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Abstract
Recently, circle representation has been introduced for medical imaging, designed specifically to enhance the detection of
instance objects that are spherically shaped (e.g., cells, glomeruli, and nuclei). Given its outstanding effectiveness in
instance detection, it is compelling to consider the application of circle representation for segmenting instance medical
objects. In this study, we introduce CircleSnake, a simple end-to-end segmentation approach that utilizes circle contour
deformation for segmenting ball-shaped medical objects at the instance level. The innovation of CircleSnake lies in these
three areas: (1) It substitutes the complex bounding box-to-octagon contour transformation with a more consistent
and rotation-invariant bounding circle-to-circle contour adaptation. This adaptation specifically targets ball-shaped
medical objects. (2) The circle representation employed in CircleSnake significantly reduces the degrees of freedom to
two, compared to eight in the octagon representation. This reduction enhances both the robustness of the segmentation
performance and the rotational consistency of the method. (3) CircleSnake is the first end-to-end deep instance
segmentation pipeline to incorporate circle representation, encompassing consistent circle detection, circle contour
proposal, and circular convolution in a unified framework. This integration is achieved through the novel application of
circular convolution within the context of circle detection and instance segmentation. In practical applications, such
as the detection of glomeruli, nuclei, and eosinophils in pathological images, CircleSnake has demonstrated superior
performance and greater rotation invariance when compared to benchmarks. The code has been made publicly available
at: https://github.com/hrlblab/CircleSnake.
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1. Introduction

T he deep learning model for natural images is fre-
quently applied in the context of medical imaging
to identify and highlight regions of interest within

medical images (Lo et al., 2018; Liang et al., 2022; Xiong
et al., 2023). However, medical images often present uniq-
ue challenges compared to natural images. Unlike natural
images which are typically displayed in a fixed orientation,
medical images can be viewed at various angles (Yang et al.,
2020; Nguyen et al., 2021), making traditional rectangu-

lar bounding boxes less consistent across different angles
(Fig. 1). In such cases, circles may offer more flexible and
consistent representations of delineating objects or areas of
interest. This representation allows for a more consistent
and orientation-independent identification of objects, which
is crucial in biomedical tissue quantification across different
acquisition scenarios. Moreover, the detection method can
yield less rotational variances often seen in medical imagery,
ensuring that key features are accurately captured regard-
less of which angle the image is acquired, especially when
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Figure 1: Comparison of polygon representation and the proposed circle representation. The left panel shows
that samples of glomeruli can be scanned at any angle of rotation. The right panel highlights the difference between
the octagon proposal and the proposed circle proposal on ball-shaped objects. The proposed CircleSnake yields a more
rotation consistent representation while using fewer DoF.

detecting ball-shaped objects (Nguyen et al., 2022).
Recently, the concept of circle representation has been

introduced as a representation optimized for medical imag-
ing, particularly for ball-shaped object detection, such as
glomeruli, nuclei, inflammatory cells such as eosinophils,
and tumors (Nguyen et al., 2022; Yang et al., 2020; Nguyen
et al., 2021; Luo et al., 2021; Liu et al., 2023; Zhang et al.,
2023). The exceptional effectiveness of circle representation
makes it an attractive candidate for adaptation in the field
of instance object segmentation.

In this paper, we propose a simple contour-based end-
to-end instance segmentation method that utilizes the circle
representation, called CircleSnake, for the robust segmenta-
tion of ball-shaped medical objects. The “bounding circle”
is introduced for both detection and initial contour represen-
tation on the ball-shaped objects. Once the center location
of the lesion is obtained, only degrees of freedom (DoF) =
2 is required to form the bounding circle, while DoF = 8 is
required for the bounding octagon. Briefly, the contribution
of this study is threefold:

• Circle Representation: Our proposal introduces a
unified circle representation pipeline for the segmentation
of ball-shaped biomedical objects. This pipeline includes
three integrated components: (1) circle detection, (2) circle
contour proposal, and (3) circular convolution. It achie-
ves superior segmentation performance while requiring a

reduced DoF for fitting.
• Optimized Biomedical Object Segmentation: To

the best of our knowledge, CircleSnake, our proposed meth-
od, represents the first instance of a contour-based end-to-
end segmentation approach that is optimized for ball-shaped
biomedical objects.

• Rotation Consistency: The proposed circle represen-
tation results in less DoF of fitting, improved segmentation
efficiency, and enhanced rotation consistency. As shown
in (Fig. 1), tissue samples can be viewed at various an-
gles. Consequently, improved rotational consistency could
enhance the robustness in detecting identical objects within
the same tissue, potentially leading to increased reproducibil-
ity in image analysis.

This study expands upon our prior conference paper
(Nguyen et al., 2022) by introducing fundamental enhance-
ments in this manuscript. (1) More Comprehensive Ex-
periments: We conduct more rigorous and comprehensive
experiments using three public and in-house datasets, fea-
turing various ball-shaped objects such as glomeruli, nuclei,
and cells. (2) Methodological Depth: The methodology is
presented with greater depth, including additional bench-
marks, comprehensive mathematical derivations, and an
elaborate experimental design. (3) Rotation Invariance
Analysis: We provide deeper analyses of rotation invariance
to better evaluate performance under varying conditions.
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(4) Reproducible Open-source Research: The open-source
implementation has been updated to support both instance
object detection and instance segmentation in a unified
codebase https://github.com/hrlblab/CircleSnake.

2. Related Works

2.1 Instance Segmentation

Mask-based instance segmentation can be further divided
into two-stage (He et al., 2018; Cai and Vasconcelos, 2021)
and one-stage methods (Bolya et al., 2019; Ying et al.,
2019).

Two-stage methods usually perform detection in two
steps: (i) region proposal and (ii) object classification and
segmentation mask regression. Mask-RCNN (He et al.,
2018) establishes the foundation for two-stage, binary mask
based detection systems. Mask-RCNN (He et al., 2018)
consists of a region proposal network (RPN) and a Region-
based CNN (R-CNN) approach (Girshick et al., 2014;
Girshick, 2015) that is capable of pixel-level object instance
segmentation. To achieve pixel-level precision, these binary
masks classify pixels as part of the object (foreground) or
not (background), simplifying the computational process
and allowing for fast and accurate delineation of object
boundaries. Following the introduction of Mask-RCNN,
numerous algorithms have been developed to enhance its
effectiveness, including different architectures (Chen et al.,
2018, 2019), different backbone (Fang et al., 2023), trans-
fer learning strategy (Zhang et al., 2020), different training
strategy (Wang et al., 2021), and feature aggregation mech-
anisms (Liu et al., 2018). While these two-stage detectors
can achieve state-of-the-art results, they are often struc-
turally complex and need more time to infer.

One-stage methods eliminate the region proposal step
and encapsulate all computations in a single network. With
the introduction of YOLACT (Liu et al., 2016), these types
of methods have attracted academic attention for their
high computational efficiency. YOLACT employs sepa-
rate prediction heads that simultaneously identify object
classes, bounding boxes, and mask coefficients for each
detected object. The final instance masks are dynamically
assembled by combining these prototype masks with the
specific mask coefficients. After YOLACT, There were
many methods to improve its performance by using differ-
ent feature wrapping module (Liu et al., 2021), multi-scale
feature extraction (Zeng et al., 2022), and adjusting model
structure (Bolya et al., 2022). Now, the performance of
one-stage object detectors that use binary masks is nearly
equivalent to that of two-stage detectors with anchors, yet
they offer quicker inference times.

2.2 Medical Object Segmentation

2.2.1 Binary Mask-Based Methods

In the existing literature, several works have focused on
pixel-based instance segmentation methodologies within re-
gional proposals at the pixel level. Notable examples include
the works of Gadermayr et al. (2017); Bueno et al. (2020);
Kannan et al. (2019); Ginley et al. (2019), which tackle
the challenges of feature extraction and precise pixel-level
prediction through varied strategies. For instance, Ga-
dermayr et al. (2017) refines convolutional architectures
to capture intricate details, while Bueno et al. (2020);
Kannan et al. (2019); Ginley et al. (2019) address segmen-
tation challenges in specific pathologies, such as glomeruli,
using specialized convolutional networks. Moreover, the
Mask R-CNN framework introduced by He et al. (2018)
represents a significant advancement by unifying detection
and segmentation into a single model. This integration not
only underscores its impact on instance segmentation but
also reinforces its relevance in the broader context of medi-
cal image analysis. Despite these promising developments,
the structural complexity and high computational cost of
these methods continue to pose challenges for real-time
applications.

2.2.2 Contour-based Methods

Contour-based methods such as DeepSnake (Peng et al.,
2020) have the potential to be faster and simpler. Huang
et al. (2022) adapts ideas from U-Net (Ronneberger et al.,
2015) and DeepSnake (Peng et al., 2020) to right ven-
tricular segmentation. However, this methodology exhibits
suboptimal performance when applied to circular objects in
pathology images, and the computational simplicity is not
adequately achieved (Fig. 2).

3. Methods

The proposed CircleSnake method, shown in Fig. 3, is an
instance segmentation method inspired by the DeepSnake
method (Peng et al., 2020). DeepSnake is a deep learning-
based method for object contour detection and instance seg-
mentation that integrates active contour models, known as
”snakes,” with convolutional neural networks to accurately
delineate object boundaries by iteratively refining polygonal
contours initialized from bounding boxes. CircleSnake, as
described, modifies this approach by replacing bounding
boxes with bounding circles for the initial contour proposals,
utilizing circle detection algorithms to directly generate con-
tours that are better suited for circular objects. The primary
difference between DeepSnake and CircleSnake lies in their
initialization strategies: while DeepSnake uses bounding
boxes to create initial polygonal contours suitable for var-
ious object shapes, CircleSnake employs bounding circles
to provide a closer initial approximation for circular objects,
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Figure 2: Circle contour proposal. This figure presents
the differences between the “bounding box to octagon con-
tour” representation and the proposed “bounding circle to
circle contour” representation. Our circle contour proposal
avoids relying on complex extreme points and deformation-
based contour generation by introducing a straightforward
circle proposal. This approach seamlessly connects circle
detection and deformation-based segmentation in an end-
to-end manner without incurring additional computational
overhead. In other words, the circle detection step itself
can be directly employed as a circle contour proposal.

potentially enhancing efficiency and accuracy by reducing
the number of refinement iterations needed. Both methods
use neural networks to adjust and refine the contours, but
CircleSnake’s approach may offer advantages in applica-
tions involving predominantly circular objects by offering a
better starting point for contour refinement compared to
the more general-purpose initialization used in DeepSnake.
CircleSnake aggregates the circle detection (Yang et al.,
2020; Nguyen et al., 2021, 2022) and circle contour propos-
als for initial object segmentation (Fig. 1). This method
involves starting with a basic circular contour, which is
then refined through a process of circular convolution. This
process adjusts the vertices of the contour to align more
closely with the actual boundary of the object (Fig. 2).
This adjustment is repeated in several iterations to accu-
rately capture the final shape of the object for segmentation
purposes. In contrast to the DeepSnake method, which
depends on bounding boxes and polygonal contours, the
proposed strategy is more straightforward and consistent.

3.1 Circle Object Detection
The method for detecting circular objects in this approach
is based on the CircleNet framework (Nguyen et al., 2022).
The I ∈ RW ×H×3 is an input image with height H and
width W . The Center Point Localization network produces
the center localization of each object within a heatmap Ŷ ∈

[0, 1]
W
R

× H
R

×C where C is the number of candidate classes
and R is a downsampling factor. Within the heatmap,
Ŷxyc = 1 is the center of the lesion and Ŷxyc = 0 is the
background. All these terminologies are defined by Zhou
et al. (2019). Following convention, Law and Deng (2018);
Zhou et al. (2019), the target center point is splat on a
heatmap as a 2D Gaussian kernel:

Yxyc = exp
(

−(x − p̃x)2 + (y − p̃y)2

2σ2
p

)
(1)

where the x and y are the center point of the ground truth,
p̃x and p̃y are the downsampled ground truth center point,
and σp is the kernel standard deviation. The training loss is
Lk penalty-reduced pixel-wise logistic regression with focal
loss (Lin et al., 2017):

Lk = −1
N

∑
xyc


(1 − Ŷxyc)α log(Ŷxyc) if Yxyc = 1
(1 − Yxyc)β(Ŷxyc)α

log(1 − Ŷxyc)
otherwise

(2)

where the hyper-parameters α and β are set 2 and 4 to
kept the same as Lin et al. (2017). To further refine the
prediction location, the ℓ1-norm offset prediction loss Loff

is used.
To ascertain the central point, we propose identify-

ing the top n peaks, where n is set to 100. Each peak’s
value is either greater than or equal to its 8-connected
neighbors. These n selected center points are denoted as
P̂ = (x̂i, ŷi)n

i=1. For each object, its center point is repre-
sented by an integer coordinate (xi, yi), which is derived
from Ŷ xiyic and Lk. Additionally, the offset (δx̂i, δŷi) is
calculated from Loff . The formulation of the bounding
circle incorporates both the center point p̂ and the radius
r̂, thereby creating a comprehensive representation of the
spatial domain:

p̂ = (x̂i + δx̂i, ŷi + δŷi). r̂ = R̂x̂i,ŷi . (3)

where R̂ ∈ R
W
R

× H
R

×1 contains the radius prediction for
each pixel, optimized by

Lradius = 1
N

N∑
k=1

∣∣∣R̂pk
− rk

∣∣∣ . (4)

where rk is the ground truth radius for each object k. Finally,
the overall objective is

Ldet = Lk + λradiusLradius + λoff Loff . (5)

Following Zhou et al. (2019), we set λradius = 0.1 and
λoff = 1.
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Figure 3: Overview of CircleSnake. A backbone network functions as a feature extractor for the subsequent three head
networks. The head networks for heatmap and local offset identify the circle’s center point, whereas the head network for
circle radius calculates the circle’s radius to achieve bounding circle detection. This bounding circle establishes the initial
contour. Subsequently, this contour deforms to the final contour through the use of a circular convolutional network

3.2 Circle Contour Proposal and Deformation

Bounding circle-based detection for each target object is
accomplished using CircleNet-based object detection, as
described in Nguyen et al. (2021). Directly derived from
the circle representation shown in Fig. 2, the initial circle
contour proposal marks a departure from the previously
complex deformation process and the use of extreme point-
based octagon contour proposals. This octagon is formed by
four extreme points in DeepSnake: the topmost, leftmost,
bottommost, and rightmost pixels of an object, respectively.
This innovation simplifies and standardizes the contour
proposal approach. Defined by its radius and center point,
the circle proposal is established by uniformly sampling N
initial points
xcirclei|i = 1, 2, ..., N from the circle contour, beginning at
the top-most point xcircle

1 . Correspondingly, the ground
truth contour is created by clockwise sampling of N vertices
along the boundary of the object. Adhering to the guidelines
in Peng et al. (2020), the value of N is fixed at 128,
facilitating a consistent and streamlined process.

For a contour with N vertices denoted as
xcircle

i |i = 1, ..., N , we initiate by creating feature vectors
for each vertex. The feature maps are extracted by applying
a CNN backbone to the input image. This CNN backbone
is shared with the detector in our instance segmentation
pipeline. The image feature is computed using bilinear
interpolation at the vertex coordinate. The feature f circle

i

corresponding to a vertex xcircle
i comprises a combination

of the learning-based features and the vertex’s coordinates,
represented as
[F (xcircle

i ); xcircle
i ]. F signifies the feature maps. These

input features are then treated as a one-dimensional discrete

signal f : Z → RD on the contour of the circle. In line
with the approach detailed in Peng et al. (2020), circular
convolution is employed for the learning of features. The
circular convolution is defined as:

(f circle
N ∗ k)i =

r∑
j=−r

(f circle
N )i+jkj , (6)

where k : [−r, r] → RD is a learnable kernel function, while
the operator ∗ is the standard convolution. Following Peng
et al. (2020), the kernel size of the circular convolution is
fixed to be nine.

The CircleSnake model adopts the architecture of Deep-
Snake (Peng et al., 2020) for its convolutional implemen-
tation, structured into three main components: backbone,
fusion, and prediction. The backbone consists of eight
layers, each composed of ”Conv-Bn-ReLU” sequences. This
segment incorporates residual skip connections and utilizes
standard convolutional layers for feature extraction. The
fusion block is designed to integrate information across
contour points at multiple scales. In this process, features
from all layers in the backbone are combined and passed
through a 1×1 convolutional layer followed by a max pooling
layer. The prediction head, serving as the final component
of the network, is equipped with three 1×1 convolutional
layers. Its primary function is to output vertex-wise offsets.
Regarding the loss function, it is specifically designed to
accommodate the iterative contour deformation process
within the CircleSnake framework:

Liter = 1
N

N∑
i=1

l1(x̃circle
i − xgt

i ). (7)
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where xgt
i is the ground truth boundary point and x̃circle

i is
the deformed contour point. Following Peng et al. (2020),
we regress the N offsets in 3 iterations.

4. Experimental Design

4.1 Data

4.1.1 Glomeruli Dataset

To construct a dataset for glomeruli analysis, renal biopsy
whole slide images (WSIs) were obtained and annotated.
Kidney tissues underwent routine processing, embedding in
paraffin, and were sectioned to a thickness of 3 µm, fol-
lowed by staining with hematoxylin and eosin (HE), periodic
acid–Schiff (PAS), or Jones. The samples were anony-mized,
with studies receiving Institutional Review Board (IRB) ap-
proval by Vanderbilt University Medical Center (VUMC)
under protocol number 202459 on December 28, 2020. The
dataset comprised 704 glomeruli from 42 biopsies for train-
ing, 98 from 7 for validation, and 147 from 7 for testing.
Given the relative size of a glomerulus (Puelles et al., 2011),
the original high-resolution images (0.25 µm/ pixel) were
downsampled to 4µm/pixel. Image patches of 512×512
pixels containing at least one glomerulus were randomly
sampled, resulting in a comprehensive dataset with 7,040
training, 980 validation, and 1,470 testing images.

4.1.2 Nuclei Dataset

The 2018 Multi-Organ Nuclei Segmentation challenge data-
set includes 30 tissue images, each measuring 1000×1000
pixels, and contains 21,623 manually annotated nuclear
boundaries. These images we-re extracted from various
organs sourced from The Cancer Genomic Atlas (TCGA)
using H&E-stained WSIs at 40× magnification. Addition-
ally, a separate testing dataset with 14 images of the same
dimensions was created, including lung and brain tissues
exclusively for testing. To create training and validation
datasets, we randomly selected 10 patches sized at 512×512
pixels from each of the 30 training/validation images, re-
sulting in a total of 300 images. Similarly, 140 images
were obtained from the 14 testing images. This dataset
comprised 200 training, 100 validation, and 140 testing
images. It’s worth noting that the 2018 Multi-Organ Nu-
clei Segmentation challenge dataset contains more objects
(21,623 nuclei) than the glomeruli dataset (802 glomeruli)
before any data augmentation. The 2018 Multi-Organ Nu-
clei Segmentation challenge dataset is publicly accessible
for research purposes.

4.1.3 Eosinophils Dataset

All image patches were cut from 50 WSIs from the Pe-
diatric Eosinophils dataset with a 40× objective lens(Liu

et al., 2023). The Eosinophils dataset contains over 12,000
annotations in 50 annotated WSIs. All human subjects
research got IRB approval by VUMC under protocol num-
ber 230223 on March 2, 2023. To enhance the model’s
discernment of eosinophils characteristics, we established
four distinct classes which include eosinophils (eos), papilla
eos, red blood cells (RBC), and RBC clusters. To evaluate
the performance of models, the dataset was divided into
three subsets: train, val (validation), and test, with a split
ratio of 7:1:2. Specifically, there are 4,842 annotations for
“eos”, 2,789 annotations for “papillae eos”, 426 annotations
for “RBC”, and 524 annotations for “RBC Cluster” in the
training dataset. 690 annotations for “eos”, 430 annota-
tions for “papillae eos”, 40 annotations for “RBC”, and 12
annotations for “RBC Cluster” are in the validation dataset.
1,389 annotations for “eos”, 813 annotations for “papillae
eos”, 100 annotations for “RBC”, and 151 annotations for
“RBC Cluster” are in the validation dataset.

4.2 Experimental Design
The implementation of CircleSnake’s object instance seg-
mentation and backbone networks followed DeepSnake’s
official PyTorch implementations. The Common Objects
in Context (COCO) pre-trained model (Lin et al., 2014)
was used to initialize all models. All experiments were
conducted on the same workstation with a 24 GB Nvidia
RTX A5000. For both the glomeruli and Eos experiments,
the hyperparameters were set to maximum epoch = 50,
learning rate = 5e − 4, batch size = 16, and optimizer =
Adam. For the nuclei experiment, the batch size was set to
4 due to memory constraints.

As baseline methods, Faster-RCNN (Ren et al., 2015),
Mask-RCNN (He et al., 2018), CenterNet (Zhou et al.,
2019), DeepSnake (Peng et al., 2020), were chosen for
their superior object detection and object instance segmen-
tation performance. ResNet-50 (He et al., 2016) and deep
layer aggregation (DLA) network (Yu et al., 2018) were used
as backbone networks for these different methods. For Cir-
cleSnake, we followed the original implementation (Nguyen
et al., 2021) and used DLA for the backbone networks.

To ensure the experiment’s fairness, no data augmenta-
tion was performed on any model during training, and no
hyperparameter optimization was performed for any specific
model. During validation, all models were tested with the
best epoch.

4.3 Evaluation Metrics
In the domain of computer vision, the COCO evaluation
metrics have gained prominence as a means to assess the per-
formance of object detection and segmentation algorithms.
These metrics were developed as an integral component of
the COCO dataset and challenge, offering a standardized
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framework for quantifying the accuracy and efficacy of such
algorithms. In the evaluation process, we employed several
key metrics, including Average Precision (AP), AP50 (indi-
cating Intersection over Union, or IOU, threshold at 0.5),
AP75 (IOU threshold at 0.75), APS (pertaining to objects
at a small scale with area less than 322), and APM (associ-
ated with objects at a medium scale with area greater than
322 and less than 962). In the context of segmentation,
the Dice score was also utilized as part of the evaluation
criteria. During the evaluation process, all evaluations were
conducted using consistent threshold settings.

4.4 Rotation Consistency Score

To rigorously evaluate the resilience and precision of our
model across varying angles, we have adopted the Rotation
Consistency Score as a key metric (Nguyen et al., 2021).
The rotation consistency score is calculated by using aver-
age Dice score (before and after rotation), where 1 means
all boxes/circles overlapped while 0 means no boxes/circles
overlapped. A higher rotation consistency score indicates
that the predicted rotated test image, when returned to
its original orientation, aligns more accurately with the
unrotated test image. This results in a greater overlap dur-
ing visualization, demonstrating better consistency in the
model’s predictions. This decision is rooted in the necessity
to rotate the original test images by 90 degrees, a choice
specifically made to mitigate the effects of intensity interpo-
lation that might arise with arbitrary angles. By employing
this structured rotation, we can effectively transform the
segmentation masks from the rotated images back to their
original orientation. This allows for direct comparison and
calculation of the Rotation Consistency Score against the
manually segmented results. We conducted two phases of
experiments, where the first rotation process was only im-
plemented during the test phase and was intentionally not
used as a data augmentation strategy during the training
of all methods. The second rotation process was also im-
plemented during the test phase, but 50% of the data was
rotated during the training of all methods. This approach
ensures a focused assessment of the model’s performance in
handling rotational variations, providing a clear insight into
its robustness and accuracy under controlled conditions.

5. Results

5.1 Glomeruli Detection and Segmentation Performance

As seen in Table 1, the proposed CircleSnake method using
the DLA as a backbone achieves 0.623 segmentation AP ,
0.894 segmentation AP(50), 0.762 AP(75), 0.543 detection
AP(S), 0.719 segmentation AP(M). A qualitative compari-
son between DeepSnake and Circle-Snake can be seen in
(Fig. 4) part (a). The arrows are displayed only in areas

where the predictions differ from the manual segmentation.
Yellow arrows indicate discrepancies in predictions with-
out rotation compared to the manual segmentation, while
blue arrows highlight discrepancies in predictions after a
90-degree rotation compared to the manual segmentation.

5.2 Nuclei Detection and Segmentation Performance

The dataset from the 2018 Multi-Organ Nuclei Segmen-
tation Challenge (Kumar et al., 2017, 2019) was also ap-
plied in the experiment. As seen in Table 2, the proposed
CircleSnake-DLA method reach 0.485 detection AP , 0.845
detection AP(50), 0.518 AP(75), 0.495 detection AP(S),
0.418 segmentation AP(M). A qualitative comparison be-
tween Mask-RCNN, DeepSnake, and CircleSnake can be
seen in Fig. 4 section (b).

5.3 Eosinophils Detection and Segmentation Performance

In pursuit of confirming the model’s broad applicability and
generalizability, we decided to introduce the Eosinophils
dataset (Liu et al., 2023) into our study. As indicated
in Table 3, the performance of the CircleSnake achieve
0.344 detection AP , 0.727 detection AP(50), 0.298 AP(75),
0.340 detection AP(S), 0.403 segmentation AP(M). A
qualitative comparison between Mask-RCNN, DeepSnake,
and CircleSnake can be seen in Fig. 4 part (c).

5.4 Semantic Segmentation Results and Rotation
Consistency

For the semantic segmentation results and rotation consis-
tency comparison. As shown in Table 4 and Fig. 5 part
(a). Our method, CircleSnake can achieve a Dice score of
0.828 with 0.796 rotation consistency score and the Dice
score result has a significant difference from the other two
methods in the Glomeruli dataset. For the Nuclei dataset
Table 4 and Fig. 5 part (b), CircleSnake achieves 0.8 for the
Dice score which also has a significant difference from the
other two methods and 0.799 in the rotation consistency
score. In the Eosinophils dataset Table 4 and Fig. 5 part
(c), CircleSnake achieved 0.743 for the Dice score which
has a significant difference from the DeepSnake method
and 0.752 in the rotation consistency score.

6. Ablation Study

As seen in Table 6, the StarDist (Weigert and Schmidt,
2022) U-Net-based segmentation method, which is a widely
used approach designed for instance segmentation of star-
convex objects such as nuclei, achieves a Dice Score of
0.618 and a Rotation Consistency Score of 0.621 on the
Nuclei dataset. StarDist uses a U-Net backbone to predict
distances to object boundaries and classifies object centers,
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Figure 4: Qualitative Comparison. This figure shows the Qualitative comparison between deepsnake segmentation
results and circlesnake segmentation results. Each orange box indicates the location of each selection. Each yellow arrow
shows the differences between the manual segmentation results and prediction results . Each blue arrow shows the
differences only between the manual segmentation results and the results in rotated 90-degree prediction. (a) is for the
Glomeruli dataset, (b) is for the Nuclei dataset, and (c) is for the Eosinophils dataset.

Table 1: Detection and Instance Segmentation Performance on Glomeruli.
Methods Backbone AP AP(50) AP(75) AP(S) AP(M)
CenterNet (Law and Deng, 2018) DLA-34 0.547 0.872 0.643 0.432 0.640
CircleNet (Nguyen et al., 2022) DLA-34 0.570 0.857 0.691 0.466 0.647
Faster-RCNN (Ren et al., 2015) ResNet-50 0.578 0.878 0.691 0.466 0.670
Mask-RCNN (Detection) (He et al., 2018) ResNet-50 0.576 0.877 0.675 0.470 0.660
Mask-RCNN (Segmentation) (He et al., 2018) ResNet-50 0.590 0.878 0.705 0.453 0.685
DeepSnake (Detection) (Peng et al., 2020) DLA-34 0.527 0.881 0.609 0.424 0.610
DeepSnake (Segmentation) (Peng et al., 2020) DLA-34 0.548 0.877 0.669 0.411 0.642
CircleSnake (Detection) (Ours) DLA-34 0.603 0.877 0.734 0.534 0.670
CircleSnake (Segmentation) (Ours) DLA-34 0.623 0.894 0.762 0.488 0.719
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Table 2: Detection and Instance Segmentation Performance on Nuclei.
Methods Backbone AP AP(50) AP(75) AP(S) AP(M)
CenterNet (Law and Deng, 2018) DLA-34 0.404 0.818 0.342 0.440 0.290
CircleNet (Nguyen et al., 2022) DLA-34 0.461 0.843 0.462 0.473 0.332
Faster-RCNN (Ren et al., 2015) ResNet-50 0.364 0.679 0.349 0.365 0.336
Mask-RCNN (Detection) (He et al., 2018) ResNet-50 0.369 0.679 0.359 0.367 0.348
Mask-RCNN (Segmentation) (He et al., 2018) ResNet-50 0.366 0.678 0.369 0.365 0.446
DeepSnake (Detection) (Peng et al., 2020) DLA-34 0.401 0.827 0.315 0.408 0.345
DeepSnake (Segmentation) (Peng et al., 2020) DLA-34 0.425 0.827 0.394 0.425 0.454
CircleSnake (Detection) (Ours) DLA-34 0.485 0.845 0.518 0.495 0.217
CircleSnake (Segmentation) (Ours) DLA-34 0.436 0.837 0.419 0.436 0.418

Table 3: Detection and Instance Segmentation Performance on Eosinophils.
Methods Backbone AP AP(50) AP(75) AP(S) AP(M)
CenterNet (Law and Deng, 2018) DLA-34 0.327 0.729 0.230 0.351 0.318
CircleNet (Nguyen et al., 2022) DLA-34 0.340 0.706 0.292 0.368 0.332
Faster-RCNN (Ren et al., 2015) ResNet-50 0.331 0.696 0.237 0.332 0.343
Mask-RCNN (Detection) (He et al., 2018) ResNet-50 0.335 0.700 0.246 0.336 0.354
Mask-RCNN (Segmentation) (He et al., 2018) ResNet-50 0.330 0.690 0.243 0.282 0.391
DeepSnake (Detection) (Peng et al., 2020) DLA-34 0.300 0.720 0.149 0.301 0.323
DeepSnake (Segmentation) (Peng et al., 2020) DLA-34 0.305 0.712 0.169 0.255 0.360
CircleSnake (Detection) (Ours) DLA-34 0.344 0.727 0.298 0.340 0.358
CIrcleSnake (Segmentation) (Ours) DLA-34 0.332 0.723 0.263 0.282 0.403

Mask-RCNN (*) Mask-RCNN (*) Mask-RCNN (N.S.)DeepSnake (*) DeepSnake (*) DeepSnake (*)CircleSnake (ref) CircleSnake (ref)CircleSnake (ref)

✱

✱

✱

✱
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DeepSnake
CircleSnake
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Figure 5: Statistical Analysis for Dice ScoreThe figure shows the boxplots of dice score for Mask-RCNN, DeepSnake,
and CircleSnake on Glomeruli, Nuclei, and Eosinophils test datasets. The Wilcoxon signed-rank test is performed with
CircleSnake as the reference (“re”) method, to compare with other methods. “*” represents the significant (p < 0.05)
differences, while “N.S.” means the difference is not significant. (a) is for the Glomeruli dataset, (b) is for the Nuclei
dataset, and (c) is for the Eosinophils dataset.
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Figure 6: Statistic Analysis for Rotation Consistency Score The figure shows the boxplots of rotation consistency
score for Mask-RCNN, DeepSnake, and CircleSnake on Glomeruli, Nuclei, and Eosinophils test datasets. The Wilcoxon
signed-rank test is performed with CircleSnake as the reference (“re”) method, to compare with other methods. “*”
represents the significant (p < 0.05) differences, while “N.S.” means the difference is not significant. (a) is for the
Glomeruli dataset, (b) is for the Nuclei dataset, and (c) is for the Eosinophils dataset.

Table 4: Semantic Segmentation Results and Rotation Consistency.
Dataset Methods Backbone Dice Rotation Consistency
Glomeruli Mask-RCNN (He et al., 2018) ResNet 0.813 0.779
Glomeruli DeepSnake-DLA (Zhou et al., 2019) DLA 0.801 0.793
Glomeruli CircleSnake (Ours) DLA 0.828 0.796
Nuclei Mask-RCNN (He et al., 2018) ResNet 0.763 0.763
Nuclei DeepSnake-DLA (Zhou et al., 2019) DLA 0.765 0.767
Nuclei StarDist (Weigert and Schmidt, 2022) U-Net 0.618 0.621
Nuclei CircleSnake (Ours) DLA 0.800 0.799
Eosinophils Mask-RCNN (He et al., 2018) ResNet 0.710 0.691
Eosinophils DeepSnake-DLA (Zhou et al., 2019) DLA 0.684 0.690
Eosinophils CircleSnake (Ours) DLA 0.743 0.752

Table 5: Semantic Segmentation Results and Rotation Consistency. (training with rotation augmentation)
Dataset Methods Backbone Dice Rotation Consistency
Glomeruli Mask-RCNN (He et al., 2018) ResNet 0.829 0.839
Glomeruli DeepSnake-DLA (Zhou et al., 2019) DLA 0.819 0.830
Glomeruli CircleSnake (Ours) DLA 0.834 0.847
Nuclei Mask-RCNN (He et al., 2018) ResNet 0.768 0.763
Nuclei DeepSnake-DLA (Zhou et al., 2019) DLA 0.797 0.787
Nuclei CircleSnake (Ours) DLA 0.804 0.805
Eosinophils Mask-RCNN (He et al., 2018) ResNet 0.747 0.746
Eosinophils DeepSnake-DLA (Zhou et al., 2019) DLA 0.732 0.740
Eosinophils CircleSnake (Ours) DLA 0.751 0.750
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making it particularly effective for segmenting objects with
distinct shapes. In comparison, our method, CircleSnake,
outperforms StarDist on both metrics, demonstrating su-
perior segmentation accuracy and robustness to rotational
variations. This highlights the effectiveness of our approach
in handling challenging datasets with high object density
and complex object boundaries.
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Glomeruli Nuclei Eosinophils

Relationship between ellipticity and detection/segmentation 
performance

Ratio Detection Segmentation

Figure 7: Relationship between ellipticity and detec-
tion/segmentation performance. The blue line shows
the average ellipticity ratio for all objects on three different
datasets. The orange line shows the detection performance
on three different datasets. The green line shows the seg-
mentation performance on three different datasets.

7. Discussion

In this study, we propose a contour-based method, Cir-
cleSnake, optimized for the segmentation of biomedical
ball-shaped objects. Instead of using an octagon as the
initial contour, CircleSnake directly uses the detection cir-
cle as the initial contour which has a simpler structure
and is shown to offer superior detection or segmentation
performance and rotation consistency. Specifically, Cir-
cleSnake outperforms the other two baseline methods in
all evaluation metrics in the Glomeruli dataset in Table 1.
It also has better performance except APM in the Nuclei
dataset in Table 2 and also better results in AP , AP75, and
APM in Table 3. From Table 3, it can be observed that
all models show a noticeable drop in performance on the
eosinophil dataset. We believe this is primarily due to the
less distinct characteristics of eosinophil cells. As shown
in Figure 4, glomeruli exhibit the most prominent features,
with well-defined boundaries that clearly separate the object
from the background. Similarly, nuclei are relatively easier
to distinguish due to their strong color contrast with the
background. In contrast, eosinophil cells are characterized
by intracellular inflammation, often appearing partially red,
which makes their features more ambiguous and challeng-
ing for all models to detect effectively. This highlights the

difficulty of accurately segmenting objects with subtle or
less distinct features.

As shown in Tables 4 and 5, adopting a circular de-
formation for the segmentation contour leads to better
rotation consistency, regardless of whether rotation data
augmentation is applied. This improved performance likely
stems from the fact that while length and width measure-
ments are sensitive to orientation, radii are inherently more
rotation-invariant. To confirm this, we fit the segmentation
annotations to ellipses and compute the mean ratio of their
minor to major axes (where a ratio closer to 1 indicates
a more rounded shape). We then examine how object
roundness influences the performance gap in detection and
segmentation between CircleSnake and DeepSnake. Our
results demonstrate that while CircleSnake’s segmentation
performance improves as objects become more circular,
no similar trend is observed for detection performance, as
illustrated in Figure 7.

Turning to the comparisons in Tables 1, 2, and 3, we
observe that the Nuclei dataset—despite having the highest
object density—does not yield the poorest performance.
This finding suggests that object density alone does not
dictate model success. Instead, COCO AP’s density-aware
evaluation ensures that models capable of handling dense ob-
ject distributions, such as those found in the Nuclei dataset,
are fairly assessed for their ability to separate, identify,
and accurately segment individual instances. Through this
analysis, several factors contributing to errors emerge. For
false positives, complex or irregular backgrounds may mimic
object features, and overlapping objects in dense scenes
can cause over-segmentation of non-existent instances. For
false negatives, faint objects or those that are low-contrast
relative to the background may be missed, while extreme
size variation—particularly very small objects—increases
the likelihood of detection failures.

The utilization of a circular contour as the foundational
shape for deformation processes may not be ideally suited
for objects of varying geometrical forms, such as ellipses or
elongated shapes. This assertion is substantiated by the
data presented in Table 2 and Table 3, where a discernible
discrepancy is observed between the AP of object detection
and that of segmentation. The higher AP in detection
compared to segmentation might be attributable to the
inherent limitations of a circular contour in accommodating
the deformation needs of non-circular objects, necessitating
a more extensive modification to fit diverse shapes. Fur-
thermore, the current methodology, being predicated on
a single-scale feature map, exhibits a marginal reduction
in efficacy when dealing with objects of disparate scales,
as evidenced by the results in Table 3. Consequently, it is
posited that transitioning from a single-scale to a multi-
scale feature map could potentially enhance the overall
performance of the model, providing a more nuanced and
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Table 6: Semantic Segmentation Results and Rotation Consistency for StarDist.
Dataset Methods Backbone Dice Rotation Consistency
Nuclei StarDist (Weigert and Schmidt, 2022) U-Net 0.618 0.621

adaptable approach to object detection and segmentation.
For the dataset utilization, these three datasets em-

ployed in this work are all within the domain of digital
pathology, leveraging whole slide imaging. In the future, it
would be beneficial to extend the proposed circle represent-
ation-based segmentation approach to other fields, such as
lung nodule detection (CT slices), liver tumor detection (CT
slices), cyst detection (MRI scans), and lesion detection
in fundus images. Notably, the circle representation has
already been applied in other imaging modalities for object
detection, including aerial images (Huang et al., 2023) and
radiological MR images (Camarasa et al., 2023), demon-
strating its potential versatility across diverse applications.

8. Conclusion

In this paper, we propose CircleSnake, a simple contour-
based end-to-end deep learning algorithm with simple archi-
tecture, that achieves (1) circle detection, (2) circle contour
proposal, and (3) circular convolution. The CircleSnake
method is optimized for ball-shaped biomedical objects,
offering superior glomeruli, nuclei, and eosinophils instance
segmentation performance and rotation consistency. The
experimental results demonstrate that, in contrast to con-
ventional bounding box and octagonal representations, the
reduction of DoF has no adverse impact on the model’s
accuracy. Furthermore, it effectively sustains detection
efficiency across diverse viewing angles.
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