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Abstract
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually
focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive
understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively
segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific
model design and data harmonization between the source and the target domain. This is accomplished by employing
disentanglement techniques to independently manipulate different image properties, allowing them to move from one
domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during
adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation.
Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types.
Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices.
The results highlight our framework’s robustness and versatility, demonstrating the potential of domain adaptation
methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available
at https://github.com/i-vesseg/MultiVesSeg.
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1. Introduction

Segmenting the cerebrovascular tree is crucial for accu-
rately diagnosing and treating several brain-related con-
ditions. The complex and intricate morphology of brain
vessels requires the usage of multiple imaging modalities.
Each modality has specific properties targeting a vessel
type: angiographies focus on visualizing the arteries in the

brain, while venographies primarily examine the veins. This
variety of imaging modalities, combined with the different
acquisition protocols and scanners utilized in clinical centers,
poses challenges for automatic segmentation models, which
struggle to generalize across different domains, i.e., varying
centers, modalities, or vessel types (arteries or veins). When
trained on a single source domain, models may become sus-
ceptible to distribution shifts, i.e., their performance may
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Figure 1: Maximum intensity projection (MIP) of a magnetic resonance angiography (left), MIP of a computed
tomography angiography (center), and minimum intensity projection (mIP) of a magnetic resonance venography (right).
All images are skull-stripped and viewed from the axial perspective.

decline when transitioning from one domain to another.
At the same time, developing, deploying, and maintaining
a segmentation model for each domain is impractical, as
collecting medical images is costly, and data annotation is
laborious and demands a high level of expertise.

Distribution shift has been approached from various
perspectives, depending on the amount of labeled data
available. Among the different approaches, domain adap-
tation (DA) aims to transfer predictive knowledge from a
source domain with abundant labeled data to a target do-
main with limited or no labeled data (Guan and Liu, 2022).
Despite numerous successful attempts to apply domain
adaptation techniques in medical imaging, no current work
has focused on brain vessel segmentation. Two factors may
explain this. First, regardless of the number of modalities
being examined, vessel segmentation remains challenging
due to the relatively small size of vessels within a large
image volume (Dang et al., 2022), which can easily be
merged with the background during adaptation (Tsai et al.,
2018). Second, the domain gap between existing modalities
can vary widely.

The differences between the source and target data,
referred to as domain-specific properties, can significantly
impact the overall image appearance, encompassing vari-
ous volume-related properties (e.g., spatial resolution, pixel
spacing, image intensity range, contrast, or noise level).
Moreover, differences can also manifest at a more localized
level, impacting specific objects of interest: when examin-
ing vessel-related details in a brain scan, domain-specific
variations can affect the vessels’ intensities (e.g., vessels
may be dark or bright), textures (e.g., vessels may have
smooth or irregular surfaces), locations (e.g., vessels may

be central or peripheral), shapes (e.g., vessels may be thick
or thin), and densities (e.g., vessels may be more or less
numerous).

Figure 1 illustrates the visual disparity between a mag-
netic resonance angiography (MRA), a computed tomogra-
phy angiography (CTA), and a magnetic resonance venog-
raphy (MRV). This disparity can vary between different
modalities. For example, arteries in MRA and CTA mainly
differ in intensity distribution, as in the former, they stand
out due to their high-intensity values, while in the latter,
they blend with extracerebral tissue, making them harder to
distinguish. Instead, the MRA-to-MRV domain gap also in-
cludes dissimilarities in the locations, shapes, and densities
of the cerebral vasculature: although there is a correlation
between the morphology of arteries and veins, the former
are less numerous, occupy deeper positions within the brain
tissue, and generally have larger sizes.

The larger the dissimilarities between source and target
domains are, the more challenging it becomes to establish
an image translation between the domains that facilitates
effective segmentation. Indeed, translations from the target
domain to the source cannot be performed fully, i.e., adapt-
ing all domain-specific properties to mimic the appearance
of source images, as this would also involve vessel-related
properties such as shapes, positions, and densities, which
must be kept unchanged not to affect the final segmen-
tation. To perform translations in a label-preserving way,
i.e., generating hybrids between the source and the target
domains, which only modify the necessary domain-specific
properties to improve segmentation, we believe that addi-
tional disentangling mechanisms are required. To the best
of our knowledge, these mechanisms are currently lacking,
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which would facilitate adapting vessels from diverse origins
to a standard labeled source domain for segmentation.

In this work, we aim to develop a 3D brain vessel seg-
mentation tool that can be applied out-of-the-box across
any new target domain, avoiding domain-specific model de-
sign, which often demands significant expertise and is highly
dependent on dataset properties (Isensee et al., 2021). To
this end, we build on image-to-image translation and seman-
tic segmentation techniques to formulate a semi-supervised
domain adaptation framework that learns a disentangled rep-
resentation of image properties, allowing us to handle them
independently. The disentangled representation enables
us to introduce a novel mechanism of label preservation.
This mechanism identifies and translates only a subset of
all the domain-specific features, discarding the ones that
may compromise spatial information, such as vessel shapes
and locations, which is crucial for correct segmentation.
As a result, our method eliminates the need for ad-hoc
pre-processing steps commonly employed to homogenize
image appearance across modalities, a process known in
the literature as data harmonization (Eshaghzadeh Tor-
bati et al., 2021), thereby enhancing the flexibility of our
model and simplifying domain adaptation across different
domains. To assess model performance when enlarging the
domain gap, we conduct evaluations in three increasingly
complex scenarios: multi-center MRA, MRA-to-CTA, and
MRA-to-MRV adaptation for vessel segmentation. Finally,
we investigate the properties of the proposed framework
through extensive ablation studies focusing on determining
the optimal number of source and target annotations, as-
sessing the efficacy of disentanglement, and testing different
architectural choices that may impact the performance of
our model.

While disentanglement techniques have been employed
in broader computer vision contexts as noted by prior works
such as DRANet (Lee et al., 2021) and DRL-STNet (Lin
et al., 2024), our approach introduces novel contributions
specifically tailored to cerebrovascular segmentation. Un-
like previous methods that primarily focus on disentan-
gling content and style for general anatomical structures,
our framework uniquely separates vessel-specific proper-
ties (intensities, textures, shapes, locations, and densities)
from volume-related properties. This fine-grained disen-
tanglement is crucial for cerebrovascular structures due
to their intricate morphology and the complexity of do-
main gaps between vessel imaging modalities. Our method
tackles the challenging problem of bridging the gap be-
tween fundamentally different vascular structures (arteries
and veins) with distinct anatomical characteristics, advanc-
ing beyond existing image-to-image translation methods
like XA-Sim2Real (Zhang et al., 2024) that typically ad-
dress appearance transfer between similar vessel types. By
leveraging path length regularization in a StyleGAN-based

architecture (Karras et al., 2020), we create a semantically
organized latent space where different directions correspond
to controllable aspects of variation, enabling independent
manipulation of vessel intensities and textures while pre-
serving spatial arrangements and geometrical properties.
Our approach is further distinguished by its two-phase train-
ing strategy that limits adversarial learning to only the
initial phase, ensuring stable convergence when navigat-
ing extreme domain shifts. Additionally, our integrated
label-synthesis branch enforces label-preserving translations
focused on vessel geometries without requiring a separate
segmentation module, reducing architectural design com-
plexity. Our comprehensive evaluation across progressively
wider domain gaps (multi-center MRA, MRA-to-CTA, and
MRA-to-MRV) demonstrates the framework’s effectiveness
in scenarios that haven’t been previously attempted in vessel
segmentation domain adaptation.

This paper is an extension of preliminary work (Galati
et al., 2023), significantly advancing our previous research
through several key contributions.

• We have reformulated our framework to function as an
out-of-the-box tool, eliminating the need for domain-
specific design choices or ad-hoc data harmonization
between source and target domains.

• We introduce a label preservation mechanism that ensures
image-to-image translation preserves vessels shapes and
locations when navigating wide domain gaps.

• We extend our evaluation framework to include two ad-
ditional clinically relevant scenarios: multi-center MRA
adaptation and MRA-to-CTA adaptation, alongside our
previous MRA-to-MRV scenario, allowing systematic anal-
ysis across progressively wider domain gaps.

• We conduct new ablation studies investigating key aspects
of our framework, including the impact of architectural
choices, the minimum number of annotated samples
required for effective adaptation, and the contribution of
feature disentanglement to segmentation accuracy.

2. Related Work
2.1 Multi-modal brain vessel segmentation
The segmentation of the 3D cerebrovascular vessels has
been widely explored in the literature (Chen et al., 2023),
encompassing different modalities and vessel types (Wilson
and Noble, 1999; Bériault et al., 2015; Meijs et al., 2017).
Nonetheless, only a few works address multiple domains.
In Passat et al. (2007), morphological operators simultane-
ously capture blood signals from paired time-of-flight MRA
and T1-weighted MR sequences. In Zuluaga et al. (2015),
a multi-scale tensor voting framework accounts for a voxel’s
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scale and vicinity in paired CTA and 3D phase-contrast MR
images. Despite developing a unified artery segmentation
algorithm across image modalities, both studies (Passat
et al., 2007; Zuluaga et al., 2015) require modality-specific
initialization and parameter tuning. Recently, Tetteh et al.
(2020) introduced an angiography segmentation model us-
ing 2D orthogonal cross-hair filters and a novel loss function
for class imbalance with false-positive rate correction. After
pre-training on synthetic data, the model is fine-tuned to
segment human MRA data and CTA microscopy scans of
rat brains, requiring pixel-wise annotations of each imaging
modality. Dang et al. (2022) propose a weak patch-based
deep learning approach for artery and vein segmentation
from two MR sequences. A common limitation of these
two methods is that they require separate training (or fine-
tuning) for each domain. Chen et al. (2018) try to bypass
domain-specific manual annotation by leveraging a paired
dataset of MRA-CTA scans to generate annotations via
registration, thresholding, and size filtering. However, the
method faces limitations arising from misalignment between
arteries after registration and the difficulty of acquiring
paired datasets.

2.2 Domain Adaptation

Unsupervised domain adaptation (UDA) has been applied
to the segmentation of various organs, such as liver (Hong
et al., 2022a), lung (Li et al., 2022), heart (Chen et al., 2019;
Wu and Zhuang, 2021), abdominal structures (Hong et al.,
2022b), and brain substructures (Billot et al., 2023). The
adaptation from the source to the target distribution can
occur at different levels: input-level (or image-level) (Yao
et al., 2022a), feature-level (Wu et al., 2022), output-
level (Billot et al., 2023), or as a combination of two of
the previous categories (Chen et al., 2019). In recent years,
unsupervised image-alignment methodologies have surged,
driven by the advancements in neural style transfer (Gatys
et al., 2015) and image-to-image translation (Zhu et al.,
2017), allowing for the extraction and combination of im-
age content and style. Many image-alignment approaches,
however, involve intricate architectures with multiple compo-
nents (Ning et al., 2021) and heavily depend on adversarial
training (Chen et al., 2019). Due to these factors, their
behavior is known to be often unstable and difficult to
interpret. To better guide the learning process, researchers
have recently been redirecting their attention from fully
unsupervised to semi-supervised DA for medical segmenta-
tion (Liu et al., 2022; Gu et al., 2023), including limited
target annotations into the training set.

In the specific context of DA for vessel segmentation,
Peng et al. (2022) leverages two segmentation models,
each tailored to particular ophthalmic imaging modalities,
operating within a UDA learning module to enhance the ac-

curacy of 2D retinal vessel segmentation. Gu et al. (2023)
introduce a semi-supervised DA method designed for 2D
cross-anatomy segmentation of coronary arteries and reti-
nal vessels, integrating domain-specific batch normalization
and cross-domain contrastive learning into a self-ensembling
mean-teacher framework. Despite achieving promising re-
sults, the former technique might not be well-suited for
large domain gaps due to the substantial disparity between
brain arteries and veins. At the same time, the latter might
face challenges due to the three-dimensional intricacies of
the cerebrovascular structure.

2.3 Domain Generalization

The main limitation of DA is the requirement for repeated
training with each novel target domain. Domain general-
ization enables a good performance across a wide range of
target domains without the need to retrain (Zhou et al.,
2023). Among these, Lyu et al. (2022) propose a data
augmentation strategy for retinal vessel, optic disc and optic
cup, and lesion segmentation that uses a model-agnostic
augmentation policy to generate novel domains and max-
imize their diversity. Hu et al. (2024) introduce a novel
domain generalization method integrating a Hessian-based
vector field and self-attention mechanism to enhance tubular
shape feature representation alongside a unique data aug-
mentation preserving vessel structures while altering image
style. Alternatively, foundation models like SAM (Kirillov
et al., 2023) and SEEM (Zou et al., 2023) have recently
shown robust performance using vast training data and test-
time prompts such as points, bounding boxes, masks, or
text that guide the segmentation tasks. However, their prac-
tical use is hindered by the need for fine-tuning, interactive
filtering of extraneous predictions, and high computational
costs (Ma et al., 2024; Huang et al., 2024). Thus, they are
practically hard to adapt when annotations are rare, and
datasets are small, such as in biomedical applications. In
contrast, in-context learning methods adapt to new tasks
without additional training by incorporating task demon-
strations as inputs. Among these, UniverSeg (Butoi et al.,
2023) has shown promise in medical image segmentation
tasks by prompting support sets of image-label pairs, out-
performing few-shot baseline methods. Although UniverSeg
considers retinal vessels and has demonstrated its capability
to generalize to unseen anatomies, we argue that requiring
UniverSeg to bridge large domain gaps, such as the one
from retinal to brain vessels, without incorporating any
adaptation mechanism might be highly demanding.

3. Method

Let S represent the source domain, and T represent a
target domain. Our framework relies on three datasets:
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Figure 2: During the two-phase training algorithm, images xi from domains S and T are input into our model consisting
of the generator G, discriminator D, and encoder E. The training process is split into two distinct phases. In Phase 1
(left), G undergoes adversarial training with D to build a unified latent space that is both disentangled and semantically
rich. In Phase 2 (right), the encoder E is trained for label-preserving image-to-image translation, while G is refined to
generate segmentation masks ŷt

i and ŷs
i .

S = {xs
i , ys

i }Ni=1, a set of N labeled images from S; TU =
{xt

i}Mi=1, a set of M unlabeled images from T ; and TL =
{xlt

i , ylt
i }mi=1, a target labeled dataset with m≪M anno-

tated images, also from T . We denote T = TU ∪ {xlt
i |

xlt
i ∈ TL}mi=1 as the set of all target samples, excluding the

labels ylt
i .

Our framework comprises a generator (G) and an en-
coder (E) accomplishing distinct tasks (Figure 2). The
generator learns to generate realistic brain images, x̂, by
identifying the features from the source and target domains
and representing them both within a unified and disentan-
gled latent space W . This representation allows our model
to independently manipulate domain-specific features, en-
abling it to bridge broad domain gaps and compensate
for the absence of data harmonization between the source
and target at pre-processing. The encoder leverages the
information in W to learn image-to-image translation in a
label-preserving manner, i.e., focusing only on features that
do not compromise spatial information. This is achieved us-
ing cycle-consistency and segmentation losses that enforce
E to maintain the labels aligned in both domains.

Both G and E are trained in separate phases. This two-
phase training strategy represents a crucial architectural
decision that significantly impacts both training stability
and segmentation performance. Splitting the training pro-
cess into two distinct phases limits the adversarial training
solely to the first phase, where an external discriminator D
is incorporated to distinguish between real and fake images.
By isolating adversarial training to Phase 1, we avoid the
well-known instability issues associated with continuous ad-
versarial learning throughout the entire adaptation process.
The discriminator’s role is deliberately confined to the initial
phase, where it helps establish a disentangled latent space
capable of representing both domains.

Once this foundation is established, removing the dis-
criminator in Phase 2 allows the model to freely generate
hybrid translations between domains without being penal-
ized for producing outputs that do not strictly adhere to
either domain’s distribution. Excluding D from the second

phase, when the network learns image-to-image translation,
prevents penalization of hybrid translations. This is partic-
ularly important when performing cross-domain translation
between arteries and veins, which may require intermedi-
ate representations that would otherwise be rejected by a
discriminator trained to distinguish between pure domain
samples. Furthermore, this approach reduces architectural
design complexity and prevents the adversarial component
from interfering with the label-preserving mechanisms that
operate during the image-to-image translation in Phase 2.

3.1 Feature Disentanglement
In Phase 1 (Figure 2 left), G is trained to establish an
association between latent vectors w randomly sampled
from W and the corresponding generated brain images, x̂,
which aim to resemble images from S or T . To this end,
we rely on adversarial learning with the aid of an external
discriminator D. D acts as a binary classifier distinguishing
between real and fake samples. In response, G aims to
fool the discriminator by retrieving images that mimic the
original ones from S and T . The parameters of G and D
are optimized with the following loss function:

Ltot = Ladv(G, D) + LR1(D) + Lpl(G), (1)

where Ladv is the non-saturating loss (Goodfellow et al.,
2014), LR1 is the R1 regularization Mescheder et al. (2018),
and Lpl is the path length regularization (Karras et al.,
2020).

The regularization brought by Lpl transforms W into
a disentangled latent space where different directions con-
sistently correspond to individual, controllable aspects of
variation in the generated images. This regularization en-
courages smooth transitions in the generated outputs when
traversing the latent space, penalizing rapid changes by cal-
culating Lpl = E[(∥∇wG(w)∥2−a)2], where a is a running
average of the gradient norm computed over previous itera-
tions. As a result, the latent space becomes more uniform
and semantically organized, facilitating the independent
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manipulation of domain-specific features.
At the end of Phase 1, W can be queried to summa-

rize the characteristics of both S and T in a shared and
unwarped representation. Accordingly, this representation
integrates the distinctive features from each domain, i.e.,
the domain-specific features.

In Phase 2 (Figure 2 right), E is trained. When fed with
an image xs

i from S, E learns to discover two corresponding
latent representations, i.e., ws

i and wt
i , which are alternated

by inputting an additional binary flag d, which functions as
a domain selector that conditions the encoder’s behavior:
when d = 0, the encoder maps the input to the source
domain’s region in the latent space W, and when d = 1,
it maps to the target domain’s region. This mechanism
enables the model to perform both intra-domain reconstruc-
tion and cross-domain translation using a single encoder
architecture, significantly reducing architectural design com-
plexity compared to approaches that use separate encoders
for each domain. The latent vectors guide G, which in this
phase acts as a static decoder (with frozen parameters),
to retrieve the source reconstruction x̂s

i , within the same
domain.

x̂s
i = G(ws

i ) = G(E(xs
i | d = 0)), (2)

or the source-to-target translation x̂t
i to the opposite do-

main,
x̂t

i = G(wt
i) = G(E(xs

i | d = 1)). (3)
When learning ws

i and wt
i , E must encode the domain-

specific features that recall the characteristics of either
the source or target domain. Disentanglement ensures
that all image properties, whether related to the whole
volume (e.g., pixel spacing or image contrast) or specific
to vessels (e.g., intensities, textures, shapes, locations, and
densities of vessels), are individually represented within W,
facilitating E in establishing mappings between images at
flexible semantic levels.

3.2 Label Preservation Mechanism
In the specific context of brain vessels, domain-specific and
domain-invariant features may vary depending on the source
and targeted modalities. For example, images from two
different angiographic techniques (e.g., Time-of-Flight MRA
and CTA) will share a set of domain-specific and invariant
features, as they both focus on the brain arteries, but this
will not hold if the target domain is a venography, since
vein geometry and location differ largely from that of the
arteries. In this scenario, conventional approaches tend to
modify domain-specific features indiscriminately, including
those related to vessel geometry and positioning. Altering
these attributes compromises segmentation accuracy, as
the resulting translations no longer align with the original
annotations.

To address this limitation, we introduce a new label
preservation mechanism, a crucial component of our frame-
work, which ensures information integrity during domain
adaptation. This mechanism enables the learning of domain-
invariant and domain-specific features across different do-
mains by enforcing consistency between segmentation masks
before and after translation. More specifically, in Phase
2, we integrate image segmentation into our framework by
expanding the generator with an additional label-synthesis
branch Glsb (Zhang et al., 2021) (Figure 2 right). This
branch is designed to output semantic segmentation masks
that align with the generated images: while G renders the
source reconstruction x̂s

i and the source-to-target transla-
tion x̂t

i, its label-synthesis branch predicts the associated
segmentation maps ŷs

i and ŷt
i . With this branch, we avoid

using a separate segmentation module, thus decreasing
architectural design complexity. It consists of three fully
connected layers attached to the feature vectors of G, which
are optimized in isolation while freezing all the other param-
eters inside the generator. To carry out this optimization,
segmentation losses Ls are computed for both ŷs

i and ŷt
i

based on the same reference annotation ys
i . The segmenta-

tion loss is calculated as:

Ls = Ldice + Lce, (4)
where Lce is the cross-entropy loss, and Ldice is the Dice
loss defined as:

Ldice = − 2 · TP + ϵ

2 · TP + FP + FN + ϵ
, (5)

where TP, FP, and FN represent true positives, false pos-
itives, and false negatives respectively, and ϵ = 10−5 is a
small constant to prevent division by zero.

Requiring the model to output the same segmentation
masks post-reconstruction and post-translation is crucial to
guarantee that labels are preserved during both processes.
This requirement backpropagates to E and ensures that
ws

i and wt
i share the necessary domain-specific features to

preserve the position and shapes of objects, particularly
vessels (as it is our object of interest), which are conse-
quently excluded from the translation process. For example,
transforming pixel spacing (i.e., a domain-specific feature)
in case it differs between S and T may increase or de-
crease the overall image scale, thus negatively affecting
the segmentation. For this reason, E will avoid translat-
ing pixel spacing. Here, disentanglement proves beneficial,
helping the model separate domain-specific features to au-
tomatically identify those contributing to improving the
segmentation while discarding compromising ones. Conse-
quently, the model can modify vessel intensities or textures
while preserving their spatial arrangement and geometrical
properties. The resulting outputs are thus hybrids between
S and T , intended to facilitate the segmentation process.
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This automatic alignment of the two domains allows us to
discard data harmonization during pre-processing, which is
often a domain-specific and time-consuming task.

3.3 Cycle Consistency

Up to this point, we have described the forward pass carried
out during Phase 2 by E and G from a source image
xs

i to its source reconstruction x̂s
i and source-to-target

translation x̂t
i, with corresponding predictions ŷs

i and ŷt
i .

This data flow remains equivalent when working with an
input image xt

i from the target domain, resulting in one
target reconstruction and one target-to-source translation.
However, segmentation losses are only computed when
annotations are available, i.e., in TL. In both domains,
feeding the model with opposite values of d in succession
corresponds to performing two complementary translations
that neutralize each other’s effects, as the first changes the
input image’s domain, while the second brings it back to
its original one. This cyclical behavior can be exploited to
enable the computation of cycle-consistency reconstruction
losses alongside the intra-domain reconstruction losses, i.e.,
each translation is immediately followed by its inverse to
enforce image fidelity. This approach reduces architectural
complexity compared to traditional cycle-based methods,
which typically necessitate two encoder-decoder pairs (Zhu
et al., 2017). However, both the generator and encoder
must be used twice during each cycle. Consequently, when
the cycle is completed, the losses are propagated into G
and E only once, taking into account the most recent
pass. We compute both intra-domain and cycle-consistency
reconstruction losses Lr as:

Lr = LMSE + LLPIPS, (6)

where LMSE is the mean squared error loss calculated be-
tween the input and the reconstructed image, and LLPIPS
is the perceptual similarity metric that measures differences
in feature space as defined in Zhang et al. (2018).

Figure 3 illustrates the steps involved in Phase 2. More-
over, Algorithm 1 provides a formal description of the com-
plete procedure, complementing the visual representation
in Figures 2 and 3.

3.4 Inference

Given a new image xt
new, the model generates its recon-

struction in T , i.e., x̂t
new, and its translation in S, i.e., x̂s

new.
Simultaneously, Glsb retrieves the segmentation masks ŷt

new
and ŷs

new, corresponding respectively to x̂t
new and x̂s

new.
Since both predictions contain valuable information about
vessel segmentation, the final segmentation mask is ob-
tained by averaging ŷt

new and ŷs
new before the last argmax

operation. Notably, the model only performs reconstruction

Algorithm 1: Two-Phase Training for Multi-
Domain Vessel Segmentation

Input: Source dataset S = {(xs
i , ys

i )}Ni=1, target
datasets TU = {xt

i}Mi=1,
TL = {(xlt

i , ylt
i )}mi=1

Output: Trained generator G and encoder E for
vessel segmentation

Phase 1: Disentangled latent space learning;
Initialize generator G and discriminator D;
Train G and D adversarially for 250,000 iterations
using Ltot = Ladv(G, D) + LR1(D) + Lpl(G);

Phase 2: Label-preserving image-to-image
translation;

Initialize encoder E and freeze parameters of G
except for label-synthesis branch (Glsb);

for iteration = 1 to 20000 do
Sample batch from S ∪ TU ∪ TL;
for each source image xs

i ∈ S do
// Source reconstruction (d = 0) and
source-to-target translation (d = 1);

ws
i ← E(xs

i |d = 0), wt
i ← E(xs

i |d = 1);
x̂s

i ← G(ws
i ), ŷs

i ← Glsb(ws
i );

x̂t
i ← G(wt

i), ŷt
i ← Glsb(wt

i) ;
Compute Lr(xs

i , x̂s
i ) and Ls(ys

i , ŷs
i , ŷt

i);
end
for each target image xt

i ∈ TU ∪ TL do
// Target reconstruction (d = 1) and
target-to-source translation (d = 0);

wt
i ← E(xt

i|d = 1), ws
i ← E(xt

i|d = 0);
x̂t

i ← G(wt
i), ŷt

i ← Glsb(wt
i) ;

x̂s
i ← G(ws

i ), ŷs
i ← Glsb(ws

i );
Compute Lr(xt

i, x̂t
i);

if xt
i ∈ TL then
Compute Ls(ylt

i , ŷt
i , ŷs

i );
end

end
Update E by gradient descent on Lr and Ls;
Update Glsb by gradient descent on Ls;

end
return trained G and E

when used with a source image xs
new. The translation capa-

bility, which involves generating x̂t
new and the corresponding

ŷt
new, is not used, since our main goal is the segmentation

of the target domain.

4. Experiments and Results

4.1 Experimental Setup

In this section, we detail our experimental methodology
for evaluating vessel segmentation across diverse medical
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Figure 3: In Phase 2 of our training algorithm, we perform both source and target reconstructions (first row, source
domain on the left and target domain on the right) and source-to-target and target-to-source translations (second and
third rows). The backpropagation of Lr exclusively updates the weights of E, while Ls influences both E and G.

imaging modalities. We first describe the datasets used
in our experiments, including their characteristics and the
preprocessing steps employed. We then provide implemen-
tation details of our framework, highlighting the network
architectures and training procedures. Finally, we outline
the evaluation metrics used.

4.1.1 Datasets

Our experiments use the following datasets.
OASIS-3 (LaMontagne et al., 2019). We randomly se-
lect 49 time-of-flight (TOF) MRA volumes. These volumes
have a median grid size of 576× 768× 232 voxels and a
median voxel size of 0.30× 0.30× 0.60 mm. Our selection
encompasses 27 cognitively normal subjects and 10 patients
at different stages of cognitive decline, all adults ranging in
age from 42 to 95 years.
IXI1. We sample 50 TOF MRA volumes, with a median
grid size of 359× 481× 100 voxels and a median voxel size
of 0.47× 0.47× 0.80 mm. All images were acquired from
healthy subjects spanning an age range of 20 to 86 years.
TopCoW (Yang et al., 2024). We use the 40 CTA
volumes within the first release of the dataset. The volumes
exhibit a median grid size of 290× 366× 211 voxels and a
median voxel size of 0.46× 0.46× 0.70 mm. The patients
within this cohort were all in the process of recovering from
disorders related to strokes.
Susceptibility-weighted images (SWI). We use a private

1. https://brain-development.org/ixi-dataset

dataset consisting of 28 SWI venographies from retrospec-
tive studies previously conducted at UCL Queen Square
Institute of Neurology, Queen Square MS Centre, Univer-
sity College London. The images have a median grid size
of 480 × 480 × 288 voxels and a median voxel size of
0.50× 0.50× 0.50 mm and include adult subjects showing
no visible lesions on SWI.

For IXI, we use the vessel annotations provided in Fal-
cetta et al. (2025). For OASIS-3 and SWI, all image volumes
were annotated by two experts (RC, MAZ) to obtain ves-
sel masks. For TopCoW, we used the masks included in
the dataset, which include annotations only of the vessels
constituting the circle of Willis (CoW). Brain masks were
obtained using SynthStrip (Hoopes et al., 2022). For Top-
CoW, we generated brain annotations through a registration
and resampling procedure initiated from the pairwise MRA.

The datasets undergo separate pre-processing without
any inter-domain harmonization. First, all volumes are re-
sampled using bicubic interpolation to fix a uniform spacing,
calculated as the dataset’s median value, with minor incre-
ments made if the images do not fit into a volume of 5123

voxels. Next, each volume is rescaled based on its mean and
standard deviation, and then clipped between the 0.1 and
99.9 percentiles and normalized in the range [−1, +1]. The
segmentation masks undergo one-hot encoding, resulting in
a three-dimensional label: one dimension for the brain, one
for the vessels, and an additional one for the background.
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Table 1: Source domain performance on OASIS-3
Dice Precision Recall clDice

Vessels 73.7 ± 2.8 66.9 ± 4.8 82.5 ± 3.7 76.9 ± 5.2

4.1.2 Implementation Details

Our framework is implemented in PyTorch 1.9.1. Phase 1
and Phase 2 use batches of four images each, and run for
250k and 20k iterations, respectively. In addition, a prelimi-
nary phase of 15k iterations is conducted before Phase 2,
to pre-train the model using only source data. After train-
ing, the models with the best validation performance on S
and T are selected for the final evaluation. The generator
G and discriminator D are based on StyleGAN2 (Karras
et al., 2020), while the label-synthesis branch is adapted
from DatasetGAN (Zhang et al., 2021). As in (Richardson
et al., 2021), the encoder E maps input images into the
extended latent space W+ of StyleGAN2, using a ResNet
backbone inspired by Yao et al. (2022b). Building upon this
backbone, multiple outputs are branched out: one for latent
code prediction and the other for feature tensor prediction.
These branches are then connected to G through a dynamic
skip connection module Yang et al. (2022), which filters
the residual information to establish fine-level content cor-
respondences. Our framework is configured for multi-class
segmentation to extract both brain tissue and vessels simul-
taneously. The segmentation masks include three classes:
background, brain, and vessels. All code and experiments
can be accessed on github.com/i-vesseg/MultiVesSeg.

4.1.3 Evaluation setup

We evaluate models based on their segmentation perfor-
mance on the target datasets using test splits. We assess
performance using the Dice coefficient (Dice), the center-
lineDice (clDice) (Shit et al., 2021), Average Symmetric
Surface Distance (ASSD) (Yeghiazaryan and Voiculescu,
2018), precision, and recall.

4.2 Ablation Studies

We study how the performance of our model is impacted
by the number of available annotated images in both the
target and source domains, as well as by various architec-
tural choices. Given the substantial domain gap between
angiographies and venographies, which depict two different
vessel types, we utilize TOF MRA images from OASIS-3 as
the source domain S and SWI images as the target domain
T to analyze the behavior of our model in this particularly
complex scenario.

4.2.1 Intra-domain Performance

We first assess the performance of our method in intra-
domain vessel segmentation. In Phase 1, we include a source
dataset (S) of N = 35 source volumes and a target dataset
(T ) of |T | = M + m = 20 target volumes into our training
set. As this phase is entirely unsupervised, the division
between the unlabeled and labeled target sets TU and TL

does not have any impact. Subsequently, we pre-train the
encoder E and the segmentation branch of G using only the
source data (left half of the first row in Figure 3), ignoring
source-to-target translation. For evaluation, we split equally
the remaining 14 TOF MRAs between validation and testing,
following a 70-15-15 ratio. The results on the testing set
are presented in Table 1, demonstrating that our method’s
performance is comparable to state-of-the-art approaches
for brain artery segmentation (Livne et al., 2019; Dang
et al., 2022).

4.2.2 Impact of Target Annotations

We investigate the model’s sensitivity to the number of
annotated target images. Using a fixed number of source
images (N = 35), we gradually increase the number of
annotated target images into the training set (TL). We
begin with m = 0 and progress to m = 1 and m = 3
midpoint slices, extracted from three distinct volumes. This
sequence concludes with the inclusion of the full three
volumes into TL. The remaining volumes are used without
annotations (M = 17). Four images are set aside for
validation, and another four are kept for testing.

Figure 4 (left) reports vessel segmentation performance.
As expected, the performance improves as the number of
available annotated samples increases. In particular, there
is a performance boost observed during the transition from
m = 0 to m = 1 slice, marking the shift from an unsu-
pervised DA scenario to a semi-supervised one. However,
as the number of labeled slices increases from m = 3 to
cover three whole volumes (m = 831 slices in total), the
extent of this performance improvement gradually dimin-
ishes, suggesting a trend toward saturation. This indicates
that while the model benefits from additional annotated
target images, it already exhibits good behavior when only
a few target labels are available. Based on this finding and
the trade-off between annotation effort and performance,
we set m = 3 for all subsequent experiments in this study.

4.2.3 Impact of Source Annotations

We investigate the scenario where the number of available
source images varies (N = [0, 10, 20, 35]) while the number
of annotated target images is fixed (m = 3 slices). Source
and target validation and testing sets are the same as in
Sections 4.2.1 and 4.2.2. Figure 4 (right) summarizes the
obtained results. We start considering a few-shot segmen-
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Figure 4: Vessel segmentation performance with varying target annotations m (left) and source annotations N (right).
Vertical error bars represent the standard deviation across the testing set.

tation scenario, where minimal annotations are employed
to train segmentation in T , and there is no contribution
from S (i.e., N = 0). In this case, our model performs
exclusively target reconstruction (right half of the first row
in Figure 3), calculating the segmentation loss only for TL.
A sharp performance increase is observed when passing from
N = 0 to N = 10 source volumes, i.e. when we activate
source reconstruction and inter-domain translations. After,
there is a modest increase of only 3.4% in Dice when mov-
ing from N = 10 to N = 35. Despite the improvements
becoming more gradual, overall, the contribution from the
labeled source proves to be crucial for achieving satisfactory
results. To maximize segmentation performance and make
full use of our available data resources, we employed all
N = 35 source volumes for our subsequent experiments.

4.2.4 Architecture Elements

We perform an ablation study to assess how the different el-
ements in our architecture affect the segmentation accuracy.
Specifically, we examine the effects of the following features,
which we notice to have the most significant impact on the
results: residual connections (Res.), to enhance information
flow between E and G; domain-specific batch normaliza-
tion (DSBN), to normalize feature maps separately for the
two domains; balanced data sampling (BDS), to ensure
that each batch contains two samples from S, one from
TL and one from TU ; and intensity inversion (Inv.), to flip
the intensity values of the input images, thus mitigating
the disparity between domains capturing vessels in dark and
bright appearances respectively.

Table 2 displays the configurations obtained by deac-
tivating each assessed component. Residual connections
appear to exert the most influence on the model’s function-

Table 2: Architectural Choices
Res. DSBN BDS Inv. Dice clDice
✓ ✓ ✓ ✓ 72.2 ± 2.5 75.4 ± 3.3
✗ ✓ ✓ ✓ 14.4 ± 3.4 17.0 ± 3.4
✓ ✗ ✓ ✓ 69.3 ± 2.8 73.7 ± 3.2
✓ ✓ ✗ ✓ 71.2 ± 2.4 74.4 ± 3.3
✓ ✓ ✓ ✗ 71.8 ± 3.0 74.3 ± 3.3

ing, causing a substantial drop in Dice from 72.2% to 14.4%.
Residual connections emerge as indispensable components,
serving to preserve spatial information during reconstruc-
tion and facilitating the network’s manipulation of low-level
semantic attributes (Yao et al., 2022b). Domain-specific
batch normalization causes a drop of 2.9%; balanced data
sampling 1.1% and intensity inversion brings a negligible
effect of 0.4% in the Dice. Notably, intensity inversion is
specific to MRA-to-MRV, thereby falling within the defini-
tion of data harmonization between the source and target
domains. Proving that this inversion does not impact the
performance reinforces the hypothesis that our method
does not necessitate domain-specific pre-processing to ad-
dress the domain gap. However, this is true only in the
semi-supervised setting: after conducting an additional ex-
periment with m = 0, we notice a significant Dice score
drop from 40.9% to 0.1% when intensity inversion is not
used. This underlines the need for some form of guidance
in establishing connections between vessels across TOF
MRA and SWI modalities. This guidance could come in
the form of labeled examples or intensity harmonization,
but it represents an essential requirement for the correct
functioning of our model.
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4.3 Comparison with State-of-the-Art Methods
We compare the best results obtained through our ablation
studies with a 2D U-Net (Ronneberger et al., 2015) as a
baseline and seven DA state-of-the-art methods. For the
baseline, we implement a fully-supervised approach with
limited target annotations, training only on the few tar-
get samples in TL (m=3 slices to maintain methodological
consistency). This implementation2 uses a single input
channel and three output classes (background, brain, ves-
sels). The architecture consists of four encoding/decoding
stages with feature maps ranging from 64 to 512. We
optimize using Adam (lr=2e-4) with a combined BCE and
Dice loss function, processing 512×512 2D slices and em-
ploying validation-based early stopping. The seven DA
SOTA methods are: CycleGAN (Zhu et al., 2017), Syner-
gistic Image and Feature Adaptation (SIFA) (Chen et al.,
2019), SynthSeg (Billot et al., 2023), UniverSeg (Butoi
et al., 2023), Automatic Augmentation for Domain Gener-
alization (AADG) (Lyu et al., 2022), DCDA (Peng et al.,
2022), and Contrastive Semi-supervised learning for Cross
Anatomy Domain Adaptation (CS-CADA) (Gu et al., 2023).
In particular:
1) CycleGAN is a well-established method to perform un-
paired image-to-image translation on natural images. After
translating data from T , we feed the results into a 2D U-
Net previously trained on S, as CycleGAN does not provide
segmentation.
2) SIFA is an UDA technique based on image-to-image
translation for multi-class medical segmentation, therefore
trained using both S and T , without utilizing any target
label ylt

i ;
3) SynthSeg is a UDA 3D output-level alignment method
based on synthetic data generation for brain synthesis and
segmentation. It is trained with masks ys

i from S, determin-
ing the best checkpoint based on the target performance;
4) UniverSeg is a foundation model focusing on unseen
medical segmentation tasks without additional training;
5) AADG is a multi-source domain generalization framework
based on data manipulation of retinal vessel images. To
leverage training from multiple source domains, the network
is trained using all datasets except the target;
6 and 7) DCDA and CS-CADA are, respectively, unsuper-
vised and semi-supervised DA methods designed for retinal
vessel segmentation and 2D coronary artery segmentation.
We train these methods using both S and T , including
labels from TL for CS-CADA.

Using OASIS-3 as a source domain, we conduct ex-
periments in three distinct domain adaptation scenarios of
increasing difficulty to ensure a broader perspective, com-
paring our model’s performance in adapting to the following
shifts:
2. https://github.com/wolny/pytorch-3dunet

1) Multi-center (MC) MRA, where MRAs are used as
S and T , but from different centers. Thirty-six unlabeled
volumes (TU ) from IXI enter the training set; seven are
kept for validation and seven for testing;
2) MRA-to-CTA, where the target domain is CTAs from
TopCoW, including 28 volumes without annotations (TU )
for training, six for validation and six for testing; and
3) MRA-to-MRV, with SWIs used as T , of which 20
volumes deprived of labels (TU ) are included in the training
set, four in the validation set and four in the testing set.

In MC MRA and MRA-to-MRV, we extract three mid-
point slices from TU to form TL. In MRA-to-CTA, we
allocate three entire volumes for TL since they only have
CoW annotations. For the source dataset, 35 are allocated
for training (S), while seven volumes are used for validation
and testing.

For the sake of fairness, we evaluate both cross-modality
vessel and brain segmentation since most of the methods
(e.g., SIFA, SynthSeg, AADG, and UniverSeg) have been
developed for segmenting large objects, such as the brain.
To ensure consistent comparison, all methods were retrained
for brain and vessel segmentation with two exceptions:
UniverSeg was used as originally designed for zero-shot
segmentation on unseen medical tasks without retraining,
and SynthSeg utilized its original pre-trained model for brain
tissue segmentation only, as it was specifically designed
for this task. Notably, while the pre-trained SynthSeg
model performs well with magnetic resonance images (both
MRA and MRV), it fails to segment brain tissue in CTA
images due to the fundamental differences in image contrast
mechanisms. Table 3 summarizes the obtained results, and
Figure 5 displays a visual comparison of the results across
MC MRA, MRA-to-CTA, and MRA-to-MRV.

In general, most methods have a very good performance
on the brain task, but there is a clear difficulty in segment-
ing the vessels. This becomes particularly visible in the
MRA-to-MRV scenario: both the U-Net baseline, trained
with full supervision on the reduced dataset TL, and the con-
sidered state-of-the-art methods in domain adaptation and
generalization struggle to segment veins. The performance
degradation trend from MC MRA and MRA-to-CTA to
MRA-to-MRV highlights the challenge posed by increasing
domain gaps. UniverSeg fails to segment vessels across all
scenarios but demonstrates satisfactory brain segmentation
performance despite not requiring additional training. CS-
CADA, the only other SSDA model besides ours, provides
poor results overall, likely because it originally relies on a
larger annotated target set than TL.

Notably, our proposed method achieves high perfor-
mance in the target domain for both brain and vessel seg-
mentation. In particular, it bridges even the widest domain
gaps, successfully segmenting veins using only three an-
notated target slices and leveraging information from the
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Table 3: Segmentation performance of different methods in the target domains. UniverSeg (both tasks) and SynthSeg
(brain only) use the original pre-trained models.

MC MRA
U-Net CycleGAN SIFA SynthSeg UniverSeg∗ AADG DCDA CS-CADA Ours

Dice Vessels 65.6 ± 4.4 30.5 ± 3.3 53.7 ± 1.9 41.7 ± 5.4 7.3 ± 2.6 45.3 ± 2.9 12.0 ± 2.8 43.3 ± 5.0 69.9 ± 2.3
Brain 95.1 ± 1.6 81.7 ± 2.9 89.4 ± 4.0 93.6 ± 3.3∗ 95.4 ± 1.2 97.7 ± 0.3 90.5 ± 1.2 69.3 ± 6.3 97.8 ± 0.2

Precision Vessels 62.6 ± 8.2 35.3 ± 5.1 56.5 ± 4.1 61.5 ± 7.4 5.4 ± 3.1 78.2 ± 4.1 23.1 ± 4.8 54.7 ± 15.1 70.0 ± 4.0
Brain 92.5 ± 3.0 86.8 ± 1.7 89.6 ± 1.0 99.2 ± 0.4∗ 93.9 ± 2.3 98.8 ± 0.4 87.3 ± 1.0 81.7 ± 7.1 98.0 ± 0.5

Recall Vessels 70.3 ± 6.7 27.4 ± 4.4 51.7 ± 3.6 31.7 ± 4.9 14.7 ± 4.9 32.0 ± 3.1 8.2 ± 2.1 37.7 ± 4.7 70.2 ± 4.7
Brain 98.0 ± 0.5 77.4 ± 5.3 89.5 ± 7.6 88.9 ± 5.9∗ 97.0 ± 0.5 96.6 ± 0.7 94.1 ± 2.9 60.5 ± 6.8 97.7 ± 0.5

clDice Vessels 68.7 ± 6.5 25.4 ± 3.0 51.5 ± 3.0 41.0 ± 6.4 8.1 ± 2.1 35.8 ± 2.6 8.4 ± 2.3 40.2 ± 5.4 76.8 ± 2.9
ASSD Vessels 3.39 ± 1.48 10.18 ± 3.36 3.38 ± 1.44 4.17 ± 0.86 15.59 ± 1.91 4.49 ± 1.42 11.59 ± 2.95 6.10 ± 1.90 1.55 ± 0.57

MRA-to-CTA
U-Net CycleGAN SIFA SynthSeg UniverSeg∗ AADG DCDA CS-CADA Ours

Dice Vessels 70.5 ± 3.0 33.1 ± 4.3 60.9 ± 2.9 55.1 ± 23.6 11.5 ± 9.0 5.8 ± 6.0 0.0 ± 0.0 0.0 ± 0.0 74.5 ± 4.2
Brain 95.8 ± 1.7 93.1 ± 1.6 94.4 ± 1.9 5.1 ± 7.0∗ 95.9 ± 0.8 94.8 ± 1.6 91.2 ± 3.5 85.6 ± 10.4 96.6 ± 1.1

Precision Vessels 72.7 ± 13.5 27.1 ± 5.2 63.5 ± 8.3 52.2 ± 15.6 38.9 ± 19.9 22.5 ± 22.3 0.0 ± 0.0 0.0 ± 0.0 73.3 ± 13.3
Brain 94.2 ± 3.1 94.9 ± 1.4 94.1 ± 3.3 49.1 ± 49.1∗ 93.5 ± 1.5 91.5 ± 3.4 95.1 ± 1.1 95.2 ± 0.9 96.2 ± 1.8

Recall Vessels 72.1 ± 10.5 43.1 ± 2.5 59.1 ± 2.6 63.2 ± 27.7 6.9 ± 5.7 3.4 ± 3.5 0.0 ± 0.0 0.0 ± 0.0 78.8 ± 8.5
Brain 97.5 ± 0.4 91.4 ± 2.2 94.8 ± 2.0 2.8 ± 3.8∗ 98.5 ± 1.2 98.5 ± 1.5 87.8 ± 6.3 79.2 ± 15.2 97.1 ± 1.1

clDice Vessels 72.5 ± 6.7 39.7 ± 5.2 68.9 ± 6.3 63.5 ± 29.0 18.0 ± 9.0 nan ± nan nan ± nan nan ± nan 78.0 ± 8.7
ASSD Vessels 2.40 ± 0.99 3.64 ± 0.53 2.12 ± 0.56 4.01 ± 5.82 12.24 ± 3.10 13.92 ± 6.99 12.97 ± 2.11 nan ± nan 1.46 ± 0.49

MRA-to-MRV
U-Net CycleGAN SIFA SynthSeg UniverSeg∗ AADG DCDA CS-CADA Ours

Dice Vessels 29.1 ± 4.9 5.1 ± 0.3 0.8 ± 0.5 10.9 ± 1.9 3.6 ± 1.1 2.0 ± 1.2 0.0 ± 0.0 0.4 ± 0.2 67.5 ± 1.7
Brain 83.0 ± 2.5 75.0 ± 0.8 91.4 ± 1.9 97.4 ± 0.1∗ 83.5 ± 2.5 96.7 ± 0.5 75.6 ± 1.1 25.7 ± 2.5 97.8 ± 0.2

Precision Vessels 18.2 ± 4.0 11.5 ± 0.8 2.6 ± 1.1 51.4 ± 5.7 6.5 ± 2.4 1.3 ± 0.6 2.4 ± 2.1 0.8 ± 0.4 71.1 ± 4.4
Brain 71.3 ± 3.7 62.6 ± 0.7 97.8 ± 0.2 96.9 ± 0.5∗ 72.8 ± 3.8 97.4 ± 0.3 62.0 ± 1.6 32.5 ± 3.8 97.8 ± 0.4

Recall Vessels 76.0 ± 5.5 3.3 ± 0.3 0.5 ± 0.3 6.1 ± 1.2 2.5 ± 0.7 6.3 ± 4.0 0.0 ± 0.0 0.3 ± 0.1 64.4 ± 2.1
Brain 99.5 ± 0.2 93.6 ± 1.2 85.9 ± 3.5 97.9 ± 0.5∗ 98.1 ± 0.2 96.0 ± 0.9 97.0 ± 0.5 21.3 ± 1.8 97.8 ± 0.5

clDice Vessels 33.5 ± 5.9 4.1 ± 0.3 0.6 ± 0.4 10.4 ± 1.9 2.7 ± 0.9 1.8 ± 1.1 nan ± nan 0.4 ± 0.2 69.9 ± 2.7
ASSD Vessels 9.30 ± 0.53 10.54 ± 0.29 15.04 ± 6.98 14.41 ± 1.41 20.32 ± 2.52 10.46 ± 6.46 60.66 ± 5.62 18.73 ± 0.96 1.42 ± 0.20

associated arteries in the source modality. This demon-
strates the model’s capability to cope with the differences
between arteries and veins, which are not limited to their
low-level attributes, such as intensities and textures, but
also encompass higher-level aspects, including their location
and shape.

Our better performance in cross-modality vessel seg-
mentation, especially in comparison to other techniques
following similar translation paradigms, can be explained by
the key elements introduced in our framework. Compared
to CycleGAN, which requires separate networks for bidirec-
tional translations and performs image-to-image translation
independent of segmentation, our approach integrates trans-
lation and segmentation through our label-synthesis branch,
directly enforcing label preservation. Unlike SIFA, which
aligns feature distributions without distinguishing between
vessel-related and volume-related features, our disentan-
glement mechanism specifically isolates vessel properties
that can be safely translated without compromising spatial
information. While CS-CADA introduces contrastive learn-
ing for domain adaptation, it cannot selectively translate
domain-specific features that preserve vessel positions and

morphology. Similarly, DCDA’s disentangling approach fo-
cuses primarily on style transfer for retinal vessels, which is
insufficient for handling the complex domain shifts between
cerebrovascular structures with different anatomical charac-
teristics. Finally, our two-phase training strategy isolates
adversarial learning to only the initial phase, providing more
stable convergence compared to methods like CycleGAN and
SIFA which rely on continuous adversarial training through-
out the adaptation process. These architectural choices
collectively enable our framework to effectively bridge the
challenging domain gaps in cerebrovascular segmentation
while maintaining accurate vessel delineation.

Figure 6 provides 3D visualizations of our segmenta-
tion results across the three domain adaptation scenarios,
demonstrating the preservation of vessel topology and spa-
tial continuity. The 3D renderings show that our method
maintains the complex branching patterns and connectivity
of the cerebrovascular tree across all tested scenarios. No-
tably, even in the most challenging MRA-to-MRV scenario,
where the method must bridge the gap between arterial and
venous structures with distinct anatomical characteristics,
these visualizations reveal successful preservation of the
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Figure 5: Comparison of the segmentation results for brain and vessels in the target MRA, CTA, and SWI images using
different methods. Red indicates brain masks, while green represents vessels. The rows display slices at varying levels:
top, middle, and bottom.

Figure 6: 3D visualization of vessel segmentation results across the three domain adaptation scenarios. Ground truth
(red) and our method’s predictions (green) are shown as 3D renderings with corresponding Dice and clDice scores.

overall vascular architecture with high fidelity to the ground
truth topology.

4.4 Qualitative Analysis

Adopting the path length regularization (Karras et al., 2020)
has an important role in the domain adaptation process as
it allows the disentangling of the latent space W, enabling
inter-domain translations that can handle independently
volume-related image properties, such as overall spatial
information and appearance, and vessel-related properties,
such as their intensities, textures, shapes, locations, and

densities. This allows preserving the target content while
mimicking the appearance of a source image as it is better
recognized by the segmentation branch. Keeping vessel
position and shape unchanged, despite these being domain-
specific features, is a key property to guarantee correct
segmentation. By relying on the aforementioned capabilities,
we have gathered evidence of the ability to separate the
vessel-related features by visually inspecting the target-to-
source translations generated by our model compared to
other image-level alignment methods.

In Figure 7, we display three cases of translation: one
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Figure 7: Target-to-source translations produced by the different image-level alignment methods.

from MC MRA (first row), another from MRA-to-CTA
(second row), and a third from MRA-to-MRV (third row).
These examples highlight how the different models act on
the vessel-related properties. In particular, we identified
three problematic behaviors that compromise the accu-
racy of the final segmentation results. These behaviors
involve the translation of label-altering features due to their
domain-specific nature. Firstly, vessels undergo displace-
ment, resulting in changes to their position and size. This
occurs while resizing the whole brain to align with the pixel
spacing of the source domain. Specifically, CycleGAN and
DCDA tend to translate all domain-specific features with-
out distinction, including, in fact, the pixel spacing, and
thus leading to spatial misalignment between the source
and target domains. We believe this problem arises be-
cause the segmentation loss does not influence the prior
translation enough, which is exactly the case in CycleGAN,
where translation and segmentation are completely separate.
Secondly, vessels are observed merging with the background
and vanishing. This is noticeable as the number of bright
vessels in the translations is never greater than the vessels in
the target domain. The phenomenon is particularly evident
in SWI images, where veins are generally more abundant
than arteries in TOFs. The third issue arises in SIFA, which
initially appears to better preserve the positions and shapes
of the brain and vessels during translation, despite gener-
ating some shadow artifacts around the skull in MC MRA

and MRA-to-MRV translations. However, most veins from
SWIs are left untransformed and do not resemble arteries
after translation. Only a few veins, likely those aligning well
with the typical artery arrangement, transform into bright
vessels. We attribute this behavior to the network’s inability
to link arteries and veins during translation without some
form of guidance.

These findings align with what was observed for Fig-
ure 5, where problematic vessels are either omitted from
the final segmentation or displaced. Also, this reinforces
the importance of enforcing label-preserving translations in
our problem. Notably, our model uniquely transforms dark
vessels from the input (SWI) into bright vessels without
relocating them or reducing their number to replicate the
typical arrangement of arteries in TOF MRA images. This
ability to selectively translate only some domain-specific
features, particularly those unrelated to vessel size and posi-
tion, enables our approach to adapt veins and arteries and
retrieve accurate segmentations. Lastly, we emphasize that
achieving a hyper-realistic translation of target volumes is
not the central focus of our model. We acknowledge that
our translations may not appear entirely source-like but
rather appear as hybrid representations. Indeed, the ability
of the network to translate input images aims exclusively
to serve the segmentation process, which is the primary
objective of the proposed method.
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4.5 Computational Costs

We evaluate the computational efficiency of our approach.
All experiments were conducted on two NVIDIA GeForce
RTX 2080 Ti GPUs, each with 12GB of memory. For our
framework, Phase 1 processes at approximately 0.42 iter-
ations per second, requiring about 166 hours (≈ 7 days)
to complete 250,000 iterations. Phase 2 runs at approxi-
mately 0.20 iterations per second, taking about 28 hours to
complete 20,000 iterations. This results in a total training
time of approximately 194 hours (≈ 8 days).

The computational cost of our approach stems primarily
from the comprehensive disentanglement process in Phase
1, which builds a semantically rich latent space capable of
independently representing various domain-specific features.
This intensive investment enables our model to effectively
handle challenging domain gaps without requiring domain-
specific preprocessing steps that would otherwise add signif-
icant manual effort during data preparation. Additionally,
Phase 2 involves complex image-to-image translations and
cycle-consistency operations that contribute to the com-
putational demands but are essential for preserving label
integrity across domains.

Despite the high training costs, our framework offers
a favorable trade-off between computational requirements
and segmentation performance, particularly in challenging
domain adaptation scenarios where other methods fail to
produce acceptable results. The computational overhead
can be justifiable when considering the performance im-
provements, especially when considering domains with a
significant gap.

5. Discussion and Conclusion

In this paper, we presented an end-to-end semi-supervised
domain adaptation framework designed as an out-of-the-
box tool for segmenting arteries and veins in images from
different centers and/or modalities. To this end, we opted
for a minimal pre-processing strategy that avoids any data
harmonization between source and target domains. While
enhancing the versatility of our model, this comes at the
cost of widening the domain gap between the two domains.
Our investigations analyzed this trade-off, delving into the
concepts and mechanisms crucial for the effective function-
ing of our model. To address the problem of domain shift
arising from different medical centers, imaging modalities,
and vessel types, we rely on the path length regulariza-
tion (Karras et al., 2020), which allows for representing
heterogeneous volumetric data in a unified and disentangled
latent space. Consequently, we explored the potential of
disentanglement, investigating the possibility of modifying
selected domain-specific features to achieve inter-domain
translation in a label-preserving manner. One important

design choice in our framework is the adoption of a 2.5D
approach rather than full 3D processing. While our method
targets 3D vessel segmentation, we process volumetric data
as a series of multi-channel 2D slices. This technique en-
ables larger batch sizes and reduces memory requirements,
making the method more accessible with limited compu-
tational resources. We acknowledge that this approach
may affect the continuity of vessels across distant slices.
However, our evaluation using topology-aware metrics like
clDice demonstrates that the method effectively preserves
the topological structure of the cerebrovascular tree. This
practical balance between accuracy and efficiency is partic-
ularly relevant for clinical applications where computational
resources may be constrained. In addition to assessing the
efficacy of disentanglement, we conducted ablation stud-
ies to determine the optimal number of source and target
annotations and to evaluate the influence of key architec-
tural choices on performance. Finally, we compared our
framework against other state-of-the-art domain adapta-
tion and domain generalization methods. Our approach
demonstrates superior performance, accurately segmenting
3D brain vessels primarily using annotations from arterial
images, which are comparatively easier to obtain. The
results exhibit promising performance in semi-supervised
domain adaptation scenarios, overcoming the difficulties
posed by large domain gaps, in particular between veins and
arteries, and the intricate morphology of the cerebrovascular
tree. Despite our accomplishments, we acknowledge the
potential for improvement. First, we highlight the neces-
sity of our model to repeat training for each new target
domain, and we note that in-context learning, as offered
by methods like UniverSeg, presents a viable alternative.
Furthermore, our model requires guidance in the form of m
target annotated 2D slices. Again, foundation models can
prove beneficial: by pre-training on extensive collections
of tree-like objects, segmentation models can acquire a
broader representation of vessels. This approach facilitates
linking vessels from distant modalities without relying on
any additional guidance.
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