 0.3095
Sinus Rhythm
) 0.96 £ 0.01 096 £0.01 1.0 09+£002 09+0.02 0.8413|099+00 0.99+0.0 0.8413
Fy; | 096+ 001 096 +0.01 0.3095|091+002 09+002 0309 |099+00 099+0.0 0.0952
Fso | 097 +00 096+0.0 0.3095|092+001 0914+0.01 0.1508 | 0.99 £0.0 0.99 +0.0 0.5476
Frs | 096 +0.01 096+ 0.01 0.3095| 091 +0.01 0.894+0.02 02222 |099+0.0 099+ 0.0 0.2222
Figo | 0.97 £ 0.01 0.96 £0.01 0.2222 | 0.92 £ 0.03 0.91 +0.02 0.2222 | 0.99 £ 0.0 0.99 + 0.0 0.1508
Myocardial Infarction

Fy 0.93 +0.01 0.95+0.01 0.0159 | 0.86 + 0.02 0.89 = 0.01 0.0317 | 0.64 £ 0.02 0.72 4+ 0.04 0.0079
Fy; | 094+ 001 094 +0.01 02222087 +001 0838+0.0 0.0952|0.66+0.03 0.71 + 0.04 0.1508
Fso | 095+0.01 0.95+0.01 05476 | 0.88 £ 0.02 0.89 +0.02 0.2222 | 0.69 £ 0.02 0.73 + 0.05 0.4206
Frs 1094 +001 095+0.01 1.0 0.88 + 0.02 0.88 £0.02 0.5476 | 0.68 + 0.03 0.71 + 0.05 0.5476
Figo | 095+ 0.01 095 +0.01 1.0 0.88 £ 0.02 089 £0.01 1.0 0.69+ 005 074005 1.0

Table 6: Results for xResNet101 including means, standard deviation and p-values (p-val) for ROC AUC, partial ROC
AUC (pROC AUC), and precision-recall AUC (PR AUC)

ROC AUC pROC AUC PR AUC
F M p-val F M p-val F M p-val
Atrial Fibrillation
Fy 0.97 0.0 097 £0.01 0.4473 | 094 +0.01 0.94 +£0.01 0.5639 | 0.78 £ 0.04 0.77 = 0.04 0.5791
Fy; | 097 +£0.0 097 +0.01 0.1394 | 0.94 +0.01 0.94 +0.01 0.2448 | 0.79 £ 0.03 0.78 + 0.05 0.3597
Fs0 | 097 +00 097 £0.01 0.1411 | 094 £0.01 0.93 +0.01 0.0995 | 0.79 £ 0.03 0.76 + 0.04 0.0957
Frs | 098+00 097 +£0.01 0.08 095+ 0.0 094 +0.01 0.0294 | 0.81 +0.03 0.78 +0.04 0.0892
Figo | 098 +0.0 097 £0.01 0.0393 | 0.95+ 0.01 0.93 +0.02 0.0382 | 0.8 +0.04 0.75 + 0.07 0.0334
Sinus Rhythm
Ey 0.94 +0.01 093 +0.01 0.5196 | 0.86 +0.02 0.85+0.03 0.7524 | 099 £ 0.0 0.99+0.0 0.6817
Fy; | 094 +001 093 £0.01 0.209 | 0.86 £ 0.02 0.854+0.01 0.4803 | 0.99 £0.0 099+ 0.0 0.3818
Fs0 | 094 +001 093 +£0.01 0.105 |08 +0.02 0.844+0.01 0.2267 | 099 +£0.0 099+ 0.0 0.1603
F7s | 094 +0.01 093 £0.01 0.0667 | 0.87 £ 0.01 0.854+0.03 0.0925 | 0.99 £ 0.0 0.99 +0.0 0.0531
Figo | 094 +0.01 0.92 £0.02 0.0267 | 0.86 +£ 0.02 0.82 +0.03 0.037 | 099 +£0.0 099+ 0.0 0.0167
Myocardial Infarction

Ey 0.94 +001 095+00 0.1189| 0.86 + 0.02 0.89 +£0.01 0.0727 | 0.64 +£ 0.04 0.72 + 0.04 0.0167
Fy; | 094 +001 095+0.0 0.1498 | 0.87 £ 0.02 0.89 +0.01 0.0686 | 0.66 = 0.03 0.72 + 0.04 0.0366
Fso | 094 +001 095+0.0 02281087 +002 0894001 0.1 0.67 = 0.04 0.73 £0.03 0.0224
Frs 1094 +001 095+0.0 0.2458 | 0.88 £ 0.02 0.89 +0.01 0.2292 | 0.68 = 0.02 0.71 + 0.03 0.1563
Figo | 095+ 0.01 095 +0.0 0.7946 | 0.88 +£ 0.02 0.88 +0.01 0.7806 | 0.68 +£ 0.03 0.69 + 0.04 0.362
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Table 7: Results for CNN including means, standard deviation and p-values (p-val) for ROC AUC, partial ROC AUC
(pPROC AUC), and precision-recall AUC (PR AUC)

ROC AUC pROC AUC PR AUC
F M p-val F M p-val F M p-val
Atrial Fibrillation
) 097 £00 096 =+£00 0.0997 | 0.92+0.01 0.92+0.01 0.3799 | 0.74 £ 0.05 0.73 £ 0.03 0.5072
Fy; | 097 +£0.0 097 +0.01 0.0949 | 0.93 £ 0.01 0.93 +0.01 0.0275| 0.77 £ 0.04 0.74 + 0.04 0.1137
Fso | 097 +00 096 +0.01 0.0754 | 0.93 £ 0.01 0.92 4+ 0.01 0.0247 | 0.76 £ 0.03 0.74 + 0.04 0.1198
Fr5 | 097 +£00 096+ 0.01 0.0292 | 0.94 + 0.01 0.92 +0.01 0.0229 | 0.77 £ 0.03 0.73 &£ 0.04 0.1689
Figo | 097 £ 0.0 096 £0.01 0.0225 | 0.93 £ 0.01 0.91 +0.02 0.0053 | 0.75 £0.03 0.71 + 0.05 0.0589
Sinus Rhythm
Fy 093 +£001 093+£0.01 0.3994 | 084 +0.01 0.84+0.02 06468 | 0.99 +0.0 099+ 0.0 0.4846
Fy; | 094 +0.01 092 +0.01 0.0709 | 0.85 £ 0.02 0.83 £0.02 0.1703 | 099 £ 0.0 099+ 0.0 0.08
Fso [ 093+001 092+0.01 0.122 |08 +0.02 0.834+0.02 0.2034 | 099 +£0.0 099+ 0.0 0.1078
F7s 1093 +001 092 +0.01 0.0681 | 0.85+0.02 0.834+0.02 0.1382 | 0.99 £0.0 099+ 0.0 0.1053
Fio0 [ 093 £ 0.01 091 +0.01 0.0539 | 0.84 £ 0.02 0.82 +0.02 0.1037 | 099 £0.0 098 +0.0 0.0683
Myocardial Infarction

£y 093 +£001 095+£00 0.0913|0.85+0.03 0.88+£0.01 0.0657 | 0.63 +0.03 0.7 +0.03 0.0209
Fy; | 094 +0.02 095+0.01 0.165 |0.86+0.04 0.884+0.01 0.1295 | 0.63 £0.04 0.7 £0.03 0.0352
Fso | 094 +001 0.95+0.01 0.3388 | 0.87 £ 0.03 0.88 & 0.02 0.2295 | 0.64 = 0.03 0.7 = 0.04 0.0219
Frs |1 094 +001 095+0.01 0.7422 | 0.87 £ 0.02 0.88 4+ 0.01 0.3585 | 0.66 £ 0.03 0.68 + 0.04 0.3109
Figo | 094 +£0.01 094 £0.01 0.7138 | 0.87 £ 0.02 0.87 & 0.02 0.9954 | 0.65 = 0.03 0.65 + 0.05 0.9582
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Figure 6: Three-dimensional UMAP projection of latent representations extracted from the penultimate layer of the

trained models: (a) ResNet with Attention, (b) XResNet, (c) CNN. Each point corresponds to a test sample, with colour
indicating sex (blue: male, orange: female).
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