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Abstract
Glaucoma is a progressive eye disease that leads to optic nerve damage, causing irreversible vision loss if left untreated.
Optical coherence tomography (OCT) has become a crucial tool for glaucoma diagnosis, offering high-resolution 3D
scans of the retina and optic nerve. However, the conventional practice of condensing information from 3D OCT volumes
into 2D reports often results in the loss of key structural details. To address this, we propose a novel hybrid deep learning
model that integrates cross-attention mechanisms into a 3D convolutional neural network (CNN), enabling the extraction
of critical features from the superior and inferior hemiretinas, as well as from the optic nerve head (ONH) and macula,
within OCT volumes. We introduce Channel Attention REpresentations (CAREs) to visualize cross-attention outputs and
leverage them for consistency-based multi-task fine-tuning, aligning them with Gradient-Weighted Class Activation Maps
(Grad-CAMs) from the CNN’s final convolutional layer to enhance performance, interpretability, and anatomical coherence.
We have named this model AI-CNet3D (AI-‘See’-Net3D) to reflect its design as an Anatomically-Informed Cross-attention
Network operating on 3D data. By dividing the volume along two axes and applying cross-attention, our model enhances
glaucoma classification by capturing asymmetries between the hemiretinal regions while integrating information from
the optic nerve head and macula. We validate our approach on two large datasets, showing that it outperforms
state-of-the-art attention and convolutional models across all key metrics. Finally, our model is computationally efficient,
reducing the parameter count by one-hundred–fold compared to other attention mechanisms while maintaining high
diagnostic performance and comparable GFLOPS. Our code is available at 10.5281/zenodo.17082118.
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1. Introduction

Glaucoma is one of the leading causes of irreversible blind-
ness worldwide (Steinmetz et al., 2021; Quigley and Broman,
2006). However, as a chronic condition, glaucoma has a
slow and gradual onset and often shows no noticeable symp-
toms in its early stages. Regular eye exams are essential
for its classification and treatment. As nerve fiber layer
damage is thought to be one of the hallmarks of glaucoma,
optical coherence tomography (OCT) has become a widely

used tool for glaucoma detection and diagnosis due to its
ability to capture high-resolution 3D volumes of the optic
nerve and retina (Geevarghese et al., 2021; Bussel et al.,
2014). The raw 3D volumes are then preprocessed and
formatted into 2D OCT reports that can facilitate clinical
decision-making by ophthalmologists.

Current OCT reports extract the retinal nerve fiber layer
(RNFL) and ganglion cell complex (GCC) thicknesses to
help detect the presence and degree of glaucomatous dam-
age. Traditionally, a RNFL defect with a spatially-correlated
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AI-CNet3D: Anatomically-Informed Cross-Attention Network

(a) Input Volume 128x192x112 (b) Superior/Inferior Hemiretinas
Half-volume 64x192x112

(c) ONH/Macula Split
Half-volume 128x192x56

(d) 4 Way Widefield Split
Quarter-volume 64x192x56

Figure 1: An example of how an OCT volume from Dataset 1 can be split along different axes to separate the anatomy
in the volume. CAH is computed using the inferior (I) and superior (S) hemiretinas. CANA is computed using the
ONH (O) and macula (M). CAH−NA is computed using the inferior ONH (IO), inferior macula (IM), superior ONH
(SO), and superior macula (SM).

GCC defect is considered to represent an optic neuropathy,
and a specific arced projection of this damage (called an
arcuate) involving the superior and/or inferior optic nerve is
commonly seen in glaucomatous optic neuropathy. There-
fore, the ability to detect correlations between RNFL-GCC
defects and correctly identify arcuate patterns are crucial
for diagnosing glaucoma using OCT. With deep learning,
there is potential to both automate this process and de-
liver near expert-level care to regions with poor access to
glaucoma specialists. Furthermore, the traditional 2D OCT
report has heavily relied upon superficial features such as
the RNFL and GCC (Steinmetz et al., 2021; Chen et al.,
2018). 3D models now allow for analysis of the entire 3D
OCT volume that contains both superficial structures as
well as previously unused deeper structures, which may lead
to improvement in glaucoma classification over traditional
approaches.

Deep learning has rapidly evolved into a powerful tech-
nology for automatically extracting features from images,
enabling tasks such as detection, classification, and segmen-
tation. While initially applied to 2D natural scene images,
its capabilities have expanded to handle 3D volumes and
video data, broadening its impact across various domains,
from activity recognition to disease diagnosis (Tran et al.,
2015; Bertasius et al., 2021; George et al., 2020). For
glaucoma diagnosis, Maetschke et al. (2019) introduced
one of the first 3D CNNs capable of classifying raw, unseg-
mented OCT volumes of the optic nerve head (ONH). They
demonstrated the superiority of using a 3D deep learning
model over classical feature-based machine learning algo-
rithms. In addition, by computing Class Activation Maps

(CAM) (Zhou et al., 2016), they found the 3D CNN iden-
tified regions typically associated with glaucoma such as
the neuroretinal rim, optic disc cupping, and the lamina
cribrosa.

Convolutions within CNNs are highly effective at ex-
tracting local features (Yu and Koltun, 2016), but when
applied to 3D data, their limited receptive fields can pose
challenges. Information in 3D volumes is often sparsely
distributed or spread over large regions (Ye and Liu, 2012),
making it difficult for convolutions alone to capture global
context. In contrast, transformer-based methods inherently
provide global attention mechanisms, allowing for a more
comprehensive understanding of the data. When combined
with 3D convolutions, these approaches synergistically cap-
ture both local and global information, significantly enhanc-
ing feature representation (Shaker et al., 2024). However,
this advantage afforded by incorporating attention comes
with the drawback of significantly increased computational
complexity, which is further amplified when dealing with
volumetric data.

In medical imaging, obtaining high-quality data is inher-
ently challenging due to limitations in acquisition, cost, and
patient variability. Unlike natural image datasets, where
large-scale labeled collections are readily available, medi-
cal datasets are often small, imbalanced, and difficult to
annotate due to the requirement of expert clinical input.
This scarcity of annotated data creates a significant barrier
to training robust and generalizable deep learning models.
Semi-supervised and unsupervised learning techniques have
emerged as powerful solutions to mitigate these challenges
by leveraging unlabeled data to enhance model performance.
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Recent contrastive learning approaches, such as SimCLR
(Chen et al., 2020) and BYOL (Grill et al., 2020), encourage
representations of augmented views of the same sample
to be similar in a shared latent space, reducing reliance
on labeled data. In the medical domain, MedCLIP (Wang
et al., 2022) extends contrastive learning by aligning medical
images with textual descriptions, capturing richer semantic
relationships.

Extending these capabilities to 3D is even more chal-
lenging due to the pronounced scarcity of valuable (labeled
or unlabeled) 3D medical data. Authors of SliViT (Avram
et al., 2023) make this leap by leveraging 2D data from
3D OCT volumes via a 2.5D approach that enables robust
performance across multiple tasks in three imaging modal-
ities, even with fewer than 700 annotated volumes. Lee
and colleagues do this too via their OCTCube approach
(Liu et al., 2024b), where a 3D foundation model trained
on over 26,000 OCT volumes is extended with contrastive
learning to achieve state-of-the-art retinal disease predic-
tion. Similarly, Swin UNETR (Tang et al., 2022) integrates
multiple self-supervised strategies, such as inpainting, con-
trastive learning, and rotation correction, to learn more
robust feature representations for 3D medical volumes. Our
approach goes beyond these past studies by combining 3D
OCT volumes, cross-attention mechanisms, and multi-task
(supervised plus unsupervised) fine-tuning that enforces
visualization consistency to improve model generalization,
reduce annotation burdens, and enable AI-driven diagnostic
tools that are both data-efficient and clinically reliable.

Volumetric OCT data contains key information for
disease diagnosis oriented in a specific manner based on
anatomy and pathophysiology. These features can be har-
nessed to create a more efficient and meaningful attention
mechanism. The superior and inferior hemiretinas are the
two parts of the retina that are divided by a horizontal
line that runs through the fovea and ONH. Within each
hemiretina, the ganglion cells send their axonal projections
towards the ONH, forming the RNFL. To address the short-
falls of the conventional practice of condensing 3D OCT
volume information into 2D reports, which results in the
loss of key structural details for glaucoma classification, we
propose a novel hybrid deep learning model. This model in-
tegrates cross-attention mechanisms into a 3D convolutional
neural network (CNN), enabling the extraction of critical
features from the superior and inferior hemiretinas, as well
as from the optic nerve head (ONH) and macula, within
OCT volumes. Additionally, as a fine-tuning and regular-
ization step, we enforce consistency between visualizations
from convolutional and attention layers, ensuring alignment
between spatial feature extraction and transformer-based
representations. Our contributions are as follows:

• We show the added benefit of our model, an Anatomically-

Informed Cross-attention Network operating on 3D data,
AI-CNet3D (AI-‘See’-Net3D), achieved through the hy-
brid use of 3D CNNs with cross attention; by dividing
the 3D volume and applying cross-attention, our model
enhances glaucoma classification by capturing asymme-
tries between the hemiretinal regions while integrating
information from the ONH and macula.

• We introduce a novel Channel Attention REpresentation
(CARE), which provides direct visualization of channel at-
tention outputs, offering a more precise and interpretable
alternative to conventional Grad-CAM-based methods.

• By enforcing consistency between attention and convolu-
tional visualizations, our model bridges the gap between
these complementary feature extraction methods, improv-
ing robustness and interpretability.

• We validate our approach on two datasets (one proprietary
and one publicly available), showing that it outperforms
state-of-the-art attention models across all key metrics
and conduct ablation studies which highlight the optimal
positioning of attention within the 3D CNN architecture
pipeline.

• Finally, our model is computationally efficient, reduc-
ing the parameter count by one-hundred–fold compared
to other attention mechanisms while maintaining high
diagnostic performance and comparable GFLOPS.

By leveraging anatomical priors, integrating CNNs with
cross-attention, and enforcing consistency between feature
representations, AI-CNet3D provides a more interpretable,
efficient, and clinically relevant approach to 3D OCT analy-
sis.

2. Related Works
2.1 Glaucoma classification
Glaucoma classification has progressed significantly with the
integration of computational methods and deep learning-
based approaches. Early work, such as that by Bock et al.
(2010), applied appearance-based dimension reduction to
color fundus images to develop a glaucoma risk index for
classification. The introduction of deep learning marked a
pivotal shift, with CNN-based methods becoming a standard
for leveraging large datasets to enhance classification accu-
racy (Mehta et al., 2021; Barros et al., 2020). Chen et al.
(2015) pioneered one of the first deep CNN architectures
specifically for glaucoma classification from fundus images.
Later, Li et al. (2019) extended CNN architectures by incor-
porating attention maps, enabling more focused analyses
of critical retinal regions for improved interpretability.

Recent advances have shifted towards the utilization of
RNFL data from OCT reports, supported by the findings of
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Hood et al. (2022). Thakoor et al. (2020) developed a CNN
model specifically for RNFL analysis from OCT images,
employing concept activation vectors to compare model
outputs with clinician eye fixations, adding a layer of clinical
relevance. Additionally, Luo et al. (2023) introduced a large-
scale OCT dataset to support semi-supervised learning,
using a generalization-reinforced pseudo-labeling model to
improve classification in cases with limited labeled data.

While the majority of existing research focuses on 2D
imaging, recent progress by Maetschke et al. (2019) and
George et al. (2020) has led to the development of CNN
approaches for 3D OCT-based glaucoma classification, lay-
ing the groundwork for further innovation in 3D imaging
modalities. However, these approaches have been validated
on OCT volumes from only a single device manufacturer,
leaving their generalizability across different imaging sys-
tems untested. Ensuring cross-manufacturer robustness is
essential for the widespread clinical adoption of such meth-
ods, regardless of the OCT device used. We outline an
approach for cross-manufacturer training as future work in
Appendix A.5.

2.2 Cross-Attention and 3D Attention

In self-attention, the keys and values are derived from the
same source as the queries, whereas in cross-attention,
the keys and values come from a different source than the
queries, allowing the model to focus on external information
during processing (Vaswani, 2017; Lin et al., 2022). Chen
et al. (2021) introduced CrossViT, that proposes a dual-
branch transformer that processes image patches of varying
sizes through separate branches, using multiple attention
layers to fuse the tokens and enhance image features. To
improve computational efficiency, they introduce a cross-
attention-based token fusion module, where a single token
from each branch serves as a query to exchange information
between branches.

Modeling 3D attention is essential for tasks involving
volumetric data, such as medical imaging, where spatial
relationships extend across three dimensions. By capturing
these interactions, 3D attention allows models to learn more
complex spatial features with long-range anatomical depen-
dencies, improving the accuracy and robustness of tasks
like segmentation or classification (Islam et al., 2020; Wang
et al., 2019b). Shaker et al. (2024) introduced Efficient
Paired Attention (EPA), a computationally efficient method
for calculating both spatial and channel self-attention in
3D volumes for segmentation tasks by using shared weights.
They integrated EPA into a transformer block, utilizing it
during both the downsampling and upsampling stages of
a convolutional UNet, significantly enhancing performance
while reducing computational costs. However, this reduction
in computational costs introduced a significant bottleneck,

as a large feature volume is condensed into a small vector
for spatial attention, creating a substantial constraint. As
such, striking a balance between parameter efficiency and
anatomical sensitivity remains a key challenge in designing
attention modules for 3D medical tasks (Xie et al., 2023;
Cao et al., 2022).

While standard 3D transformers and attention-augmented
CNNs apply self-attention or spatial attention across en-
tire volumes in a data-driven manner, our cross-attention
mechanism is specifically constrained by retinal anatomy,
computing attention only between anatomically meaningful
regions (superior-inferior hemiretinas, macula-ONH pairs).
Unlike generic attention mechanisms that must learn spatial
relationships from scratch like EPA (Shaker et al., 2024),
our approach embeds established medical knowledge di-
rectly into the architecture, enabling more efficient and
clinically relevant feature learning.

2.3 3D Visualization

Maetschke et al. (2019) and George et al. (2020) achieved
visualization of a 3D CNN model using 3D Grad-CAM,
which highlights important regions of the input by back-
propagating gradients from the class score to the final
convolutional layer, computing the significance of feature
maps, and generating a heatmap to identify key areas in-
fluencing the model’s prediction. While convolutions excel
at extracting local features, they may struggle to capture
global context effectively, often resulting in sparse Grad-
CAM heatmaps. For a clinician, it may be difficult to
interpret the model’s decision-making process using only
3D Grad-CAMs, as they are only applicable to convolu-
tional layers and thus may not provide insights into the
mechanisms of hybrid CNN-attention models.

Attention rollout was introduced as a post hoc method
to trace how information flows from the input layer to the
embeddings in higher layers of a transformer by calculating
attention across multiple paths between nodes in different
layers (Abnar and Zuidema, 2020). This is done by recur-
sively multiplying attention weight matrices across layers,
allowing for the total amount of information transferred
between any two nodes to be computed. Chefer et al.
(2021) extended attention visualization for computer vision
classification tasks by developing a method that applies
Deep Taylor Decomposition to assign local relevance scores,
which are then propagated through the attention layers to
improve interpretability.

There has been limited work on visualizing the compo-
nents of 3D attention mechanisms. Typically, 3D attention
is applied within a single layer, which restricts the use of
advanced visualization methods such as attention rollout
or Chefer et al. (2021), both of which require multi-layer
attention propagation. This lack of suitable visualization

405



Kenia et al., 2025

tools makes it challenging to interpret and analyze how
attention mechanisms function in 3D models, limiting their
transparency and usability in clinical applications.

2.4 Consistency-based Learning

Given the scarcity of labeled 3D medical imaging data, reg-
ularization techniques have been explored as a means of
improving model generalization without relying on large-
scale annotations. One particularly effective approach is
visualization consistency, which enforces stability in the
activations a model produces for a given input. By ensur-
ing that different transformations of the same data yield
consistent feature representations, these methods help re-
duce sensitivity to spurious variations, ultimately enhancing
model robustness.

Prior work has predominantly focused on enforcing con-
sistency within convolutional layers using natural images.
For example, Guo et al. (2019) encourage consistency be-
tween the class activation maps (CAMs) from the last
convolutional layer for both the original and augmented
views of the same data. Similarly, Li et al. (2020) enforce
consistency between images that share similar features,
while Wang et al. (2019a) extend this idea by maintaining
Grad-CAM consistency across different CNN layers for a
single input. Xu et al. (2020) further generalize these ideas
by enforcing consistency between learned attention maps
across augmented images and multiple layers. More recently,
Mirzazadeh et al. (2023) introduced an alternative approach
by enforcing consistency between two different visualization
techniques, Grad-CAM and Guided Backpropagation, to
improve the quality of generated attention maps.

Despite these advancements, existing visualization con-
sistency techniques remain fundamentally limited in scope,
as they are primarily constrained to convolutional layers.
With the increasing adoption of hybrid models that integrate
convolutional layers with attention mechanisms, there is a
pressing need to extend consistency-based learning beyond
traditional CNNs. Unlike convolutional models, attention
mechanisms dynamically reweight feature importance across
an entire image or volume, making them susceptible to dif-
ferent types of instability. By enforcing consistency not
only within CNN-based feature maps but also across at-
tention outputs and hybrid representations, we can ensure
that the model maintains spatial and anatomical coher-
ence potentially even in low-data/low-labeled-data regimes.
In the context of 3D medical imaging, where anatomi-
cal structures and pathological regions vary significantly,
consistency-based learning offers a promising pathway to
improve model interpretability, reduce sensitivity to noise,
and enhance generalization across unseen cases.

2.5 Resource-Efficient Networks

Reducing parameter count and memory usage in 3D medical
imaging models is critical due to the high computational de-
mands imposed by volumetric data, which are often orders
of magnitude greater than those of 2D images. While recent
approaches have improved model speed during training and
inference (Shaker et al., 2024; Pang et al., 2023; Liu et al.,
2024a), they often overlook parameter efficiency, which is
equally important for deployment. In portable or point-of-
care settings, many applications require real-time inference
on devices with limited computational resources (Shaker
et al., 2023). Moreover, large models not only hinder de-
ployment in such environments but also increase the risk
of overfitting, especially when trained on small annotated
medical datasets (Shaikhina and Khovanova, 2017). To ad-
dress these challenges, efficient architectures that compress
spatial and channel information while preserving critical
anatomical context are essential for practical, scalable, and
clinically viable solutions.

3. Datasets

Dataset 1 is comprised of 4,932 non-glaucomatous and
272 glaucomatous widefield OCT volumes obtained from
Topcon Healthcare, Inc. (Tokyo, Japan) and labeled by
OCT experts at Columbia University Irving Medical Cen-
ter. To create a balanced dataset, we randomly sampled
272 non-glaucomatous volumes during each training trial,
resulting in a total of 544 volumes with an equal split of
50% non-glaucomatous and 50% glaucomatous cases. This
design choice was motivated by early observations that
all models tended to overfit to the majority class when
trained on imbalanced data even with resampling. For
completeness, we provide comparative results of alternative
sampling strategies attempted in Appendix A.4 and Table
8. The original volume dimensions were 128x885x512 (z,
y, x) pixels; however, to reduce computational complexity
while preserving the y-x aspect ratio, we downsampled the
volumes using a uniform scaling affine transformation to
128x192x112 pixels. To ensure a robust evaluation, we di-
vided the dataset into 65% for training, 15% for validation,
and 20% for testing, providing a well-balanced selection of
samples for model assessment.

Dataset 2 is a publicly available dataset provided by
Maetschke et al. (2019) consisting of OCT scans centered
on the optic nerve head (ONH), acquired from 624 patients
using a Zeiss Cirrus SD-OCT scanner (Jena, Germany).
After excluding scans with a signal strength below 7, 1,110
high-quality scans were retained for analysis, with 263 scans
labeled as healthy and 847 diagnosed with primary open-
angle glaucoma (POAG). We will refer to the healthy as
non-glaucomatous and the POAG as glaucomatous. Glau-

406



AI-CNet3D: Anatomically-Informed Cross-Attention Network

Figure 2: Our cross-attention mechanism operates between two pairs of subsections from the feature volume, as
highlighted in the green box. In this example, we are computing cross-attention between the superior (S) and inferior
(I) hemiretina split used for CAH . For CAH−NA (not visualized here), we would repeat the calculation performed in
the green box for each pair of quarter-volumes and then concatenate the results before performing the skip connection
addition.

comatous eyes were defined by the presence of visual field
defects, confirmed by at least two consecutive abnormal test
results. Just as with Dataset 1, we randomly sampled 263
glaucomatous volumes during each training trial, resulting
in a total of 526 volumes with an equal split of 50% non-
glaucomatous and 50% glaucomatous cases. We utilized
the original volume dimensions of 64x128x64 (z, y, x) pixels.
The dataset was split into 65% training, 15% validation,
and 20% testing, ensuring that scans from the same patient
were not split across different sets and allowing more test
data for evaluation.

4. Methods

4.1 Anatomically Informed Cross–attention

4.1.1 3D Superior-Inferior Cross-attention

When referring to the retina, the superior hemiretina de-
notes the nerve fibers originating from the upper portion of
the retina, while the inferior hemiretina refers to those aris-
ing from the lower part. Together, they represent distinct
sections of the retina, each responsible for transmitting
visual information from the top and bottom halves of the
eye, respectively. In cases of asymmetric glaucoma, either
the superior or inferior hemiretina is typically affected. De-
spite this, no existing glaucoma classification models, to
our knowledge, have leveraged this asymmetry to enhance
classification. We introduce a novel 3D cross-attention
mechanism that leverages the distinct information found
in the superior and inferior hemiretinas within an OCT
volume to improve glaucoma classification. A standard
attention mechanism might struggle to fully capture the
nuanced differences between these two regions. To ad-
dress this, the feature volume can be split along the z-axis,

enabling cross-attention between the superior and inferior
hemiretinas. This approach allows for relative comparison
of the regions (e.g., a healthy inferior hemiretina serves as
a reference for a superior hemiretina with disease or vice
versa), thereby capturing the asymmetry and enhancing
classification capabilities.

In Shaker et al. (2024), an efficient approach to com-
puting spatial and channel attention for volumetric data is
presented, leveraging shared key and query weights across
the two separate self-attention calculations. For channel
attention, the method applies a standard linear projection
on the input volume, generating a channel value vector,
followed by self-attention. Spatial attention, designed to
minimize complexity, first applies a linear projection to form
a spatial value vector. This vector is then projected down
to a lower dimension, p, which is significantly smaller than
the number of tokens, n. This adjustment reduces the
computational complexity from O(n2) to O(np), yet in-
troduces a notable bottleneck. Specifically, projecting a
volume of dimensions C × D × H × W into C × p entails
substantial information loss, impacting the model’s ability
to capture critical spatial details. Additionally, this second
projection layer introduces a high parameter count, as il-
lustrated in Figure 6, further complicating model efficiency
and potentially affecting scalability.

Therefore, to increase scalability while still enforcing our
anatomical prior, we focus on using only channel attention.
We found that projecting the entire spatial dimension of
the feature volume into a small vector was not beneficial for
model training (ablation studies in Appendix A.1). Instead
of directly projecting the entire feature volume of size C ×
D × H × W into query, key, and value vectors for self-
attention, we split the input feature volume, Iv, along the
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z-axis into two feature volumes of size C × D
2 × H × W ,

representing the superior and inferior hemiretinas as shown
in Figure 1b. In the first cross-attention step, the superior
feature volume is projected into a query vector Qs, while
the inferior feature volume forms the key Ki and value Vi

vectors. We then apply scaled dot product attention across
the channel dimension, computed as:

ASI(Qs, Ki, Vi) = softmax
(

QsKT
i√

dk

)
Vi (1)

where dk is the dimensionality of the key vectors. In the
second step, the roles are reversed: the inferior feature
volume is projected as the query Qi, while the superior
feature volume forms the key Ks and value Vs vectors.
Another round of scaled dot product attention is applied:

AIS(Qi, Ks, Vs) = softmax
(

QiK
T
s√

dk

)
Vs (2)

These two attention outputs are then concatenated together
and reshaped to the original input size of C × D × H × W
as shown in Fig. 2. A skip connection is then used to add
the original Iv and results in our hemiretinal cross-attention,
CAH , as calculated in Equation 3. This bidirectional at-
tention mechanism allows the model to capture critical
interactions between the superior and inferior hemiretinas,
improving the representation of the retinal structure. We
call this model AI-CNet3DH , illustrating its combination
of information learned between the superior and inferior
hemiretinas within the volume.

CAH = (ASI∥AIS) ⊕ Iv (3)

4.1.2 Widefield (4-Way) Cross-attention

The majority of OCT datasets do not include a widefield
view, but Dataset 1 used in this study and described above
does. This means that it includes both the optic nerve
head (ONH) and the macula within the volumetric scan of
the retina. The distinction between ONH and macula is
made by splitting the volume along the x-axis. As shown
in Figure 1d, combining this with our split along the z-axis
for the superior and inferior hemiretinas allows us to obtain
four subvolumes from the input: the superior ONH (SO),
superior macula (SM), inferior ONH (IO), and inferior
macula (IM). We know from Section 4.1.1 that superior
and inferior hemiretinas can be used to compute cross-
attention. Furthermore, ONH and macular half-volumes
are anatomically related, while opposing ONH and macular
quarter volumes (e.g., superior ONH and inferior macula)
are not anatomically related.

Leveraging this insight, we can enhance our 3D cross-
attention mechanism for widefield OCT volumes. In Section
4.1.1, we computed cross-attention between the superior

and inferior hemiretinas. With widefield volumes, we ex-
tend this to compute cross-attention specifically between
anatomically related pairs within SO, SM , IO, and IM .
Given a quarter-volume, x, we project it to a query vector
Qx, while the other paired quarter-volume, y, forms the key
Ky and value Vy vectors. We compute the scaled dot prod-
uct attention, Axy, just as in Equation 1, and then reverse
roles using projected vectors Qy, Kx, and Vx for our second
scaled dot product attention calculation, Ayx, just as in
Equation 2. We apply this same sequence of steps to the
other two quarter-volumes, w and z, and obtain Awz and
Azw. We can then compute the cross-attention for these
two pairs, xy and wz, on our volume by concatenating the
results as:

CAxywz = (Axy∥Ayx)∥(Awz∥Azw) (4)

In this case, we compute cross-attention twice. Our first
set of quarter volumes x, y, z, and w are represented by SO,
SM , IO, and IM respectively and correspond to comput-
ing cross-attention, CASupInf within each hemiretina. Our
second set of quarter volumes x, y, z, and w are represented
by SO, IO, SM , and IM respectively and correspond to
computing cross attention, CAMacONH , within each mac-
ula and ONH half-volume. These operations are added
together using a skip connection along with the original
volume, Iv, as:

CAH−NA = CASupInf ⊕ CAMacONH ⊕ Iv (5)

where H − NA indicates using the hemiretinas and
ONH and macula. We call this model AI-CNet3DH−NA,
illustrating its combination of information learned between
the superior and inferior hemiretinas within the volume and
between the macula and ONH.

4.1.3 3D Macula-Optic Nerve Head Cross-attention

For completeness, using our widefield volumes, we follow
the same steps used in Section 4.1.1, but split our volume
only once along the width axis (x-axis) into macula and
optic nerve head (ONH) halves as shown in Figure 1c. This
enables us to compute the cross-attention between the mac-
ula (neurons) and ONH (axons) as CANA, leveraging the
distinct information presented in each. We call this model
AI-CNet3DNA, illustrating its combination of information
learned between the macula and ONH within the volume.

4.2 3D CNN
We adopt the 3D CNN as described in Maetschke et al.
(2019) and modify it to include our cross-attention mecha-
nism. The original network consists of five 3D convolutional
layers, each with ReLU activation and batch normalization.
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The layers use filter banks of size 32-32-32-32-32, with filter
dimensions of 7-5-3-3-3 and strides of 2-1-1-1-1. After the
final convolutional layer, a global average pooling (GAP)
layer is applied with a kernel size set to the smallest spatial
dimension after downsampling, and a stride matching the
final feature map shape, ensuring the entire spatial volume
is reduced to a single value per channel. This adaptive
configuration ensures spatially aware aggregation of fea-
tures before classification. This is followed by a dense layer
connected to the softmax output.

After the second and fourth convolutional layers (op-
timal position verified in Table 1), we introduce a cross-
attention-based feature extraction block. The feature vector
is first split into halves or quarters, which are processed
through one of the three cross-attention mechanisms de-
scribed previously, while maintaining a skip connection with
the full feature vector. Inspired by Shaker et al. (2024), we
apply a 3D dropout layer, followed by a 1x1x1 convolution
with another skip connection to refine the feature represen-
tation. Finally, we employ 3D max pooling to downsample
the attention maps, selectively retaining the highest activa-
tion values within each pooling region, which correspond
to the most significant features.

4.3 Channel Attention REpresentation

To complement the 3D Grad-CAM output of the convolu-
tional layers of our network, we introduce a new method
called Channel Attention REpresentation (CARE) to visual-
ize the 3D attention layers. This approach translates the
attention output, denoted as CA0, into a volumetric repre-
sentation aligned with the original input volume, thereby
enabling interpretable visualization of critical features. The
cross-attention output CA0 is obtained post max-pooling
(see Fig. 2), yielding the layer’s most influential attention
features. From this, we specifically isolate the channel
dimension to capture attention features from multiple per-
spectives within the same spatial location. To condense
this channel information, we compute the mean attention
map by averaging CA0 across the channel dimension C:

CA1 = 1
C

C∑
c′=1

CA0(c′, d, h, w) (6)

The resulting CA1 reduces dimensional complexity while
preserving channel-wise aggregated attention weights. Next,
to focus on features with positive contributions, analogous
to Grad-CAM, we apply a rectified linear unit (ReLU) activa-
tion function to CA1, ensuring that only positive activations
contribute to the visualization. For interpretability, the rec-
tified attention map is max normalized to scale its values
between 0 and 1, facilitating its use as a heatmap:

HCARE = ReLU(CA1)
max(ReLU(CA1)) + ϵ

(7)

where ϵ is a small constant to prevent division by zero.
This simple computation is performed at the last attention
layer within the network and can be used with any of the
mechanisms explained above. Since it is computed using a
deeper network layer, the resulting D × H × W dimensions
may be smaller than those of the original volume. To address
this, we apply 3D interpolation to rescale the HCARE to
match the input’s original size only for visualizations (see
Fig. 4), allowing us to overlay it and generate a clear,
interpretable heatmap. We ensured that this operation was
fully differentiable so that it could be utilized to train our
model.

4.4 3D Grad-CAM

3D Gradient Weighted Class Activation Maps (3D Grad-
CAMs) extend the original 2D Grad-CAM method (Selvaraju
et al., 2020) to identify influential regions within a 3D
volume, highlighting areas that significantly contribute to
the model’s class prediction. The gradient of the score
yc for class c ∈ {0, 1} is computed with respect to a 3D
feature map Ak at each voxel (i, j, d). This gradient is
globally averaged over the spatial dimensions to compute
class-specific weights ac

k for each feature map k:

ac
k = 1

Z

∑
i

∑
j

∑
d

∂yc

∂Ak
i,j,d

(8)

where Z is a normalization constant representing the
total number of voxels. These weights are then used to
scale the feature maps, emphasizing the most influential
regions. The final 3D Grad-CAM heatmap HGrad−CAM is
generated by summing the weighted feature maps across
all channels and applying a rectified linear unit (ReLU) to
ensure non-negative values. To normalize the heatmap,
each voxel intensity is divided by the maximum value across
the entire volume:

HGrad−CAM =
ReLU

(∑
k ac

kAk
)

max(ReLU
(∑

k ac
kAk

)
) + ϵ

(9)

where ϵ is a small constant to prevent division by zero.
This process ensures that the heatmap intensities are scaled
between 0 and 1, making them in a visualizable range.
The resulting heatmap highlights the regions within the
3D volume that contribute most strongly to predicting
glaucoma presence, with warmer colors indicating greater
influence on the model’s decision (yellow represents highest
influence).
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Figure 3: Visualization of our AI-CNet3D architecture (with the channel dimension omitted from visualization). We
apply multiple layers of convolution along with two cross-attention blocks. Filter banks of size 32 are used consistently
across the model. When training with multi-task fine-tuning, we utilize the last cross-attention and convolutional layers
highlighted in red for alignment.

4.5 Multi-task Fine-tuning to Enforce Visualization-Based
Consistency

We now present our method to enforce consistency between
the attention and convolutional layers of our network. It is
known from (Selvaraju et al., 2020) that the last convolu-
tional layer of a CNN captures the most class-discriminative
properties compared to earlier layers and therefore is best
to use for visualization. We follow this trend and obtain
the last convolutional layer’s output and the last attention
layer output from our model. These outputs are of a much
smaller dimension compared to the original input volume
(due to downsampling for the convolutional layer and max-
pooling for the attention layer), and thus they contain the
most relevant information the model uses for classification.

Our goal is to enforce consistency between the hidden
features extracted from the cross-attention module and
the final convolutional layer, ensuring that features learned
by one can be effectively shared with the other. Previous
consistency-based loss methods have utilized Pearson corre-
lation, Structural Similarity Index (SSIM), Kullback-Leibler
(KL) divergence, and Mean Squared Error (MSE) to com-
pare features. In practice, we found that MSE loss worked

best (ablation studies in Appendix A.3) to enforce feature
alignment and improve model performance.

For a given input x, let HCARE denote the final cross-
attention hidden feature heatmap and HGrad−CAM repre-
sent the final convolutional layer hidden feature heatmap.
We define the unsupervised consistency loss as:

Lunsupervised = 1
N

N∑
i=1

(HCARE − HGrad−CAM )2 (10)

Additionally, we compute the binary cross-entropy (BCE)
loss between the model’s predicted glaucoma probability
Px and the ground truth yx:

Lsupervised = − 1
N

N∑
i=1

[yx log Px + (1 − yx) log(1 − Px)]

(11)
We found that utilizing only the unsupervised loss while

fine-tuning (ablation studies in Appendix A.2) leads to
model degeneration in terms of classification performance.
To jointly optimize for accurate classification and feature
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Table 1: Results of ablation study with AI-CNet3D to
determine the optimal placement of cross-attention blocks
within the 3D CNN over three trials. Integrating cross-
attention after the initial convolutions and before the final
convolution yielded the best performance.

Cross-attention Placement Avg. Acc. ± Std. Avg. AUROC ± Std.
After conv 1 & 2 0.7982 ± 0.0327 0.7980 ± 0.0328
After conv 1 & 3 0.7951 ± 0.0216 0.7945 ± 0.022
After conv 2 & 3 0.7859 ± 0.0312 0.7856 ± 0.0294
After conv 2 & 4 0.8165 ± 0.0375 0.8174 ± 0.0353
After conv 2 & 5 0.7584 ± 0.0189 0.7602 ± 0.0154
After conv 3 & 4 0.7706 ± 0.0259 0.7717 ± 0.0246
After conv 3 & 5 0.8073 ± 0.0417 0.8072 ± 0.0405

consistency, we combine these losses into a multi-task ob-
jective function:

Lmulti−task = (1 − λ)Lsupervised + λLunsupervised (12)

where λ is a weighting factor that controls the influence
of the unsupervised consistency loss. This combined loss
encourages the network to learn from labeled data while also
enforcing consistency between the cross-attention module
and the final convolutional layer without any labels, leading
to improved feature robustness and interpretability.

4.6 Model Training and Data Augmentation
For both Dataset 1 and Dataset 2, the data is randomly
shuffled and divided into training, validation, and test sets.
Our model is trained for 250 epochs using a batch size
of 4, a learning rate of 0.0001, and an early stopping
patience of 25 epochs. We use the NAdam optimizer and
Binary Cross-Entropy (BCE) loss highlighted in Equation
11. Each experiment conducted, for our model and the
baseline models, is repeated five times, with the results
for accuracy, specificity, sensitivity, AUROC, and F1-Score
averaged across these runs.

Once we train our model, it can produce clear and
meaningful Grad-CAMs and CAREs. We then fine-tune it
for another 250 epochs using the multi-task unsupervised
and supervised loss in Equation 12 to make these two
visualizations consistent. We observed that if we attempted
joint training from scratch, early incorrect visualizations
were learned and propagated through the network for the
rest of training. We utilized the same hyperparameters and
data splits as our regular BCE training. We found through
a hyperparameter search (ablation studies in Appendix A.2)
that λ = 0.75 and 0.5 lead to the best results for Dataset
1 and 2, respectively.

During each epoch of model training and fine-tuning,
we implement standard random grayscale augmentation
and rescale the volumes by up to 1.25x. A widefield OCT
scan contains information about both the macula and the

optic nerve head (ONH) in the retina. To leverage the
symmetry between the right and left eyes in relation to the
macula and nerve, we apply random reflections across the
yz-plane. Additionally, to enhance the model’s robustness
to variations in the superior and inferior hemiretinas, we
also apply random reflections across the xy-plane.

5. Results

To optimize attention placement, we conducted an ablation
study by positioning our superior inferior cross-attention
mechanism after various convolutional layers within the
network. As shown in Table 3, the best performance oc-
curred when cross-attention was applied after the second
and fourth convolutions. This configuration leverages the
convolutional layers’ role in feature extraction, with early
layers capturing small, local patterns like edges and cir-
cles, and later layers integrating these into more complex
structures (Zeiler, 2014).

We benchmark against the TimeSFormer model from
Bertasius et al. (2021), originally designed for video clas-
sification but adapted here for 3D volumes using a joint
space-time self-attention mechanism. For a simpler self-
attention baseline, we compare against a ViT (Dosovitskiy
et al., 2020) adapted for 3D volumes. To evaluate against
a strong convolutional architecture, we use SEResNeXt
(Hu et al., 2018), which integrates Squeeze-and-Excitation
blocks within a ResNeXt framework. We also compare
our approach with the baseline 3D CNN from Maetschke
et al. (2019). We further compare against M3T (Jang and
Hwang, 2022), a multi-plane and multi-slice transformer
network that combines 3D CNN, 2D CNN, and state-of-
the-art 3D transformer architectures to leverage both local
inductive biases and global attention relationships across ax-
ial, coronal, and sagittal planes for classification. We lastly
evaluate against Med3D (Chen et al., 2019) with ResNet34
backbone, a heterogeneous 3D network pre-trained on the
diverse 3DSeg-8 dataset that demonstrates superior transfer
learning capabilities for 3D medical imaging tasks compared
to models pre-trained on natural image datasets.

For comparison with a standard spatial and channel
attention methods we replace our 3D cross-attention mech-
anism with the Efficient Paired Attention (EPA) algorithm
from Shaker et al. (2024). Since this architecture is also a
hybrid CNN-attention method, we can follow the same steps
detailed in Section 4.3 to compute attention representations
for the joint spatial and channel attention mechanisms used
in EPA. These representations can then be used to per-
form consistency-based fine-tuning, allowing us to compare
performance against our AI-CNet3D models in Table 3.
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Table 2: Performance evaluation of the baseline 3D CNN, the hybrid EPA CNN model, TimeSformer, ViT, SE-ResNeXt,
M3T, Med3D, and our proposed hybrid cross-attention CNN models on Dataset 1 (Topcon) and Dataset 2 (Zeiss). We
report p-values for Mann Whitney U tests with our AI-CNet3DH model in parentheses after the standard deviations.

Model Type Avg. Test Acc. ± Std. Avg. Test Spec. ± Std. Avg. Test Sens. ± Std. Avg. Test AUROC ± Std. Avg. Test F1 Score ± Std.

To
pc

on

ViT (Dosovitskiy et al., 2020) 0.6422 ± 0.0682 (0.008) 0.7241 ± 0.1803 (0.151) 0.5556 ± 0.2843 (0.032) 0.6398 ± 0.0772 (0.008) 0.5503 ± 0.2755 (0.008)
TimeSformer (Bertasius et al., 2021) 0.7670 ± 0.0336 (0.094) 0.7726 ± 0.0639 (0.421) 0.7614 ± 0.0729 (0.151) 0.7670 ± 0.0313 (0.095) 0.7693 ± 0.0300 (0.032)
SEResNeXt50 (Hu et al., 2018) 0.7908 ± 0.0220 (0.248) 0.8264 ± 0.0246 (0.841) 0.7571 ± 0.0451 (0.151) 0.7917 ± 0.0193 (0.222) 0.7871 ± 0.0208 (0.209)
M3T (Jang and Hwang, 2022) 0.6532 ± 0.0927 (0.016) 0.5942 ± 0.2967 (0.056) 0.7143 ± 0.1492 (0.151) 0.6542 ± 0.0919 (0.016) 0.6785 ± 0.0585 (0.008)
Med3D (Chen et al., 2019) 0.6220 ± 0.0825 (0.008) 0.4282 ± 0.2220 (0.008) 0.8179 ± 0.1288 (0.691) 0.6230 ± 0.0728 (0.008) 0.6886 ± 0.0452 (0.016)
Base 3D CNN (Maetschke et al., 2019) 0.6073 ± 0.0875 (0.008) 0.6062 ± 0.3395 (0.421) 0.6122 ± 0.3539 (1.000) 0.6092 ± 0.0907 (0.008) 0.5453 ± 0.2526 (0.008)
EPA (Shaker et al., 2024) 0.7872 ± 0.0404 (0.346) 0.8235 ± 0.0372 (0.917) 0.7539 ± 0.0593 (0.310) 0.7887 ± 0.0385 (0.421) 0.7831 ± 0.0429 (0.463)
AI-CNet3DNA (Ours) 0.8037 ± 0.0356 0.7992 ± 0.0669 0.8076 ± 0.0253 0.8034 ± 0.0373 0.8090 ± 0.0249
AI-CNet3DH−NA (Ours) 0.7945 ± 0.0356 0.7936 ± 0.0820 0.7921 ± 0.0457 0.7928 ± 0.0359 0.7987 ± 0.0233
AI-CNet3DH (Ours) 0.8183 ± 0.0340 0.8290 ± 0.0604 0.8063 ± 0.0203 0.8176 ± 0.0339 0.8204 ± 0.0288

Ze
iss

ViT (Dosovitskiy et al., 2020) 0.7520 ± 0.1167 (0.222) 0.8077 ± 0.1190 (0.600) 0.6797 ± 0.3416 (1.000) 0.7437 ± 0.1269 (0.151) 0.6531 ± 0.3276 (0.421)
TimeSformer (Bertasius et al., 2021) 0.8179 ± 0.0479 (0.691) 0.8440 ± 0.0714 (0.463) 0.7963 ± 0.1073 (0.600) 0.8202 ± 0.0455 (0.548) 0.8102 ± 0.0545 (1.000)
SEResNeXt50 (Hu et al., 2018) 0.8143 ± 0.0411 (0.691) 0.8611 ± 0.0830 (0.548) 0.7794 ± 0.1009 (0.173) 0.8203 ± 0.0398 (0.841) 0.8048 ± 0.0414 (0.421)
M3T (Jang and Hwang, 2022) 0.7920 ± 0.0124 (0.008) 0.8561 ± 0.0601 (0.310) 0.7295 ± 0.0516 (0.016) 0.7928 ± 0.0078 (0.008) 0.7756 ± 0.0117 (0.008)
Med3D (Chen et al., 2019) 0.8183 ± 0.0249 (0.841) 0.8694 ± 0.0572 (0.346) 0.7692 ± 0.0887 (0.310) 0.8193 ± 0.0250 (0.548) 0.8054 ± 0.0337 (0.310)
Base 3D CNN (Maetschke et al., 2019) 0.8300 ± 0.0359 (0.600) 0.8730 ± 0.0896 (0.463) 0.7891 ± 0.0695 (0.346) 0.8310 ± 0.0311 (0.310) 0.8222 ± 0.0280 (0.173)
EPA (Shaker et al., 2024) 0.8162 ± 0.0429 (0.691) 0.8379 ± 0.0753 (0.917) 0.8038 ± 0.0810 (0.151) 0.8209 ± 0.0438 (0.841) 0.8122 ± 0.0398 (0.421)
AI-CNet3DH (Ours) 0.8315 ± 0.0105 0.8246 ± 0.0336 0.8425 ± 0.0388 0.8336 ± 0.0130 0.8311 ± 0.0134

5.1 Anatomically Informed Cross–attention

In Table 2, we compare our 3D channel-wise cross-attention
approaches to other attention approaches along with the
base CNN presented in Maetschke et al. (2019). Examin-
ing Table 2 performance on our widefield Topcon Dataset
1, we can see our AI-CNet3DH−NA, AI-CNet3DH , and
AI-CNet3DNA models perform comparably or better than
other non-cross-attention baseline approaches across all
metrics. Our AI-CNet3DH model performs comparably or
significantly better on all metrics (except sensitivity) than
all other models on Dataset 1, including the specialized
medical models M3T and Med3D, which achieve lower per-
formance across most metrics despite being designed for
medical imaging tasks. While Med3D achieves a slightly
higher sensitivity, it exhibits much greater variability, and
notably, our AI-CNet3DH model surpasses this performance
when fine-tuned, as demonstrated in Table 3.

Our AI-CNet3DH cross-attention mechanism consis-
tently outperforms other methods across all metrics other
than specificity on our ONH-only Zeiss Dataset 2. (Note:
Since Dataset 2 contains ONH-only OCT scans without
the macula, AI-CNet3DH−NA and AI-CNet3DNA cannot
be evaluated.) The Base 3D CNN, SEResNeXt50, EPA,
TimeSformer, and the medical-specific models M3T and
Med3D demonstrate high specificity on Dataset 2, likely
due to learning more conservative decision boundaries from
overfitting to simpler non-glaucomatous cases, although of-
ten at the cost of lower sensitivity (the Base 3D CNN’s high
specificity here can also be attributed to the fact that this
model was optimized for Dataset 2 volumes). In contrast,
our cross-attention approach achieves comparable speci-
ficity (and surpasses the other 4 models when fine-tuned,
as shown in Table 3) while also improving sensitivity. This
indicates a superior ability to reduce both false positives and

false negatives. Striking this balance is critical in medical
applications, where accurately detecting disease (sensitivity)
must be balanced with minimizing false alarms (specificity)
to ensure reliable diagnostics.

5.2 Multi-task Fine-tuning to Enforce Visualization-Based
Consistency

Integrating the cross-attention mechanism into the CNN
framework yields a performance improvement. In addition,
fine-tuning the model with a combination of unsupervised
visualization consistency and BCE losses further enhances
its effectiveness. As shown in Table 3, we compare our
models against a hybrid EPA CNN model both before and
after fine-tuning. Across both datasets, fine-tuning con-
sistently improves generalization for all models, with our
AI-CNet3DH approach achieving the highest overall per-
formance. These results show even greater performance
compared to those in Table 2 (F1-score of AI-CNet3DH

with fine-tuning is significantly better than that of EPA
with fine-tuning, p = 0.03, on Dataset 1). Furthermore, we
can see multi-task fine-tuning models applied to Dataset
2 (Zeiss) exhibit improved specificity compared to their
non-fine-tuned counterparts, while maintaining sensitivity
within each respective model pair. Due to the lower res-
olution of Dataset 2, the model may struggle to capture
anatomical features effectively before fine-tuning. However,
after fine-tuning and enforcing layer-wise consistency, it is
better able to capture these features, leading to more sig-
nificant improvements compared to Dataset 1. This shows
that the combination of our 3D cross-attention mechanism
with consistency enforced between CARE attention repre-
sentations and Grad-CAMs from convolutional layers within
our model helps in precise feature extraction and increased
regularization.
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Figure 4: Comparison of CARE and Grad-CAM visualizations from our top-performing AI-CNet3D model before and after
multi-task fine-tuning (MTFT) on Dataset 1 (Topcon) for the first four rows and Dataset 2 (Zeiss) for the last four rows. The
heatmaps use a scale of intensities to represent importance, with yellow indicating the highest relevance, red indicating moderate
importance, and the absence of activation representing the least relevance. The No MTFT model was trained with standard BCE
loss for 250 epochs, while the MTFT model was fine-tuned for an additional 250 epochs using a combination of unsupervised
MSE loss and supervised BCE loss. Early indicates attention from the second convolutional and first attention layer, whereas Last
corresponds to the final convolutional and attention layers. True positive examples are shown above the green line, and true
negatives are displayed below. Axial slices appear to the left of the cyan line, while coronal slices are to the right. After MTFT,
attention maps from the Last layers exhibit greater consistency, highlighting more stable and interpretable representations.

5.3 3D Visualization

When using CARE and 3D Grad-CAM with our model,
we found that extracting visualizations from earlier layers
yielded the most aesthetically-pleasing results, as these
layers retained the volume’s features at a higher resolu-
tion most effectively. In Fig. 4, we compare the CARE
from the first cross-attention block with the 3D Grad-CAM
from the second convolutional block, using the same model
(AI-CNet3DH) since it was trained on both datasets. Solely
for visualization purposes, we apply one round of dilation
to the Grad-CAM outputs to enhance under-highlighted
regions and one round of erosion to the CARE outputs to
refine over-highlighted areas. We can see similar regions
highlighted by both methods, but CARE extracts informa-

tion from deeper layers within the retina which we discuss
in Section 6.4. We can also see that after fine-tuning,
the CARE and Grad-CAM visualizations are more consis-
tent in the last layer since we only utilize deeper layers for
alignment training. This means that earlier layers can still
capture information using their unique advantages: convolu-
tions for local feature extraction and attention for capturing
long-range dependencies. Then, in the deeper parts of
the network, these layers synergistically share information
learned to make a prediction.

6. Discussion

Our targeted approach offers several key advantages over
whole-volume spatial self-attention: (1) it directly models
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Table 3: Performance evaluation of the hybrid EPA-CNN model and our proposed hybrid cross-attention CNN models
on Dataset 1 (Topcon) and Dataset 2 (Zeiss), with and without multi-task fine-tuning. The unsupervised weighting in
Equation 12 is set to λ = 0.75 for Dataset 1 and λ = 0.5 for Dataset 2. We report p-values for Mann Whitney U tests
between models trained without and with fine-tuning in parentheses after the standard deviations.

Model Type Avg. Test Acc. ± Std. Avg. Test Spec. ± Std. Avg. Test Sens. ± Std. Avg. Test AUROC ± Std. Avg. Test F1 Score ± Std.

To
pc

on

EPA (Shaker et al., 2024) 0.7872 ± 0.0404 (0.461) 0.8235 ± 0.0372 (0.600) 0.7539 ± 0.0593 (0.834) 0.7887 ± 0.0385 (0.548) 0.7831 ± 0.0429 (0.841)
EPA (Shaker et al., 2024) w/ fine-tuning 0.7963 ± 0.0242 0.8187 ± 0.0869 0.7738 ± 0.0703 0.7962 ± 0.0239 0.7948 ± 0.0256
AI-CNet3DNA (Ours) 0.8037 ± 0.0356 (0.462) 0.7992 ± 0.0669 (0.548) 0.8076 ± 0.0253 (0.674) 0.8034 ± 0.0373 (0.548) 0.8090 ± 0.0249 (0.421)
AI-CNet3DNA (Ours) w/ fine-tuning 0.8128 ± 0.0263 0.8205 ± 0.0535 0.8029 ± 0.0191 0.8117 ± 0.0274 0.8152 ± 0.0144
AI-CNet3DH−NA (Ours) 0.7945 ± 0.0356 (0.246) 0.7936 ± 0.0820 (0.310) 0.7921 ± 0.0457 (0.917) 0.7928 ± 0.0359 (0.310) 0.7987 ± 0.0233 (0.310)
AI-CNet3DH−NA (Ours) w/ fine-tuning 0.8220 ± 0.0250 0.8659 ± 0.0765 0.7772 ± 0.0646 0.8216 ± 0.0239 0.8170 ± 0.0204
AI-CNet3DH (Ours) 0.8183 ± 0.0340 (0.462) 0.8290 ± 0.0604 (0.917) 0.8063 ± 0.0203 (0.293) 0.8176 ± 0.0339 (0.548) 0.8204 ± 0.0288 (0.421)
AI-CNet3DH (Ours) w/ fine-tuning 0.8312 ± 0.0137 0.8468 ± 0.0482 0.8181 ± 0.0272 0.8325 ± 0.0135 0.8323 ± 0.0092

Ze
iss

EPA (Shaker et al., 2024) 0.8162 ± 0.0429 (1.000) 0.8379 ± 0.0753 (0.674) 0.8038 ± 0.0810 (0.691) 0.8209 ± 0.0438 (0.841) 0.8122 ± 0.0398 (1.000)
EPA (Shaker et al., 2024) w/ fine-tuning 0.8252 ± 0.0406 0.8666 ± 0.0514 0.7922 ± 0.0977 0.8294 ± 0.0426 0.8163 ± 0.0434
AI-CNet3DH (Ours) 0.8315 ± 0.0105 (0.095) 0.8246 ± 0.0336 (0.047) 0.8425 ± 0.0388 (1.000) 0.8336 ± 0.0130 (0.095) 0.8311 ± 0.0134 (0.222)
AI-CNet3DH (Ours) w/ fine-tuning 0.8573 ± 0.0252 0.8771 ± 0.0237 0.8392 ± 0.0503 0.8582 ± 0.0249 0.8534 ± 0.0228

known pathophysiological relationships in glaucoma, where
asymmetric damage between superior and inferior regions
is clinically significant, (2) it dramatically reduces computa-
tional complexity by eliminating the need for costly volume
projections required in spatial attention (achieving 241k-
291k parameters versus 63-88M in standard transformers),
and (3) it provides inherent interpretability aligned with
clinical understanding. Unlike sequence-based approaches
such as State Space Models (Gu et al., 2021) or Mamba
(Gu and Dao, 2023) that process data linearly, our method
explicitly captures the spatial relationships critical for un-
derstanding retinal pathology. Our CARE visualization
reveals that the model leverages deeper retinal structures
beyond conventional RNFL analysis, demonstrating how
anatomically-constrained attention can uncover clinically
relevant features that generic spatial attention might miss.

6.1 Anatomically Informed Cross–attention

The introduction of our 3D cross-attention mechanism pro-
vides new insights into capturing anatomically-informed
structural variations in volumetric OCT data to enhance
glaucoma classification performance. The AI-CNet3DH−NA,
AI-CNet3DH , and AI-CNet3DNA rows in Table 2 demon-
strate that applying cross-attention yielded consistently
better performance compared to models without cross-
attention. The improvement seen in our AI-CNet3D models
is grounded in current understanding of glaucoma and its
pathophysiology. Given that damage to the ganglion cells
(GCL) and their axons (RNFL) should be geographically cor-
related based on anatomy, cross-attention between the mac-
ula (where ganglion cell bodies reside) and the optic nerve
(where their axons pass) is effective in isolating this corre-
lation over models that do not incorporate cross-attention.
Even more pronounced, the anatomical separation of supe-

rior and inferior hemiretina allows the AI-CNet3DH model
to detect early asymmetries through internal control and
perform better than its other anatomically-informed vari-
ants.

Our results also highlight the versatility and robustness
of AI-CNet3D, confirming its generalizability across both
ONH-only and widefield OCT imaging formats. Table 2
illustrates the performance of our AI-CNet3DH on both
widefield (Dataset 1) and ONH-only (Dataset 2) volumes.
The 3D CNN proposed by Maetschke et al. (2019) was
optimized for Dataset 2 volumes. However, its perfor-
mance degrades significantly when evaluated on Dataset
1, indicating limited generalizability across datasets. Our
improvement in performance indicates that the advantage
of our approach is achieved by embedding our understand-
ing of disease pathology through modeling and thus is not
limited to particular scans and orientations. Our approach
removes the spatial constraints that may limit models’ abil-
ity to analyze 3D images and allows for computation of
biologically-meaningful cross-correlations between regions
that are tailored toward a specific clinical question. This is
a key advantage, as it offers a customization approach that
can be applied to multiple imaging modalities and disease
settings.

6.2 Multi-task Fine-tuning to Enforce Visualization-Based
Consistency

Qualitative results in Fig. 4 demonstrate strong alignment
and consistency between the last attention and convolu-
tional layers, suggesting effective information sharing be-
tween them. This interaction enables the model to leverage
the strengths of both mechanisms: convolutions excel at
capturing fine-grained local structures due to their limited
receptive fields, while attention mechanisms provide a com-
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plementary ability to model long-range dependencies. By
aligning their outputs, the convolutional layer gains access
to broader contextual information, while the attention mech-
anism benefits from enhanced local feature sensitivity. This
synergy improves feature representation, allowing the model
to integrate both fine-detail spatial structures and global
contextual cues, ultimately enhancing interpretability and
performance.

Fine-tuning the model with a combination of unsu-
pervised visualization consistency and BCE losses plays a
crucial role in enhancing its generalization ability. By en-
forcing consistency in model visualizations across attention
and convolutional layers, the model learns more stable and
robust feature representations, reducing susceptibility to
spurious correlations in the data. The inclusion of BCE
loss during fine-tuning ensures that the model retains its
learned features for classification while preventing degener-
ation. We can also notice that regardless of the attention
mechanism used in Table 3, multi-task fine-tuning improves
individual results. This shows how our fine-tuning strategy
can be used for general improvement after a model has
been trained. This improvement is particularly significant
for medical imaging tasks: by leveraging consistency-based
multi-task fine-tuning, we offer a dependable AI-assisted
analysis framework that is agnostic to attention model back-
bone, enabling consistent performance improvement and
interpretability enhancement, critical for clinical adoption.

6.3 Computational Complexity

Model efficiency is a crucial consideration in developing 3D
models, particularly for applications in low-resource settings
where hardware limitations and inference speed are major
constraints, as noted in prior work such as Shaker et al.
(2024). In designing our 3D cross-attention mechanism, we
prioritized a lightweight architecture that balances robust
performance with computational efficiency, allowing for fast
deployment and real-time processing on resource-limited
devices.

Our 3D cross-attention mechanism achieves these ef-
ficiency gains primarily by eliminating the need for vol-
ume projections for spatial attention computation, which
drastically reduces parameter count without compromising
model accuracy. As shown in Figure 6, when evaluated
on 128×192×112 pixel volumes with a single-batch input,
traditional models exhibit significant variation in compu-
tational demands. The Base 3D CNN operates with ap-
proximately 222k parameters and 152.941 GFLOPS, while
SEResNeXt50, EPA, and M3T require 28.36M, 25.01M, and
27.05M parameters, with computational costs of 72.064,
108.801, and 29.90 GFLOPS, respectively. More resource-
intensive models like TimeSformer, ViT, and Med3D de-
mand 63.15M, 88.18M, 63.30M parameters, with signif-

icantly higher computational costs of 1357.11, 135.34,
745.47 GFLOPS, respectively. In contrast, our proposed
AI-CNet3DH , AI-CNet3DH−NA, and AI-CNet3DNA

achieve competitive performance with just 241k to 291k
parameters while maintaining computational efficiency at
104.837 to 108.008 GFLOPS, underscoring our model’s
optimized architecture and computational efficiency.

Our method’s ability to outperform models like TimeS-
former in terms of computational efficiency position it as
a highly-scalable approach, especially as medical imaging
datasets grow larger and more complex. The reduced re-
source demand also makes AI-CNet3D ideal for integration
into portable medical devices and remote healthcare, offer-
ing real-time, reliable diagnostics in resource-constrained
settings.

6.4 3D Visualization

CARE visualizations suggest that leveraging 3D OCT vol-
umes for glaucoma diagnosis enables deep learning models
incorporating attention to learn information from deeper
features in the retina beyond the typical RNFL or GCC
relied on clinically in 2D OCT reports. While we have lever-
aged this advantage in the X-Z plane to correlate nerve
to macula or superior to inferior as discussed above, such
advantage may equally apply in the Y direction.

Past work has shown that Grad-CAM successfully high-
lights the RNFL layer (Thakoor et al., 2020), consistent with
our current understanding of glaucoma pathophysiology.
Both Grad-CAM and CARE demonstrated the importance
of RNFL and GCC layers, as showcased by involvement
of these superficial layers in the model’s decision making.
However, only CARE demonstrated the use of features
from deeper retinal layers for classification of glaucoma,
which deviates from the traditional understanding of glau-
coma. Previous literature has suggested possible anatomical
changes in the photoreceptor layers in patients with glau-
coma (Fan et al., 2011; Trolli et al., 2024), although this
has not been validated or used in clinical settings. Our
results are consistent with these studies, indicating that
deeper retinal structures, such as the photoreceptor layer,
may have subtle changes that can be leveraged by AI models
to detect glaucoma.

The power of multi-task fine-tuning (MTFT) in allowing
convolutional layers (as visualized by Grad-CAM) and atten-
tion layers (as visualized by CARE) to share key information
is also well demonstrated by our visualization. The consis-
tency between the visualizations of the last convolutional
and attention layers illustrates the successful integration
of the shared information, as discussed in 6.2. The in-
terpretability of this visualization is further supported by
increased signals originating from the superior and inferior
rims of the optic nerve head, following an arcuate pattern
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Figure 5: A comparison of what our CARE highlights versus the important regions identified by the clinician. In the
final column, we subtract the clinical regions of interest (RoIs) from the CARE heatmap to highlight how our method
captures additional features within the volumes beyond the clinical ROIs.

into the macula (especially evident in Topcon true-negative
coronal slices in Fig. 4), consistent with our clinical under-
standing of glaucoma.

Metric Avg. ± Std. Value

Mask Coverage 0.9337 ± 0.1004
CARE Coverage 0.0293 ± 0.0125
Enrichment 3.0915 ± 0.6144

Table 4: Quantitative evaluation of CARE attention align-
ment with clinician-annotated anatomical regions. Mask
coverage measures the fraction of clinician-defined regions
that receive high CARE attention, CARE coverage indicates
the fraction of high-attention pixels that fall within anatom-
ical boundaries, and enrichment quantifies how much more
concentrated CARE is within versus outside the expert-
annotated RNFL/GCL regions of interest.

To validate our method’s ability to capture clinically rel-
evant anatomical regions, we obtained expert segmentation
annotations from a clinician at Columbia University Irving
Medical Center. The clinician manually segmented the mid-
dle slice of each test volume from the Topcon dataset, iden-
tifying RNFL and GCL Regions of Interest (RoIs). These

annotations were converted into binary masks and com-
pared against the corresponding middle slice of our CARE
attention maps generated using the first attention layer of
AI-CNet3DH after multi-task fine-tuning. We converted
each CARE slice into a binary segmentation using the 75th
percentile as a threshold (τ) to identify the most intense
regions. We then computed mask coverage as |M∩CAREτ |

|M | ,
CARE coverage as |M∩CAREτ |

|CAREτ | , and enrichment as ¯CAREM
¯CAREV \M

,
where M represents the clinician-annotated mask, CAREτ

represents the binarized CARE map above threshold τ ,
M ∩ CAREτ represents their intersection, V represents the
full slice, and ¯CAREM and ¯CAREV \M denote the mean
CARE intensity inside and outside the annotation mask
area, respectively. Values of 1.0 for enrichment indicate
the same CARE density inside and outside the mask, while
values greater than 1.0 indicate that CARE is more enriched
inside the annotation mask area.

Table 4 reveals that our model demonstrates exceptional
annotation mask coverage in targeting anatomical struc-
tures, with 93.37% of anatomical pixels receiving significant
attention. As seen with CARE coverage, only 2.93% of
the highest attention pixels fall within the clinician-defined
anatomical boundaries. This reflects our model’s broader
analytical scope, with potential to enable novel biomarker
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discovery by capturing extensive retinal features beyond
conventionally-defined clinical RoIs. Additionally, the CARE
coverage is likely slightly higher in reality, as the physician
annotation of RoIs were limited by resolution, and the true
RoIs (RNFL and GCL layers) are anatomically known to
continue beyond the annotated regions, nasally and tempo-
rally. At the same time, the fact that the enrichment value
for all test cases is greater than 1.0, indicates that 100% of
the time, CARE is more concentrated within the clinically
defined regions of interest. This comprehensive attention
distribution is visualized in Figure 5, which demonstrates
that our model encompasses the clinician’s primary areas
of interest while extending analysis to capture additional
diagnostically-relevant features throughout the retinal vol-
ume.

There are some caveats to using CARE and Grad-CAM
for consistency and 3D visualization. Notably, as shown in
Fig. 4, consistency after multi-task fine-tuning (MTFT)
is significantly stronger in the last layers for true negative
cases. This may explain the larger increases in specificity
observed in Table 3, as the model becomes more adept at
learning from negative cases. Additionally, a qualitative
comparison of Zeiss and Topcon examples reveals that Zeiss
visualizations are less precise. This is likely due to the lower
resolution of Zeiss volumes (64×128×64), which leads to
further degradation in heatmap quality when downsampled
within our model.

Figure 6: Efficiency analysis of our models and baseline mod-
els with parameters displayed on a log scale for enhanced
visualization. Our models achieve the highest AUROC,
matching EPA’s GFLOP performance while significantly
reducing parameter count, highlighting their efficiency and
accuracy.

7. Conclusions and Future Directions

In this paper, we introduced a novel 3D cross-attention
mechanism for widefield OCT reports, demonstrating its po-
tential to enhance glaucoma classification by incorporating
anatomical priors and inter-region correlations within 3D
volumes. Our approach, implemented as the AI-CNet3D

model, outperforms traditional 3D CNN-based models, as
well as other state-of-the-art spatial and channel attention
methods, in both classification performance and computa-
tional efficiency. The use of superior-inferior and macula-
nerve cross-attention mechanisms allows our model to lever-
age the inherent anatomical relationships in OCT scans,
which leads to improved sensitivity, specificity, and overall
performance, which may be beneficial in the detection of
subtle or early-stage glaucoma. The computational effi-
ciency of our model, achieved by eliminating the need for
volume projections and reducing parameter count, makes it
particularly suitable for resource-constrained environments,
such as portable imaging devices and point-of-care diagnos-
tics.

Our newly-introduced CARE technique enables visual-
ization of 3D attention mechanisms, which are inherently
challenging to portray visually. Compared to Grad-CAM,
CARE visualizations highlighted the RNFL and GCC as well
as deeper structures, such as photoreceptors, as critical for
the model’s decision-making. We enhanced model perfor-
mance by training with a joint unsupervised visualization
consistency loss and regular BCE loss as a fine-tuning step.
This process allows the model to generalize better while also
increasing its interpretability with alignment between layers.
Furthermore, CARE specifically elucidated the contribution
from deeper retinal structures for glaucoma classification.
By leveraging our technique, both CARE and 3D Grad-CAM
can be applied to hybrid CNN-attention models, empower-
ing clinicians to interpret contributions of every layer in the
model, including attention layers, rather than limiting their
insights to convolutional layers alone.

Our work also contributes to the growing body of
research on 3D deep learning models for medical imag-
ing, highlighting the importance of attention-based and
consistency-based multi-task fine-tuning approaches to im-
prove interpretability and model performance in clinically
relevant tasks. To ensure class balance, we used equal
amounts of glaucomatous and non-glaucomatous data in
our training pipeline, both with and without fine-tuning.
As a direction for future work, the full set of available sam-
ples from both datasets, or additional data from external
domains, could be incorporated into a pre-training task to
improve model robustness and generalization. Additionally,
we aim to further investigate the clinical impact of our model
by leveraging CARE outputs to create pseudo-segmentation
masks that can be corrected by minimal annotation of a
clinician. We can then use our cross-attention network to
identify and segment novel biomarkers for retinal diseases,
thereby advancing AI-driven diagnostics in ophthalmology.
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Appendix A. Ablation Experiments

A.1 Removing spatial attention

Efficient Paired Attention (EPA), introduced by Shaker
et al. (2024), was designed to efficiently compute spatial
and channel self-attention for 3D feature volumes. How-
ever, its reliance on projections to condense spatial dimen-
sions into smaller vectors introduces a significant bottleneck
and increases the parameter count. In our cross-attention
method, we address this limitation by computing attention
exclusively along the channel dimension. As demonstrated
in Table 5, incorporating cross-attention across both spatial
and channel dimensions provides no tangible benefit beyond
an increased parameter count.

A.2 Selecting λ for Multi-Task Fine-Tuning

In our multi-task fine-tuning framework, the overall loss
function is defined as:

Lmulti-task = (1 − λ)Lsupervised + λLunsupervised. (13)

The parameter λ controls the balance between the super-
vised loss Lsupervised and the unsupervised loss Lunsupervised.
A higher λ increases the influence of unsupervised learning,
while a lower λ prioritizes supervised learning.To determine
the optimal λ value, we conducted ablation studies on two
datasets: Topcon and Zeiss. The results, shown in Table 6,
indicate that the impact of λ varies across datasets.

For the Topcon dataset, we observe that λ = 0.75
achieves the highest test accuracy (0.8104), specificity
(0.8209), and AUROC (0.8110). The F1 score (0.8150) is
also close to the highest value obtained. This suggests that
emphasizing the unsupervised component at this weight
contributes to improved model performance, likely by lever-
aging additional structure in the data to refine decision
boundaries. For the Zeiss dataset, λ = 0.50 performs
best, yielding the highest test accuracy (0.8681), sensitivity
(0.8761), AUROC (0.8693), and F1 score (0.8627). Inter-
estingly, while λ = 0.90 achieves high specificity (0.8926),
it does not lead to better performance across the other
metrics. This indicates that the optimal λ value depends
on dataset characteristics, and a moderate balance between
supervised and unsupervised learning is preferable to avoid
overfitting (Mirzazadeh et al., 2023) to patterns that do
not generalize well.

Across both datasets, we observe that relying solely on
the unsupervised loss for fine-tuning (λ = 1.0) leads to
model degeneration. This suggests that excessive depen-
dence on unsupervised learning can degrade performance
by overemphasizing features that do not align well with the
primary classification task, ultimately reducing the model’s
effectiveness.

A.3 Selecting the Unsupervised Loss Function

Given that λ = 0.75 provided strong performance in the
Topcon dataset, we further examined the effect of differ-
ent loss functions for Lunsupervised at this setting. Table 7
presents the results of this ablation study.

Among the four loss functions tested (MSE, SSIM,
Pearson, and Gaussian Pearson), MSE consistently outper-
formed the others in terms of accuracy (0.8104), specificity
(0.8209), AUROC (0.8110), and F1 score (0.8150). This
suggests that minimizing mean squared error in the unsuper-
vised loss effectively preserves useful feature representations
while avoiding excessive penalization of small variations in
data distributions.

SSIM and Pearson correlation loss yield suboptimal per-
formance compared to MSE. SSIM, designed for structural
similarity, performs worse across all metrics, indicating that
it may not sufficiently preserve relevant feature distributions
in the context of medical imaging classification. Pearson
correlation, while improving over SSIM, does not reach
the accuracy or F1-score achieved with MSE, possibly due
to its focus on linear relationships rather than absolute
differences.

Interestingly, Gaussian Pearson loss achieves the highest
sensitivity (0.8332), indicating strong recall for positive
cases. However, its low specificity (0.6724) and relatively
lower AUROC (0.7528) suggest an overemphasis on certain
patterns that may not generalize well. This highlights a
trade-off when using loss functions that heavily favor recall
over precision.

Based on these findings, we conclude that MSE is the
most effective choice for Lunsupervised in our multi-task fine-
tuning framework, providing a balance between sensitivity
and specificity while maximizing overall performance. Fu-
ture work may explore hybrid loss formulations to further
optimize model generalization across datasets.

A.4 Sampling Strategy

Since Dataset 1 (Topcon) contains 4932 non-glaucomatous
and 272 glaucomatous samples, and Dataset 2 (Zeiss) con-
tains 263 non-glaucomatous and 847 glaucomatous samples,
we applied resampling strategies to mitigate class imbalance
and prevent the model from overfitting to the majority class.

The first method we used was a class-weighted version of
the binary cross-entropy (BCE) loss for supervised training.
The weights were computed separately for each dataset
based on the proportion of glaucomatous (yx = 1) and
non-glaucomatous (yx = 0) samples. Let the predicted
glaucoma probability be Px ∈ [0, 1], and the ground truth
label be yx ∈ {0, 1}. The class-weighted BCE loss is defined
as:
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Table 5: Ablation study for deciding how to compute cross-attention. Results are based on 5 trial averages.

Attention Computation Avg. Test Acc. ± Std. Avg. Test Spec. ± Std. Avg. Test Sens. ± Std. Avg. Test AUROC ± Std. Avg. Test F1 Score ± Std.

To
pc

on Only Channel Cross-attention 0.8183 ± 0.0340 0.8290 ± 0.0604 0.8063 ± 0.0203 0.8176 ± 0.0339 0.8204 ± 0.0288
Spatial + Channel Cross-attention 0.8018 ± 0.0206 0.8176 ± 0.0648 0.7848 ± 0.0558 0.8012 ± 0.0211 0.8018 ± 0.0171

EPA (Shaker et al., 2024) 0.7872 ± 0.0404 0.8235 ± 0.0372 0.7539 ± 0.0593 0.7887 ± 0.0385 0.7831 ± 0.0429

Table 6: A comparison for selecting which λ to utilize for each dataset. These results are based on 3 trial averages.

λ Value Avg. Test Acc. ± Std. Avg. Test Spec. ± Std. Avg. Test Sens. ± Std. Avg. Test AUROC ± Std. Avg. Test F1 Score ± Std.

To
pc

on

0.25 0.8073 ± 0.0198 0.7730 ± 0.0469 0.8360 ± 0.0173 0.8045 ± 0.0231 0.8197 ± 0.0109
0.50 0.7859 ± 0.0114 0.7687 ± 0.0177 0.8003 ± 0.0173 0.7845 ± 0.0111 0.7957 ± 0.0182
0.75 0.8104 ± 0.0086 0.8209 ± 0.0606 0.8011 ± 0.0412 0.8110 ± 0.0104 0.8150 ± 0.0097
0.90 0.7951 ± 0.0043 0.7429 ± 0.0646 0.8420 ± 0.0636 0.7924 ± 0.0056 0.8103 ± 0.0136
1.0 0.7951 ± 0.0043 0.7429 ± 0.0646 0.8420 ± 0.0636 0.7924 ± 0.0056 0.8103 ± 0.0136

Ze
iss

0.25 0.8617 ± 0.0157 0.8987 ± 0.0588 0.8240 ± 0.0567 0.8613 ± 0.0161 0.8496 ± 0.0140
0.50 0.8681 ± 0.0115 0.8625 ± 0.0207 0.8761 ± 0.0461 0.8693 ± 0.0129 0.8627 ± 0.0141
0.75 0.8519 ± 0.0183 0.8634 ± 0.0647 0.8426 ± 0.0377 0.8530 ± 0.0153 0.8439 ± 0.0160
0.90 0.8680 ± 0.0070 0.8926 ± 0.0276 0.8428 ± 0.0363 0.8677 ± 0.0080 0.8582 ± 0.0073
1.0 0.7332 ± 0.0340 0.8801 ± 0.0749 0.5700 ± 0.0291 0.7250 ± 0.0295 0.6707 ± 0.0188

Table 7: Ablation study for selecting the loss function with λ = 0.75. Results are based on 3 trial averages.

Loss Function Avg. Test Acc. ± Std. Avg. Test Spec. ± Std. Avg. Test Sens. ± Std. Avg. Test AUROC ± Std. Avg. Test F1 Score ± Std.

To
pc

on

MSE 0.8104 ± 0.0086 0.8209 ± 0.0606 0.8011 ± 0.0412 0.8110 ± 0.0104 0.8150 ± 0.0097
SSIM 0.7737 ± 0.0189 0.7826 ± 0.0134 0.7676 ± 0.0344 0.7751 ± 0.0172 0.7798 ± 0.0169

Pearson 0.7920 ± 0.0114 0.8014 ± 0.0198 0.7842 ± 0.0390 0.7928 ± 0.0099 0.7971 ± 0.0151
Gaussian Pearson 0.7523 ± 0.0899 0.6724 ± 0.1843 0.8332 ± 0.0559 0.7528 ± 0.0889 0.7824 ± 0.0658

Table 8: Ablation study for deciding on sampling strategy. Results are based on 5 trial averages.

Data Sampling Method Avg. Test Acc. ± Std. Avg. Test Spec. ± Std. Avg. Test Sens. ± Std. Avg. Test AUROC ± Std. Avg. Test F1 Score ± Std.

To
pc

on No Sampling 0.9500 ± 0.0186 0.9636 ± 0.0204 0.7139 ± 0.0283 0.8388 ± 0.0143 0.6214 ± 0.1005
Weighted Loss 0.9299 ± 0.0260 0.9409 ± 0.0263 0.7368 ± 0.0177 0.8388 ± 0.0172 0.5509 ± 0.0819

Random Undersampling 0.8183 ± 0.0340 0.8290 ± 0.0604 0.8063 ± 0.0203 0.8176 ± 0.0339 0.8204 ± 0.0288

Ze
iss

No Sampling 0.8753 ± 0.0207 0.7313 ± 0.0643 0.9245 ± 0.0266 0.8279 ± 0.0299 0.9178 ± 0.0139
Weighted Loss 0.8723 ± 0.0206 0.7237 ± 0.0653 0.9225 ± 0.0298 0.8231 ± 0.0262 0.9155 ± 0.0156

Random Undersampling 0.8315 ± 0.0105 0.8246 ± 0.0336 0.8425 ± 0.0388 0.8336 ± 0.0130 0.8311 ± 0.0134

Table 9: Federated 3D CNN Performance on Topcon and Zeiss Test Sets (AUROC and F1-Score, Mean ± Std)

Data Used Topcon AUROC Topcon F1 Zeiss AUROC Zeiss F1

Original Topcon 0.7658 ± 0.0476 0.7829 ± 0.0335 N/A N/A
Original Zeiss N/A N/A 0.8438 ± 0.0495 0.8439 ± 0.0392
Original Topcon + Original Zeiss 0.7875 ± 0.0230 0.8061 ± 0.0225 0.8382 ± 0.0436 0.8311 ± 0.0374
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Lweighted = − 1
N

N∑
i=1

[w1yx log Px + w0(1 − yx) log(1 − Px)]

(14)
To emphasize the contribution of the minority class, we

used the following weights:

w
(1)
0 = 272

4932 + 272 , w
(1)
1 = 1 − w

(1)
0 (Topcon)

w
(2)
0 = 847

847 + 263 , w
(2)
1 = 1 − w

(2)
0 (Zeiss)

These weights were applied per sample based on the
ground truth label. This ensures that glaucomatous or
non-glaucomatous cases that are underrepresented have a
proportionately greater influence during optimization.

The second method involved random undersampling of
the majority class to construct a balanced dataset during
training. For each training trial, we randomly sampled an
equal number of glaucomatous and non-glaucomatous vol-
umes to form a balanced training batch. This approach
guarantees equal representation of both classes during each
optimization step. While it reduces the total number of
available samples, it helps prevent the model from becom-
ing biased toward the majority class and often improves
performance on the minority class.

In Table 8, we report the results of three sampling strate-
gies: No Sampling, Weighted Loss, and Random Under-
sampling, applied during training of the base AI-CNet3DH

model in Step 1 (Figure 3). These results show that while
No Sampling and Weighted Loss improve some metrics,
they fall short in others. Sensitivity is low when training
on Topcon data, which has more negative examples. Con-
versely, specificity is low for Zeiss data, which contains more
positive examples. Random undersampling results in the
most balanced performance across all metrics, suggesting
that neither class dominates the learning process.

A.5 Federated Training
We also evaluate a scenario where the model is trained
using combined data from both datasets. Since Dataset
1 (Topcon) contains both macula and ONH regions while
Dataset 2 (Zeiss) contains only ONH, we standardize the
data by cropping Topcon volumes to include only the ONH
region and resizing them to 64×128×64 to match the Zeiss
volume dimensions.

Table 9 presents the performance comparison between
the base 3D CNN trained on individual datasets versus a
combined approach using the FedAvg protocol (McMahan
et al., 2017). The results indicate that combining datasets
does not yield performance improvements when evaluated
on their respective test sets. Notably, the combined training

approach shows modest improvements on the Topcon test
set but slightly reduced performance on the Zeiss test set
compared to training exclusively on Zeiss data.

This lack of substantial improvement can be attributed
to the fundamental differences between the two OCT acqui-
sition systems, which produce volumes with distinct noise
characteristics and imaging artifacts. Future research will
focus on domain adaptation techniques to harmonize these
different volume types and achieve more consistent OCT
data representation across platforms.
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