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Abstract
Deep learning models are prone to learning shortcut solutions to problems using spuriously correlated yet irrelevant
features of their training data. In high-risk applications such as medical image analysis, this phenomenon may prevent
models from using clinically meaningful features when making predictions, potentially leading to poor robustness and
harm to patients. We demonstrate that different types of shortcuts—those that are diffuse and spread throughout
the image, as well as those that are localized to specific areas—manifest distinctly across network layers and can,
therefore, be more effectively targeted through mitigation strategies that target the intermediate layers. We propose a
novel knowledge distillation framework that leverages a teacher network fine-tuned on a small subset of task-relevant
data to mitigate shortcut learning in a student network trained on a large dataset corrupted with a bias feature.
Through extensive experiments on CheXpert, ISIC 2017, and SimBA datasets using various architectures (ResNet-18,
AlexNet, DenseNet-121, and 3D CNNs), we demonstrate consistent improvements over traditional Empirical Risk
Minimization, augmentation-based bias-mitigation, and group-based bias-mitigation approaches. In many cases, we
achieve comparable performance with a baseline model trained on bias-free data, even on out-of-distribution test data.
Our results demonstrate the practical applicability of our approach to real-world medical imaging scenarios where bias
annotations are limited and shortcut features are difficult to identify a priori.
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1. Introduction

N eural networks frequently demonstrate a preference
for the path of least resistance during training, a
phenomenon termed “simplicity bias” (Shah et al.,

2020). This tendency can lead these models to rely on fea-
tures that, while strongly correlated with class labels in their
training datasets, are irrelevant to the task. Such features,
often referred to as “shortcuts” or “spurious correlations”,
yield an effective decision rule-set within the distribution
of the training dataset but one which fails to generalize to
data beyond this distribution (Geirhos et al., 2020). For
example, a model trained to identify cows in images may
learn to detect grassy backgrounds rather than learning to

understand what a cow looks like, if most training images
show cows in grassy pastures. When presented with im-
ages of cows in novel contexts, such as on a beach, the
model’s prediction accuracy declines significantly (Beery
et al., 2018). Because the decision rules learned by these
systems prioritize such spurious features over robust, task-
relevant ones, they fail to generalize to data where the
spurious features are not available. In contrast, a system
that is trained to leverage reliable and task-relevant visual
features should exhibit consistent performance even amidst
shifts in data distribution.

In high-risk applications such as disease diagnosis, where
clinical decisions rely on the accurate identification of subtle
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and often hard-to-detect disease features, shortcut learning
represents a risk to patient safety. Consider pneumotho-
rax detection: popular chest X-ray datasets often contain
images acquired post-treatment, once patients have been
fitted with treatment devices like chest drains, which are
visible in X-ray images. Naturally, this creates a correlation
between the presence of the treatment device and the dis-
ease label, which a network can learn, incorrectly, to use as
a predictive feature of disease presence. Consequently, the
model is less accurate at detecting disease in patients who
have not yet been treated (Murali et al., 2022). Similarly,
models trained to detect atelectasis in chest X-rays can
learn to leverage the presence of ECG cables as a predictive
feature (Olesen et al., 2024). Disease detection models
often rely inappropriately on such confounding features in
addition to more subtle features including image acquisition
protocol or even demographic characteristics (Souza et al.,
2024; Konz and Mazurowski, 2024; Seyyed-Kalantari et al.,
2021). Sources of shortcut features in medical data are
numerous, and their interactions are complex - exacerbating
the challenge of monitoring and accounting for bias. This
is magnified by the inconsistencies in metadata collection
and labeling practices across datasets and healthcare insti-
tutions, making it impractical to track and account for all
potential spurious features of the data.

Emerging regulatory frameworks underscore the impor-
tance of these challenges. The European Union AI Act,
due to come into effect in 2026, establishes comprehensive
requirements for AI systems in high-risk domains like health-
care. The act mandates rigorous testing and monitoring of
AI systems to identify and mitigate potential biases. Simi-
larly, the World Health Organization’s guidelines for AI in
healthcare emphasize the need to safeguard patient safety
and guarantee equitable treatment outcomes. The FDA’s
guidelines for AI and machine learning systems in healthcare
applications necessitate detailed information regarding the
metrics employed and how they ensure patient safety. Addi-
tionally, the guidelines request clarity on how to address any
new or previously unidentified sources of bias that may arise,
as well as details on how to disclose potential biases that
could impact the model’s effectiveness to users (FDA et al.,
2023). FDA approval for many AI systems in healthcare
often requires a demonstration of “practical equivalence”
to existing systems performing the same task, including
evidence that the system’s safety is on par with that of
current processes (Petrick et al., 2023). These frameworks
highlight the risks of deploying systems that may perpetuate
or amplify existing healthcare disparities through learned
biases. This regulatory landscape creates an urgent need
for systematic approaches to identify and mitigate shortcut
learning in medical AI systems.

Current approaches to shortcut mitigation can be cate-
gorized according to their intervention point in the model

development pipeline. Data-centric techniques address bias
during pre-processing, where training data distributions are
modified through resampling, reweighting, or augmentation
to reduce imbalances with respect to bias features (Wu
et al., 2023; Li and Vasconcelos, 2019; Ahmed et al., 2022;
Zhang et al., 2022; Liu et al., 2021; Wang et al., 2024;
Yun et al., 2019). Model-centric techniques include (1)
in-processing methods, which incorporate additional loss
terms or penalties during training to discourage reliance on
spurious features (Sagawa et al., 2019; Müller et al., 2023;
Zhang et al., 2022; Boland et al., 2024a) and (2) post-
processing approaches, which attempt to remove learned
biases from already trained models through fine-tuning or
pruning (Xue et al., 2024; Wu et al., 2022; Ghadiri et al.,
2024; Bayasi et al., 2024). A critical limitation across
many of these methods is their dependency on accurate
bias annotations for all training data. The assumption of
access to comprehensive and reliable bias labels presents
significant practical challenges in medical contexts, where
the sources of bias are often numerous, interrelated, and
difficult to identify a priori. Even when bias sources are
known, obtaining accurate labels across diverse healthcare
institutions with inconsistent metadata collection practices
is prohibitively resource-intensive, limiting the real-world
applicability of these approaches (Banerjee et al., 2023).
Consequently, there is a need for methods that can address
or reduce this burden of bias annotation while maintaining
mitigation efficacy.

Recently, knowledge distillation (KD) has shown poten-
tial as a promising in-processing approach for preventing
bias learning (Boland et al., 2024a; Cha et al., 2022; Bassi
et al., 2024; Kenfack et al., 2024). KD was originally pro-
posed as a model compression technique where a smaller
student network learns to mimic the predictions of a larger
teacher network through an additional loss term that mini-
mizes the divergence between the student model’s outputs
and those of the teacher model (Hinton, 2015). In the
context of shortcut learning, a teacher trained on carefully
curated data might help guide a student away from spurious
correlations present in larger, potentially biased datasets.
Traditional knowledge distillation approaches typically focus
only on matching the final layer outputs. However, several
works have demonstrated that learned biases can be de-
tected in the intermediate layers of neural networks and can
even be localized to specific network layers (Boland et al.,
2024b; Glocker et al., 2023; Stanley et al., 2025). Distilla-
tion approaches for debiasing that target the intermediate
layers of the network may be able to mitigate biases more
effectively.

In our previous work (Boland et al., 2024a), we in-
troduced an oracle-guided training approach to mitigate
shortcut learning using a “specialized teacher”, a model
trained specifically on task-relevant, bias-free data. While
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demonstrating promising results, this approach relied on
matching batch-wise class probability distributions for knowl-
edge transfer—a technique sensitive to batch composition.
Here, we significantly extend this foundation through several
methodological improvements. We replace batch-wise prob-
ability matching with sample-level Kullback-Leibler (KL)
divergence between teacher and student predictions. This
more principled approach provides direct guidance for each
sample. We also extend the original framework to incorpo-
rate knowledge distillation in the final classification layer,
complementing the intermediate layer guidance. Further-
more, we significantly expand the experimental validation
with extensive evaluation on out-of-distribution (OOD) test
sets, systematic analysis of partial-layer distillation, uti-
lization of compact teacher architectures to guide larger
student networks, and evaluation of our method’s efficacy
when training data is corrupted with multiple, simultaneous
shortcuts. All of these extensions serve to demonstrate the
enhanced generalizability and practical applicability of our
approach. Experiments across several network architecture
designs, such as AlexNet, ResNet-18, DenseNet-121, and
a lightweight 3D CNN, and over multiple medical image
analysis tasks in different modalities, demonstrate that our
approach is not modality-, task-, or architecture-specific. To
further strengthen the viability of the approach in real-world
scenarios, we validate our method on a recently released
synthetic brain MRI dataset featuring subtle structural bias
features, which are hard to detect upon simple inspection
(Stanley et al., 2023).

Our proposed approach utilizes a teacher model trained
on a small, carefully curated dataset to guide a student
network’s learning on larger, potentially biased datasets.
By distilling knowledge at intermediate network layers, we
encourage the student to learn robust, task-relevant fea-
tures rather than relying on spurious correlations. Our
contributions are as follows:

1. We demonstrate that intermediate-layer knowledge distil-
lation from a teacher fine-tuned on a small amount of
unbiased, task-relevant data effectively mitigates shortcut
learning of a student trained on bias-corrupted data and
leads to improved generalization as demonstrated through
validation on out-of-distribution (OOD) test data.

2. We provide empirical evidence that distillation at interme-
diate network layers significantly improves bias mitigation
compared to final-layer distillation alone.

3. We show that fine-tuning the teacher on task-relevant
data leads to performance gains and reductions in bias
compared to alternative distillation approaches, such as
using a teacher pre-trained on ImageNet data or through
confidence regularization of the intermediate layers.

4. We establish that compact teacher architectures (e.g.,
AlexNet) can effectively guide larger student networks
with different architectures (e.g., ResNet-18), critical for
real-world deployment where much larger models, which
would overfit to small, bias-free training subsets, are likely
to be used.

2. Related Works

This section reviews relevant literature in two key areas re-
lated to our work: approaches that address shortcut learning
in deep neural networks and knowledge distillation tech-
niques that can be leveraged for bias mitigation. We first
explore various shortcut mitigation strategies and then ex-
amine how knowledge distillation can be adapted to address
this challenge.

2.1 Shortcut mitigation

Shortcut mitigation techniques are grouped according to
whether they modify the training data or the model’s learn-
ing process. We review both data-centric and model-centric
approaches, highlighting their respective strengths and limi-
tations.

2.1.1 Data-centric techniques

Data-centric approaches address bias at the source by mod-
ifying training data distributions. Common approaches
include up-sampling and down-sampling the dataset to re-
move the imbalance in the data with respect to the bias
features, or re-weighting the loss to reduce the influence of
the bias (Wang et al., 2020; Sagawa et al., 2019). Such
approaches require bias labels and sufficient data diversity
after resampling or augmentation. In contrast, methods
like Just Train Twice (JTT) (Liu et al., 2021) and Discover
and Cure (Wu et al., 2023) assign pseudo-labels of the
bias feature to identify potentially biased samples before
up-sampling or reweighting, avoiding the need for explicit
bias annotations. These approaches estimate bias through
model accuracy patterns or feature space representations.

Beyond basic resampling and re-weighting approaches,
advanced data augmentation techniques have emerged as
powerful tools for disrupting potential shortcuts. Cutout
(Zhong et al., 2020) introduces random occlusions by mask-
ing image regions, forcing models to learn more distributed
representations. Mixup (Zhang et al., 2017) creates syn-
thetic training examples by interpolating between image
pairs and their labels, reducing overfitting to training arti-
facts. CutMix (Yun et al., 2019) combines these approaches
by replacing removed regions with patches from other train-
ing images.

While effective for natural images, these augmentation
strategies face limitations in medical contexts. Disease
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features in medical images are often subtle and localized,
unlike the prominent objects in natural image datasets.
Random augmentations risk occluding critical diagnostic
features, and they fail to target specific shortcut features
systematically.

Ahmed et al. (2022) propose the use of a comprehensive
pre-processing pipeline for pneumonia detection in chest X-
rays involving normalization, region-of-interest (ROI) crop-
ping, rotations, etc. Through evaluation with both IID
and OOD test data, they validate that the influence of
biases in the training data is significantly reduced compared
to a model trained without applying this pre-processing.
While this is relatively straightforward to implement, such
an approach requires domain-specific tuning, knowledge of
possible shortcut sources, and task-specific domain knowl-
edge to inform some of the augmentation strategies, such
as ROI cropping.

2.1.2 Model-centric techniques

Model-centric techniques mitigate learned biases by adjust-
ing the model’s weights and learning process, rather than
targeting the training data itself. These can be further
broken down into in-process techniques, which are applied
at training time, and post-process techniques, which are
applied after training is complete.

Adversarial training methods (Correa et al., 2024; Zhang
et al., 2018) introduce competing objectives to discourage
reliance on biased features. However, these often require
explicit labels for the bias sources and the competing ob-
jectives can introduce instability. Feature disentanglement
techniques (Müller et al., 2023) attempt to separate task-
relevant from spurious features but also often require explicit
bias labels and rely on the assumption that such features
are entirely task irrelevant, which may not always hold in
practice.

Post-processing methods like pruning (Wu et al., 2022)
and fine-tuning (Xue et al., 2024) attempt to remove short-
cuts after training. Such approaches are particularly useful
when it is not possible to re-train the model, for example,
when the full, original training data is not available.

2.2 Knowledge Distillation

While not originally developed for bias mitigation, knowl-
edge distillation-inspired approaches to bias mitigation have
shown promise in recent years.

2.2.1 Traditional Knowledge Distillation

Knowledge distillation, originally proposed as a method for
model compression (Hinton, 2015), has recently shown ef-
fectiveness in mitigating bias learning (Boland et al., 2024a;
Cha et al., 2022; Bassi et al., 2024; Kenfack et al., 2024).

Adopting a student-teacher training regime, knowledge from
a large, well-trained teacher network is “distilled” into a
smaller student network. Typically, this process incorporates
an additional loss term that quantifies the divergence in pre-
dicted class probabilities between the two models (Buciluǎ
et al., 2006).

2.2.2 Distillation for bias mitigation

Tian et al. (2024) demonstrate that distillation from a
teacher trained on a balanced subset of training data can
effectively mitigate learned biases in a student network
trained on the full, biased dataset. However, they assume
access to labels that accurately portray the source of bias in
all of the teacher’s training data, and they focus exclusively
on the alignment of features in the final network layer,
which may allow for more effective bias mitigation. Chai
et al. (2022) propose training a teacher model to overfit on
its training data, and using its softened logits as training
labels for a student model. The authors demonstrate that
this soft labeling approach effectively functions as an error-
based re-weighting mechanism that can improve fairness
metrics without explicit demographic data. However, such
an approach may not effectively capture all bias sources in
the training data.

While traditional knowledge distillation focuses on final
layer outputs, recent work has explored distillation at the
intermediate layers. Cha et al. (2022) propose MIRO. Uti-
lizing a large pre-trained network as an “oracle” network,
the authors formulate domain generalization as maximizing
mutual information between the “oracle” model’s represen-
tations and a target model’s. Similarly, Bassi et al. (2024)
propose “explanation distillation” as a technique to prevent
shortcut learning in deep neural networks. Their approach
distills explanations from a teacher model pre-trained on
a massive, diverse dataset, but not necessarily one with
task-specific knowledge. This lack of knowledge pertaining
to the specific task of the student in the teacher network
limits its ability to guide the student network to robust,
task-relevant features.

Boland et al. (2024a) introduced an oracle-guided train-
ing approach for shortcut mitigation that does not require
explicit bias labels for the full training dataset of the student,
nor does it make assumptions about bias characteristics.
Our work builds upon this foundation through methodolog-
ical improvements for enhanced robustness, exploration of
knowledge distillation applied only to subsets of the student
network’s intermediate layers, and the use of low-capacity
teacher networks to guide high-capacity students.
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3. Methods

Our proposed approach addresses the challenge of shortcut
learning through a novel teacher-student knowledge distil-
lation framework that guides feature learning at multiple
network depths (Figure 1). Central to our approach is
the observation that the influence of shortcut learning is
detectable in a network’s intermediate layers, suggesting
that effective mitigation strategies should target the entire
network rather than just the final output (Boland et al.,
2024b).

In this section, we present our method for measuring
intermediate-layer model confidence. We then detail our
knowledge distillation approach for mitigating shortcut learn-
ing, followed by our experimental setup, including datasets,
synthetic shortcut designs, and evaluation protocols.

3.1 Model confidence and shortcut learning

Models trained on biased data tend to exhibit overconfi-
dence in their predictions (Utama et al., 2020). Shortcut
features in a model’s training data provide an easier decision
rule-set with which to infer class. These simple features
allow the model to achieve high confidence with less effort
(Ao et al., 2023). Prior work has demonstrated that these
spurious features lead to detectable changes in the inter-
nal behavior of the network (Boland et al., 2024b). We
are interested in (a) the confidence with which a trained
network infers class through the internal layers, (b) how
training on shortcut-corrupted data changes this behavior,
and (c) if knowledge distillation from an unbiased teacher
can mitigate shortcut learning. To understand this, we
introduce classification probes (linear classification heads,
consisting of an average pooling layer and a single fully
connected layer) which are attached to the intermediate
layers of both the student and teacher networks. After the
network finishes training, these probes are fine-tuned on the
downstream task. Once trained, the probes offer insight
into a model’s ability to infer the true class at different
depths of the network, in addition to facilitating knowledge
distillation from the teacher network’s intermediate layers
to the student’s.

3.2 Measuring Model Confidence

To quantify a model’s confidence over a batch at each
layer, we follow prior work and consider the output logits of
the classification probes (Taha et al., 2022). The sigmoid
of the output logits ranges from 0 to 1, indicating the
likelihood that the input belongs to the positive (1) or
negative (0) class. We quantify model confidence C(X )
as the deviation from maximum uncertainty (0.5), where
higher values indicate greater prediction certainty. This is
illustrated in Equation 1, where f(x) represents the sigmoid

output of the model for input x.

C(X ) =
∑
x∈X

|f(x) − 0.5| (1)

3.3 Mitigation of shortcut learning via knowledge
distillation

Our training scheme (Fig. 1) aims to mitigate shortcut
learning by preventing the student model from becoming
overconfident through the use of shortcut features. The
student model is trained to minimize the cross-entropy loss
on a biased dataset while matching the teacher network’s
class probabilities at each layer.

3.3.1 Teacher-Student Architecture

The “specialist teacher” model is defined as a network
trained on a small, carefully curated subset of the full train-
ing dataset. This subset is manually selected to contain
balanced class representation and to be free of the bias
features present in the student’s training data. Unlike tra-
ditional knowledge distillation approaches that use large,
general-purpose teachers, our specialized teacher possesses
task-specific knowledge while avoiding the spurious correla-
tions that contaminate larger datasets.

Importantly, all samples used to train the teacher model
are excluded from the student’s training dataset to prevent
leakage between the teacher and the student’s training data.
For the teacher model, we follow a standard training pro-
cedure: the network is trained to completion, then frozen
before the classification probes are fine-tuned on the down-
stream task. We use separate optimizers for updating the
network parameters and the probe parameters to prevent
unintended interactions between their learning objectives.

The student model is trained on the biased dataset
using both the standard classification loss and the knowl-
edge distillation from the teacher. At each epoch, after the
student model’s parameters have been updated, the net-
work’s encoder and final classification head are frozen, and
the probes are fine-tuned on the downstream classification
task. This maintains the probes’ ability to classify based on
the student’s currently learned feature embeddings while
preventing undesired interaction between the probe training
and the student’s feature learning.

We encourage alignment between teacher and student
by minimizing the KL divergence between the output proba-
bility distributions of each model’s intermediate layer classifi-
cation probes. Following other intermediate-layer knowledge
distillation literature (Haidar et al., 2021; Bassi et al., 2024),
we also apply knowledge distillation loss on the output of
the network’s final classification head.
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ℒCE

𝒳
ℒKD

Teacher (frozen)
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FCN

Figure 1: Overview of the proposed student-teacher training method. The teacher network, trained on clean data, guides
the student model’s learning process through the distillation of task-specific knowledge to the intermediate layers.

3.3.2 Loss Functions

The training loss of the student is described in Eq. 3, where
Ltotal is the total loss, LCE is the Cross Entropy (CE) loss,
LKD is the knowledge distillation loss between the teacher
and student probes, and λi is a weight applied to each
loss to allow the trade-off between each objective to be
managed. For simplicity, we set all weights equal to 1. KL
divergence loss is defined in Eq. 2 where we have two sets of
intermediate layer predictions, S = {p1, p2, ..., pn} and T =
{q1, q2, ..., qn} where S represent the set of intermediate
layer outputs of the student network, T represents the
teacher, and αi represents the weight of the distillation loss
to the ith layer of the student.

LKD =
n∑
i

αiDKL(pS
i ||qT

i ) (2)

Ltotal = λ1 · LCE + λ2 · LKD (3)

3.4 Experimental Setup
3.4.1 Datasets

We evaluate our proposed method using three medical
imaging datasets of different modalities and tasks. For each,
we enforce class balancing by downsampling the majority
class and combine the original train/validation splits. New
splits are generated when we run k-fold cross-validation.
Table 1 summarizes the composition of positive/negative

Table 1: Composition of positive/negative class samples in
train, validation, and test splits of our datasets.

Dataset Train Valid Test
CheXpert 1457/1457 365/406 600/300

ISIC 560/560 140/146 207/393
SimBA 1291/1292 323/323 530/544
MIMIC n/a n/a 500/500

Fitzpatrick17k n/a n/a 69/69

class samples across train, validation, and test splits for
each dataset.

• CheXpert (Irvin et al., 2019): a large-scale chest radiog-
raphy dataset comprised of 224, 316 chest X-rays from
65, 240 patients and 14 disease labels. In our experiments,
we consider the task of pneumothorax detection. We
use a subset of the full CheXpert dataset containing an
equal number of pneumothorax-positive and no finding-
positive images. Our final training dataset consists of
2, 914 images.

• ISIC 2017 (Codella et al., 2018): a popular skin lesion
image dataset from the International Skin Imaging Col-
laboration containing 2, 000 dermoscopic images. We
perform binary classification between malignant lesions
(melanoma/seborrheic keratosis) and benign lesions. Our
training split contains 1, 120 images after class balancing.
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• SimBA (Stanley et al., 2023): a fully synthetic brain
MRI dataset which allows evaluation on 3D medical data
with controlled biases. It contains simulated structural
changes associated with the class label alongside artifi-
cially introduced morphological deformations as potential
shortcuts. We also utilize the original version of the
dataset without any bias features added.

To assess the generalization of trained models, we in-
clude two out-of-distribution (OOD) datasets for evaluation:

• MIMIC (Goldberger et al., 2000; Johnson et al., 2024,
2019): for CheXpert evaluation, we use a class-balanced
evaluation set composed of pneumothorax-positive and no
finding samples from the MIMIC dataset, another large-
scale chest radiograph dataset acquired from a different
institution.

• Fitzpatrick17k (Groh et al., 2021, 2022): for ISIC evalua-
tion, we leverage a second dermatological image dataset.

3.4.2 Synthetic shortcuts

(a) (b) (c) (d)

Figure 2: ISIC skin lesion image augmented with synthetic
shortcuts: (a) original; (b) noise; (c) square (constant
location); (d) square (random location). The noise effect
has been amplified here for illustrative purposes.

Inspired by research highlighting common shortcut sources
in medical image analysis datasets such as acquisition de-
vices, scanning protocols, hospital tags, and medical devices,

we design a controlled environment for the empirical
evaluation of our approach. We introduce synthetic bias
features into our ISIC and CheXpert training datasets that
allow us to assess the generalizability of our method across
diverse types of bias. We design several experimental setups
featuring a single bias feature and multiple, concurrent bias
features. We augment our datasets with one of three unique
synthetic bias features (Figure 2):

1. Diffuse: leveraging random, uniform noise patterns as a
spurious signal spread throughout the image. The noise
is generated using a uniform distribution with values
between 0 and 0.15 applied to each pixel. Such shortcut
features are designed to simulate those that may be
caused by acquisition devices and scanning protocols
(Ong Ly et al., 2024).

DiseaseDisease No diseaseNo disease

Train Validation/Test

Bias feature No bias feature

Figure 3: Illustrative representation of the synthetic shortcut
feature distribution in our train, validation, and test splits
in the CheXpert and ISIC datasets.

2. Localized: introducing small square shapes to the image,
similar to other work (Dagaev et al., 2023), we aim
to simulate more localized shortcut features of various
complexities seen in the literature, such as hospital tags
and treatment devices (Olesen et al., 2024). We test two
variants:

(a) Constant location: the square appears in a fixed
spot.

(b) Random location: the location of the square varies
among images.

In our training splits, the shortcut features are correlated
with the class label (Figure 3). We vary the prevalence of
the shortcut feature (the degree of its correlation with the
class label in the training data) to assess its influence on
training and mitigation efforts. In the validation and test
splits, shortcut features are balanced across both classes.
In cases with two simultaneous shortcut features, each is
correlated with a different class label.

Notably, in the case of the SimBA dataset, all data
splits exhibit the same bias prevalence. Experiments on
SimBA allow us to validate the efficacy of our method when
it is not possible to access an unbiased validation set.

3.5 Evaluation metrics and statistical analysis
We evaluate our experiments by considering both overall
performance metrics and bias-specific metrics. For clas-
sification performance, we report the Area Under the Re-
ceiver Operating Characteristic Curve (AUC), providing a
threshold-free measure of discriminative ability across all
datasets. Similar to recent research investigating bias and
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shortcut learning in medical image analysis, we quantify the
impact of shortcut features on model predictions through
True Positive Rate disparity (∆TPR) (Glocker et al., 2023;
Stanley et al., 2025). ∆TPR directly measures the model’s
ability to maintain consistent sensitivity across bias-aligned
and bias-contrasting groups, a critical requirement for clin-
ical deployment where missed diagnoses (false negatives)
carry severe consequences. We used a 0.5 classification
threshold in all cases as the natural decision boundary for
binary classification.

We define bias-aligned samples as those whose combi-
nation of class label and shortcut feature presence matches
the class-bias correlation established in the training data.
Meanwhile, bias-contrasting samples represent those whose
combination of class label and shortcut feature presence
opposes the class-bias correlation in the training data. Sta-
tistical significance between performance differences is as-
sessed using paired t-tests with Bonferroni correction to
account for multiple comparisons where appropriate.

3.6 Benchmark methods
We compare our approach with several established short-
cut learning mitigation methods. The network trained on
the original, clean dataset without shortcut features is our
Baseline. The network trained on the shortcut-corrupted
dataset with standard cross-entropy optimization is referred
to as ERM. We compare to four augmentation-based ap-
proaches: CutOut (Zhong et al., 2020), MixUp (Zhang
et al., 2017), CutMix (Yun et al., 2019), as well as the use
of random rotation (up to 15◦) and horizontal flip augmenta-
tions (Aug). We also compare to two popular group-based
methods: GroupDRO (GDRO) (Sagawa et al., 2019) and
Just Train Twice (JTT) (Liu et al., 2021)

For each method, we implement configurations following
the authors’ recommendations without any specific fine-
tuning or adjustments made for our data and use identical
architecture backbones for fair comparison.

3.7 Implementation Details
In all experiments, we utilize an AdamW optimizer with
weight decay of 0.1 and train our models with a learning
rate of 1×e−4. All intermediate layer classification probes
are trained with a learning rate of 0.1. For our 2D datasets
(ISIC, CheXpert, MIMIC, and Fitzpatrick17k) images are
re-sized to ImageNet resolution, 224×224, while for SimBA,
we resize to 96 × 96 × 96. We do not apply any rotation or
flipping augmentations by default. We set the maximum
number of training epochs to 1000 with early stopping af-
ter 15 epochs if there is no improvement in the validation
loss. In none of our experiments does training run for the
complete 1000 epochs without reaching the early stop con-
dition. We use 5-fold cross-validation, with consistent test

sets across folds. Our experimental setup utilizes Python
and PyTorch, and we train on an NVIDIA RTX 2080 Ti
and Tesla V100s.

For the 3D experiments on SimBA data, we employ
a lightweight 3D CNN consisting of five convolutional
blocks, each containing a 3D convolutional layer (kernel
size 3×3×3), batch normalization, and Sigmoid activation.
Classification probes are attached after each convolutional
block, consisting of 3D global average pooling followed by
a linear layer.

4. Results

Our experimental evaluation examines several key aspects
of the proposed approach. We first investigate how short-
cut learning manifests in intermediate network layers, then
evaluate our knowledge distillation method against alter-
native approaches. We also analyze the impact of partial
layer distillation, the effectiveness of compact teacher ar-
chitectures, and performance on realistic structural biases
in 3D medical data. In the following work, our teacher
networks are trained on a subset of 20% of the full, original
training data. The samples in this subset are removed from
the student network’s training data. We later explore the
efficacy of our teacher with fewer training data.

4.1 Core method validation

We begin our experimental evaluation by establishing fun-
damental evidence for our approach: first demonstrating
how shortcut learning manifests in neural networks, then
validating our knowledge distillation method’s effectiveness
across diverse experimental conditions.

4.1.1 Shortcut learning manifests distinctly across network
layers

Considering the complexity of many medical image anal-
ysis tasks, we expect a well-trained model using clinically
relevant features to exhibit lower confidence than a model
relying on easy shortcut features. Additionally, we might
expect that the confidence of a model reliant on shortcut
features will increase in earlier layers, aligning with the
expectation that the deeper layers of the network capture
more sophisticated features (Baldock et al., 2021).

To test this, we train two ResNet-18 models on CheX-
pert following Empirical Risk Minimization (ERM), where
we simply aim to optimize cross-entropy loss. One is trained
on the original dataset without any synthetic biases, while
the other is trained on the same dataset augmented with
synthetic shortcut features associated with the disease class.
In this case, the shortcut features have a 100% prevalence
rate (perfectly correlated with the disease class). After train-
ing, we fine-tune our classification probes for each model.
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Figure 4: Intermediate-layer confidence of two ResNet-18 models trained on near-identical training sets. Confidence
bands represent the standard deviation over 5-fold cross-validation. Both networks are trained on the CheXpert dataset
with a learning rate of 1e−4. Intermediate layer classification probes have a learning rate of 0.1. The training data of
one model has been corrupted with various synthetic shortcut features, while the training data of the other has not.

Each model is evaluated on our held-out test set, and the
output of the probes are used to evaluate the influence of
the bias feature on the network’s predictive behavior.

Figure 4 illustrates the per-layer confidence of each
model. In line with our hypothesis, the model trained on
the biased data becomes overconfident compared to the
baseline trained on clean data. In the case of our diffuse
noise shortcut, we observe this to an extreme degree in
the earliest layers, while the localized shortcuts don’t result
in a large degree of overconfidence until the later layers.
This is likely because the diffuse shortcut is composed of
low-level features that require very little disambiguation by
the network, unlike the localized shortcuts. We observe
similar patterns in other datasets and network architectures
that we evaluate.

4.1.2 Intermediate-layer knowledge distillation mitigates
shortcut reliance

Having established the layer-specific nature of shortcut learn-
ing, we now demonstrate that our knowledge distillation
framework, utilizing a teacher trained on a small curated
dataset, effectively prevents students from developing short-
cut dependencies across multiple datasets and bias types.
We evaluate our approach across the CheXpert and ISIC
datasets and all student models are trained on data aug-
mented with a synthetic bias feature with different degrees

of correlation with the class label (prevalence). We compare
the performance of our model to several augmentation-
based debiasing approaches, as well as Just Train Twice
(JTT) and GroupDRO.

Across all tested bias types and degrees of correlation
with class labels, our student network demonstrates the
most consistently low bias in its predictions, as measured by
∆TPR between bias-aligned and bias-contrasting samples
(Table 2). In several cases, the TPR disparity is reduced
such that it is comparable to our clean baseline. Our
method remains similarly effective in reducing the bias even
as its prevalence increases, while most other methods we
evaluate worsen in effectiveness at higher prevalence rates.
Notably, the majority of methods show significantly reduced
efficacy in mitigating diffuse shortcuts across both datasets.
Contrastingly, our approach is consistently effective across
localized and diffuse shortcuts. We highlight a consistent
drop in efficacy for the noise bias feature in the CheXpert
dataset with all methods, including ours. We suspect that
this is due to useful textural information being corrupted
by the noise shortcut. We also typically find that our
approach achieves better overall AUC compared to other
methods, particularly at higher prevalence rates. As shortcut
prevalence decreases from 95% to 75%, all methods show
improved ∆TPR, which is expected since weaker biases
will provide less misleading signal during training. However,
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Table 2: ∆TPR ↓ between bias-aligned and bias-contrasting samples for a ResNet-18 trained on data with various bias
prevalence rates. Results are presented as Mean±Std over 5-fold cross-validation. Models are marked as best and
second-best. When the difference between first and second best is statistically significant (p < 0.05 according to a
paired t-test), the best-performing model is highlighted with *.

Prev. Model CheXpert ISIC

(%) Noise Square (C) Square (R) Noise Square (C) Square (R)

0 Baseline 0.131±0.051 0.020±0.008 0.015±0.013 0.409±0.095 0.056±0.015 0.050±0.017

100

ERM 1.000±0.000 1.000±0.000 0.991±0.008 1.000±0.000 0.777±0.093 0.844±0.168
MixUp 0.987±0.026 0.998±0.003 0.854±0.119 0.998±0.004 0.875±0.152 0.754±0.157
CutOut 0.999±0.001 1.000±0.000 0.832±0.112 1.000±0.000 0.448±0.065 0.277±0.064
CutMix 0.993±0.005 0.503±0.073 0.126±0.022 1.000±0.000 0.359±0.063 0.116±0.053

Aug 0.957±0.092 0.979±0.013 0.984±0.006 1.000±0.000 0.161±0.052 0.515±0.133
Ours 0.377±0.185* 0.079±0.017* 0.035±0.013* 0.068±0.055* 0.034±0.016* 0.074±0.042

95

ERM 0.939±0.028 0.912±0.086 0.791±0.093 0.959±0.019 0.861±0.036 0.703±0.103
MixUp 0.927±0.105 0.987±0.008 0.693±0.103 0.952±0.037 0.936±0.035 0.757±0.066
CutOut 0.950±0.050 0.912±0.069 0.636±0.131 0.946±0.047 0.579±0.249 0.439±0.146
CutMix 0.975±0.030 0.325±0.048 0.142±0.063 0.922±0.079 0.311±0.107 0.134±0.040

Aug 0.899±0.072 0.779±0.150 0.813±0.061 0.935±0.054 0.205±0.079 0.549±0.115
GDRO 0.986±0.010 0.978±0.015 0.702±0.091 0.967±0.014 0.800±0.035 0.477±0.029
JTT 0.982±0.011 0.946±0.031 0.673±0.065 0.946±0.031 0.793±0.043 0.505±0.073
Ours 0.372±0.110* 0.089±0.023* 0.047±0.027 0.077±0.069* 0.100±0.039 0.052±0.012*

85

ERM 0.745±0.145 0.735±0.113 0.423±0.063 0.274±0.037 0.376±0.094 0.294±0.083
MixUp 0.699±0.115 0.677±0.131 0.336±0.028 0.490±0.091 0.523±0.100 0.407±0.075
CutOut 0.810±0.072 0.656±0.214 0.374±0.104 0.511±0.227 0.471±0.158 0.262±0.115
CutMix 0.733±0.107 0.211±0.083 0.097±0.017 0.653±0.120 0.214±0.072 0.082±0.031

Aug 0.664±0.190 0.517±0.197 0.526±0.132 0.677±0.206 0.115±0.053 0.317±0.081
GDRO 0.759±0.032 0.624±0.060 0.267±0.083 0.697±0.085 0.335±0.085 0.097±0.053
JTT 0.719±0.035 0.533±0.034 0.378±0.121 0.703±0.125 0.350±0.073 0.158±0.051
Ours 0.348±0.151* 0.106±0.051 0.059±0.044 0.077±0.109* 0.057±0.037 0.067±0.083

75

ERM 0.445±0.155 0.387±0.064 0.201±0.087 0.253±0.054 0.273±0.057 0.186±0.077
MixUp 0.380±0.120 0.331±0.067 0.156±0.036 0.470±0.149 0.282±0.095 0.183±0.036
CutOut 0.460±0.078 0.361±0.111 0.168±0.044 0.265±0.188 0.140±0.036 0.165±0.120
CutMix 0.526±0.095 0.138±0.032 0.055±0.020 0.330±0.082 0.153±0.048 0.070±0.061

Aug 0.446±0.131 0.408±0.158 0.345±0.044 0.324±0.142 0.149±0.063 0.256±0.066
GDRO 0.507±0.019 0.329±0.015 0.114±0.024 0.444±0.064 0.183±0.023 0.057±0.010
JTT 0.452±0.046 0.261±0.035 0.146±0.048 0.459±0.077 0.204±0.029 0.086±0.037
Ours 0.364±0.182 0.127±0.059 0.061±0.028 0.066±0.040* 0.145±0.088 0.063±0.024

even at lower prevalence rates, our approach maintains its
advantage over other methods.

4.1.3 Generalization to clean and out-of-distribution data

A critical test of any deep neural network is whether it has
learned a robust, generalizable set of decision rules. Here
we evaluate our approach across three distinct evaluation
scenarios: (1) a biased test set where shortcuts are present
but distributed equally across classes, such that they are
no longer useful predictive features; (2) a clean test set
featuring none of the synthetic bias features present in
our training sets; and (3) out-of-distribution (OOD) test
sets to evaluate generalization. This allows us to assess
both the method’s ability to ignore spurious features and
its capacity to learn robust, generalizable, and clinically
relevant features. Our findings are highlighted in Table 3.

Comparisons on the bias-corrupted test set allow valida-
tion of how well each model learned to ignore the presence of
the shortcuts at inference. Across all shortcut types on both
datasets, we find that our method consistently achieves the
best overall AUC and consistently matches or even outper-
forms the clean baseline evaluated on the shortcut-corrupted
test data. We highlight that the clean baseline consistently
sees a significant drop in performance when evaluated on
noise-corrupted data. We hypothsize that this is likely a
result of the degradation of useful texture-related informa-
tion in the test set, combined with inherent bias of CNN
architectures towards textural information (Geirhos et al.,
2018).

Interestingly, we find that all models see significantly
improved performance when tested on the clean test data.
This supports previous findings that biases in the training
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Table 3: AUC ↑ for ResNet-18. We compare our approach to four popular augmentation-based de-biasing techniques.
Shortcuts here have a 100% correlation with the task label, so group-based methods (GroupDRO and JTT) are omitted
from these comparisons. Results are presented as Mean±Std over 5-fold cross-validation. Models are marked as best
and second-best. When the difference between first and second best is statistically significant (p < 0.05 according to a
paired t-test), the best-performing model is marked *.

Test set Model CheXpert ISIC

Noise Square (C) Square (R) Noise Square (C) Square (R)

Biased

Baseline 0.709±0.024 0.755±0.013 0.752±0.015 0.749±0.024 0.809±0.019 0.808±0.017

ERM 0.489±0.012 0.533±0.007 0.554±0.006 0.521±0.011 0.600±0.011 0.612±0.007
MixUp 0.509±0.007 0.539±0.008 0.550±0.010 0.490±0.026 0.555±0.028 0.585±0.011
CutOut 0.498±0.029 0.548±0.010 0.584±0.008 0.521±0.023 0.627±0.013 0.639±0.006
CutMix 0.529±0.007 0.680±0.025 0.758±0.015 0.516±0.015 0.753±0.038 0.781±0.020

Aug 0.483±0.009 0.585±0.017 0.550±0.013 0.518±0.006 0.731±0.017 0.631±0.010
Ours 0.689±0.044* 0.747±0.008* 0.761±0.01 0.775±0.023* 0.777±0.024 0.805±0.016

Clean

Baseline 0.754±0.014 0.754±0.014 0.754±0.014 0.811±0.019 0.811±0.019 0.811±0.019

ERM 0.491±0.029 0.599±0.020 0.704±0.015 0.498±0.038 0.672±0.038 0.745±0.015
MixUp 0.587±0.021 0.581±0.015 0.649±0.025 0.402±0.018 0.565±0.037 0.652±0.036
CutOut 0.527±0.063 0.604±0.012 0.741±0.007 0.485±0.089 0.722±0.021 0.758±0.013
CutMix 0.608±0.017 0.743±0.037 0.776±0.011 0.495±0.040 0.791±0.037 0.797±0.016

Aug 0.507±0.037 0.711±0.044 0.703±0.015 0.444±0.012 0.777±0.021 0.727±0.032
Ours 0.741±0.010* 0.749±0.009 0.763±0.011 0.767±0.028* 0.778±0.024 0.807±0.016

OOD

Baseline 0.737±0.014 0.737±0.014 0.737±0.014 0.677±0.024 0.677±0.024 0.677±0.024

ERM 0.461 ± 0.042 0.548±0.015 0.688±0.027 0.645±0.031 0.557±0.012 0.556±0.052
MixUp 0.534±0.037 0.546±0.035 0.633±0.038 0.567±0.035 0.539±0.033 0.534±0.036
CutOut 0.424±0.066 0.571±0.049 0.730±0.013 0.635±0.016 0.585±0.008 0.583±0.020
CutMix 0.526±0.040 0.692±0.013 0.724±0.021 0.650±0.020 0.561±0.034 0.529±0.043

Aug 0.426±0.027 0.683±0.018 0.692±0.008 0.670±0.012 0.635±0.028 0.618±0.026
Ours 0.733±0.018* 0.759±0.022* 0.763±0.008* 0.727±0.057 0.697±0.030* 0.666±0.042

data do not necessarily prevent models from learning under-
lying causal features (Stanley et al., 2025; Glocker et al.,
2023); but can lead them to preferentially rely on the spuri-
ously correlated features when they are available. Notably,
across all shortcut types, our model tested on the clean
dataset achieves performance that is competitive with the
baseline. By comparison, most other tested methods fail to
see an improvement in AUC on the clean test set when the
training data was augmented with the noise shortcut. We
highlight this as further evidence of the power of a teacher
model fine-tuned on a small amount of task-relevant data
to prevent a student from being corrupted by the spurious
feature.

Finally, the OOD test sets serve to evaluate the robust-
ness and generalizability of the decision rules learned by the
network. Here, we see that our student network consistently
matches the performance of the clean baseline across both
datasets and all bias features, consistently outperforming
all other approaches.

These findings collectively support our hypothesis that
task-relevant knowledge distillation across intermediate net-
work layers can effectively guide models toward learning
more robust and clinically relevant features.

4.1.4 Effectiveness against multiple concurrent shortcuts

Our proposed approach has demonstrated promise in the
mitigation of synthetic shortcuts. However, prior experi-
ments purposefully represent a highly controlled shortcut
environment. Only a single synthetic shortcut is present
in the training data. Realistically, spurious features are
unlikely to be constrained to a single source, particularly
in large datasets. It is important, therefore, that any bias
mitigation approach is able to mitigate multiple sources of
bias simultaneously.

We augment our training data with two simultaneous
shortcuts, one correlated with the positive class and the
other with the negative class. The predictive strength
of these shortcuts is varied across different training sets.
As seen in Figure 5, our method remains effective in the
presence of multiple bias sources in the training data, and
across all tested prevalence rates, consistently outperforming
all other methods. In the majority of cases, we find that
our student model remains competitive with the baseline
model trained on entirely clean data.
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Figure 6: ∆TPR of 3D CNN models trained on SimBA
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on data augmented with a synthetic morphological bias
feature. All models are evaluated on test data featuring
the morphology bias. ** indicates a statistically significant
difference in ∆TPR according to a paired t-test with Bon-
ferroni correction.

4.1.5 Validation on realistic 3D structural biases

While our previous experiments focused primarily on 2D
image classification with synthetic shortcuts, we now extend
our analysis to a more realistic scenario featuring subtle
structural biases that more closely resemble real-world med-
ical imaging artifacts. To evaluate our approach in this
realistic context, we leverage the SimBA dataset — a syn-

thetic brain MRI dataset designed specifically to study bias
in 3D medical image analysis (Stanley et al., 2024). The
SimBA dataset features subtle morphological deformations
that correlate with disease labels at a 65% prevalence rate.
These localized structural modifications represent a more
nuanced and challenging form of bias compared to our
previous experiments with artificial shortcuts.

Importantly, a key methodological distinction in these
experiments is that all data splits in SimBA (training, val-
idation, and test) exhibit the same bias prevalence rate.
This differs from our previous synthetic shortcut experi-
ments, where validation data contained balanced shortcut
distributions. The absence of bias-balanced validation data
creates a significantly more challenging scenario that closely
mirrors real-world clinical settings, where validation data
often shares the same biases as training data.

We train a lightweight 3D CNN with linear classification
probes attached after each convolutional layer. Our teacher
model is trained on a 20% subset of the unbiased training
data, while the student model is trained on the biased
dataset. All volumes were resampled to 96×96×96 voxels.

Figure 6 presents the performance comparison between
three models: our student model guided by a teacher fine-
tuned on some task-relevant data (Ours), a model trained
on the full unbiased dataset (ERM (No Bias)), and a model
trained on the biased dataset using standard Empirical
Risk Minimization (ERM (Morphology Bias)). The results
demonstrate clear performance differences among these
approaches.

Statistical analysis using repeated measures ANOVA
confirms significant differences between the models. Subse-
quent pairwise comparisons using paired t-tests with Bon-
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ferroni correction reveal statistically significant differences
in ∆TPR between the ERM model trained on the mor-
phologically biased dataset and both alternative models.
Notably, while a statistically significant difference in ∆TPR
remains between our model and ERM (No Bias), the dis-
parity difference is significantly reduced compared to ERM
(Morphology Bias).

Our findings demonstrate that our approach can effec-
tively mitigate bias even without the benefit of a balanced
validation set to guide the training process. This is sig-
nificant for real-world medical imaging applications, where
obtaining bias-balanced validation data is often infeasible.
These results further validate the applicability of our method
to complex 3D medical imaging tasks featuring realistic bias
patterns, suggesting broader potential for clinical applica-
tions.

4.2 Method design and optimization

Having validated our core approach, we now explore key
design choices that optimize its effectiveness and practical
applicability.

4.2.1 Partial layer distillation preserves student
performance

While our initial implementation applied knowledge distilla-
tion across all batch normalization layers of our ResNet-18
students, this comprehensive approach might over-constrain
the students’ learning process. We investigate whether
more selective application of distillation can maintain or
even enhance performance. We systematically evaluate dis-
tillation applied at varying numbers of intermediate layers
in a ResNet-18 network, from all 17 intermediate layers to
0 intermediate layers (final classification head only).

For partial-layer configurations, we employ a random
sampling approach where we independently select n layers
from both the student and teacher networks during each
training epoch. Importantly, these selections are made in-
dependently, meaning the specific layers chosen may differ
between networks. We pair the selected layers sequen-
tially based on their relative depth to establish meaningful
knowledge transfer despite potentially different architectural
positions.

Table 4 reveals key insights about the value of our
intermediate-layer distillation. We note that applying distil-
lation at fewer intermediate layers (5 − 9) leads to compa-
rable performance to distillation applied at all intermediate
layers (17), both in terms of AUC and ∆TPR. In some
cases on the ISIC dataset, we see improvements in the
AUC when the loss is applied at fewer layers. We hypothe-
size that in these cases, the reduced regularization of the
KD loss facilitates an improved ability of the network to
learn task-relevant features without sacrificing the useful

guidance away from spurious features. Importantly, when
distillation is applied solely at the final classification head
and not in the intermediate layers (n = 0), performance
declines significantly and bias increases significantly across
all experiments. This dramatic deterioration highlights the
critical role of intermediate-layer guidance in mitigating
shortcut learning.

4.2.2 Low-capacity teachers effectively guide larger
student networks

Training the teacher using a small, curated subset of data
can pose challenges when applied to significantly larger
models. In this study, we examine whether a low-capacity
model can effectively serve as a teacher for a higher-capacity
student. Specifically, we distill knowledge from an AlexNet
teacher to a ResNet-18 student, and from a ResNet-18
teacher to a DenseNet-121 student. To apply knowledge
distillation from a low-capacity teacher, we follow a similar
protocol to Section 4.2.1. We randomly sample n layers
from the student network each epoch, where n is equal to
the number of classification probes in the teacher model.
The n layers of the student network are paired sequentially
with the classification probes of the teacher.

We train our student on our datasets augmented with
synthetic biases and present these results in Table 5. We
compare our student to an identical network trained follow-
ing a standard Cross Entropy optimization protocol (ERM).
Even with a small teacher network, knowledge distillation
from the intermediate layers proves capable of effectively
mitigating the influence of shortcuts present in the student
training data.

In real-world applications, it is more likely that larger
models, such as DenseNet-121—often considered state-of-
the-art—are employed instead of smaller networks such as
a ResNet-18. Training a much larger teacher network on
a very limited clean subset increases the likelihood that
the teacher will overfit to its training data, negatively im-
pacting its ability to guide the student network toward
robust and generalizable features. The efficacy of compact
teacher networks is, therefore, significant for the practical
implementation of our approach.

4.2.3 Task-specific teacher fine-tuning outperforms
alternative approaches

We propose that a teacher network fine-tuned on a small
subset of task-relevant data can provide sufficient insight
to deter a student network from learning bias features.
Here, we validate this choice. We consider two alternative
approaches to our proposed fine-tuned teacher to evaluate
the importance of task-specific knowledge in the teacher:
1. ImageNet pre-trained teacher: We use a teacher net-

work pre-trained on the ImageNet dataset without any
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Table 4: Performance of a ResNet-18 student network tested on the shortcut-corrupted test sets with our distillation
loss. Distillation loss is applied at different numbers of intermediate layers between 0 and 17. When loss is applied
at 0 intermediate layers, we only apply KD between the student and teacher’s final outputs. Results are presented as
Mean±Std over 5-fold cross-validation. Models are marked best and second-best.

# layers CheXpert ISIC

Noise Square (C) Square (R) Noise Square (C) Square (R)

AUC ↑

17 0.694±0.034 0.742±0.009 0.762±0.008 0.754±0.019 0.761±0.035 0.754±0.023
13 0.688±0.034 0.746±0.007 0.762±0.005 0.780±0.018 0.767±0.012 0.780±0.011
9 0.687±0.034 0.747±0.008 0.756±0.014 0.768±0.013 0.762±0.033 0.783±0.015
5 0.689±0.044 0.747±0.008 0.762±0.010 0.775±0.023 0.777±0.024 0.807±0.016
0 0.606±0.008 0.640±0.015 0.684±0.014 0.632±0.019 0.667±0.013 0.713±0.017

∆TPR ↓

17 0.272±0.07 0.083±0.024 0.028±0.020 0.091±0.037 0.041±0.038 0.028±0.02
13 0.378±0.188 0.107±0.018 0.049±0.030 0.074±0.034 0.019±0.021 0.049±0.030
9 0.301±0.115 0.083±0.053 0.046±0.023 0.077±0.027 0.054±0.033 0.046±0.023
5 0.377±0.185 0.079±0.017 0.032±0.020 0.068±0.055 0.038±0.032 0.032±0.020
0 0.831±0.091 0.662±0.126 0.424±0.074 0.813±0.139 0.617±0.145 0.424±0.074

Table 5: AUC↑ of a ResNet-18 and DenseNet-121 trained
and evaluated on shortcut-corrupted data. We compare
student models trained following our knowledge distillation
protocol using a low-capacity teacher network (Ours) to
models trained following standard cross-entropy optimiza-
tion (ERM). The best-performing model is in bold.

CheXpert

Noise Square (C) Square (R)

ResNet-18 Ours 0.68±0.01 0.74±0.02 0.75±0.02
ERM 0.49±0.01 0.53±0.01 0.55±0.01

DenseNet-121 Ours 0.63±0.02 0.69±0.01 0.70±0.02
ERM 0.50±0.01 0.52±0.01 0.53±0.01

ISIC

Noise Square (C) Square (R)

ResNet-18 Ours 0.76±0.02 0.77±0.03 0.77±0.03
ERM 0.52±0.01 0.60±0.01 0.61±0.01

DenseNet-121 Ours 0.72±0.01 0.72±0.03 0.74±0.03
ERM 0.51±0.01 0.63±0.01 0.62±0.01

task-specific fine-tuning. This teacher possesses general
visual recognition capabilities from training on diverse
natural images but lacks task-specific or domain-specific
medical imaging knowledge. Knowledge distillation is
performed identically as with our fine-tuned teacher, with
KL divergence minimization between corresponding inter-
mediate layers of the student and the pre-trained teacher.
This comparison helps us understand whether general
visual features from a diverse dataset are sufficient for
guiding the student away from shortcuts or if task-specific
knowledge is essential.

2. Confidence Regularization: The teacher model is re-
moved entirely in favor of a form of self-regularization.

Rather than distilling knowledge from a teacher, we en-
courage the student network to maintain low confidence
in its intermediate layer predictions by minimizing the KL
divergence between each layer’s predictions and a uniform
class probability distribution. This forces the model to
avoid becoming overconfident in any particular features
too early in the network, potentially discouraging reliance
on simple shortcut features. By comparing against this
approach, we can determine whether the specific guid-
ance from a teacher model provides advantages beyond
simply preventing early layer overconfidence.

Both alternatives represent reasonable approaches towards
mitigating shortcut learning: the ImageNet teacher by trans-
ferring robust general visual representations, and confidence
regularization by directly discouraging overconfidence in
features at any particular layer. Our fine-tuned specialist
teacher consistently outperforms both alternatives across
most datasets and shortcut types, as shown in Table 6. This
performance is achieved without sacrificing fairness. This
highlights that a teacher with task-specific knowledge is
better equipped to guide the student away from simplistic
shortcut features and toward more robust, task-relevant
features. This is further supported by our findings in Figure
7, which shows that our student trained with a fine-tuned
teacher network achieves consistently higher AUC in the in-
termediate layers, and that the AUC of our student reaches
higher levels earlier in the model.

4.3 Practical considerations for teacher model training

Finally, we address critical practical questions about teacher
model requirements that determine the real-world viability
of our approach.
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Figure 7: Per-layer AUC of ResNet-18 students trained on CheXpert data featuring various synthetic shortcuts. Oursf

is our fine-tuned teacher model, Oursp uses an ImageNet-pretrained ResNet-18 as a teacher, and Oursc applies pure
confidence regularization in the intermediate layers.

Table 6: Performance of student models with different knowledge distillation approaches. Oursf is our fine-tuned teacher
model, Oursp uses an ImageNet-pretrained ResNet-18 as a teacher, and Oursc applies pure confidence regularization in
the intermediate layers. Results are presented as Mean±Std over 5-fold cross-validation. Models are marked as best and
second-best. When the difference between first and second best is statistically significant, the best-performing model is
highlighted with *.

Model CheXpert ISIC
Noise Square (C) Square (R) Noise Square (C) Square (R)

AUC ↑
Oursf 0.689±0.044 0.747±0.008* 0.763±0.010* 0.775±0.023 0.777±0.024* 0.807±0.016
Oursp 0.633±0.025 0.660±0.039 0.684±0.025 0.727±0.034 0.680±0.029 0.782±0.016
Oursc 0.635±0.037 0.677±0.029 0.673±0.007 0.753±0.019 0.731±0.023 0.696±0.071

∆TPR ↓
Oursf 0.377±0.185 0.079±0.017 0.034±0.016 0.068±0.055 0.038±0.032 0.070±0.043
Oursp 0.285±0.082 0.239±0.196 0.115±0.094 0.218±0.123 0.318±0.162 0.084±0.057
Oursc 0.351±0.073 0.109±0.089 0.140±0.062 0.036±0.033 0.070±0.067 0.197±0.172

4.3.1 Teacher effectiveness scales with training data
volume

A critical question for practical implementation is the volume
of unbiased data required to train an effective teacher model.
In our previous experiments, we evaluated our approach
using a teacher network trained on 20% of the full training
data from each dataset. To better understand the amount
of required data, we now assess the efficacy of our approach
when the teacher network is trained on as little as 5% and
10% of the total training data. In each case, the teacher
training data is excluded from the student’s training. As a
result, each student network is trained on 95%, 90%, and
80% of the full training data, depending on the amount of

data used to train the teacher.
As illustrated in Figure 8, we observe a clear relationship

between teacher training data volume and student perfor-
mance. Bias metrics and overall model performance both
improve consistently as the amount of training data used
for the teacher increases. Notably, even when our teacher
network is trained on as little as 5% of our original training
data (56 images for ISIC), we still observe a substantial
reduction in bias compared to ERM training.

The consistent performance advantage observed with
minimal unbiased data has significant implications for real-
world applications. In clinical settings, where it is often
challenging to obtain large amounts of bias-free data, our re-
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Figure 8: AUC ↑ (top) and ∆TPR ↓ (bottom) of ResNet-18 students trained on ISIC data featuring various synthetic
shortcuts. We vary the proportion of the original training data used to train the teacher network, using subsets
consisting of 5%, 10%, and 20% of the original training data. In each case, teacher training data is excluded from the
student’s training. All shortcuts have a 100% prevalence in student training data. As shortcut reliance increases, overall
performance (AUC) declines and performance disparity (∆TPR) increases.

sults indicate that even a small, carefully curated dataset can
effectively guide the mitigation of shortcut learning. This
finding greatly enhances the practical applicability of our
approach, making it more feasible in resource-constrained
environments where extensive manual annotation or bias
identification could be prohibitively expensive. Although
the need to curate an unbiased training set is not completely
eliminated, the amount of teacher training data required
may be modest enough to be achievable in many practical
scenarios.

4.3.2 Leveraging OOD data for teacher training maintains
effectiveness

In practice, obtaining curated teacher training data from
the same distribution as the student’s may not always be
feasible. We investigate whether teacher models whose
training data is OOD from the student’s can still effectively
guide bias mitigation. For this, we focus on the task of
pneumothorax detection, training the teacher on MIMIC
while the student is trained on CheXpert: both chest X-ray
datasets, but from different institutions.

Figure 9 demonstrates that our approach remains ef-
fective when teacher training data is OOD relative to the
student. Performance improvements scale with teacher data
volume, though OOD teachers require substantially more
training data than in-distribution teachers. For example,

our teacher trained on 10% of the MIMIC training split
is trained on approximately 400 images. By comparison,
we see superior performance in a student trained with an
in-distribution CheXpert teacher trained on 10% of the
CheXpert train split (approximately 140 images). This
increased data requirement likely reflects the underlying
distribution shift between the datasets and the requirement
for the teacher network to have learned robust features that
transfer across institutional differences in imaging protocols
and patient populations. We also observe that ResNet-18
teachers struggle on OOD test sets when they have been
trained on very little data, while ResNet-34 models per-
form better under the same circumstances. This suggests
that the increased model capacity facilitates learning more
generalizable features, particularly on smaller training sets.

These findings enhance practical applicability by demon-
strating that OOD training data can be used to train the
teacher model where it is not possible to curate bias-free
in-distribution data. However, when using OOD data to
train the teacher it is important to consider to larger data
requirements required to achieve comparable performance.

4.3.3 Robustness to shortcut features in teacher training
data

A fundamental assumption of our work up until this point
is the availability of perfectly clean training data for our
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Figure 9: ∆TPR and AUC of a ResNet-34 student trained
on CheXpert with various synthetic shortcuts. Teacher
model is trained on MIMIC at various subset sizes (between
10% - 30%). The student is trained on the full CheXpert
training split with a shortcut prevalence of 95%.

teacher, free of all shortcuts present in the student’s train-
ing data. However, this assumption may be unrealistic in
practice, where subtle biases, such as demographic features
or complex acquisition artifacts, can interact in unexpected
ways that make the identification and removal of all shortcut
features extremely challenging or impossible. To address
this limitation, we investigate the robustness of our ap-
proach when the teacher’s training data contains residual
shortcut features at low prevalence rates.

We evaluate scenarios where shortcut features appear
in 5%, 10%, and 15% of positive-class samples (and in
no negative-class samples) in the teacher’s training data,
while maintaining much higher prevalence in the student’s
training data. This simulates realistic conditions where
shortcut learning mitigation efforts may not be able to
guarantee, even with smaller, manually curated training
sets, that the teacher’s training data is entirely bias-free.
We focus our analysis on the CheXpert dataset, training
ResNet-18 models using the same protocol as in Section
4.1.2.

The visual complexity of the shortcut has a material

impact on the prevalence at which we begin to observe
disparities in performance. Figure 10 illustrates both over-
all performance (AUC) and disparity (∆TPR) of a student
model as the prevalence of shortcut features in the teacher’s
training data increases. For complex shortcuts like the ran-
dom square pattern, even with 15% prevalence in teacher
data, both AUC and ∆TPR of the student remain compa-
rable with the clean baseline. In contrast, simpler shortcuts
(noise and constant square) show greater sensitivity to
teacher data contamination, with noticeable degradation
even at a prevalence of 5%. Such findings illustrate that
very simple shortcut features significantly influence model
learning even at very low prevalence in the training data.

Our findings align with the concept of “availability”
introduced by Hermann et al. (2023), who demonstrate
that deep learning model’s preferentially utilize the most
available features of their training data (i.e., those which
are most easily identifiable), even if they are less predictive
than more challenging features. The greater availability of
our low-level, simpler shortcut features (noise and constant
square) compared to the random square shortcut or any
disease feature leads the network to rely more heavily on
these features, even if they are present in as little as 5% of
positive-class samples.

While the curation of bias-free teacher training data
remains ideal, where the identification and removal of all
possible shortcuts may be impossible or prohibitively time-
consuming and costly, teacher dataset curation should focus
on identifying and removing the most easily identifiable
shortcut features (e.g., treatment devices, hospital logos,
obvious markings). Prioritizing these most available features
provides the greatest benefit for teacher effectiveness.

Discussion

This paper addresses the critical challenge of shortcut learn-
ing in medical image analysis, proposing a novel knowledge
distillation method leveraging teacher models fine-tuned on
a small amount of unbiased, task-relevant data to guide
student models towards robust features of their training
data and away from bias features. Our findings highlight
several key insights and practical advancements:

First, we demonstrate that shortcut learning manifests
as distinct patterns of overconfidence at intermediate net-
work layers, dependent on the type of shortcut involved.
Diffuse shortcuts, such as noise patterns, tend to emerge in
earlier network layers, suggesting that they do not require
significant disambiguation to identify. In contrast, localized
shortcuts like geometric shapes manifest in later layers, in-
dicating they require more complex feature disambiguation
(Figure 4) .

This layer-specific manifestation has important impli-
cations for both shortcut detection and mitigation. The
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Figure 10: AUC ↑ (top) and ∆TPR ↓ (bottom) of ResNet-18 students trained on CheXpert data featuring various
synthetic shortcuts. We vary the prevalence of the shortcut in the data used to train the teacher network. In each case,
the teacher is trained on a subset of 20% of the full training split, and the student is trained on the remaining 80%.
The shortcut feature has a prevalence of 85% in the student’s training data across all experiments. As shortcut reliance
increases, overall performance (AUC) declines and performance disparity (∆TPR) increases.

early appearance of diffuse shortcuts suggests that initial
network layers are particularly susceptible to learning sim-
ple, texture-related spurious correlations. This aligns with
previous findings about the hierarchical nature of neural
network learning, where early layers typically learn basic
features while deeper layers capture more complex patterns
(Baldock et al., 2021; Chen et al., 2020). The observation
that different shortcuts manifest at different depths sug-
gests that effective mitigation strategies should consider the
network’s entire processing pipeline rather than focusing
solely on the final classification layer.

This is supported by our finding that distillation from
an unbiased teacher to the intermediate layers of a student
more effectively mitigates shortcut learning than distillation
based solely on the final output (Table 4).

This finding offers a more nuanced understanding of
how unwanted correlations manifest within the network’s
internal representations, and we believe that these insights
are valuable beyond the specific method we propose here.
For example, such an observation may serve as an effective
tool to monitor the learning and performance of deep neural
networks to identify when they may be relying on easy
spurious features.

A key contribution of our work is demonstrating that
knowledge distillation from a teacher network trained on a
small curated dataset significantly outperforms traditional
de-biasing approaches (Tables 2 & 3). Our method ef-

fectively prevents the student network from learning to
rely on bias features present in their training data, sur-
passing traditional empirical risk minimization and alterna-
tive approaches such as confidence regularization or using
ImageNet-pretrained teachers (Table 6). The approach con-
sistently improves generalization and robustness, evidenced
by substantial performance gains on both in-distribution
and out-of-distribution test sets for the CheXpert and ISIC
datasets (Table 3).

Our results demonstrate that selective intermediate-layer
distillation can be as effective as comprehensive distillation
across all network layers. As shown in Table 4, distilling
knowledge at only 5-9 layers consistently achieved compara-
ble or superior performance to full 17-layer distillation, both
in terms of AUC and ∆TPR. This finding suggests that com-
prehensive distillation across all layers may be unnecessary
in most cases and could even add excessive regularization
to the student network’s learning. While our random layer
sampling approach proved effective, it represents a naive
strategy that does not consider layer-specific contributions
to shortcut learning. Future work should explore princi-
pled methods for identifying the layers where distillation
would be most impactful. A more targeted distillation ap-
proach could further improve the effectiveness of mitigating
shortcut learning.

Importantly, we demonstrate that compact architectures,
such as AlexNet, can effectively guide larger, more sophisti-
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cated networks (ResNet-18 and DenseNet-121), addressing
practical constraints related to training high-capacity mod-
els on small, unbiased datasets (Table 5). This finding is
critical for practical deployment in clinical contexts, where
limited availability of unbiased data and computational
constraints can limit the use of larger, resource-intensive
models.

While our experiments are restricted to CNN-based ar-
chitectures, transformer architectures are increasingly preva-
lent in medical image analysis literature. Many KD methods
designed for CNNs that leverage the feature-space represen-
tations are not directly applicable to transformer networks
due to the architectural differences. We suggest that since
we do not leverage feature vectors directly, our method
could translate to transformer architectures. Recent litera-
ture has demonstrated the efficacy of similar KD approaches
in transformer architectures, suggesting that it would be
possible to apply our framework to transformer architec-
tures (Liu et al., 2024; Wang et al., 2022). However, we
suggest that establishing if the distinctive intermediate-layer
confidence trajectories that we see in CNN models (Figure
4) is also mirrored in transformer architectures.

The requirement for a clean, curated dataset to train
the teacher model presents a potential limitation, though
our approach only necessitates a small amount of training
data for the teacher network. While such an approach
still imposes limitations and necessitates some degree of
manual data curation and knowledge of possible sources of
bias, the burden of doing so for this much smaller subset is
significantly reduced compared to the full training dataset.

One interesting avenue for possible future work would
be the use of generative models to create clean, synthetic
training data for the teacher model. Additionally, self-
supervised or unsupervised techniques for student training
may provide a route to remove the need for an unbiased
teacher model, addressing one of the primary limitations of
this work.

While our synthetic bias features provide a controlled
experimental environment, a critical next step is the in-
vestigation of the effectiveness of our approach against a
broader range of real-world medical image shortcuts, such as
those related to patient demographics. This would further
validate the practical utility of our method across diverse
clinical contexts.

Our work advances both the theoretical understanding
and practical mitigation of shortcut learning in medical
image analysis. The demonstrated effectiveness of small
specialist teachers and selective layer distillation provides
a promising direction for developing robust medical AI sys-
tems that can generalize across healthcare environments.
As these systems become increasingly prevalent in clinical
settings, approaches like ours that can effectively prevent
shortcut learning while maintaining high performance be-

come crucial for ensuring safe and equitable healthcare
delivery.

Acknowledgments

This work was supported by the UKRI EPSRC Centre for
Doctoral Training in Applied Photonics [EP/S022821/1].

Ethical Standards

The work follows appropriate ethical standards in conducting
research and writing the manuscript, following all applicable
laws and regulations regarding treatment of animals or
human subjects.

Conflicts of Interest

We declare we don’t have conflicts of interest.

Data availability

All datasets used in this study are publicly available at the
following repositories:

CheXpert: https://stanfordmlgroup.github.io/
competitions/chexpert/

ISIC: https://challenge.isic-archive.com/dat
a/#2017

SimBA: https://borealisdata.ca/dataset.xhtm
l?persistentId=doi:10.5683/SP3/A9SOBZ

MIMIC: https://www.physionet.org/content/mi
mic-cxr-jpg/2.1.0/

Fitzpatrick17k: https://github.com/mattgroh/fi
tzpatrick17k
The class-balanced subsets used for training the teacher
models can be reproduced following the methodology de-
scribed in Section 3.

References
Kaoutar Ben Ahmed, Lawrence O Hall, Dmitry B Goldgof,

and Ryan Fogarty. Achieving multisite generalization
for cnn-based disease diagnosis models by mitigating
shortcut learning. IEEE Access, 10:78726–78738, 2022.

Shuang Ao, Stefan Rueger, and Advaith Siddharthan.
Confidence-aware calibration and scoring functions for
curriculum learning. In Fifteenth International Conference
on Machine Vision (ICMV 2022), volume 12701, pages
558–567. SPIE, 2023.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur.

465

https://stanfordmlgroup.github.io/competitions/chexpert/
https://stanfordmlgroup.github.io/competitions/chexpert/
https://challenge.isic-archive.com/data/#2017
https://challenge.isic-archive.com/data/#2017
https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/A9SOBZ
https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/A9SOBZ
https://www.physionet.org/content/mimic-cxr-jpg/2.1.0/
https://www.physionet.org/content/mimic-cxr-jpg/2.1.0/
https://github.com/mattgroh/fitzpatrick17k
https://github.com/mattgroh/fitzpatrick17k


Boland, Tsaftaris, and Dahdouh, 2025

Deep learning through the lens of example difficulty. Ad-
vances in Neural Information Processing Systems, 34:
10876–10889, 2021.

Imon Banerjee, Kamanasish Bhattacharjee, John L Burns,
Hari Trivedi, Saptarshi Purkayastha, Laleh Seyyed-
Kalantari, Bhavik N Patel, Rakesh Shiradkar, and Judy
Gichoya. “shortcuts” causing bias in radiology artificial
intelligence: causes, evaluation, and mitigation. Journal
of the American College of Radiology, 20(9):842–851,
2023.

Pedro RAS Bassi, Andrea Cavalli, and Sergio Decherchi.
Explanation is all you need in distillation: Mitigating bias
and shortcut learning. arXiv preprint arXiv:2407.09788,
2024.

Nourhan Bayasi, Jamil Fayyad, Alceu Bissoto, Ghassan
Hamarneh, and Rafeef Garbi. Biaspruner: Debiased
continual learning for medical image classification. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 90–101. Springer,
2024.

Sara Beery, Grant Van Horn, and Pietro Perona. Recogni-
tion in terra incognita. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 456–473,
2018.

Christopher Boland, Owen Anderson, Keith A Goatman,
John Hipwell, Sotirios A Tsaftaris, and Sonia Dahdouh.
All you need is a guiding hand: Mitigating shortcut bias
in deep learning models for medical imaging. In MICCAI
Workshop on Fairness of AI in Medical Imaging, pages
67–77. Springer, 2024a.

Christopher Boland, Keith A Goatman, Sotirios A Tsaftaris,
and Sonia Dahdouh. There are no shortcuts to anywhere
worth going: Identifying shortcuts in deep learning models
for medical image analysis. In Medical Imaging with Deep
Learning, 2024b.
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Ben Glocker, Charles Jones, Mélanie Roschewitz, and Stefan
Winzeck. Risk of bias in chest radiography deep learning

466



Preventing Shortcut Learning through Intermediate Layer Knowledge Distillation

foundation models. Radiology: Artificial Intelligence, 5
(6):e230060, 2023.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M
Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E
Mietus, George B Moody, Chung-Kang Peng, and H Eu-
gene Stanley. Physiobank, physiotoolkit, and physionet:
components of a new research resource for complex phys-
iologic signals. circulation, 101(23):e215–e220, 2000.

Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau,
Rachel Han, Aerin Kim, Arash Koochek, and Omar Badri.
Evaluating deep neural networks trained on clinical im-
ages in dermatology with the fitzpatrick 17k dataset. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1820–1828, 2021.

Matthew Groh, Caleb Harris, Roxana Daneshjou, Omar
Badri, and Arash Koochek. Towards transparency in
dermatology image datasets with skin tone annotations
by experts, crowds, and an algorithm. Proceedings of the
ACM on Human-Computer Interaction, 6(CSCW2):1–26,
2022.

Md Akmal Haidar, Nithin Anchuri, Mehdi Rezagholizadeh,
Abbas Ghaddar, Philippe Langlais, and Pascal Poupart.
Rail-kd: Random intermediate layer mapping for knowl-
edge distillation. arXiv preprint arXiv:2109.10164, 2021.

Katherine L Hermann, Hossein Mobahi, Thomas Fel, and
Michael C Mozer. On the foundations of shortcut learning.
arXiv preprint arXiv:2310.16228, 2023.

Geoffrey Hinton. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2015.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Sil-
viana Ciurea-Ilcus, Chris Chute, Henrik Marklund, Behzad
Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert:
A large chest radiograph dataset with uncertainty labels
and expert comparison. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages
590–597, 2019.

Alistair Johnson, Tom Pollard, Roger Mark, Seth Berkowitz,
and Steven Horng. Mimic-cxr database. PhysioNet10,
13026:C2JT1Q, 2024.

Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz,
Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying
Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-
identified publicly available database of chest radiographs
with free-text reports. Scientific data, 6(1):317, 2019.

Patrik Kenfack, Ulrich Äıvodji, and Samira Ebrahimi Kahou.
Adaptive group robust ensemble knowledge distillation.
arXiv preprint arXiv:2411.14984, 2024.

Nicholas Konz and Maciej A Mazurowski. Reverse engi-
neering breast mris: Predicting acquisition parameters
directly from images. In Medical Imaging with Deep
Learning, pages 829–845. PMLR, 2024.

Yi Li and Nuno Vasconcelos. Repair: Removing representa-
tion bias by dataset resampling. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 9572–9581, 2019.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghu-
nathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and
Chelsea Finn. Just train twice: Improving group ro-
bustness without training group information. In Interna-
tional Conference on Machine Learning, pages 6781–6792.
PMLR, 2021.

Ruiping Liu, Kailun Yang, Alina Roitberg, Jiaming Zhang,
Kunyu Peng, Huayao Liu, Yaonan Wang, and Rainer
Stiefelhagen. Transkd: Transformer knowledge distillation
for efficient semantic segmentation. IEEE Transactions
on Intelligent Transportation Systems, 2024.

Nicolas M Müller, Jochen Jacobs, Jennifer Williams, and
Konstantin Böttinger. Localized shortcut removal. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3721–3725, 2023.

Nihal Murali, Aahlad Manas Puli, Ke Yu, Rajesh Ranganath,
et al. Shortcut learning through the lens of early training
dynamics. 2022.

Vincent Olesen, Nina Weng, Aasa Feragen, and Eike Pe-
tersen. Slicing through bias: Explaining performance
gaps in medical image analysis using slice discovery meth-
ods. In MICCAI Workshop on Fairness of AI in Medical
Imaging, pages 3–13. Springer, 2024.

Cathy Ong Ly, Balagopal Unnikrishnan, Tony Tadic, Tirth
Patel, Joe Duhamel, Sonja Kandel, Yasbanoo Moayedi,
Michael Brudno, Andrew Hope, Heather Ross, et al.
Shortcut learning in medical ai hinders generalization:
method for estimating ai model generalization without
external data. NPJ Digital Medicine, 7(1):124, 2024.

Nicholas Petrick, Weijie Chen, Jana G Delfino, Brandon D
Gallas, Yanna Kang, Daniel Krainak, Berkman Sahiner,
and Ravi K Samala. Regulatory considerations for medical
imaging ai/ml devices in the united states: concepts and
challenges. Journal of Medical Imaging, 10(5):051804–
051804, 2023.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto,
and Percy Liang. Distributionally robust neural net-
works for group shifts: On the importance of regu-
larization for worst-case generalization. arXiv preprint
arXiv:1911.08731, 2019.

467



Boland, Tsaftaris, and Dahdouh, 2025

Laleh Seyyed-Kalantari, Haoran Zhang, Matthew BA Mc-
Dermott, Irene Y Chen, and Marzyeh Ghassemi. Under-
diagnosis bias of artificial intelligence algorithms applied
to chest radiographs in under-served patient populations.
Nature medicine, 27(12):2176–2182, 2021.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Pra-
teek Jain, and Praneeth Netrapalli. The pitfalls of simplic-
ity bias in neural networks. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33,
pages 9573–9585. Curran Associates, Inc., 2020.

Raissa Souza, Anthony Winder, Emma AM Stanley, Vibu-
jithan Vigneshwaran, Milton Camacho, Richard Camicioli,
Oury Monchi, Matthias Wilms, and Nils D Forkert. Identi-
fying biases in a multicenter mri database for parkinson’s
disease classification: Is the disease classifier a secret
site classifier? IEEE Journal of Biomedical and Health
Informatics, 2024.

Emma AM Stanley, Matthias Wilms, and Nils D Forkert. A
flexible framework for simulating and evaluating biases
in deep learning-based medical image analysis. In Inter-
national Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 489–499. Springer,
2023.

Emma AM Stanley, Raissa Souza, Anthony J Winder,
Vedant Gulve, Kimberly Amador, Matthias Wilms, and
Nils D Forkert. Towards objective and systematic evalua-
tion of bias in artificial intelligence for medical imaging.
Journal of the American Medical Informatics Association,
31(11):2613–2621, 2024.

Emma AM Stanley, Raissa Souza, Matthias Wilms, and
Nils D Forkert. Where, why, and how is bias learned in
medical image analysis models? a study of bias encod-
ing within convolutional networks using synthetic data.
EBioMedicine, 111, 2025.

Abdel Aziz Taha, Leonhard Hennig, and Petr Knoth. Con-
fidence estimation of classification based on the distribu-
tion of the neural network output layer. arXiv preprint
arXiv:2210.07745, 2022.

Huan Tian, Bo Liu, Tianqing Zhu, Wanlei Zhou, and S Yu
Philip. Distilling fair representations from fair teachers.
IEEE Transactions on Big Data, 2024.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna
Gurevych. Mind the trade-off: Debiasing nlu models
without degrading the in-distribution performance. arXiv
preprint arXiv:2005.00315, 2020.

Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu,
and Yujiu Yang. Attention probe: Vision transformer
distillation in the wild. In ICASSP 2022-2022 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 2220–2224. IEEE, 2022.

Ryan Wang, Po-Chih Kuo, Li-Ching Chen, Kenneth Patrick
Seastedt, Judy Wawira Gichoya, and Leo Anthony Celi.
Drop the shortcuts: image augmentation improves fair-
ness and decreases ai detection of race and other de-
mographics from medical images. EBioMedicine, 102,
2024.

Zeyu Wang, Klint Qinami, Ioannis Christos Karakozis, Kyle
Genova, Prem Nair, Kenji Hata, and Olga Russakovsky.
Towards fairness in visual recognition: Effective strategies
for bias mitigation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 8919–8928, 2020.

Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James
Zou. Discover and cure: Concept-aware mitigation of spu-
rious correlation. In International Conference on Machine
Learning, pages 37765–37786. PMLR, 2023.

Yawen Wu, Dewen Zeng, Xiaowei Xu, Yiyu Shi, and Jing-
tong Hu. Fairprune: Achieving fairness through pruning
for dermatological disease diagnosis. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 743–753. Springer, 2022.

Yuyang Xue, Junyu Yan, Raman Dutt, Fasih Haider, Jing-
shuai Liu, Steven McDonagh, and Sotirios A Tsaftaris.
Bmft: Achieving fairness via bias-based weight masking
fine-tuning. In MICCAI Workshop on Fairness of AI in
Medical Imaging, pages 98–108. Springer, 2024.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localiz-
able features. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 6023–6032,
2019.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
Mitigating unwanted biases with adversarial learning. In
Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pages 335–340, 2018.

Haoran Zhang, Natalie Dullerud, Karsten Roth, Lauren
Oakden-Rayner, Stephen Pfohl, and Marzyeh Ghassemi.
Improving the fairness of chest x-ray classifiers. In Gerardo
Flores, George H Chen, Tom Pollard, Joyce C Ho, and
Tristan Naumann, editors, Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of Pro-
ceedings of Machine Learning Research, pages 204–233.
PMLR, 07–08 Apr 2022.

468



Preventing Shortcut Learning through Intermediate Layer Knowledge Distillation

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk mini-
mization. arXiv preprint arXiv:1710.09412, 2017.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pages 13001–13008, 2020.

469



Boland, Tsaftaris, and Dahdouh, 2025

Appendix A. Shortcut reliance results in
intermediate-layer overconfidence

This section provides comprehensive layer-wise confidence
analysis extending our main findings from Section 4.1.1
to additional architectures and datasets, demonstrating
the generalizability of our core observation that shortcut
learning manifests distinctly across network layers across
architectures and datasets.

Figures 11 and 12 present intermediate layer confidence
for ResNet-18 and DenseNet-121 architectures. In our main
experiments, we use validation sets where shortcuts are
balanced across classes (present equally in both positive
and negative samples). Under these conditions, we observe
that the overconfidence signal in DenseNet-121 is notice-
ably weaker than in ResNet-18. We hypothesize that the
substantially larger capacity of DenseNet-121, combined
with early stopping on validation data where shortcuts no
longer correlate with class labels, prevents the network from
fully developing shortcut dependencies.

To examine how validation set composition affects these
patterns, Figures 13 and 14 show the same architectures
trained with validation sets that maintain the same shortcut-
class correlations as the training data. Under these condi-
tions, the overconfidence signal becomes much more pro-
nounced even in high-capacity models like DenseNet-121,
as the validation setup no longer provides feedback that
discourages shortcut reliance during training.

Appendix B. Overall performance

This section provides detailed performance breakdowns, in-
cluding AUC values and True Positive Rate (TPR) analysis
for bias-aligned and bias-contrasting samples, supplement-
ing the ∆TPR analysis presented in Section 4.1.2 of the
main text.

Table 7 presents AUC values across all experimental
conditions, showing that our method consistently achieves
performance competitive with the clean baseline even when
trained on heavily biased data. Notably, our approach main-
tains stable performance across varying bias prevalence rates,
while competing methods show significant degradation at
higher bias levels.

Tables 8 and 9 provide absolute TPR values for CheX-
pert and ISIC datasets respectively, breaking down perfor-
mance for bias-aligned samples (where shortcut presence
matches training correlation with the class-label) and bias-
contrasting samples (where shortcuts oppose training cor-
relation with the class-label). We demonstrate that our
method achieves more balanced performance across both
sample types, indicating reduced reliance on shortcut fea-
tures for prediction. We note that our method demonstrates
lower TPR for bias-aligned samples compared to other meth-

ods, and that the better TPR seen in other models is likely
a result of shortcut reliance, causing a TPR much higher
than the clean baseline. We consistently observe that our
method achieves a TPR for biased-aligned samples that is
closest to the clean baseline.

Appendix C. Teacher sensitivity to shortcut
features

Here, we highlight the sensitivity of our teacher networks to
corruption from shortcut features. Figure 15 supplements
our findings in Section 4.3.3 and supports our argument that
practitioners should prioritize removing the most available
(easily identifiable) shortcuts from the teacher training data
as these cause the most significant harm.
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Figure 11: Per-layer confidence of ResNet-18 students trained on ISIC data featuring various synthetic shortcuts.
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Figure 12: Per-layer confidence of DenseNet-121 students trained on CheXpert data featuring various synthetic shortcuts.
Shortcut prevalence in the train split is 100%. In the validation and test split, the shortcut feature is balanced between
classes.
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Figure 13: Per-layer confidence of DenseNet-121 students trained on CheXpert data featuring various synthetic shortcuts.
Shortcut prevalence in the train and validation splits is 100%. In the test split, the shortcut feature is balanced between
classes.
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Figure 14: Per-layer confidence of DenseNet-121 students trained on ISIC data featuring various synthetic shortcuts.
Shortcut prevalence in the train and validation splits is 100%. In the test split, the shortcut feature is balanced between
classes.
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Table 7: AUC ↑ of a ResNet-18 trained on data with various bias prevalence rates. Results are presented as Mean±Std
over 5-fold cross-validation. Models are marked as best and second-best.

Prev. Model CheXpert ISIC

(%) Noise Square (C) Square (R) Noise Square (C) Square (R)

0 Baseline 0.709±0.024 0.755±0.013 0.752±0.013 0.749±0.024 0.809±0.019 0.808±0.019

100

ERM 0.489±0.012 0.533±0.007 0.554±0.005 0.521±0.010 0.600±0.011 0.612±0.007
MixUp 0.509±0.007 0.539±0.008 0.549±0.005 0.489±0.012 0.555±0.028 0.591±0.014
CutOut 0.498±0.029 0.548±0.010 0.583±0.011 0.521±0.023 0.627±0.013 0.639±0.014
CutMix 0.529±0.007 0.680±0.025 0.759±0.011 0.516±0.015 0.753±0.038 0.784±0.017

Aug 0.483±0.009 0.585±0.017 0.555±0.010 0.518±0.006 0.731±0.017 0.626±0.014
Ours 0.689±0.044 0.747±0.008 0.761±0.010 0.775±0.023 0.777±0.024 0.806±0.016

95

ERM 0.579±0.009 0.597±0.007 0.595±0.015 0.602±0.032 0.645±0.024 0.651±0.028
MixUp 0.559±0.008 0.578±0.008 0.603±0.024 0.542±0.043 0.609±0.021 0.603±0.024
CutOut 0.568±0.013 0.599±0.013 0.611±0.040 0.608±0.024 0.641±0.011 0.611±0.040
CutMix 0.567±0.020 0.739±0.024 0.760±0.020 0.587±0.029 0.768±0.031 0.760±0.020

Aug 0.578±0.014 0.628±0.028 0.597±0.015 0.608±0.026 0.745±0.010 0.633±0.013
GDRO 0.566±0.008 0.585±0.010 0.613±0.014 0.595±0.012 0.631±0.008 0.673±0.015
JTT 0.565±0.007 0.588±0.004 0.602±0.018 0.591±0.026 0.630±0.015 0.672±0.016
Ours 0.693±0.029 0.756±0.005 0.756±0.011 0.778±0.020 0.797±0.015 0.803±0.009

85

ERM 0.621±0.018 0.625±0.018 0.661±0.013 0.694±0.018 0.751±0.016 0.748±0.030
MixUp 0.598±0.017 0.630±0.030 0.697±0.021 0.664±0.034 0.687±0.019 0.706±0.052
CutOut 0.596±0.018 0.639±0.026 0.683±0.018 0.663±0.035 0.731±0.040 0.739±0.029
CutMix 0.604±0.015 0.742±0.049 0.766±0.016 0.634±0.015 0.766±0.039 0.796±0.019

Aug 0.636±0.034 0.677±0.040 0.661±0.035 0.667±0.039 0.768±0.018 0.694±0.041
GDRO 0.616±0.012 0.649±0.015 0.725±0.015 0.655±0.027 0.732±0.022 0.780±0.018
JTT 0.780±0.018 0.659±0.008 0.699±0.010 0.656±0.025 0.721±0.022 0.771±0.018
Ours 0.708±0.037 0.756±0.008 0.760±0.015 0.798±0.024 0.782±0.031 0.787±0.026

75

ERM 0.681±0.023 0.686±0.038 0.718±0.015 0.711±0.028 0.763±0.013 0.784±0.013
MixUp 0.677±0.025 0.705±0.030 0.746±0.026 0.673±0.018 0.720±0.021 0.757±0.016
CutOut 0.675±0.027 0.707±0.026 0.744±0.011 0.715±0.034 0.726±0.020 0.757±0.026
CutMix 0.662±0.029 0.748±0.027 0.759±0.031 0.696±0.025 0.768±0.030 0.781±0.029

Aug 0.676±0.026 0.712±0.041 0.701±0.041 0.722±0.029 0.766±0.022 0.731±0.035
GDRO 0.692±0.010 0.731±0.012 0.768±0.010 0.696±0.013 0.770±0.008 0.796±0.008
JTT 0.687±0.020 0.730±0.017 0.751±0.026 0.694±0.009 0.769±0.011 0.794±0.012
Ours 0.709±0.039 0.760±0.015 0.762±0.017 0.792±0.023 0.773±0.013 0.781±0.029
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Table 8: TPR ↑ of bias-aligned and bias-contrasting samples for a ResNet-18 trained on CheXpert data with various
bias prevalence rates. Results are presented as Mean±Std over 5-fold cross-validation. Models are marked as best and
second-best. When multiple models achieve identical performance, all are highlighted.

Prev. Model Noise Square (C) Square (R)

(%) Bias-Aligned Bias-Contrasting Bias-Aligned Bias-Contrasting Bias-Aligned Bias-Contrasting

0 Baseline 0.942±0.036 0.811±0.069 0.804±0.080 0.811±0.069 0.822±0.069 0.811±0.069

100

ERM 1.000±0.000 0.000±0.000 1.000±0.000 0.000±0.000 0.995±0.005 0.004±0.007
MixUp 1.000±0.000 0.013±0.026 0.998±0.003 0.000±0.000 0.974±0.018 0.004±0.007
CutOut 1.000±0.000 0.001±0.001 1.000±0.000 0.000±0.000 0.982±0.011 0.004±0.009
CutMix 1.000±0.000 0.007±0.005 0.929±0.045 0.427±0.114 0.894±0.014 0.765±0.015

Aug 0.957±0.092 0.000±0.000 0.996±0.004 0.017±0.015 0.982±0.011 0.004±0.009
Ours 0.942±0.033 0.565±0.161 0.862±0.005 0.783±0.017 0.839±0.063 0.805±0.050

95

ERM 0.995±0.010 0.055±0.022 0.993±0.011 0.081±0.088 0.973±0.014 0.182±0.105
MixUp 0.997±0.006 0.070±0.107 0.992±0.007 0.005±0.010 0.948±0.015 0.253±0.100
CutOut 0.997±0.004 0.047±0.051 0.987±0.013 0.074±0.061 0.959±0.007 0.330±0.127
CutMix 0.999±0.001 0.025±0.029 0.908±0.022 0.583±0.047 0.845±0.029 0.709±0.070

Aug 0.997±0.003 0.098±0.075 0.962±0.039 0.183±0.132 0.978±0.014 0.159±0.079
JTT 1.000±0.000 0.018±0.011 0.999±0.001 0.054±0.031 0.956±0.080 0.283±0.041

GDRO 1.000±0.000 0.014±0.010 0.997±0.002 0.019±0.014 0.981±0.011 0.279±0.096
Ours 0.935±0.037 0.563±0.092 0.862±0.031 0.773±0.019 0.810±0.051 0.775±0.021

85

ERM 0.960±0.039 0.215±0.167 0.974±0.013 0.239±0.115 0.926±0.047 0.503±0.106
MixUp 0.985±0.011 0.286±0.119 0.962±0.035 0.284±0.117 0.903±0.022 0.566±0.031
CutOut 0.988±0.009 0.178±0.072 0.977±0.014 0.320±0.204 0.938±0.029 0.557±0.127
CutMix 0.979±0.021 0.246±0.106 0.886±0.039 0.675±0.050 0.835±0.036 0.737±0.037

Aug 0.957±0.039 0.292±0.208 0.954±0.007 0.437±0.197 0.927±0.030 0.397±0.144
JTT 0.987±0.005 0.268±0.034 0.968±0.008 0.435±0.030 0.933±0.029 0.555±0.144

GDRO 0.983±0.006 0.224±0.033 0.977±0.011 0.353±0.057 0.922±0.012 0.654±0.071
Ours 0.929±0.042 0.581±0.119 0.861±0.060 0.755±0.030 0.860±0.026 0.801±0.044

75

ERM 0.879±0.099 0.434±0.193 0.903±0.125 0.516±0.077 0.910±0.025 0.708±0.078
MixUp 0.944±0.017 0.564±0.130 0.888±0.066 0.557±0.088 0.849±0.044 0.692±0.032
CutOut 0.941±0.043 0.481±0.087 0.855±0.119 0.494±0.187 0.897±0.021 0.729±0.063
CutMix 0.926±0.045 0.399±0.085 0.852±0.072 0.714±0.091 0.819±0.028 0.763±0.012

Aug 0.909±0.051 0.463±0.171 0.878±0.059 0.470±0.205 0.849±0.032 0.505±0.071
JTT 0.949±0.023 0.497±0.052 0.928±0.025 0.667±0.036 0.871±0.028 0.725±0.060

GDRO 0.951±0.004 0.444±0.015 0.904±0.023 0.575±0.022 0.866±0.022 0.752±0.019
Ours 0.926±0.040 0.561±0.162 0.878±0.029 0.751±0.042 0.854±0.044 0.793±0.056
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Table 9: TPR ↑ of bias-aligned and bias-contrasting samples for a ResNet-18 trained on ISIC data with various bias
prevalence rates. Results are presented as Mean±Std over 5-fold cross-validation. Models are marked as best and
second-best. When multiple models achieve identical performance, all are highlighted.

Prev. Model Noise Square (C) Square (R)

(%) Bias-Aligned Bias-Contrasting Bias-Aligned Bias-Contrasting Bias-Aligned Bias-Contrasting

0 Baseline 0.449±0.113 0.858±0.027 0.802±0.030 0.858±0.027 0.808±0.036 0.858±0.027

100

ERM 1.000±0.000 0.000±0.000 1.000±0.000 0.223±0.093 1.000±0.000 0.156±0.168
MixUp 0.998±0.004 0.000±0.000 1.000±0.000 0.127±0.150 0.990±0.012 0.238±0.146
CutOut 1.000±0.000 0.000±0.000 1.000±0.000 0.552±0.065 0.986±0.016 0.712±0.066
CutMix 1.000±0.000 0.000±0.000 0.905±0.032 0.546±0.083 0.856±0.021 0.729±0.050

Aug 1.000±0.000 0.000±0.000 0.961±0.019 0.800±0.062 0.971±0.023 0.467±0.136
Ours 0.792±0.066 0.771±0.09 0.829±0.044 0.852±0.028 0.829±0.042 0.900±0.016

95

ERM 1.000±0.000 0.041±0.019 0.993±0.010 0.132±0.026 0.987±0.020 0.285±0.097
MixUp 0.973±0.047 0.021±0.019 0.998±0.004 0.062±0.035 0.984±0.020 0.229±0.081
CutOut 1.000±0.000 0.054±0.047 0.985±0.023 0.406±0.263 0.973±0.027 0.544±0.144
CutMix 0.998±0.004 0.076±0.079 0.909±0.017 0.598±0.098 0.880±0.024 0.757±0.050

Aug 0.996±0.008 0.062±0.059 0.965±0.015 0.761±0.079 0.985±0.014 0.429±0.126
GDRO 0.996±0.005 0.029±0.017 0.987±0.005 0.188±0.035 0.980±0.010 0.503±0.024
JTT 1.000±0.000 0.054±0.031 0.991±0.011 0.198±0.049 0.987±0.014 0.482±0.070
Ours 0.858±0.042 0.781±0.062 0.898±0.024 0.798±0.035 0.873±0.031 0.821±0.036

85

ERM 0.958±0.008 0.685±0.034 0.931±0.020 0.555±0.104 0.954±0.011 0.660±0.083
MixUp 0.952±0.016 0.398±0.159 0.939±0.031 0.449±0.100 0.905±0.043 0.511±0.084
CutOut 0.952±0.024 0.442±0.215 0.954±0.022 0.483±0.155 0.933±0.015 0.683±0.130
CutMix 0.970±0.025 0.317±0.113 0.895±0.033 0.681±0.074 0.871±0.025 0.785±0.040

Aug 0.950±0.029 0.274±0.185 0.883±0.056 0.768±0.066 0.913±0.051 0.594±0.123
GDRO 0.980±0.010 0.283±0.083 0.945±0.034 0.609±0.052 0.903±0.039 0.806±0.017
JTT 0.978±0.011 0.275±0.119 0.950±0.019 0.600±0.058 0.911±0.029 0.753±0.037
Ours 0.855±0.033 0.792±0.100 0.863±0.047 0.817±0.032 0.861±0.031 0.811±0.086

75

ERM 0.923±0.022 0.670±0.048 0.829±0.041 0.616±0.051 0.894±0.019 0.721±0.083
MixUp 0.948±0.019 0.477±0.168 0.927±0.035 0.645±0.126 0.902±0.017 0.732±0.040
CutOut 0.933±0.012 0.668±0.189 0.956±0.014 0.816±0.047 0.896±0.041 0.724±0.136
CutMix 0.910±0.040 0.580±0.098 0.867±0.029 0.714±0.056 0.863±0.026 0.793±0.056

Aug 0.915±0.034 0.591±0.155 0.863±0.047 0.714±0.078 0.894±0.048 0.636±0.118
GDRO 0.942±0.019 0.497±0.051 0.912±0.012 0.730±0.021 0.892±0.009 0.834±0.018
JTT 0.940±0.020 0.481±0.065 0.923±0.012 0.719±0.027 0.875±0.016 0.789±0.036
Ours 0.829±0.041 0.840±0.060 0.875±0.035 0.730±0.099 0.869±0.041 0.805±0.032
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Figure 15: AUC and ∆TPR of ResNet-18 teacher networks
trained on 20% subsets of the CheXpert, corrupted with
shortcut features at various prevalence. All test sets feature
the same shortcut feature as is present in the train split,
evenly distributed between samples belonging to each class,
and therefore is no longer a useful predictive feature.
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