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Abstract
Interpretability is crucial for machine learning algorithms in high-stakes medical applications. However, high-performing
neural networks typically cannot explain their predictions. Post-hoc explanation methods provide a way to understand
neural networks but have been shown to suffer from conceptual problems. Moreover, current research largely focuses on
providing local explanations for individual samples rather than global explanations for the model itself. In this paper, we
propose Attri-Net, an inherently interpretable model for multi-label classification that provides both local and global
explanations. Attri-Net first counterfactually generates class-specific attribution maps to highlight the disease evidence,
then performs classification with logistic regression classifiers based solely on the attribution maps. Local explanations
for each prediction can be obtained by interpreting the attribution maps weighted by the classifiers’ weights. Global
explanation of whole model can be obtained by jointly considering learned average representations of the attribution maps
for each class (called the class centers) and the weights of the linear classifiers. To ensure the model is “right for the right
reason”, we introduce a mechanism to guide the model’s explanations to align with human knowledge. Our comprehensive
evaluations show that Attri-Net can generate high-quality explanations consistent with clinical knowledge while not
sacrificing classification performance. Our code is available at https://github.com/ss-sun/Attri-Net-V2.
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1. Introduction

D eep neural networks have significantly improved
the performance of various medical image analysis
tasks in experimental settings (Litjens et al., 2017).

However, the black-box nature of deep learning models may
lead to a lack of trust (Dietvorst et al., 2015), or more
concerningly, blind trust among clinicians (Tschandl et al.,
2020; Gaube et al., 2021). Using black-box models may
potentially also result in ethical and legal problems (Grote
and Berens, 2020), thus hindering their clinical adoption.

Interpretability has been identified as a crucial property

for deploying machine learning technology in high-stakes
applications such as medicine (Rudin, 2019). The majority
of explanation techniques fall into the category of post-hoc
methods, which are model-agnostic and can generate ex-
planations for any pre-trained model. However, post-hoc
methods are not guaranteed to be faithful to the model’s
true decision mechanism (Adebayo et al., 2018; Arun et al.,
2021). Furthermore, as we show in this paper, current
post-hoc explanation techniques that were developed for
multi-class natural image classification do not perform ade-
quately in the multi-label scenario, in which multiple medical
findings may co-occur in a single image.
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Figure 1: Overview of the Attri-Net framework. Given an input image x and a diagnostic task tc, the visual feature
attribution generator (a) produces counterfactual attribution maps Mc(x) that highlight specific disease effects. Logistic
regression classifiers in (b) produce the final prediction for each class based on downsampled versions of these attribution
maps.

An alternative way for approaching interpretability is to
design inherently interpretable models, where the explana-
tions are directly built into the model architecture. Recent
works such as prototype-based neural networks (Chen et al.,
2019), concept bottleneck models (Koh et al., 2020) or B-
cos Networks (Böhle et al., 2024) can provide explanations
for their predictions by revealing the actual decision process
to the user. Thus, these explanations are considered to be
faithful to the model’s internal mechanism.

Based on the scope, the explanations can also be cate-
gorized as local or global explanations. Local explanations
focus on understanding specific predictions for individual
samples, while the global explanations aim to understand
the overall decision mechanism of the entire model on
the dataset level (Christoph, 2020; Bassan et al., 2024).
Although prior research has primarily focused on local ex-
planations (Bassan et al., 2024), for medical applications,
it is also important to understand the behavior of machine
learning models on a global level. Global explanations offer
a valuable tool for verifying learned features and identifying
potential spurious correlations, such as the model’s reliance
on task-irrelevant information. This is especially important
since deep neural networks have a tendency to exploit short-
cuts rather than focusing on task-relevant features (Geirhos
et al., 2020). This shortcut learning behavior, as highlighted
in (Sagawa et al., 2019), can significantly undermine the
model’s robustness and generalization capabilities.

To encourage deep neural networks to focus on task-
relevant features for making predictions and increase the
generalization of the model, recent research (Erion et al.,
2021; Pillai et al., 2022; Rao et al., 2023; Li et al., 2018)
has explored diverse methods of guiding models, such as
enforcing desirable properties on the attributions or aligning

explanations with human annotation. Given that many
explanation methods are differentiable (Selvaraju et al.,
2017; Böhle et al., 2024; Shrikumar et al., 2017), model
guidance can be directly integrated with these explanations,
allowing optimization for both classification performance
and feature localization.

In this work, we propose Attri-Net, an inherently inter-
pretable model designed for the multi-label classification
scenario. The key contributions of this work are as follows:
Attri-Net provides faithful local explanations for individual
predictions and global explanations that reveal the entire
model’s behavior at the dataset level. We incorporate a
model guidance mechanism into Attri-Net to encourage the
model to be “right for the right reason”, relying on mini-
mal pixel-wise disease annotations, which is typical given
the scarcity of expert annotations in the medical domain.
Quantitative and qualitative evaluations show that Attri-
Net generates high-quality local explanations while retaining
classification performance comparable to state-of-the-art
models. Furthermore, we demonstrate that Attri-Net’s
global explanation can effectively identify the spurious cor-
relation learned by the model in short-cut learning settings,
and the proposed model guidance mechanism can success-
fully mitigate this undesired behavior.

This work extends our previous conference paper (Sun
et al., 2023b) by introducing the global explanation that
captures the model’s overall behaviors at the dataset level.
We design new experiments to demonstrate its effectiveness
in identifying shortcut learning tendencies. Furthermore,
we incorporate a model guidance mechanism that leverages
human knowledge to guide the model during the training
process, encouraging the model to make decisions that are
“right for the right reason”. New experiments show that
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this model guidance mechanism can effectively mitigate
shortcut learning behavior. In addition, we expand the
literature review and provide a more in-depth discussion of
the limitations of our current approach and directions for
future work.

2. Related Works

2.1 Post-hoc explanation methods

Post-hoc explanation methods are model agnostic and can
be used to explain any trained model. A widely used group
of techniques in this category are gradient-based methods
such as Guided Backpropagation (Springenberg et al., 2014)
or Integrated Gradients (Sundararajan et al., 2017). Those
techniques provide insights into black-box neural networks
by visualizing the gradient with respect to the input pix-
els. Recent studies (Adebayo et al., 2018; Arun et al.,
2021) have demonstrated that these explanations do not
change significantly when the target model changes, raising
concerns about the ability of such post-hoc methods to
faithfully reflect the model’s behavior.

Perturbation-based methods such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017) approx-
imate the decision function by perturbing the input and
observing the changes in the output. Also for these meth-
ods the explanation’s faithfulness to the model’s decision
mechanism is not guaranteed. Due to their reliance on
input perturbations, these methods can exhibit high vari-
ability across different runs. Factors such as how the input
is segmented into parts (Pihlgren and Främling, 2025), the
sampling procedures (Zhang et al., 2019), and the methods
used to assign importance to the parts (Chen et al., 2018)
all contribute to this variance. As a result, the explanations
produced by these methods are often not robust.

Another line of work, including Class Activation Map-
pings (CAM) (Zhou et al., 2016) and GradCAM (Selvaraju
et al., 2017) are based on the networks’ final activation map
and highlight the regions that are important for a specific
class. These techniques are limited by the spatial resolution
of their explanations. Moreover, Grad-CAM may highlight
regions of an image that a model did not actually use for
prediction (Draelos and Carin, 2020).

2.2 Inherently interpretable models

In contrast to post-hoc explanations, some recent work
has focused on designing models that are inherently in-
terpretable. These models are constructed such that the
explanations are a built-in part of the decision mechanism.
Therefore, the explanations can faithfully reveal the true
decision mechanism.

Examples of inherently interpretable methods include
rule-based models (Lakkaraju et al., 2016; Angelino et al.,

2018) which break the decision mechanism into a set
of independent if-then rules that are easily interpretable
by humans. Inherently interpretable concept bottleneck
models (Alvarez Melis and Jaakkola, 2018; Chen et al.,
2020; Koh et al., 2020) first make predictions on human-
interpretable concepts, and then use these concept activa-
tions to generate final predictions. This structure provides
human-understandable explanations and enables human
intervention. Prototype-based inherently interpretable mod-
els (Chen et al., 2019; Barnett et al., 2021) learn a set of
prototypes from training images and make predictions by
comparing regions of the input image to these prototypes.
Both the final prediction and the explanation are derived
from the similarity to the learned prototypes. Concept-
based methods and prototype-based methods both provide
human-friendly explanations. However, these methods do
not provide spatial explanations, typically involve many
hyperparameters and complex training regimes, and are
challenging to train.

A number of works aim to generate inherently inter-
pretable spatial explanations. For instance, BagNets (Bren-
del and Bethge, 2019; Donteu et al., 2023) produce spatial
explanation based on small local image patches that contain
class evidence. Recently proposed models like CoDA-Net
(Bohle et al., 2021) and its more generalized version, B-cos
Networks (Böhle et al., 2024) are currently the state-of-
the-art models for providing inherently interpretable visual
explanations at the pixel level. These methods employ a
dynamic alignment mechanism and formulate the networks’
prediction as a weighted sum of the input images.

2.3 Counterfactual-based explanations

Counterfactual-based explanations are a category of meth-
ods highly relevant to our work. These methods attempt
to answer questions like “What would the image look like
if it belonged to a different class?” (Schutte et al., 2021;
Joshi et al., 2018; Boreiko et al., 2022; Jeanneret et al.,
2023), or they aim to exaggerate features pertinent to the
predicted class (Cohen et al., 2021; Singla et al., 2019).

Generative adversarial networks (GAN) (Goodfellow
et al., 2020) are widely used for generating counterfac-
tual explanations. For example, Atad et al. (2022) generate
counterfactual explanations for Chest X-rays by manipu-
lating the latent style space of StyleGAN. Mindlin et al.
(2023) employ CycleGAN to produce attention-based coun-
terfactuals for X-ray image classification. Garg et al. (2024)
propose a GAN-based ante-hoc explainable classifier. And
Qi et al. (2025) leverage the style space of StyleGAN to
generate counterfactual explanations for classifier decisions
on prostate MRI scans.

Apart from GANs, Autoencoders (Bank et al., 2023)
have also been explored for generating counterfactual ex-
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planations. The most relevant one with our work is the
Gifsplanation (Cohen et al., 2021, 2025), which generates
counterfactual explanations for chest x-rays by shifting the
latent space of an autoencoder.

Recently, the Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020) and its variants have achieved
remarkable success in the generative tasks and have been
explored for generating counterfactual explanations (Au-
gustin et al., 2022). For example, Jeanneret et al. (2023)
generate post-hoc counterfactual explanations using DDPM,
Bedel and Çukur (2024) propose DreamMR, which is the
first diffusion-driven counterfactual explanation method for
functional MRI. And Fathi et al. (2024) propose DeCoDEx
to improve Diffusion-based Counterfactual Explanations in
confounder detection.

Although there are various counterfactual-based expla-
nation approaches, all models that we are aware of generate
explanations in a post-hoc manner, which may lead to un-
faithful explanations. To our knowledge, we present the
first inherently interpretable model that leverages counter-
factuals.

2.4 Global interpretability

One important goal of interpretability is to detect and avoid
bias of the ML models (Ghassemi et al., 2021). In contrast
to local explanations, which reveal the decision mechanism
for individual samples, global explanations provide insights
into the model behavior for an entire dataset (Reyes et al.,
2020) and are therefore particularly helpful for detecting un-
wanted model behavior. The vast majority of prior research
has focused on local explanations, with very few techniques
tackling the global explanation problem. Post-hoc explana-
tion SHAP can provide global explanations by running it
on every sample and aggregating the SHAP values across
the entire dataset, thereby offering insights into the model
as a whole. The prototypes in prototypical networks (Snell
et al., 2017; Chen et al., 2019) represent the cluster centers
of each class and can serve as a global explanation for the
classifier. Kim et al. (2016) proposed a technique capable
of global explanations by learning both representative pro-
totypical examples of the dataset and criticism examples
that do not quite fit the model. Concept activation vectors
are another strategy that allows obtaining explanations of
entire classes or sets of examples (Kim et al., 2018). The
system proposed in (Pereira et al., 2018) achieved both
local and global interpretability by jointly considering exist-
ing correlations between imaging data, features, and target
variables. To our knowledge, our work is the first inherently
interpretable model that provides both local and global
faithful explanations.

2.5 Visual feature attribution

Visual feature attribution is a task closely related to building
explainable deep learning models. Rather than obtaining
insights into a model’s decision mechanism, visual feature
attribution methods aim to visualize evidence of a particular
class in an image. We emphasize that visual feature attribu-
tion is distinct from interpretable machine learning because
its aim is not to predict an outcome. Nevertheless, the most
frequently used approach to address this problem is training
a neural network for the classification task and then em-
ploying spatial post-hoc explanation techniques described
earlier (Baumgartner et al., 2017; Jamaludin et al., 2016;
Zhu et al., 2017; Pinheiro and Collobert, 2015). Baum-
gartner et al. (2018) pointed out that these algorithms
may lead to only a subset of class-relevant features being
detected since not all class-relevant pixels are necessarily
used by a classifier for its prediction. The authors pro-
posed an alternative strategy for visual feature attribution
based on counterfactuals produced using a Wasserstein
GAN. Specifically, the residual between the original image
and the generated counterfactual image of the opposite
class was used to identify class relevant features. However,
the technique requires knowledge of the ground-truth label
a priori and can therefore not be used for classification.
Moreover, the technique is limited to the binary scenario
with a healthy and a pathological class. In our work, we
build on this work to develop an interpretable multi-label
classifier based on counterfactuals.

2.6 Model guidance

Deep neural networks make predictions by recognizing the
discriminative features learned from images in the training
set. However, deep neural networks have a tendency to
exploit shortcuts, and the learned features may not neces-
sarily transfer to the unseen images (Geirhos et al., 2020).
To enhance model generalization and reduce potential bias,
recent research has focused on incorporating task-relevant
information into model guidance. For instance, Fathi et al.
(2024) introduced a framework that employs a pre-trained
spurious correlation detector to improve the accuracy of
diffusion-based counterfactual explanations. Erion et al.
(2021) introduced attribution priors such as smoothness
and sparsity to the model during training to optimize for
higher-level properties of explanations. Pillai et al. (2022)
proposed Contrastive Grad-CAM Consistency to regularize
the model to produce more consistent explanations. Prior
studies (Li et al., 2018; Rao et al., 2023) have demonstrated
the effectiveness of bounding box annotations in guiding
the model. And Rao et al. (2023) has extensively evalu-
ated various aspects, including loss functions, attribution
methods, and depth of model guidance, concluding that
incorporating human knowledge guidance into the model
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can enhance the interpretability of the explanations and
mitigate potential shortcut learning behavior. In this work,
we investigate guiding our model through pixel-wise human
annotations. We use the energy loss proposed in (Rao et al.,
2023) to encourage our model to be “right for the right
reason”.

3. Methods

3.1 Framework Overview

In this section, we introduce our proposed inherently in-
terpretable “Attri-Net” model. Attri-Net is a multi-label
classifier that makes predictions for C classes, where each
class c with label yc ∈ {0, 1} corresponds to the presence
or absence of a specific medical finding in an image.

The core idea of our approach is to first counterfactually
generate class attribution maps containing the evidence
for each diagnostic task tc (Fig. 1(a)), and then perform
classification solely based on the attribution maps using
logistic regression classifiers (Fig. 1(b)). The attribution
maps weighted by the logistic regression weights directly
show how specific predictions are calculated and provide
local explanations. A global explanation can be obtained
by jointly visualising learned average representations of the
attribution maps for each class (class centers) and the
classfiers’ linear weights.

3.2 Class Attribution Generator

Figure 2: Examples of counterfactual images. The top row
shows an input image x that is positive in cardiomegaly,
the attribution map Mc(x) (with a flipped sign for better
visualization effect), and the counterfactual image x̂. The
bottom row shows images for a negative sample. As ex-
pected the residual changes Mc(x) are large for the positive
sample and small for the negative sample.

The central component of Attri-Net is the class attri-
bution generator (see Fig. 1(a)). We define this gener-
ator as an image-to-image translation network, denoted

as Mc(x) : RH×W 7→ RH×W , following the approach in
(Baumgartner et al., 2018). It learns an additive mapping
Mc to produce a counterfactual image x̂, defined as

x̂ = x + Mc(x) .

The objective is to make the generated counterfactual image
x̂ indistinguishable from the real images sampled from the
distribution p(x|yc = 0) that do not contain class c.

Intuitively, Mc captures the changes required for each
pixel in the input to remove the positive effect of class
c from the image. Consequently, Mc will contain larger
changes for images from the positive class p(x|yc = 1)
compared with images from the negative class p(x|yc = 0).
An illustrative example of generated counterfactuals x̂ for
the disease “cardiomegaly” is presented in Fig. 2, with
additional examples available in the Appendix A.

In order to enable Mc to learn the difference between
the class-positive and class-negative distributions of class
c, we employ a class-specific discriminator network Dc.
The network Dc is trained alongside Mc to distinguish
fake images (x + Mc(x)) from real negative class images
from p(x|yc = 0). Specifically, we adopt the adversarial
Wasserstein GAN loss (Arjovsky et al., 2017; Baumgartner
et al., 2018). The discriminator loss can be written as

L(c)
disc = E

p(x|yc=0)
[−Dc(x)]

+ E
p(x|yc=1)

[Dc(x + Mc(x))] . (1)

The adversarial class attribution generator loss max-
imises the second term of the equation above:

L(c)
adv = E

p(x|yc=1)
[−Dc(x + Mc(x))] . (2)

The class attribution generator loss ensures that x̂ is a real-
istic counterfactual not containing class c and, by extension,
that Mc is a realistic residual attribution map containing
all positive evidence of class c.

To encourage the class attribution maps to focus on
class-relevant information and avoid learning superfluous
pixels not belonging to a given class, we incorporate an
additional L1 regularization term on Mc to encourage it to
be sparse. The regularization term is defined as follows:

L(c)
reg = α0 E

p(x|yc=0)
[∥Mc(x)∥1]

+ α1 E
p(x|yc=1)

[∥Mc(x)∥1] . (3)

We assign a higher weight, denoted as α0, to samples
from the class-negative category and a lower weight, de-
noted as α1, to class-positive examples. This weighting
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reflects the intuition that minimal adjustments are required
for samples from the negative class compared to those from
the positive class. We choose α0 = 2, α1 = 1 based on
preliminary parameter tuning experiments and use them for
all experiments in this paper.

In the context of the multi-label classification task, our
objective is to generate individual explanations for each med-
ical finding. Although it is feasible to design a network M
to produce class attribution maps for all classes as multiple
output channels in a single forward pass, preliminary exper-
iments on such an architecture revealed inadequate class
attribution in the multi-label scenario. Instead, we introduce
a task switch mechanism based on recent work (Sun et al.,
2021) to enable the class attribution generator to switch
between various diagnostic tasks. As shown in Fig. 1(a), the
task code tc is injected into the class attribution generator
through adaptive instance normalization (AdaIN) layers to
switch the network M to a specific mode Mc that focuses
on diagnosing class c. Each task code tc is a one-hot encod-
ing spatially upsampled by a factor of 20 as in (Sun et al.,
2021). Then the one-hot vector task code is converted
into a task embedding via a small fully connected network
and fed to AdaIN layers which are placed throughout the
network. We apply the same mechanism also to the discrim-
inator network D such that it can provide correct feedback
to the respective class.

With task switching mechanism, the class attribution
generator and discriminator can now be expressed as Mc(x)
= M(x, tc), and Dc(x) = D(x, tc). The class attribution
maps for all labels can be obtained by repeated forward
passes through M while iterating through the tc vectors
of all classes. The specific architecture of M and D is
discussed in Sec.3.7, and in more detail in Appendix F.

3.3 Classification Mechanism

As M(x, tc) learns the changes required to convert an image
x into a sample from the negative distribution p(x|yc = 0),
it inherently encodes class-specific information and can be
directly used for predicting class c. Test images that contain
the disease will require large changes to make them appear
healthy, while images that are already healthy are charac-
terised by very small changes M(x, tc) (see Fig. 2). Since
the maps M(x, tc) allow easy differentiation of positive
and negative samples for a given disease, we can employ a
simple linear classifier for the final classification step of each
class. As shown in Fig. 1(b), the respective attribution map
is downsampled and then used as input to the classifier.
That is,

p(yc|x) = σ
(∑

i,j

w
(c)
ij · Sγ(M(x, tc))ij

)
, (4)

where Sγ is a 2D average pooling operator that downsam-
ples by a factor of γ, w

(c)
ij denotes the weights associated

with each pixel of the down-sampled attribution map for
class c, and σ is the sigmoid function. In preliminary exper-
iments, we evaluated with various values of γ and found
γ = 32 to perform robustly and we used this value for all
experiments.

The classifiers for each class are trained using a standard
binary classification loss L(c)

cls , i.e. a binary cross entropy
loss. Note that, since our framework is trained end-to-
end, M also receives gradients from that loss and is thereby
encouraged to create class attribution maps that are linearly
classifiable.

3.4 Center Loss

To further encourage the attribution maps to be discrimi-
native, we apply the center loss proposed by (Wen et al.,
2016), which has demonstrated its efficacy in fostering more
distinctive feature representations. Extending this idea, we
define center loss L(c)

ctr as follows:

L(c)
ctr = 1

2 E
p(x|yc=0)

[
∥M(x, tc) − vyc=0∥2

2

]
+ 1

2 E
p(x|yc=1)

[
∥M(x, tc) − vyc=1∥2

2

]
, (5)

where vyc=0, vyc=1 ∈ RH×W are the negative and positive
class centers of attribution map for class c.

The class centers are learnable and updated on mini-
batch along with the update step of network M with sepa-
rate optimizers as described by (Wen et al., 2016). In the
forward pass, the center loss calculates the L2 distance be-
tween the attribution map M(x, tc) and the corresponding
class center. In the backward pass, both the attribution
map M(x, tc) and the associated class center receive gradi-
ents from the loss and are updated accordingly. Since the
center loss penalizes the distance between an attribution
map and its corresponding class center, it encourages the
attribution map to move closer to the class center. This re-
duces the intra-class distance while increasing the inter-class
separation, making the attribution map more distinctive
between positive and negative classes. Furthermore, the
class centers aggregate the mean attribution maps of each
class c across the dataset, offering insight into the model’s
average behavior. At the end of the training stage, these
class centers can serve as a global explanation for the entire
model as described in Sec.3.6.2.

3.5 Model Guidance

The inherently interpretable construction of Attri-Net al-
lows to constrain the explanations using human guidance
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(a)ground truth bbox (b)all ground truth bbox (c)binary pseudo-mask 

Figure 3: Generation of pseudo guidance masks. An ex-
ample for the disease cardiomegaly from the ChestX-ray8
dataset is shown. (a) A chest X-ray image with its ground
truth bounding box annotation for cardiomegaly. (b) The
same image with multiple cardiomegaly bounding box an-
notations from other cases in the ChestX-ray8 dataset. (c)
The same image with the binary pseudo-mask generated
from multiple cardiomegaly bounding box annotations.

in the form of disease segmentations or bounding boxes.
Since the explanations are part of the decision mechanism,
constraining the explanations directly affects the model’s
decision mechanism.

To incorporate guidance into our model we propose
to train it with a guidance loss based on an energy-based
formulation (Rao et al., 2023):

L(c)
guid = 1 −

∑H
h=1

∑W
w=1 Gc,hw|Mc|,hw∑H

h=1
∑W

w=1 |Mc|,hw

. (6)

Here, the guidance mask Gc is a binary image matching
the input X-ray’s dimensions, where pixels inside lesion
regions are set to 1 and others to 0. It is derived from
ground-truth lesion annotations, such as bounding boxes
or disease segmentations. |Mc| is the absolute value of the
attribution map. The guidance loss encourages the model
to focus on the regions within the guidance mask that
contain task-relevant features while ignoring the regions
outside.

3.5.1 Full guidance

In the ideal case, annotations are available for every training
image and we can perform full guidance by directly incorpo-
rating the guidance loss with the other loss terms to jointly
optimize for classification performance and localization of
task-relevant features. This is, for example, the case for
the VinDr-CXR dataset Nguyen et al. (2022), where expert-
labeled bounding box annotations are available for every
sample.

3.5.2 Pseudo-guidance

In most cases, expert-labeled bounding boxes or segmen-
tations are costly to obtain and are available only for a
small portion of the training data. For example, the large-
scale chest X-ray dataset ChestX-ray8 (Wang et al., 2017)

contains 108,948 images while only 880 images are pro-
vided with disease bounding box annotations. Most of the
samples in this dataset only have class labels at the image
level. As chest X-ray images primarily capture organs with
relatively fixed positions, there is a noticeable overlap of
disease incidence regions among individual patients. This
intrinsic property of chest X-rays provides an opportunity to
incorporate a pseudo guidance mechanism for samples that
lack pixel-wise ground truth annotations. We create pseudo-
guidance masks for a class by calculating the union of all
ground truth bounding box annotations for that class. An
example pseudo-mask generation for the class cardiomegaly
is shown in Fig. 3.

We investigated different methods to incorporate pseudo-
guidance alongside the limited ground truth annotations and
determined that a mixed guidance strategy yielded the best
performance. Specifically, during training, when a sample
has a ground truth annotation, we guide the model using
the actual ground truth. In cases where there is no ground
truth, we use the pseudo masks as guidance to prompt
the model to emphasize regions with a higher prevalence
of diseases. We observed that oversampling cases with
ground truth annotations during training such that they
appear with a frequency of 1

10 enhances the localization
performance. We provide a more detailed analysis in the
Appendix C.

3.6 Obtaining Explanations

During inference time, our model is capable of producing a
prediction as well as a local per-sample explanation and a
global explanation on the dataset level. In the following we
describe how those two explanations types can be obtained.

3.6.1 Obtaining Local Explanations

Figure 4: Local explanation of Attri-Net for an example from
the CheXpert dataset with cardiomegaly. The weighted
attribution map serves as local explanation for a specific
prediction. It is defined as the element-wise product of
the attribution map from class attribution generator and
the weight matrix from corresponding logistic regression
classifier.

Attri-Net directly allows us to obtain local explanations
by considering the weighted attribution maps. As shown
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in Fig. 4, the weighted attribution map is calculated by
the element-wise product of the attribution map and the
upsampled weight matrix of the corresponding logistic re-
gression classifier. Note that this equivalent to the weights
and feature multiplication inside the logistic regression clas-
sifiers, i.e. the term inside the sum of Eq. 4. The weighted
attribution map therefore directly reveals the classifier’s
decision mechanism. We keep the positive values in the
weighted map as evidence of class c. This attribution map,
together with the final prediction, is provided to the users
for inspection of a particular diagnosis.

3.6.2 Obtaining Global Explanations

Prior to the deployment, model developers need to ensure
that the classifier behaves reliably on a global level (e.g.
does not use any spurious features). Attri-Net addresses
this need by providing global explanations for the whole
model’s mechanism. We define the global explanation
as the combination of class centers and classifier weights.
After the training stage, the class centers vyc=0, vyc=1 ∈
RH×W , as defined in Sec.3.4, capture the average patterns
of attribution maps across the entire training set, enabling
users to assess whether the input features of the classifiers
are clinically meaningful. Meanwhile, the logistic regression
classifier weights reveal the areas of the images that the
classifier is paying attention to. Thus, the class centers,
together with the weight matrices, provide a transparent
insight into Attri-Net’s classification process, offering an
explanation for the entire model. Figure 5 illustrates the
global explanation for Attri-Net trained on the CheXpert
dataset.

Figure 5: Global explanation of Attri-Net for a model trained
on the CheXpert dataset. The positive and negative class
centers of attribution maps and the corresponding classifiers’
weight matrix together provide a global explanation for Attri-
Net.

3.7 Model Architecture and Training

Attri-Net contains a total of 55.86 million parameters and
consists of three key components: the class attribution
generator M , the discriminator network D, and the logistic
regression classifiers. We implemented M and D based on
the StarGAN (Choi et al., 2018) architecture. To enable
the task-switching functionality, we replaced instance nor-
malization layers in the original StarGAN architecture with
adaptive instance normalization (AdaIN) modules follow-
ing (Sun et al., 2021). Each logistic regression classifier
was implemented as a fully connected neural network layer
with a 2D average pooling layer for downsampling. The
architectures are described in more detail in the Appendix
F.

The Attri-Net framework can be trained end-to-end
with five loss terms enforcing our essential requirements:
Firstly, we used the classification loss L(c)

cls , which apart
from encouraging accurate classification, ensures that the
attribution maps preserve sufficient class relevant informa-
tion for a satisfactory classification result. Secondly, we
adopted the adversarial loss L(c)

adv and the regularization
term L(c)

reg to encourage discriminative and sparse attribu-
tion maps. Furthermore, the center loss term L(c)

ctr moves
the attribution maps toward the class centers and provides
global explanations. Lastly, the guidance loss L(c)

guid can be
optionally used to inject human guidance during training
and encourages the attribution maps to be consistent with
human knowledge.

The overall training objective for the class attribution
generator M with weight parameters φ was given by

L =
∑

c

λadL(c)
adv + λclL

(c)
cls + λreL(c)

reg

+ λctL(c)
ctr + λgdL(c)

guid , (7)

where we used the hyperparameters λ∗ to balance the
losses. We chose λad = 1, λcl = 100, λre = 100, λct =
0.01, λgd = 30 for our experiments. An ablation study on
the effect of the different losses can be found in Sec.4.6.

Throughout the training, we repeatedly iterate through
the different classes c and, for each, draw two mini-batches,
one containing positive samples of the current class and
the other negative samples. We iteratively update M , D,
and the classifiers. In one training step, only the classifier
corresponding to the current target class is updated, while
the classifiers for other diseases remain frozen. Follow-
ing the original Wasserstein GAN (Arjovsky et al., 2017),
the discriminator D undergoes more frequent updates to
ensure it remains close to optimality throughout training.
Specifically, we perform five discriminator update steps for
each generator step. Additionally, for every 100 generation
step and the first 25 generator steps, we perform an extra
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100 discriminator update steps. Furthermore, with each
generator step, we update the classifier five times.

We employed the ADAM optimizer (Kingma and Ba,
2014) with a learning rate of 10−4 and a batch size of 4
for the optimization of M , D, and the logistic regression
classifiers. Additionally, following (Wen et al., 2016), we
used stochastic gradient descent with a learning rate of 0.1
for updating the class centers in the center loss module. The
model was trained for 100,000 generator steps to ensure
both the classification performance and the attribution
maps achieve a stable state. We trained Attri-Net on
a single NVIDIA 2080Ti GPU for three days. The best
model was chosen by evaluating the area under the ROC
curve (AUC) on the validation set. After the training, the
optimal decision threshold for each class was obtained by
maximising the Youden index (sensitivity + specificity - 1)
on the validation set. We also performed this step for the
baseline methods. During inference, the average time for
predicting all diseases on a single chest X-ray image is 0.194
seconds. Since the attention maps are the intermediate
output during inference, generating explanations does not
introduce additional computational cost.

4. Experiments and Results

4.1 Experiment settings

4.1.1 Data

We performed experiments on three chest X-ray datasets:
CheXpert (Irvin et al., 2019), ChestX-ray8 (Wang et al.,
2017), and VinDr-CXR (Nguyen et al., 2022). Different
from our prior work (Sun et al., 2023b), we now had access
to the officially released test sets of CheXpert and VinDr-
CXR datasets. In this paper, we present results for all
three datasets based on the official data splits, ensuring the
comparability of our findings with other published works
that also used the official split. We used the official train,
validation and test set for experiments on CheXpert dataset.
Since ChestX-ray8 and VinDr-CXR only provide train, test
split, we generated train and validation sets on the official
train set with a split ratio of 0.8.

We scaled all images to a smaller size of 320×320 pixels
for training and scaled the bounding box annotations and
segmentation masks accordingly. Since most of the chest
X-ray images in the three datasets are frontal, we excluded
a small number of lateral images from the CheXpert dataset.
On CheXpert and ChestX-ray8 datasets, following (Irvin
et al., 2019), we focused on five findings based on their
clinical importance and prevalence: (a) Atelectasis, (b)
Cardiomegaly, (c) Consolidation, (d) Edema, and (e) Pleural
effusion. The VinDr-CXR dataset is much smaller than the
above two datasets and has a different label distribution. To
make sure there are enough positive samples for the model to
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Figure 6: Binary pseudo masks on all three examined
datasets.

Table 1: Number of samples for creating pseudo guidance.
Dataset Atelet. Cardio. Consol. Edema Effusi.
CheXpert 75 66 32 42 64
ChestX-ray8 76 54 0 0 52

learn disease relevant features, we selected the following five
pathologies: (a) Aortic enlargement, (b) Cardiomegaly, (c)
Pulmonary fibrosis, (d) Pleural thickening, and (e) Pleural
effusion.

4.1.2 Data-splits for Model Guidance

Though there are a large number of chest X-ray images
in the CheXpert and ChestX-ray8 datasets, the number of
images with pixel-level annotations of pathologies is much
smaller. As explained in Sec.3.5.2, we addressed this lim-
itation by generating pseudo masks. These masks were
created using the limited ground truth pixel-level annota-
tions and were then used as pseudo-guidance for samples
lacking such annotations. In the following we describe how
the existing data with pixel-level annotations was split for
pseudo-guidance and evaluation.

The ChestX-ray8 dataset provides bounding box anno-
tations for 880 images. We divided these annotations with
a ratio of 40% for generating pseudo masks for training
and 60% for evaluation. Note that in ChestX-ray8, there
are no bounding box annotations available for consolidation
or edema positive samples. Therefore, we created a very
loose guidance in the form of a 300 × 300 square, aiming
to guide the model to focus on the central regions of the
image.

In recent work (Saporta et al., 2022), ground truth seg-
mentations were released for 187 images in the CheXpert
validation set and 499 images in the test set. We used the
ground truth segmentations from the CheXpert validation
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set to create pseudo masks, reserving the test set for evalu-
ation. The distribution of samples used to create pseudo
guidance can be found in Table 1, and the resulting pseudo
masks are presented in Fig. 6.

The VinDr-CXR dataset includes bounding box annota-
tions for all images, allowing us to assess the full guidance we
described in Sec.3.5.1. As a comparison, we additionally per-
formed an experiment by using the pseudo-guidance mech-
anism as introduced in Sec.3.5.2. We generated pseudo
masks by using a small subset of 75 samples from each dis-
ease (See Fig. 6(c)) and only used them to guide the model
during training as we did with ChestX-ray8 and CheXpert
datasets. This allowed us to evaluate the performance gap
between full guidance and pseudo-guidance.

4.1.3 Baseline methods

To assess our model’s classification performance, we com-
pared it with a standard black-box ResNet50 (He et al.,
2016) model as well as the B-cos ResNet50 (Böhle et al.,
2024), a state-of-the-art inherently interpretable classifier.
We trained our Attri-Net using the settings described in
Sec.3.7. For training the ResNet50 and the B-cos ResNet50,
we employed the ADAM optimizer (Kingma and Ba, 2014)
with a learning rate of 10−4 and a batch size of 4. The
models were trained for 50 epochs to achieve convergence,
and the best-performing models with the highest AUC score
on the validation set were selected.

We further assessed the local explanations provided
by our proposed AttriNet, the B-cos Network, as well as
five post-hoc explanation techniques which we applied to
the ResNet-50 black-box model. Specifically, we compared
to Guided Backpropagation (Springenberg et al., 2014),
GradCAM (Selvaraju et al., 2017), LIME (Ribeiro et al.,
2016), SHAP (Lundberg and Lee, 2017) and the recently
proposed Gifsplanation (Cohen et al., 2021).

Since our model and B-cos Networks are both inherently
interpretable, they could both optionally be trained with
our guidance loss proposed in Sec.3.5. We trained both
models with and without model guidance to investigate its
effect on explanation quality and classification performance.

4.2 Evaluation Metrics

4.2.1 Classification Metric

The classification performance was evaluated using the area
under the ROC curve (AUC).

4.2.2 Explainability Metrics

We evaluated the quality of the explanations using two
metrics we defined: class sensitivity and disease sensitivity.

We defined class sensitivity following the approach de-
scribed by Bohle et al. (2021). Class sensitivity measures

Figure 7: Example of image grid used for computing the
class sensitivity metric for the disease cardiomegaly. (a)
Input image grid with one positive and three negative sam-
ples. (b) Corresponding local explanations generated by
Attri-Net.

the intuition that explanations should be different for dif-
ferent image classes (Khakzar et al., 2022). In our sce-
nario, class sensitivity implies that the explanations for the
disease-positive class should be distinct from those for the
disease-negative class. Following Bohle et al. (2021), we
generated a series of 2 × 2 grids of explanations, each con-
taining only one positive example of a given disease (see
example in Fig. 7). The class sensitivity was then computed
by dividing the sum of attributions in the positive example
by the sum of all attributions in the grid. Ideally, all dis-
ease negative explanations should be blank because there
is no disease effect in the negative samples, resulting in a
class sensitivity score of 1. Conversely, in the worst-case
scenario where positive and negative sample explanations
are indistinguishable, the class sensitivity score would be
1
4 . Similar to Bohle et al. (2021), we created 200 grids
using the most confident positive and negative samples and
computed the average class sensitivity across class c. In
cases where certain diseases lacked an adequate number
of positive samples in the test set, we constructed fewer
image grids, with the number of grids equal to the count
of correctly predicted positive examples.

We defined the disease sensitivity following the energy-
based pointing game metric proposed by Wang et al. (2020).
Disease sensitivity measured how much of the attributions
for a given disease are concentrated inside the ground truth
bounding box or segmentation mask. It was computed by
summing the attributions within the bounding box annota-
tion and dividing by the sum of all attributions. The disease
sensitivity scores were averaged across all classes c and sam-
ples with ground truth pixel-wise annotations. Specifically,
this included the remaining 60% of bounding box annotated
samples for the ChestX-ray8 dataset, as well as all samples
in the test set for the CheXpert and VinDr-CXR datasets.
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Table 2: Classification performance measured by area under
the ROC curve (AUC).

Model CheXpert ChestX-
ray8

VinDr-
CXR

Stanford baseline (Irvin
et al., 2019)

0.907 - -

DeepAUC (Yuan et al.,
2021)

0.930 - -

LSE (Ye et al., 2020) - 0.755 -
ChestNet (Ye et al.,
2020)

- 0.790 -

ResNet50 0.875 0.778 0.764
B-cos ResNet50 0.866 0.757 0.836
B-cos ResNet50 (guided) 0.839 0.754 0.828
ours 0.873 0.779 0.789
ours (pseudo guidance) 0.848 0.774 0.773
ours (full guidance) - - 0.782

4.3 Evaluation of Classification Performance

The classification outcomes of our model, the black-box
model ResNet50, the inherently interpretable model B-cos
ResNet50, and the guided variants of our model and B-
cos ResNet50 are presented in Table 2. The disease-wise
classification performance is provided in Table 5 in Appendix
B. Additionally, we report the top-performing result in the
CheXpert competition (Yuan et al., 2021), the baseline
outcome outlined in the dataset paper (Irvin et al., 2019),
and published result from (Ye et al., 2020) on ChestX-ray8.
Attri-Net overall performed comparable to the state-of-
the-art, with an AUC that was similar to other methods
on CheXpert, slightly lower on Vindr-CXR, and slightly
better on ChestX-ray8. In comparison to our prior work
(Sun et al., 2023b), both the ResNet50 model and our
own model exhibited a decline in classification performance
when assessed on the Vindr-CXR official test set. This
is primarily due to the increased difficulty of the test set.
Furthermore, we observed a slight decrease in classification
performance with the guided versions of both our model
and B-cos ResNet50. This suggested that the unguided
versions may exploit class-irrelevant features to achieve
optimal classification performance, whereas these features
were restricted in the guided models. Additionally, on the
Vindr-CXR dataset, the model trained with full guidance
outperformed the model trained with pseudo guidance by a
small amount, indicating that more precise guidance leads
to improved performance.

4.4 Evaluation of the Local Explanations

We derived local explanation for Attri-Net using the weighted
attribution maps as detailed in Sec.3.6.1 and compared our
local explanations with those from B-cos ResNet50 and
five post-hoc methods that explain the prediction for the
black-box ResNet50 model.

4.4.1 Quantitative Analysis of Explanations

Table 3 presents the class sensitivity and disease sensitivity
of all local explanations that we compared. Additional
disease-wise results along with the 95% confidence interval
are provided in Appendix E.

Our method consistently outperformed all other meth-
ods, demonstrating significantly higher class sensitivity
across all datasets. The high class sensitivity underscores
Attri-Net’s ability to provide more distinguishable explana-
tions for disease-positive and disease-negative samples.

Moreover, as depicted in Table 3, when trained with
guidance, our Attri-Net achieved the highest disease sensitiv-
ity score across all datasets, indicating superior localization
of disease-relevant regions compared to alternative meth-
ods. A paired t-test of our model trained with and without
guidance on the CheXpert dataset reveals a statistically
significant improvement when guidance was incorporated
(t = 28.284, p < 0.0001). Additionally, the discrepancy in
disease sensitivity between models trained with full guidance
and those with pseudo guidance on VinDr-CXR emphasizes
the importance of precise guidance in enhancing localization
performance. Notably, similar to our Attri-Net, the disease
sensitivity of the other inherently interpretable model, B-
cos ResNet50, also improved after adding guidance on
CheXpert and ChestX-ray8 datasets. However, the degree
of improvement fell short of ours. This substantial per-
formance gap highlighted that Attri-Net was particularly
suitable for integrating guidance. This is because Attri-Net
is explicitly designed for multi-label classification by distin-
guishing between positive and negative samples for each
disease, resulting in more class-specific attribution maps.
Therefore, the guidance effectively helps the model focuson
the most relevant regions.

4.4.2 Qualitative Analysis of Explanations

The qualitative examination of example explanations sup-
ported the quantitative results. Attri-Net was capable of
generating local explanations that effectively emphasize the
anatomical regions associated with the respective classes
(see Fig. 8 for a representative example from the ChestX-
ray8 dataset). Besides, explanations for highly confident
predictions, such as cardiomegaly, exhibited a more pro-
nounced disease effect compared to negative predictions
such as Edema. Furthermore, the attributions for differ-
ent classes were clearly distinct, each highlighting different
anatomical areas. In contrast, it was challenging to under-
stand the explanations from other post-hoc methods and the
inherently interpretable baseline. For instance, explanations
derived from Guided Backpropagation and B-cos ResNet50
were very noisy and hard to interpret. The explanations
from the counterfactual-based Gifsplanation approach were
easier to interpret, yet they consistently emphasized simi-
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Table 3: Comparison of class sensitivity and disease sensitivity.

Model Class sensitivity Disease Sensitivity
CheXpert ChestX-ray8 VinDr-CXR CheXpert ChestX-ray8 VinDr-CXR

GB 0.303 0.263 0.267 0.175 0.176 0.047
GCam 0.191 0.225 0.176 0.192 0.125 0.061
LIME 0.254 0.229 0.252 0.103 0.122 0.031
SHAP 0.351 0.434 0.306 0.219 0.278 0.067
Gifsp. 0.300 0.688 0.317 0.191 0.178 0.052
B-cos ResNet50 0.266 0.276 0.240 0.259 0.235 0.089
B-cos ResNet50 (guided) 0.271 0.322 0.240 0.279 0.247 0.075
ours 0.684 0.951 0.862 0.207 0.158 0.075
ours (pseudo guidance) 0.622 0.965 0.920 0.400 0.327 0.156
ours (full guidance) - - 0.872 - - 0.204

lar regions for different diseases. More examples from the
CheXpert and VinDr-CXR datasets can be found in the
Appendix D.

We further examined Attri-Net explanations on images
with pixel-wise ground truth annotations (Fig. 10) and ob-
served that after adding pseudo-guidance to the model, the
local explanations produced by Attri-Net better matched
the areas where the pathologies are located, which was
consistent with the high disease sensitivity in our quantita-
tive evaluation. This suggested that incorporating guidance
assisted the model in being “right for the right reason.”

4.5 Evaluation of the Global Explanations

We assessed the performance of the global explanation
mechanism of Attri-Net by investigating whether it can be
used to uncover synthetically induced spurious correlation.

Following our previously proposed evaluation framework
(Sun et al., 2023a) we created a semi-synthetic dataset de-
rived from the CheXpert dataset by contaminating 50% of
cardiomegaly positive samples with spurious tag signal (see
Fig. 9 (a), (b)). This produces a spurious correlation be-
tween the tag and the presence of the disease cardiomegaly.
In (Sun et al., 2023a) we showed that models trained on
such a biased dataset will exhibit shortcut learning behavior,
wherein they rely on spurious signals rather than relevant
features for prediction.

In this work, we trained the Attri-Net model on this
contaminated dataset and qualitatively and quantitatively
evaluated the model’s reliance on the shortcut using the
global explanation mechanism. Note that the other inter-
pretable methods we assessed in Sec.4.4 lack the capability
to offer global explanations. In fact Attri-Net is to our
knowledge the first method to provide global spatial expla-
nations. We thus limit our proof-of-concept to Attri-Net.

In a second step, we investigated using model guidance
to alleviate the model’s shortcut learning behavior. Since we
know the regions of spurious signals, we created guidance

to avoid the spurious signal’s region and encouraged the
model to use the features inside the center region of the
image (Fig. 9 (c)). We evaluated the global explanations
for the model trained with guidance to verify whether the
inclusion of guidance could reduce the model’s dependence
on spurious signals.

4.5.1 Quantitative Results

Since we have introduce a known shortcut behaviour on
the tag signal, we expect a global explanation to correctly
highlight the reliance on the tag signal in contaminated
test images. To measure this we have previously intro-
duced the confounder sensitivity metric (Sun et al., 2023a).
Confounder sensitivity measures how many of the top 10%
most significant pixels identified by the explanation fall
on the synthetically added tag signal. We computed the
confounder sensitivity using the positive class center of car-
diomegaly, resulting in a score of 0.747. This indicates that
74.7% of the spurious signal pixels were captured by the
top 10% most significant pixels in the positive class center
of cardiomegaly.

To further verify that adding guidance can direct the
model towards using the correct features, we added the
guidance shown in Fig. 9(c) to the model to encourage
the model to avoid using spurious signals. After adding
guidance, the confounder sensitivity of the new class center
dropped to 0.002, which means that the most significant
explanation pixels are not on the spurious signals anymore.

4.5.2 Qualitative Results

We visualize the global explanation of the model trained on
the contaminated CheXpert dataset in Fig. 11(a) and assess
if the spurious signal can be detected in the first place.
From the positive class center of cardiomegaly, we can
clearly see the text “CXR-ROOM1” which we added as the
spurious signal. Meanwhile, we observed faintly discernible
textual signals of edema within the class centers, indicating
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Figure 8: Visual comparison of explanations for an example image from the ChestX-ray8 dataset. Predicted class
probabilities are indicated in the lower left corner of each attribution map with the respective decision threshold in
parentheses. Wrong predictions are highlighted with red boxes.

(a) original (b) contaminated (c) guidance-mask

Figure 9: Synthetically induced short-cut learning for global
interpretability experiment. (a) A cardiomegaly positive
sample from the CheXpert dataset. (b) The contaminated
sample after adding the text “CXR-ROOM1” as a spurious
signal. (c) The guidance mask encourages the model to use
the features inside it and avoid using the spurious signal.

that Attri-Net used features from the spurious tag signal
when diagnosing edema. Given that we only introduced
the spurious signal to the positive class for cardiomegaly,
this observation suggested a potential correlation between
cardiomegaly and edema, agreeing with clinical observation
in (Dodek et al., 1972). Since our model was trained to
capture all information related to diagnosing disease, it
was particularly useful for detecting faulty model behavior
and the potential bias in the datasets. After adding model
guidance, we found that the text was removed from the new
global explanation (See Fig. 11(b)), which indicated that
the new model trained with guidance was less dependent
on the spurious signal.

4.6 Ablation study

We performed an ablation study on the five loss terms for
training the class attribution generator network M described
in Sec.3. In Fig. 12, we show examples of attribution maps
from our model trained with different losses, and in Table 4,
we list the quantitative evaluation results of these models,
respectively.

We found that models trained with different losses per-
form similarly in classification AUC. However, the attribution
maps visually change greatly, and the quantitative evalua-
tion results of class sensitivity and disease sensitivity vary a
lot. As shown in Fig. 12, after adding the adversarial loss
term Ladv, the attribution maps focus on disease-relevant
regions and become easy to understand. The regularization
term Lreg encourages the attribution maps to be sparse.
The addition of center loss Lctr improves the classification
slightly but does not substantially affect the attribution
maps. More importantly, the class centers provide a possi-
ble way to interpret Attri-Net globally. From Table 4, the
model guidance loss Lguid greatly improves disease sensitiv-
ity, which is clearly shown from the attribution maps (last
column) in Fig. 12.

5. Discussion and Conclusion

We proposed Attri-Net, a novel inherently interpretable
multi-label classifier that provides faithful local and global
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Table 4: Ablation study on five losses. Evaluated on ChestX-ray8 dataset.
Model Loss terms Classification AUC Class sensitivity Disease sensitivity
Attri-Netcls Lcls 0.756 0.436 0.200
Attri-Netcls adv Lcls + Ladv 0.765 0.665 0.211
Attri-Netcls adv reg Lcls + Ladv + Lreg 0.778 0.954 0.178
Attri-Netcls adv reg ctr Lcls + Ladv + Lreg+ Lctr 0.779 0.951 0.158
Attri-Netall Lcls + Ladv + Lreg + Lctr + Lguid 0.774 0.965 0.327
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Figure 10: Local explanations produced by Attri-Net trained
with and without guidance. Examples from three datasets:
(a) CheXpert, (b) ChestX-ray8, (c) Vindr-CXR. Ground
truth segmentation masks and bounding boxes are indicated
in green regions.

Figure 11: Global explanations produced by Attri-Net
trained on the contaminated CheXpert dataset: (a) global
explanation of the model trained without guidance, (b)
global explanation of the model trained with guidance. Red
boxes highlight the spurious signal detected by the class
centers of cardiomegaly, and green boxes highlight the spu-
rious signal captured by the class centers of edema.

explanations. Our experiments showed that Attri-Net can
produce high-quality local explanations that substantially
outperform all baselines regarding class sensitivity and dis-
ease sensitivity while retaining classification performance
comparable to state-of-the-art black-box models.

Our further experiments showed that explanations of the
black-box model can be highly dependent on which post-hoc
technique is used, and fundamentally differ from each other
even on the same sample. This erodes trust in their capacity
to provide faithful explanations in high-stakes applications
and shows the need for inherently interpretable models
such as ours, where the predictions are formed directly and
linearly from visually interpretable class attribution maps.

Apart from providing transparent local explanations

649



Sun, Woerner, Maier, Koch, Baumgartner, 2025

Input Attri-Netcls

Positive
sample

Negative
sample

Attri-Netcls_adv_reg Attri-Netcls_adv_reg_ctrAttri-Netcls_adv Attri-Netall

Figure 12: Qualitative results of ablation study. Attribution maps generated by models trained with different subsets of
our proposed losses for samples from the ChestX-ray8 dataset with cardiomegaly (top row) and without cardiomegaly
(bottom row).

for individual predictions, Attri-Net can provide a global
explanation of the model at the dataset level. Notably,
the global explanation produced by Attri-Net was shown
to faithfully capture synthetically induced shortcut learning
behavior, which highlights the potential of our proposed
approach to assist ML practitioners in improving the quality
of the model and datasets. In addition, we demonstrated
that Attri-Net can be combined with model guidance. If
human annotations are available this allows to enforce that
the correct features are used for making predictions and that
the explanations are aligned with human knowledge. Our
experiments showed that even very few human annotations
can achieve significant improvement in disease localization.

The qualitative and quantitative assessments in this
paper suggest that our method provides useful explana-
tions; however, several limitations remain. Specifically,
since Attri-Net performs classification and generates expla-
nations by learning the differences between disease-positive
and disease-negative classes, it is particularly suited for
imaging modalities that capture relatively fixed anatomical
structures and lesions. Therefore, detecting tiny tumors
or nodules would be a challenging task for Attri-Net, es-
pecially when such lesions can appear in various locations.
However, since many medical imaging modalities typically
focus on specific parts of the human body with relatively
fixed anatomical structures, the design concept of Attri-Net
can potentially be extended to other imaging modalities,
including 3D domains such as CT or MRI. In future work,
we will evaluate the suitability of Attri-Net to other med-
ical imaging domains with fixed structures (e.g. fundus
imaging) as well as domains with varying structure (e.g.
histopathological imaging). Since pixel-level lesion annota-
tion often requires extensive expert effort, we will further
explore the trade-off between annotation effort and the ben-
efits of model guidance. Systematically quantifying global

explanations remains a challenging task. In this study, the
shortcut learning scenarios used for evaluation are limited
to systematic artifacts with relatively fixed spatial locations.
However, in real-world settings, shortcuts can arise in more
diverse and spatially variable patterns. In future work, we
aim to investigate more complex shortcut learning condi-
tions and develop improved methods for quantifying global
explanations. Finally, we believe it is also crucial to assess
the utility of Attri-Net and other explanation methods in
human-in-the-loop settings, which is a crucial step toward
clinical deployment.
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Appendix A. Additional examples of
counterfactual attribution maps

Examples of counterfactual images obtained by adding
the class-specific attribution map to the input image, i.e.
x̂ = x + Mc(x), are shown in Fig. 13.

Appendix B. Additional results of classification

Table 5 shows the disease-wise classification performance
of all compared models for reference.

Appendix C. Ablation study of the model
guidance

We performed an ablation study of model guidance. As
we discuss in the main paper, there are various approaches
to generate pseudo guidance from the limited number of
ground truth pixel-wise annotations of disease. We evalu-
ated model guidance with the pseudo bounding box, pseudo-
binary mask, and weighted pseudo mask and found that the
pseudo binary mask perform best among the three kinds
of pseudo guidance. We show the pseudo masks for three
datasets and the result in the main paper. Here, we show
the weighted pseudo masks (see Fig. 14 a, b, c)and pseudo
bounding box (see Fig. 14 d, e, f) as an additional reference.
It can be clearly observed that the weighted pseudo masks
have very strong focuses while the pseudo bounding boxes
cover much larger regions.

With Table 6 and Fig. 15, we show the quantitative
and qualitative results of using different model guidance
strategies. We have the following observations.

First, the classification performance and class sensi-
tivity do not change much with different model guidance
approaches. However, adding guidance to the model signif-
icantly improved the disease sensitivity, indicating that the
model focuses more on the correct disease-relevant region.

Second, the disease sensitivity score and the model
guidance effect vary a lot between different diseases. For
diseases with large lesion regions, such as cardiomegaly,
the disease sensitivity score and the improvement of the
score after adding guidance are much larger than those with
smaller lesion regions, such as atelectasis.

Third, the model guidance approach affects disease lo-
calization a lot. The “box only” model is guided only using
very limited pixel-wise annotations. The 30% improvement
in disease sensitivity of the “box only” model compared with
the model “without guidance” shows that even very few
annotations can achieve nice guidance. Since chest X-ray
images have relative fixed structures, the model “pseudo
bbox” trained only with pseudo bounding boxes achieved
better performance than the model using only ground truth
annotation. The improvement of the model “pseudo mask”

which is trained only with pseudo masks compared with
model “pseudo bbox” shows that more focused guidance
have better effects. The “mixed” model is trained using
the strategy we describe in the main paper, i.e., for sam-
ples with ground truth annotations, use ground truth as
guidance, otherwise, using pseudo masks as guidance. The
best disease sensitive score achieved by the “mixed” model
leads us to the conclusion that we should make full use
of the available limited ground truth annotations. Since
the pseudo masks are not ground truth annotation, there-
fore, model “mixed weighted mask” that guided by more
focused weighted pseudo masks does not achieve the best
performance in disease sensitivity.
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Atelectasis Cardiomegaly Consolidation Edema Effusion

Positive
sample

Negative
sample

Figure 13: Counterfactual image generation. Samples from the CheXpert dataset. The examples in the top group of
rows (in red) show input images that are positive for different classes c. For those, the evidence for specific disease c is
strong, as shown in attribution maps Mc(x). After adding Mc(x) with inputs, the strong disease effects are removed, as
shown in the counterfactuals in the third row. The bottom group of rows (in blue) shows images that are negative for
class c. For these images, the disease effects in attribution maps are light, and those images remain mostly unchanged
by adding the output of Mc(x).
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Table 5: Classification performance for each disease, measured by area under the ROC curve (AUC).
CheXpert

Model Atelectasis Cardio. Consolid. Edema Effusion Avg.
ResNet50 0.782 0.902 0.867 0.877 0.950 0.875

B-cos ResNet50 0.791 0.909 0.846 0.855 0.928 0.866
B-cos ResNet50 (guided) 0.719 0.904 0.820 0.840 0.915 0.839

ours 0.807 0.914 0.870 0.841 0.935 0.873
ours (guided) 0.763 0.852 0.870 0.839 0.917 0.848

ChestX-ray8
Model Atelectasis Cardio. Consolid. Edema Effusion Avg.

ResNet50 0.723 0.857 0.708 0.804 0.799 0.778
B-cos ResNet50 0.697 0.825 0.694 0.802 0.766 0.757

B-cos ResNet50 (guided) 0.692 0.826 0.696 0.794 0.760 0.754
ours 0.713 0.858 0.711 0.823 0.792 0.779

ours (guided) 0.718 0.847 0.699 0.810 0.794 0.774
Vindr-CXR

Model Aortic enlarg. Cardio. Pulmon. fib. Pleu. thicken. Pleu. Effusion Avg.
ResNet50 0.795 0.827 0.685 0.720 0.794 0.764

B-cos ResNet50 0.877 0.942 0.736 0.781 0.842 0.836
B-cos ResNet50 (guided) 0.876 0.926 0.726 0.773 0.840 0.828

ours 0.758 0.872 0.723 0.753 0.839 0.789
ours (guided) 0.812 0.860 0.702 0.743 0.793 0.782
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Figure 14: Weighted pseudo masks and pseudo bounding box.

Table 6: Ablation study on model guidance. Evaluated on ChestX-ray8 dataset.
Guidance Classification Class Disease sensitivity Disease sensitivity

AUC sensitivity average over disease Atelectasis Cardiomegaly Effusion
without guidance 0.779 0.951 0.158 0.047 0.343 0.084

bbox only 0.782 0.942 0.201 0.067 0.447 0.087
pseudo bbox 0.775 0.950 0.249 0.069 0.582 0.097
pseudo mask 0.775 0.944 0.313 0.139 0.689 0.110

mixed 0.774 0.965 0.327 0.120 0.733 0.129
mixed weighted mask 0.780 0.948 0.305 0.071 0.753 0.092

Input
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Mixed guidance 
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without
guidance

Guidance 
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Guidance 
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guidance
only with bbox
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Figure 15: Local explanations from models trained with different model guidance approaches. Samples are from
ChestX-ray8 dataset. The red box highlights the explanations from the best-performed “mixed” model that is trained
with both ground truth annotation and pseudo binary masks.
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Appendix D. Additional qualitative results of
local explanation

Fig. 16 and Fig. 17 contain additional examples of local
explanations using all compared methods derived from the
CheXpert and Vindr-CXR datasets, respectively.

Appendix E. Additional quantitative results of
local explanation.

We present disease-specific quantitative results, including
95% confidence intervals for class sensitivity and disease
sensitivity, across all three datasets in the Tables 7 and 8
for further reference.

As discussed in Appendix C, disease sensitivity scores
vary greatly between different diseases. On three datasets,
the disease sensitivity scores of cardiomegaly are much
higher than those scores of other diseases. The improvement
of disease sensitivity in cardiomegaly after adding guidance
is also much bigger. This can be explained by the relatively
large and fixed lesion region of the disease cardiomegaly.
The big improvement after adding model guidance also
happens with disease arotic enlargement, which has a quite
focused lesion region which can be seen from Fig. 15. No-
tably, on three datasets, the disease sensitivity scores of
pleural effusion do not improve much after adding guidance.
By comparing the weighted pseudo-masks of effusion on
three datasets in Fig. 15, it is clear that the lesion regions
of effusion vary much between different datasets. Therefore,
the pseudo guidance mechanism does not perform well in
this disease.

Appendix F. Implementation details

F.1 Discriminator training

The Attri-Net framework requires training a discriminator
function D in parallel to the class attribution generator M .
The weight parameters θ of the discriminator are computed
in separate gradient update steps using the Wasserstein
GAN objective. The full discriminator optimisation objective
is then given by

min
θ

∑
c

E
x∼p(x|yc=0)

[Dc(x|θ)]+ E
x∼p(x|yc=1)

[Dc(x+Mc(x)|θ)] ,

where we omitted the gradient penalty loss which ensures
the discriminator fulfills the Lipschitz-1 constraint dictated
by the Wasserstein GAN objective.

F.2 Network architectures

The network architecture of the attribution map generator
and the discriminator of the Attri-Net framework are shown
in Table 9 and Table. 10, respectively. L refers to the

length of input/output features, N is the number of output
channels, and K is the kernel size.
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Figure 16: Local explanations for an example image from the CheXpert dataset.
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Figure 17: Local explanations for an example image from the Vindr-CXR dataset.
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Table 7: Comparison of Class Sensitivity.
CheXpert

Model Atelectasis Cardio. Consolid. Edema Effusion
GB 0.267 ± 0.197 0.376 ± 0.213 0.329 ± 0.211 0.262 ± 0.126 0.293 ± 0.249

GCam 0.177 ± 0.198 0.189 ± 0.209 0.245 ± 0.213 0.182 ± 0.144 0.160 ± 0.216
LIME 0.248 ± 0.147 0.254 ± 0.132 0.263 ± 0.046 0.244 ± 0.049 0.256 ± 0.165
SHAP 0.290 ± 0.160 0.325 ± 0.162 0.319 ± 0.116 0.382 ± 0.132 0.431 ± 0.181
Gifsp. 0.259 ± 0.273 0.497 ± 0.593 0.461 ± 0.390 0.167 ± 0.271 0.108 ± 0.269

B-cos ResNet50 0.230 ± 0.200 0.360 ± 0.207 0.211 ± 0.091 0.230 ± 0.103 0.294 ± 0.140
B-cos ResNet50 (guided) 0.223 ± 0.134 0.320 ± 0.115 0.286 ± 0.123 0.249 ± 0.110 0.286 ± 0.204

ours 0.533 ± 0.353 0.743 ± 0.320 0.663 ± 0.239 0.715 ± 0.266 0.797 ± 0.226
ours (pseudo guidance) 0.499 ± 0.186 0.659 ± 0.241 0.533 ± 0.270 0.588 ± 0.230 0.796 ± 0.238

ours (full guidance) - - - - -
ChestX-ray8

Model Atelectasis Cardio. Consolid. Edema Effusion
GB 0.302 ± 0.123 0.266 ± 0.129 0.228 ± 0.086 0.310 ± 0.100 0.205 ± 0.088

GCam 0.205 ± 0.127 0.226 ± 0.103 0.232 ± 0.145 0.219 ± 0.136 0.249 ± 0.143
LIME 0.231 ± 0.065 0.207 ± 0.075 0.227 ± 0.059 0.247 ± 0.113 0.226 ± 0.075
SHAP 0.453 ± 0.078 0.483 ± 0.083 0.395 ± 0.097 0.367 ± 0.104 0.468 ± 0.095
Gifsp. 0.511 ± 0.555 0.830 ± 0.549 0.696 ± 0.608 0.785 ± 0.585 0.520 ± 0.690

B-cos ResNet50 0.308 ± 0.163 0.263 ± 0.147 0.280 ± 0.140 0.253 ± 0.144 0.277 ± 0.158
B-cos ResNet50 (guided) 0.325 ± 0.202 0.282 ± 0.204 0.362 ± 0.189 0.360 ± 0.182 0.278 ± 0.162

ours 0.925 ± 0.045 0.959 ± 0.024 0.944 ± 0.024 0.954 ± 0.023 0.972 ± 0.028
ours (pseudo guidance) 0.954 ± 0.021 0.971 ± 0.019 0.958 ± 0.029 0.972 ± 0.020 0.968 ± 0.013

ours (full guidance) - - - - -
Vindr-CXR

Model Aortic enlarg. Cardio. Pulmon. fib. Pleu. thicken. Pleu. Effusion
GB 0.236 ± 0.140 0.250 ± 0.135 0.274 ± 0.112 0.296 ± 0.139 0.268 ± 0.139

GCam 0.175 ± 0.105 0.174 ± 0.126 0.160 ± 0.140 0.152 ± 0.132 0.219 ± 0.074
LIME 0.255 ± 0.047 0.230 ± 0.144 0.267 ± 0.087 0.258 ± 0.106 0.245 ± 0.063
SHAP 0.362 ± 0.137 0.350 ± 0.106 0.254 ± 0.074 0.270 ± 0.091 0.288 ± 0.083
Gifsp. 0.217 ± 0.502 0.170 ± 0.444 0.297 ± 0.411 0.270 ± 0.398 0.672 ± 0.650

B-cos ResNet50 0.251 ± 0.137 0.271 ± 0.145 0.217 ± 0.122 0.227 ± 0.118 0.242 ± 0.122
B-cos ResNet50 (guided) 0.252 ± 0.154 0.230 ± 0.117 0.241 ± 0.147 0.218 ± 0.142 0.248 ± 0.103

ours 0.885 ± 0.130 0.883 ± 0.146 0.850 ± 0.210 0.866 ± 0.170 0.821 ± 0.290
ours (pseudo guidance) 0.938 ± 0.079 0.912 ± 0.145 0.918 ± 0.079 0.908 ± 0.109 0.933 ± 0.087

ours (full guidance) 0.885 ± 0.132 0.914 ± 0.114 0.818 ± 0.258 0.889 ± 0.088 0.856 ± 0.195

662



Attri-Net: A Globally and Locally Inherently Interpretable Model

Table 8: Comparison of Disease Sensitivity.
CheXpert

Model Atelectasis Cardio. Consolid. Edema Effusion
GB 0.056 ± 0.071 0.255 ± 0.176 0.207 ± 0.297 0.210 ± 0.224 0.149 ± 0.229

GCam 0.102 ± 0.135 0.343 ± 0.371 0.141 ± 0.212 0.264 ± 0.240 0.120 ± 0.237
LIME 0.115 ± 0.128 0.099 ± 0.088 0.032 ± 0.078 0.163 ± 0.154 0.102 ± 0.190
SHAP 0.115 ± 0.139 0.236 ± 0.244 0.177 ± 0.243 0.404 ± 0.284 0.165 ± 0.317
Gifsp. 0.148 ± 0.180 0.190 ± 0.163 0.175 ± 0.190 0.301 ± 0.213 0.144 ± 0.240

B-cos ResNet50 0.187 ± 0.221 0.414 ± 0.238 0.211 ± 0.230 0.273 ± 0.243 0.211 ± 0.331
B-cos ResNet50 (guided) 0.232 ± 0.251 0.480 ± 0.240 0.226 ± 0.209 0.239 ± 0.257 0.217 ± 0.341

ours 0.199 ± 0.341 0.223 ± 0.248 0.165 ± 0.225 0.353 ± 0.277 0.093 ± 0.246
ours (pseudo guidance) 0.374 ± 0.451 0.623 ± 0.356 0.324 ± 0.414 0.490 ± 0.329 0.194 ± 0.418

ours (full guidance) - - - - -
ChestX-ray8

Model Atelectasis Cardio. Consolid. Edema Effusion
GB 0.093 ± 0.205 0.345 ± 0.231 - - 0.089 ± 0.169

GCam 0.052 ± 0.141 0.248 ± 0.157 - - 0.077 ± 0.154
LIME 0.049 ± 0.116 0.237 ± 0.118 - - 0.080 ± 0.132
SHAP 0.098 ± 0.217 0.598 ± 0.255 - - 0.139 ± 0.247
Gifsp. 0.084 ± 0.191 0.319 ± 0.239 - - 0.121 ± 0.187

B-cos ResNet50 0.098 ± 0.227 0.480 ± 0.243 - - 0.127 ± 0.208
B-cos ResNet50 (guided) 0.098 ± 0.244 0.518 ± 0.215 - - 0.125 ± 0.223

ours 0.047 ± 0.112 0.343±0.251 - - 0.084 ± 0.161
ours (pseudo guidance) 0.120 ± 0.260 0.733 ± 0.351 - - 0.129 ± 0.257

ours (full guidance) - - - - -
Vindr-CXR

Model Aortic enlarg. Cardio. Pulmon. fib. Pleu. thicken. Pleu. Effusion
GB 0.041 ± 0.097 0.089 ± 0.161 0.026 ± 0.089 0.014 ± 0.072 0.065 ± 0.160

GCam 0.036 ± 0.075 0.221 ± 0.179 0.017 ± 0.054 0.006 ± 0.020 0.028 ± 0.090
LIME 0.050 ± 0.052 0.034 ± 0.077 0.022 ± 0.053 0.007 ± 0.024 0.039 ± 0.091
SHAP 0.105 ± 0.160 0.168 ± 0.150 0.006 ± 0.022 0.005 ± 0.016 0.050 ± 0.067
Gifsp. 0.071 ± 0.090 0.127 ± 0.113 0.024 ± 0.057 0.010 ± 0.022 0.029 ± 0.077

B-cos ResNet50 0.119 ± 0.163 0.250 ± 0.196 0.012 ± 0.048 0.009 ± 0.030 0.056 ± 0.133
B-cos ResNet50 (guided) 0.120 ± 0.181 0.190 ± 0.191 0.012 ± 0.055 0.012 ± 0.032 0.042 ± 0.115

ours 0.119 ± 0.180 0.196±0.164 0.017±0.049 0.010 ± 0.030 0.034±0.129
ours (pseudo guidance) 0.270±0.433 0.345 ± 0.314 0.053±0.178 0.035±0.127 0.077±0.231

ours (full guidance) 0.363±0.560 0.504±0.466 0.031 ± 0.115 0.022 ± 0.056 0.102 ± 0.282
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Table 9: Attri-Net class attribution generator network architecture.
Layers Input → Output Layer information
Task embedding layer Task code tc → Task embedding t′

c 8 × FC(L100,L100)
Ada Conv: CONV(N64, K7x7), AdaIN, ReLU

Down-sampling (Input image x, t′
c) → outdown Ada Conv: CONV(N128, K4x4), AdaIN, ReLU

Ada Conv: CONV(N256, K4x4), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU

Bottlenecks (outdown , t′
c) → outbn Ada ResBlock: CONV(N256, K3x3,), AdaIN, ReLU

Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU
Ada ResBlock: CONV(N256, K3x3), AdaIN, ReLU

Ada DECONV(N128, K4x4), AdaIN, ReLU
Up-sampling (outbn , t′

c) → outup Ada DECONV(N64, K4x4), AdaIN, ReLU
CONV(N1, K7x7)

Output layer (x, outup) → Mc(x) Mc(x) = tanh(x + outup) − x

Table 10: Attri-Net discriminator network architecture.
Layers Input → Output Layer information
Task embedding layer Task code tc → Task embedding t′

c 8 × FC(L100,L100)
Input layer Ada Conv: CONV(N64, K4x4), AdaIN, ReLU

Ada Conv: CONV(N128, K4x4), AdaIN, ReLU
Ada Conv: CONV(N256, K4x4), AdaIN, ReLU

Hidden layers (x/x̂ , t′
c) → outhid Ada Conv: CONV(N512, K4x4), AdaIN, ReLU

Ada Conv: CONV(N1024, K4x4), AdaIN, ReLU
Ada Conv: CONV(N2048, K4x4), AdaIN, ReLU

Output layer outhid → L(c)
adv CONV(N1, K3x3)
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